John W. Emerson, Yale University (€)2010

New York City R-Meetup

Columbia University
June 3, 2010

Jay Emerson
Yale University
http://www.stat.yale.edu/" jay/
Talk resources: http://www.stat.yale.edu/~jay/Rmeetup/

Abstract
A crash course in “poor man’s” debugging via some non-trivial examples: an

inefficiency in R’s kmeans () function; reshaping Olympic diving scores; working
with streaming video.

Contents

1 About this document (recap from March R Meetup)

2 Debugging kmeans()
2.1 Background
2.2 Theproblem
2.3 Debugging

3 Reshaping Olympic diving scores

4 Working with streaming video

References

ot W NN

12

John W. Emerson, Yale University (€)2010 2

1 About this document (recap from March R Meetup)

This document is intended to complement (and not completely duplicate) the talk, and
was created using Sweave (which is included with R). For more information, see Friedrich
Leisch’s web page:

http://www.stat.uni-muenchen.de/"leisch/Sweave/

The short story: you use R to flush your “master copy” of the document (a .Rnw file) through
Sweave, producing a .tex file which is then processed using KTEX. In this way, you can
include R code in your document and, automatically, the results of the code. Even plots are
easy to integrate. The file (Rmeetup.Rnw) used to produce this document (Rmeetup.pdf) is
available along with other materials related to the Meetup, at

http://www.stat.yale.edu/" jay/Rmeetup/

If you are interested in Sweave and look at Rmeetup.Rnw, please note that I've done a few
unusual things because of the nature of this particular presentation. Please read the special
comments at the top of the file.

2 Debugging kmeans()

2.1 Background
Have a look at what Wikipedia has to say about the k-means algorithm:
http://en.wikipedia.org/wiki/K-means_algorithm

In particular, look at the picture, a “demonstration of the algorithm.” Do you buy it? I
don’t. And the last picture certainly isn’t the result of a convergence. So, T'll quickly
introduce Lloyd’s k-means algorithm (the first and simplest of the clustering algorithms,
which is included in R but is not the default).

Lloyd’s algorithm (Lloyd, 1957) takes a set of observations or cases (think: rows of
an nxp matrix, or points in IRP) and clusters them into k groups. It tries to minimize the
within-cluster sum of squares

k
> D (w5 —)
i=1z;€S;

where p; is the mean of all the points in cluster S;. The algorithm proceeds as follows (Il
spare you the formality of the exhaustive notation):

1. Partition the data at random into k sets.
2. Calculate the centroid of each set.
3. Assign each point to the set corresponding to the closest centroid.

4. Repeat the last two steps until nothing is moved around, or until some maximum
number of iterations has been reached.

John W. Emerson, Yale University (€)2010 3

R provides Lloyd’s algorithm as an option to kmeans(); the default algorithm, by
Hartigan and Wong (1979) is much smarter. Like MacQueen’s algorithm (MacQueen, 1967),
it updates the centroids any time a point is moved; it also makes clever (time-saving) choices
in checking for the closest cluster.

There is a problem with R’s implementation, however, and the problem arises when
considering multiple starting points. I should note that it’s generally prudent to consider
several different starting points, because the algorithm is guaranteed to converge, but is not
guaranteed to coverge to a global optima. This is particularly true for large, high-dimensional
problems. I'll start with a simple example (large, not particularly difficult).

2.2 The problem

Let’s simulate a data set in JR? with 4 clusters and then do a cluster analysis via kmeans ()
with 3 randomly selected starting points using Lloyd’s algorithm:

> N <- 1le+05
> x <- matrix(0, N, 2)
> x[seq(1, N, by = 4),] <- rnorm(N/2)
> x[seq(2, N, by = 4),] <- rnorm(N/2, 3, 1)
> x[seq(3, N, by = 4),] <- rnorm(N/2, -3, 1)
> x[seq(4, N, by = 4), 1] <- rnorm(N/4, 2, 1)
> x[seq(4, N, by = 4), 2] <- rnorm(N/4, -2.5, 1)
> start.kmeans <- proc.time()[3]
> ans.kmeans <- kmeans(x, 4, nstart = 3, iter.max = 10, algorithm = "Lloyd")
> ans.kmeans$centers
[,1] [,2]

1 3.0091228 3.01091520
2 -3.0068832 -3.00651790
3 2.0376395 -2.53674463
4 -0.0347932 0.03792785
> end.kmeans <- proc.time() [3]
> end.kmeans - start.kmeans
elapsed

2.787

Figure 1 shows a scatterplot of 10,000 randomly selected points and superimposes the es-
timated cluster centers from the analysis above. Here, the time consumed is 2.787 seconds
(note the Sweave code for the previous number in the text). I intentionally limit the algo-
rithm to 10 iterations for reasons that will soon become evident.

We might reasonably want to achieve a speed gain by taking advantage of parallel
computing tools:

John W. Emerson, Yale University (€)2010

X[these, 2]
0

X[these, 1]

Figure 1: Simulated data for kmeans () problem.

John W. Emerson, Yale University (€)2010 5

library(foreach)
library (doMC)
registerDoMC(3)
start.kmeans <- proc.time() [3]
ans.kmeans.par <- foreach(i = 1:3) Jdopar/ {

return(kmeans (x, 4, nstart = 1, iter.max = 10, algorithm = "Lloyd"))
}
TSS <- sapply(ans.kmeans.par, function(a) return(sum(a$withinss)))
ans.kmeans.par <- ans.kmeans.par[[which.min(TSS)]]
ans.kmeans.par$centers

VVV + + V V.V VYV

[,1] [,2]
-3.00688322 -3.00651790
2.03765082 -2.53682040
3.00912279 3.01091520
-0.03472168 0.03790064

W N -

\%

end.kmeans <- proc.time() [3]
end.kmeans - start.kmeans

\%

elapsed
0.199

Note that the solution is very similar to the one achieved earlier, although the ordering of the
clusters is arbitrary. More importantly, the job only took 0.199 seconds in parallel! Surely
this is too good to be true: using 3 processor cores should, at best, taken one third of the
time of our first (sequential) run. Is this a problem? It sounds like free lunch. There is no
problem with a free lunch once in a while, is there?

2.3 Debugging
Fire up R. Try this (I truncate my output):

> kmeans

function (x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong",
"Lloyd", "Forgy", "MacQueen"))
{
do_one <- function(mmeth) {
Z <- switch(nmeth, {
Z <- .Fortran("kmns", as.double(x), as.integer(m),

This doesn’t always work with R functions, but sometimes we have a chance to look directly
at the code. This is one of those times. I'm going to put this code into a file, mykmeans.R,
and edit it by hand, inserting cat () statements in various places. Here’s a clever way to do
this, using sink () (although this doesn’t seem to work in Sweave, it will work interactively):

John W. Emerson, Yale University (€)2010

> sink("mykmeans.R")
> kmeans
> sink()

Now T’ll edit the file, changing the function name and adding cat() statements.
that you also have to delete a trailing line: <environment: namespace:stats>. After my

additions, here’s a sample of what part of this file might look like:

mykmeans <- function (x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd",
"Forgy", "MacQueen"))
{
cat("JJJ statement 1: O elapsed time.\n")
base <- proc.time() [3]

cat("JJJ statement 5:", proc.time() [3]-base, "elapsed time.\n")
if (nstart >= 2 && !is.null(cn)) {
best <- sum(Z$wss)
for (i in 2:nstart) {
centers <- cn[sample.int(mm, k), , drop = FALSE]
cat("JJJ statement 6:", proc.time() [3]-base, "elapsed time.\n")
ZZ <- do_one(nmeth)
cat("JJJ statement 7:", proc.time() [3]-base, "elapsed time.\n")
if ((z <- sum(ZZ$wss)) < best) {
Z <- 77
best <- z

We can then repeat our explorations, but using mykmeans ():

> source ("mykmeans.R")
> start.kmeans <- proc.time()[3]

> ans.kmeans <- mykmeans(x, 4, nstart = 3, iter.max = 10, algorithm

JJJ statement
JJJ statement
JJJ statement
JJJ statement
JJJ statement
JJJ statement

elapsed time.

.424 elapsed time.
.425 elapsed time.
.52 elapsed time.
.52 elapsed time.
.563 elapsed time.

~No NO O
N NDDNDNDDNDO

> ans. kmeans$centers

Note

nLloyd u)

John W. Emerson, Yale University (€)2010 7

[,1] [,2]
1 -0.0347932 0.03792785
2 3.0091228 3.01091520
3 2.0376395 -2.53674463
4 -3.0068832 -3.00651790
> end.kmeans <- proc.time() [3]
> end.kmeans - start.kmeans
elapsed

2.566

Now we're in business: most of the time was consumed before statement 5 (I knew this of
course, which is why statement 5 was 5 rather than 2). So let’s add a few more statements
to figure out where the time is being spent. We’ll do this together in the Meetup.

3 Reshaping Olympic diving scores

Package YaleToolkit contains a function whatis () that is my preferred tool for preliminary
examination of data frames. The output is a little wide for this document, but you'll get the
idea:

> x <- read.csv("Diving2000.csv", header = TRUE, as.is = TRUE)
> library(YaleToolkit)
> whatis(x)

variable.name type missing distinct.values precision
1 Event character 0 4 NA
2 Round character 0 3 NA
3 Diver character 0 156 NA
4 Country character 0 42 NA
5 Rank numeric 0 49 1.0
6 DiveNo numeric 0 6 1.0
7 Difficulty numeric 0 20 0.1
8 JScore numeric 0 21 0.1
9 Judge character 0 25 NA
10 JCountry character 0 21 NA
min max
1 M10mPF W3mSB
2 Final Semi
3 ABALLI Jesus-Iory ZHUPINA Olena
4 ARG ZIM
5 1 49
6 1 6
7 1.5 3.8

John W. Emerson, Yale University (€)2010 8

8 0 10
9 ALT Walter ZAITSEV Oleg
10 AUS ZIM

We can also look at the head of the data set (selected columns):

> x[1:14, c(3, 6:9)]

Diver DiveNo Difficulty JScore Judge
1 XIONG Ni 1 3.1 8.0 RUIZ-PEDREGUERA Rolando
2 XIONG Ni 1 3.1 9.0 GEAR Dennis
3 XIONG Ni 1 3.1 8.5 BOYS Beverley
4 XIONG Ni 1 3.1 8.5 JOHNSON Bente
5 XIONG Ni 1 3.1 8.5 BOUSSARD Michel
6 XIONG Ni 1 3.1 8.5 CALDERON Felix
7 XIONG Ni 1 3.1 8.5 CRUZ Julia
8 XIONG Ni 2 3.0 8.5 RUIZ-PEDREGUERA Rolando
9 XIONG Ni 2 3.0 8.0 GEAR Dennis
10 XIONG Ni 2 3.0 8.0 BOYS Beverley
11 XIONG Ni 2 3.0 9.0 JOHNSON Bente
12 XIONG Ni 2 3.0 8.0 BOUSSARD Michel
13 XIONG Ni 2 3.0 8.0 CALDERON Felix
14 XIONG Ni 2 3.0 8.0 CRUZ Julia

The challenge: create a new column containing the average scores of the panel for each dive.
Attempt 1:

> meancol <- function(scores) {

+ temp <- matrix(scores, length(scores)/7, ncol = 7)
+ means <- apply(temp, 1, mean)

+ ans <- rep(means, 7)

+ return(ans)

+ }

> x$panelmean <- meancol (x$JScore)

Did it work?

> x[1:14, c(3, 6:9, 11)]

Diver DiveNo Difficulty JScore Judge panelmean
1 XIONG Ni 1 3.1 8.0 RUIZ-PEDREGUERA Rolando 6.285714
2 XIONG Ni 1 3.1 9.0 GEAR Dennis 6.571429
3 XIONG Ni 1 3.1 8.5 BOYS Beverley 7.071429
4 XIONG Ni 1 3.1 8.5 JOHNSON Bente 7.214286
5 XIONG Ni 1 3.1 8.5 BOUSSARD Michel 7.214286
6 XIONG Ni 1 3.1 8.5 CALDERON Felix 7.000000
7 XIONG Ni 1 3.1 8.5 CRUZ Julia 6.928571

John W. Emerson, Yale University (€)2010 9

8 XIONG Ni 2 3.0 8.5 RUIZ-PEDREGUERA Rolando 6.642857
9 XIONG Ni 2 3.0 8.0 GEAR Dennis 6.714286
10 XIONG Ni 2 3.0 8.0 BOYS Beverley 6.857143
11 XIONG Ni 2 3.0 9.0 JOHNSON Bente 6.714286
12 XIONG Ni 2 3.0 8.0 BOUSSARD Michel 7.142857
13 XIONG Ni 2 3.0 8.0 CALDERON Felix 6.785714
14 XIONG Ni 2 3.0 8.0 CRUZ Julia 6.928571

Nope! We should have the mean scores repeated 7 times for all of the lines for each dive,
and we clearly don’t have that. Thus, let’s try browser():

> meancol <- function(scores) {

+ browser ()

+ temp <- matrix(scores, length(scores)/7, ncol = 7)
+ means <- apply(temp, 1, mean)

+ ans <- rep(means, 7)

+ return(ans)

+ }

We’ll have to play with this together in the Meetup, it isn’t really conducive to displaying in
a document like this. However, with this new browser () line in the function, it gives us the
ability to step through the code a line at a time to see if we believe what we have. Here’s a
snapshot of what happens, though:

> x$panelmean <- meancol (x$JScore)

Called from: meancol(x$JScore)

Browse[1]> n

debug: temp <- matrix(scores, length(scores)/7, ncol = 7)
Browse[2]> n

debug: means <- apply(temp, 1, mean)

Browse[2]> 1s()

[1] "scores" "temp"

Browse[2]> head (temp)

(,11 [,21 [,3] [,4] [,5] [,6] [,7]

[1,] 8.0 5.5 7.0 6.0 7.5 3.0 7
[2,] 9.0 6.0 7.0 7.0 7.5 2.5 7
[3,] 8.5 7.0 7.0 6.5 7.0 6.5 7
[4,] 8.5 7.5 7.0 7.0 7.0 6.5 7
[5,] 8.5 7.0 7.5 7.0 7.5 6.0 7
[6,] 8.5 7.0 7.0 6.5 7.0 6.0 7

John W. Emerson, Yale University (€)2010 10

Browse[2]> scores[1:14]

[1] 8.0 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 9.0 8.0 8.0 8.0
At this point, we remember that matrix() fills in columns, not rows, and here we wanted
to fill in row-by-row. So we fix it up and go back to work. We'll finish this in the Meetup.
4 Working with streaming video

I don’t really think I'll get here — it’s more of a teaser. And I really can’t show this in a
static document, so you're out of luck. Email me if you're interested. I'll be speaking on this
more formally at the Interface conference in Seattle in a few weeks, and then again at UseR
in mid-July.

John W. Emerson, Yale University (€)2010 11

Figure 2: A first video capture

John W. Emerson, Yale University (€)2010 12

References

[1]

John W. Emerson and Walton Green (2007), YaleToolkit: Data exploration tools from
Yale University. R package version 3.1. URL http://CRAN.R-project.org/package=
YaleToolkit.

J. A. Hartigan and M. A. Wong (1979), “A K-means clustering algorithm.” Applied
Statistics, Vol. 28, 100-108.

Michael J. Kane and John W. Emerson (2010), bigmemory: Manage massive matrices
with support for shared memory and memory-mapped files. R package version 4.2.3.
URL http://CRAN.R-project.org/package=bigmemory.

J. MacQueen (1967), “Some methods for classification and analysis of multivariate ob-
servations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, eds L. M. Le Cam & J. Neyman, Vol. 1, pp. 281-297. Berkeley, CA:
University of California Press.

S. P. Lloyd (1957), “Least squares quantization in PCM.” Technical Note, Bell Labora-
tories. Published in 1982 in IEEE Transactions on Information Theory Vol. 28, 128-137.

R Development Core Team (2009), R: language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
URL http://www.r-project.org/.

Simon Urbanek (2009), multicore: Parallel processing of R code on machines with
multiple cores or CPUs. R package version 0.1-3. URL http://CRAN.R-project.org/
package=multicore.

Steve Weston and REvolution Computing (2009), foreach: Foreach looping construct
for R. R package version 1.3.0. URL http://CRAN.R-project.org/package=foreach.

Steve Weston and REvolution Computing (2009), doMC: Foreach parallel adaptor for
the multicore package. R package version 1.2.0. URL http://CRAN.R-project.org/
package=doMC.

