
CHAPTER 1

Probability Theory

1.1  RANDOM EVENTS AND THEIR PROBABILITIES

Probability theory comprises mathematically based theories and methods for investi-
gating random phenomena. Formally, random phenomena occur in connection with
random experiments. A random experiment is characterized by two properties:
1. Repetitions of the experiment, even if carried out under identical conditions, gen-
erally have different outcomes.
2. The possible outcomes of the experiment are known.
Thus, the outcomes of a random experiment cannot be predicted with certainty. How-
ever, if random experiments are repeated sufficiently frequently under identical con-
ditions, stochastic or statistical regularities can be found. Examples of random exper-
iments are:
1) Counting the number of vehicles arriving at a filling station a day.
2) Counting the number of shooting stars during a fixed time interval. The possible
outcomes are, as in the previous random experiment, nonnegative integers.
3) Recording the daily maximum wind velocity at a fixed location.
4) Recording the lifespans of technical systems or organisms.
5) Recording the daily maximum fluctuation of share prices. The possible outcomes
are, as in the random experiments 3 and 4, nonnegative numbers.
6) The total profit sombody makes with his financial investments a year. This 'profit'
can be negative, i.e. any real number can be the outcome.
As the examples show, in this context the term 'experiment' has a more abstract mean-
ing than in the customary sense.

Random Events  A possible outcome a of a random experiment is called an elemen-
tary or a simple event. The set of all elementary events is called space of elementary
events or sample space. Here and in what follows, the sample space is denoted as M.
A sample space M is discrete if it is a finite or a countably infinite set.
A random event (briefly: event)  A is a subset of M. An event A is said to have oc-
curred if the outcome a of the random experiment is an element of A: a ∈ A.
Let A and B be two events. Then the set-theoretic operations intersection ' ' and∩
union ' ' can be interpreted in the following way:

 is the event that both A and B occur and  is the event that A or B (orA ∩ B A B
both) occur.
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If  (A is a subset of B), then the occurrence of A implies the occurrence of B.A ⊆ B
 is the set of all those elementary events which are elements of A, but not of B.A\ B

Thus,  is the event that A occurs, but not B. Note that A\ B A\ B = A\ (A ∩ B).
The event  is the complement of A. If A occurs, then  cannot occur andA = M\ A A

 versavice .

Rules of de Morgan  Let  be a sequence of random events. ThenA1, A2, ..., An

                         (1.1)i=1
n Ai = i=1

n Ai, i=1
n Ai = i=1

n Ai.

In particular, if , , the rules of de Morgan simplify ton = 2 A1 = A and A2 = B

                                 (1.2)A B = A ∩ B, A ∩ B = A B.

The empty set  is the impossible event, since, for not containing an elementary∅
event, it can never occur. By definition, M contains all elementary events so that it
must always occur. Hence M is called the certain event. Two events A and B are cal-
led disjoint or (mutually) exclusive if their joint occurrence is impossible, i.e. if

. In this case the occurrence of A implies that B does not occur and viceA ∩ B = ∅
versa. In particular, A and  are disjoint events (Figure 1.1).A

Probability Let M be the set of all those random events A which can occur when
carrying out the random experiment, including M and . Further, let  be a∅ P = P(A)
function on M with properties
I)                            P(∅) = 0, P(M) = 1,
II)   for any event A,  0 ≤ P(A) ≤ 1,
III) for any sequence of disjoint (mutually exclusive) random events ,  i.e.A1, A2, ...

 for Ai ∩ Aj = ∅ i ≠ j,

                                     (1.3)P⎛⎝ i=1
∞ Ai

⎞
⎠ = Σi=1

∞ P(Ai).

The number  is the probability of event A.  characterizes the degree of cer-P(A) P(A)
tainty of the occurrence of A. This interpretation of the probability is justified by the
following implications from properties  I) to III).
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            Figure 1.1  Venn Diagram
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1) P(A) = 1 − P(A).
2) If , then  In this case, A ⊆ B P(B\A) = P(B) − P(A). P(A) ≤ P(B).
For any events A and B, P(B\A) = P(B) − P(A ∩ B).
3) If A and B are disjoint, i.e. , thenA ∩ B = ∅

P(A B) = P(A) + P(B).
4) For any events  B, and C,A,

                               (1.4)P(A B) = P(A) + P(B) − P(A ∩ B),
 P(A B C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C)

+P(A ∩ B ∩ C).
5) In generalizing implications 4), one obtains the Inclusion-Exclusion-Formula: For
any random events A1, A2, ..., An,

P(A1 A2 . .. An) = Σk=0
n−1(−1)k+1Pk

with

Pk = Σ
i1<i2<. .. <ik

n
P(Ai1 ∩ Ai2 ∩ . .. ∩ Aik ),

where the summation runs over all k-dimensional vectors
 with (i1, i2, ..., ik) 1 ≤ i1 < i2 < . .. < ik ≤ n.

Note  It is assumed that all those subsets of M which arise from applying operations
 and \ to any random events are also random events, i.e. elements of M∩ , .

The probabilities of random events are usually unknown. However, they can be esti-
mated by their relative frequencies. If in a series of n repetitions of one and the same
random experiment the event A has been observed  times, then the relativem = m(A)
frequency of A is given by

pn(A) = m(A)
n .

Generally, the relative frequency of A tends to  as n increases:P(A)

                                             (1.5)limn→∞
pn(A) = P(A).

Thus, the probability of A can be estimated with any required level of accuracy from
its relative frequency by sufficiently frequently repeating the random experiment (see
section 1.9.2).

Conditional Probability  Two random events A and B can depend on each other in
the following sense: The occurrence of B will change the probability of the occur-
rence of A and vice versa. Hence, the additional piece of information 'B has occurred'
should be used to predict the occurrence of A more precisely. This is done by defin-
ing the conditional probability of A given B.
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Let A and B be two events with  Then the conditional probability of A givenP(B) > 0.
B or, equivalently, the conditional probability of  on condition B is defined asA

                                            (1.6)P(A B) = P(A ∩ B)
P(B) .

Hence, if A and B are arbitrary random events, this definition implies a product for-
mula for P(A ∩ B) :

P(A ∩ B) = P(A B) P(B) .

 is called an exhaustive set of random events if{B1, B2, ..., Bn}

i=1
n Bi = M .

Let  be an exhaustive and disjoint set of random events with proper-B1, B2, ..., Bn
ty  for all  Then the following formulas are true:P(Bi) > 0 i = 1, 2, ... and P(A) > 0.

                                      (1.7)P(A) = Σi=1
n P(A Bi) P(Bi)

        (1.8)P(Bi A) =
P(A Bi) P(Bi)

P(A) =
P(A Bi) P(Bi)

Σi=1
n P(A Bi) P(Bi)

, i = 1, 2, ..., n.

Equation (1.7) is called total probability rule or formula of the total probability and
(1.8) is called Bayes' theorem or Formula of Bayes. For obvious reasons, the proba-
bilities  are called a priori-probabilities and the conditional probabilitiesP(Bi)

 are the a posteriori-probabilities.P(Bi A)

Independence  If the occurrence of  has no influence on the occurrence of A, thenB
 P(A B) = P(A).

This motivates the definition of independent random events: Two random events A
and  are called independent ifB

                                          (1.9)P(A ∩ B) = P(A) P(B) .
This is the product formula for independent events A and B. Obviously, (1.9) is also
valid for  or/and  Hence, defining independence of two randomP(B) = 0 P(A) = 0.
events by (1.9) is preferred to defining independence via P(A B) = P(A).
Note that if A and B are independent random events, then the pairs A and  and B,B, A
and  and  are independent as well. That means, the independence of A and B im-A B
plies, for instance,

P(A ∩ B) = P(A) P(B).
The events  are completely independent or simply independent if forA1, A2, ..., An
any subset  of the set {Ai1 , Ai2 , ..., Aik } {A1, A2, ..., An},

P(Ai1 ∩ Ai2 ∩ . .. ∩ Aik ) = P(Ai1 ) P(Ai2 ) . .. P(Aik ) .
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Specifically, the independence of the  implies for  a direct generalization ofAi k = n
formula (1.9):

                   (1.10)P(A1 ∩ A2 ∩ . .. ∩ An) = P(A1) P(A2) . .. P(An).

Example 1.1  In a set of traffic lights, the colour 'red' (as well as green and yellow) is
indicated by two bulbs which operate independently of each other. Colour 'red' is
clearly visible if at least one bulb is operating. What is the probability that in the time
interval [0, 200 hours] colour 'red' is visible if it is known that a bulb survives this
interval with probability  To answer this question, let0.95 ?

 'bulb 1 does not fail in [0, 200]',   B = 'bulb 2 does not fail in [0, 200]'.A =

The event of interest is
 'red light is clearly visible in [0, 200]'.C = A B =

Since  and B are independent,A

P(C) = P(A B) = P(A) + P(B) − P(A ∩ B)

= P(A) + P(B) − P(A) P(B) = 0.95 + 0.95 − (0.95)2 = 0.9975 .

Another possibility of solving this problem is to apply the rule of de Morgan (1.2):
P(C) = P(A B) = P(A ∩ B) = P(A) P(B)

= (1 − 0.95)(1 − 0.95) = 0.0025.

Hence,                                                                              P(C) = 1 − P(C) = 0.9975.

Example 1.2 1% of the population in a country are HIV-positive. A test procedure
for diagnosing whether a person is HIV-positive indicates with probability 0.98 that
the person is HIV-positive if it is HIV-positive, and with probability 0.96 that this
person is not HIV-positve if it is not HIV-positive. What is the probability that a test
person is HIV- positive if the test indicates that?
To solve the problem, random events  and B are introduced:A

 'The test indicates that a person is HIV-positive.'A =
 'A test person is HIV-positive.'B =

Then,
P(B) = 0.01, P(B) = 0.99

 P(A B) = 0.98, P(A B) = 0.02,

P(A B) = 0.96, P(A B) = 0.04.
Since  is an exhaustive set of events with  the total probability rule{B, B} B ∩ B = ∅,
(1.7) is applicable to determining P(A) :

P(A) = P(A B) P(B) + P(A B) P(B)

= 0.98 ⋅ 0.01 + 0.04 ⋅ 0.99 = 0.0494 .
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Bayes' theorem (1.8) yields the desired probability :P(B A)

P(B A) = P(A B) P(B)
P(A) = 0.98 ⋅ 0.01

0.0494 = 0.1984 .

Although the initial parameters of the test look acceptable, this result is quite unsatis-
factory: In view of  about 80% HIV-negative test persons will beP(B A) = 0.8016,
shocked to learn that the test procedure indicates they are HIV-positive. In such a sit-
uation the test has to be repeated several times.
The probability that a person is not -positive if the test procedure indicates this isHIV

P(B A) = P(A B) P(B)
P(A)

= 0.96 ⋅ 0.99
1 − 0.0494 = 0.99979 .

This result is, of course, an excellent feature of the test.                                            

1.2   RANDOM VARIABLES

1.2.1  Basic Concepts

All the outcomes of the random experiments 1 to 6 at page 1 are real numbers. But
when considering the random experiment 'tossing a die', the set of outcomes is 'head'
and 'tail'. With such outcomes, no quantitative analysis of the random experiment is
possible. Hence it makes sense to assign, for instance, number 1 to 'head' and number
0 to 'tail'. Or consider a problem in quality control. The possible outcomes when test-
ing a unit be 'faulty' and 'operating'. The random experiment consists in checking the
quality of the units in a sample of size n. The simple events of this random exper-
iment are n-dimensional vectors with elements 'faulty' and 'operating'. Usually, one is
not primarily interested in these sequences, but in the total number of faulty units in a
sample. Thus, when the outcomes of a random experiment are not real numbers or if
the outcomes are not of immediate interest, then it makes sense to assign real num-
bers to the outcomes. This leads to the concept of a random variable:

     Given a random experiment with sample space M, a random variable X is a real   
     function on M: X = X(a), a ∈ M.

Thus, a random variable associates a number with each outcome of a random exper-
iment. The set of all possible values or realizations which X can assume is called the
range of X and is denoted as  The range of a random variable isR = {X(a), a ∈ M}.
not its most important characteristic, for, in assigning values to simple events, fre-
quently arbitrariness prevails. (When flipping a coin, a '-1' ('+1) may be assigned to
head (tail)). Different units of measurement are another source of arbitrariness. By
introducing a random variable X, one passes from the sample space M of a random
experiment to the range R of X, which is simply another sample space for otherwise
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the same random experiment. Thus, a random variable can be interpreted as the out-
come of a random experiment, the simple events of which are real numbers. The ad-
vantage of introducing random variables X is that they do not depend on the physical
nature of the underlying random experiment. All that needs to be known is the values
X can assume and the probabilistic law which controls their occurrence. This 'proba-
bilistic law' is called probability distribution of X and will be denoted as P . For thisX
nonmeasure theoretic textbook, the following explanation is sufficient:

     The probability distribution P  of a random variable X contains all the informa-  X
      tion necessary for calculating the interval probabilities ,  P(X ∈ (a, b]) a ≤ b.

A discrete random variable has a finite or a countably infinite range, i.e. the set of its
possible values can be written as a finite or an infinite sequence (examples 1 and 2).
Let X be a discrete random variable with range  Further, let R = x0, x1, x2, ... . pi
be the probability of the random event that X assumes value  xi :

pi = P(X = xi), i = 0, 1, 2, ...

The set  can be identified with the probability distribution P  of X,p0, p1, p2, ... X
since for any interval  the interval probabilities are given by(a, b]

P(X ∈ (a, b]) = P(a < X ≤ b) = Σ
xi∈(a,b]

pi .

Since X must assume one of its values, the probability distribution of any discrete
random variable satisfies  normalizing conditionthe

Σi=0
∞ pi = 1 .

On the other hand, any sequence of nonnegative numbers  satisfying{p0, p1, p2, ...}
the normalizing condition can be considered the probability distribution of a discrete
random variable.
The range of a continuous random variable X is a finite or an infinite interval. In this
case, the probability distribution of X can be most simply characterized by its
(cumulative) distribution function:

                                        (1.11)F(x) = P(X ≤ x) , x ∈ RX .

Thus,  is the probability of the random event that X assumes a value which isF(x)
less than or equal to x. Any distribution function  has propertiesF(x)

1)      2)   is nondecreasing in x.                                (1.12)F(−∞) = 0, F(+∞) = 1 F(x)

On the other hand, every function  which is continuous from the right and satis-F(x)
fies properties (1.12) is the distribution function of a certain random variable X
(Figure 1.2) . For  the interval probabilities are given bya < b,

                         (1.13)P(X ∈ (a, b] ) = P(a < X ≤ b) = F(b) − F(a).
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The definition (1.11) of a distribution function applies to discrete random variables X
as well. Let  be the range of X with  for  Then,{x0, x1, x2, ...} xi < xi+1 i = 0, 1, ...

    (1.14)F(x) = P(X ≤ x) =
⎧

⎩
⎨
⎪
⎪

0 for x < x0
Σi=0

k pi for xk ≤ x < xk+1, k = 0, 1, 2, . .. .

If the range of X is finite and  is the largest possible value of X, then (1.14) has toxn
be supplemented by  for . Thus, the distribution function  of a dis-F(x) = 1 xn ≤ x F(x)
crete random variable X is a piecewise constant function with jumps of size  atpi

 Therefore (Figure 1.3)x = xi − 0. ,

pi = F(xi) − F(xi − 0); i = 0, 1, 2, ...

Given  the distribution function of X can be constructed and, vice versa,p0, p1, ... ,
given the distribution function of X, the probabilities  can be obtained.pi = P(X = xi)
Hence, the probability distribution of any random variable X can be identified with
its distribution function.
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Figure 1.2  Qualitative graph of the distribution function of a continuous random variable  
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Figure 1.3  Qualitative graph of the distribution function of a discrete random variable
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1.2.2 Discrete Random Variables

1.2.2.1 Numerical Parameters  
The probability distribution and the range of a random variable X contain all the in-
formation on X. However, to get quick information on essential features of a random
variable, it is desirable to condense as much as possible of this information to some
numerical parameters.
The mean value (mean, expected value)  of X is defined asE(X )

E(X) = Σi=0
∞ xi pi

given that
 Σi=0

∞ xi pi < ∞ .

Thus, the mean value of a discrete random variable X is a 'weighted mean' of all its
possible values  The weights of the  are their respective probabilities.xi. xi
Another motivation of this definition (see section 1.9.2): The arithmetic mean of n
values of X, obtained from n independent repetitions of the underlying random ex-
periment, tends to  as n tends to infinity. E(X)
If X is nonnegative with range  then its mean value can be written in the{0, 1, 2, ...},
form

                          (1.15)E(X) = Σi=1
∞ P(X ≥ i) = Σi=1

∞ Σk=i
∞ pk .

If  is a real function, then the mean value of the random variable  cany = h(x) Y = h(X)
be obtained from the probability distribution of :X

                                       (1.16)E(X ) = Σi=0
∞ h(xi) pi .

In particular, the mean value of
h(X) = (x − E(X))2

is called variance of  X:
Var(X) = Σi=0

∞ (xi − E(X))2 pi.

Hence,  is the mean squared deviation of  X from its mean value Var(X ) E(X) :

Var(X) = E((X − E(X)2).

Frequently a shorter notation is used:
  and  .μ = E(X ) σ2 = Var(X)

The standard deviation of  is defined asX

σ = Var(X ) ,

and the coefficient of variation of  isX

V(X ) = σ / μ .
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Variance, standard deviation, and coefficient of variation are measures for the varia-
bility of X. The coefficient of variation is most informative in this regard for taking
into account not only the deviation of X from its mean value, but relates this devia-
tion to the average absolute size of the values of X.
The n th moment  of  X  is the mean value of :μn X n

μn = E(X n) = Σi=0
∞ xi

n pi .

1.2.2.2  Important Discrete Probability Distributions  
Uniform Distribution A random variable X with range  has aR = x1, x2, ..., xn
discrete uniform distribution if

pi = P(X = xi) = 1
n ; i = 1, 2, ..., n .

Thus, each possible value has the same probability. Mean value and variance are

E(X ) = 1
n Σi=1

n xi , Var(X ) = 1
n Σi=1

n ⎛
⎝xi − E(X )⎞⎠

2
.

Thus,  is the arithmetic mean of all values which X can assume. In particular, ifE(X )
 thenxi = i,

E(X) = n(n + 1)
2 , Var(X) = (n − 1) (n + 1)

12 .

For instance, if X is the outcome of 'rolling a die', then  and R = {1, 2, ..., 6} pi = 1/6.

Geometric Distribution  A random variable X with range  has a geo-R = {1, 2, . .. }
metric distribution with parameter ifp, 0 < p < 1,

pi = P(X = i) = p (1 − p)i−1; i = 1, 2, ...

Mean value and variance are
E(X) = 1/p , Var(X) = (1 − p) /p2 .

For instance, if X is the random integer indicating how frequently one has to toss a
die to get for the first time a '6', then X has a geometric distribution with p = 1/6.
Generally, X denotes the number of independent trials (independent random experi-
ments) one has to carry out to have for the first time a 'success' if the random event
'success' in one trial has probability p.
Sometimes the geometric distribution is defined with range  andR = {0, 1, . .. }

pi = P(X = i) = p (1 − p)i; i = 0, 1, ...

In this case  mean value and variance are,

E(X) = 1 − p
p , Var(X) = 1 − p

p2 .
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Poisson Distribution  A random variable X with range  has a PoissonR = {0, 1, . .. }
distribution with parameter  if  λ

pi = P(X = i) = λi
i !

e−λ ; i = 0, 1, ...; λ > 0 .

The parameter  is equal to mean value and variance of   λ X :
E(X) = λ , Var(X) = λ .

Bernoulli Distribution  A random variable X with range  has a BernoulliR = {0, 1}
distribution or a (0,1)-distribution with parameter  ifp, 0 < p < 1,

p0 = P(X = 0) = 1 − p, p1 = P(X = 1) = p .
Mean value and variance are

E(X) = p and Var(X) = p(1 − p).

Since X can only assume two values, it is called a binary random variable. In case
,  X is a -variable.R = {0, 1} (0, 1)

Binomial Distribution A random variable X with range  has a bino-R = {0, 1, ..., n}
mial distribution with parameters p and  ifn

pi = P(X = i) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i; i = 0, 1, 2, ..., n; 0 ≤ p ≤ 1.

Frequently the following notation is used:

pi = b(i, n, p) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i .

Mean value and variance are
E(X) = n p, Var(X) = n p (1 − p).

The binomial distribution occurs in the following situation: A random experiment,
the outcome of which is a (0,1)-variable, is independently repeated n times. Such a
series of experiments is called a Bernoulli trial of length n.  The outcome  of ex-Xi
periment i can be considered the indicator variable of a random event A with proba-
bility :p = P(A)

Xi =
⎧

⎩
⎨

1 if A occurs
0 if A occurs

; i = 1, 2, ..., n.

If the occurrence of event A is interpreted as 'success', then the sum
X = Σi=1

n Xi
is equal to the number of successes in a Bernoulli trial of length n. Moreover, X has a
binomial distribution with parameters n and p.
Note that the number of experiments which have to be performed in a Bernoulli trial
till the first occurrence of event A has a geometric distribution with parameter p and
range {1, 2, ...}.
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Negative Binomial Distribution  A random variable X with range  has a{0, 1, ...}
negative binomial distribution with parameters p and r,  if0 < p < 1, r > 0,

P(X = i) = ⎛
⎝

r + i − 1
i

⎞
⎠ pi(1 − p)r; i = 0, 1, ...

Equivalently,

P(X = i) = ⎛
⎝

−r
i
⎞
⎠ (−p)i(1 − p)r; i = 0, 1, ...

Mean value and variance are

E(X) = p r
1 − p , Var(X) = p r

(1 − p)2 .

Note that the number of non-successes (event ) in a Bernoulli trial till the occur-A
rence of the r th success has a negative binomial distribution,   (see geo-r = 1, 2, ...
metric distribution).

Hypergeometric Distribution  A random variable X with range
R = {0, 1, ..., min (n, M)}

has a hypergeometric distribution with parameters M, N, and n, , ifM ≤ N, n ≤ N

pm = P(X = m) =
⎛
⎝

M
m
⎞
⎠
⎛
⎝

N−M
n−m

⎞
⎠

⎛
⎝

N
n
⎞
⎠

; m = 0, 1, ..., min (n, M) .

As an application, consider the lottery '5 out of 45'. In this case,  N = 45M = n = 5,
and  is the probability that a gambler has hit exactly m winning numbers with onepm
coupon. More importantly, as example 1.4 indicates, the hypergeometric distribution
plays a key role in statistical quality control.

Approximations  In view of the binomial coefficients involved in the definition of
the binomial and hypergeometric distribution, the following approximations are use-
ful for numerical analysis:

Poisson Approximation to the Binomial Distribution  If n is sufficiently large and p
is sufficiently small, then

⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i ≈ λi

i !
e−λ; λ = n p, i = 0, 1, ..., n.

Binomial  Approximation   to  the  Hypergeometric Distribution  If N is sufficiently
large compared to , thenn

⎛
⎝

M
m
⎞
⎠
⎛
⎝

N−M
n−m

⎞
⎠

⎛
⎝

N
n
⎞
⎠

≈ ⎛
⎝

n
m
⎞
⎠ pm (1 − p)n−m, p = M

N .
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Poisson Approximation to the Hypergeometric Distribution  If n is sufficiently large
and  is sufficiently small, thenp = M /N

⎛
⎝

M
m
⎞
⎠
⎛
⎝

N−M
n−m

⎞
⎠

⎛
⎝

N
n
⎞
⎠

≈ λm
m ! e−λ, where λ = n p.

Example 1.3  On average, only 0.01% of trout eggs will develop into adult fishes.
What is the probability  that at least three adult fishes arise from 40,000 eggs?pa
Let X be the random number of eggs out of 40,000 which develop into adult fishes. It
is assumed that the eggs develop independently of each other. Then X has a binomial
distribution with parameters  and  Thus,n = 40, 000 p = 0.0001.

pi = P(X = i) = ⎛
⎝

40, 000
i

⎞
⎠ (0.0001)i(0.9999)40,000 −i,

where  Since n is large and p is small, the Poisson distributioni = 1, 2, ..., 40, 000.
with parameter   can be used to approximately calculating the : λ = n p = 4 pi

pi ≈ 4i
i !

e−4 ; i = 0, 1, ...

The desired probability is
              pa = 1 − p0 − p1 − p2 ≈ 1 − 0.0183 − 0.0733 − 0.1465 = 0.7619.

Example 1.4  A delivery of 10,000 transistors contains 200 defective ones. Accord-
ing to agreement, the customer accepts a percentage of 2% defective transistors. A
sample of size  is taken. The customer will reject the delivery if there are non = 100

 than 4 defective transistors in the sample. The probability of rejection  is themore pr
producer's risk, since the delivery is in line with the agreement.
To determine  the hypergeometric distribution with andpr, N = 10, 000, M = 200 ,

 has to be applied. Let X be the random number of defective transistors in then = 100
sample. Then the producer's risk is

pr = 1 − p0 − p1 − p2 − p3 − p4
with

pm = P(X = m) =
⎛
⎝

200
m

⎞
⎠
⎛
⎝

9800
100−m

⎞
⎠

⎛
⎝

10,000
100

⎞
⎠

.

Since N is large enough compared to n, the binomial approximation with p = 0.02
can be applied:

pm ≈ ⎛
⎝

100
m

⎞
⎠ (0.02)m (0.98)100−m; m = 0, 1, 2, 3, 4.

Thus, the delivery is rejected with probability  For the sake of compari-pr ≈ 0.051.
son: The Poisson approximation with  yields                         λ = n p = 2 pr ≈ 0.055.
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1.2.3    Continuous Random Variables

1.2.3.1  Probability Density and Numerical Parameters
As mentioned before, the range of a continuous random variable is a noncountably
infinite set. This property of a continuous random variable results from its definition:

     A random variable is called continuous if its distribution function  has a first  F(x)
     derivative.

Equivalently, a random variable is called continuous if there exists a function  sof (x)
that

F(x) = ∫−∞
x f (u) du.

The function
f (x) = F (x) = dF(x)/dx, x ∈ RX

is called the probability density function of X  (briefly: probability density or simply
density). Sometimes the term probability mass function is used. A density has prop-
erty (Figure 1.4)

∫−∞
+∞ f (x) dx = F(∞) = 1.

Conversely, every nonnegative function f (x) satisfying this condition is the probabil-
ity density of a certain random variable X. As with its distribution function, the prob-
ability distribution P  of a continuous random variable X can be identified with itsX
probability density. The range of X coincides with the set of all those x for which its
density is positive:  (Figure 1.4).R = {x, f(x) > 0}

The mean value of  (mean, expected value) is defined asX

E(X) = ∫−∞
+∞ x f (x) dx

given that
 ∫−∞

+∞ x f (x) dx < ∞ .
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Figure 1.4  Distribution function and density
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In terms of its distribution function, the mean value of  is given byX

E(X) = ∫0
∞[1 − F(x)] dx − ∫−∞

0 F(x) dx .

In particular  for nonnegative random variables, the analogue to (1.15) is,

                                        (1.17)E(X) = ∫0
∞[1 − F(x)] dx.

If  is a real function and X any continuous random variable with density h(x) f (x),
then the mean value of the random variable  can directly be obtained fromY = h(X)
the density of X:

                                       (1.18)E(Y) = ∫−∞
+∞ h(x) f (x) dx.

In particular, the mean value of  is the variance of X:h(X) = (X − E(X))2

Var(X) = ∫−∞
+∞(x − E(X))2 f (x) dx.

Hence, the variance of a random variable is its mean squared deviation from its mean
value. Standard deviation and coefficient of variation are defined and motivated as
with discrete random variables.
The n th moment of X is

μn = E(Xn) = ∫−∞
+∞ xn f (x) dx ; n = 0, 1, ...

The following relationship between variance, second moment and mean value is also
valid for discrete random variables:

                            (1.19)Var(X) = E(X2) − (E(X))2 = μ2 − μ2.

For a continuous random variable , the interval probability  (1.13)  can be writtenX
as follows:

P(a < X ≤ b) = F(b) − F(a) = ∫a
b f (x) dx.

The α−  (also denoted as α−  ) of a random variable X is de-percentile xα quantile qα
fined as

F(xα) = α .

This implies that in a long series of random experiments with outcome X, about  α%
of the observed values of X will be equal to or less than  The 0.5-percentile is cal-xα.
led the median of X or of its probability distribution. Thus, in a long series of random
experiments with outcome X, about 50% of the observed values will be to the left
and to the right of  each.x0.5
A probability distribution is symmetric with symmetry center a if  satisfiesf (x)

     for all x.f (a − x) = f (a + x)
For symmetric distributions,  symmetry center, mean value, and median coincide:

a = E(X) = x0.5.
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A mode m of a random variable is an x-value at which  assumes a relative maxi-f (x)
mum. A density  is called unimodal if it has only one maximum.f (x)

Standardization  A random variable  (discrete or continuous) withZ
E(Z) = 0 and Var(Z) = 1

is called a standardized random variable. For any random variable X with finite
mean value  and variance  the random variableμ σ,

Z =
X − μ

σ
is a standardized random variable. Z is called the standardization of X.

1.2.3.2  Important Continuous Probability Distributions
In this section some important probability distributions of continuous random varia-
bles X will be listed. If the distribution function is not explicitely given, it can only
be represented as an integral over the density.

Uniform Distribution  A random variable X has a uniform distribution over the in-
terval  with  if it has distribution function and density[c, d ] c < d

F(x) =
⎧

⎩

⎨
⎪

⎪

0, x < c
x−c
d−c , c ≤ x ≤ d

1, d < x
, f (x) =

⎧

⎩
⎨
⎪
⎪

1
d−c , c ≤ x ≤ d

0 , x ∉ [c, d ]
, c < d.

Thus, for any subinterval  of , the corresponding interval probability is[a, b] [c, d]

 P(a < X ≤ b) = b − a
d − c .

This probability depends only on the length of the interval  but not on its posi-[a, b] ,
tion within the interval  i.e. all subintervals of  of the same length have[c, d ] , [c, d ]
the same chance that X takes on a value out of it.
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Figure 1.5  Illustration of the percentiles
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Mean value and variance of X are

E(X) = c + d
2 , Var(X) = 1

12 (d − c)2.

Pareto Distribution  A random variable X has a Pareto distribution over the interval
 if it has distribution function and density[d, ∞)

F(x) = 1 − ⎛
⎝

d
x
⎞
⎠

c
, f (x) = c

d
⎛
⎝

d
x
⎞
⎠

c+1
, x ≥ d ≥ 0.

Mean value and variance are

E(X) = c d
c − 1 , c > 1,

Var(X) = c d 2

(c − 1)2 (c − 2)
, c > 2 .

Exponential Distribution  A random variable X has an exponential distribution with
parameter  if it has distribution function and densityλ

F(x) = 1 − e−λ x, f (x) = λ e−λ x, x ≥ 0, λ > 0.

Mean value and variance are
E(X) = 1/λ , Var(X) = 1/λ2.

In view of their simple structure and convenient properties, the exponential distribu-
tion is quite popular in all sorts of applications. Frequently, the parameter  is denot-λ
ed as 1/μ.

Erlang Distribution  A random variable X has an Erlang distribution with parame-
ters  and n if it has distribution function and densityλ

F(x) = 1 − e−λ x Σ
i=0

n−1 (λ x)i

i !
,

f (x) = λ (λ x)n−1

(n − 1) ! e−λ x; x ≥ 0, λ > 0, n = 1, 2, ...

Mean value and variance are
E(X) = n /λ, Var(X) = n /λ2.

The exponential distribution is a special case of the Erlang distribution .(n = 1)

Gamma Distribution A random variable X has a Gamma distribution with parame-
ters  and  if it has densityα β

f (x) =
βα

Γ(α) xα−1e−β x, x > 0, α > 0, β > 0,
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where the Gamma function  is defined byΓ(z)

Γ(z) = ∫0
∞ xz−1e−x d x , z > 0.

Mean value and variance are
E(X) = α /β , Var(X) = α /β2.

Special cases: Exponential distribution for  and , Erlang distribution forα = 1 β = λ
α = n and β = λ .

Beta Distribution  A random variable X has a Beta distribution in the interval [0, 1]
with parameters  and  if it has densityα β

f (x) = 1
B(α, β) xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0.

Mean value and variance are

E(X) = α
α + β , Var(X) =

α β
(α + β)2(α + β + 1)

.

The Beta function  is defined byB(x, y)

B(x, y) =
Γ(x) Γ(y)
Γ(x + y) ; x > 0, y > 0.

Weibull Distribution A random variable X has a Weibull distribution with scale pa-
rameter  and form parameter  if it has distribution function and density (Figureθ β
1.6)

F(x) = 1 − e(x/θ)β
, f (x) =

β
θ
⎛
⎝

x
θ
⎞
⎠

β−1
e(x/θ)β

; x > 0, β > 0, θ > 0 .

Mean value and variance are

E(X) = θ Γ⎛⎝
1
β + 1⎞⎠ , Var(X) = θ2 ⎡

⎣
⎢Γ⎛⎝

2
β + 1⎞⎠ − ⎛

⎝Γ
⎛
⎝

1
β + 1⎞⎠

⎞
⎠

2 ⎤

⎦
⎥ .
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Special cases: Exponential distribution for  and  Rayleigh distributionθ = 1/λ β = 1,
for β = 2.
The Weibull distribution was found by the German mining engineers E. Rosin and E.
Rammler in the late twenties of the past century when investigating the distribution
of the size of stone, coal and other particles after a grinding process (see, for exam-
ple, [68]). In the forties of the past century, the Swedish engineer W. Weibull came
across this distribution type when investigating mechanical wear.

Normal Distribution  A random variable X has a normal (or Gaussian) distribution
with parameters μ and  if it has density (Figure 1.7)σ2

f (x) = 1
2 π σ

e
−1

2
⎛
⎝

x−μ
σ

⎞
⎠

2

, − ∞ < x < +∞, − ∞ < μ < +∞, σ > 0.

As the notation of the parameters indicates, mean value and variance are
E(x) = μ , Var(X) = σ2.

A normally distributed random variable (or, generally, the normal distribution) with
parameters μ and  is denoted as  Different from most other probabilityσ2 N(μ, σ2).
distributions, the standardization of a normally distributed random variable also has a
normal distribution. Therefore, if  thenX = N(μ, σ2),

N(0, 1) =
X − μ

σ .

The density of the standardized normal distribution is denoted as :ϕ(x)

ϕ(x) = 1
2 π

e−x2/2, − ∞ < x < +∞ .

The corresponding distribution function  can only be represented as an integral,Φ(x)
but the percentiles of this distribution are widely tabulated.
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Since  is symmetric with symmetry center 0,ϕ(x)

Φ(x) = 1 − Φ(−x).

Hence there is the following relationship between the α- and the (1−α)- percentiles
of the standardized normal distribution:

−xα = x1−α, 0 < α < 1/2.

This is the reason for introducing the following notation (analogously for other dis-
tributions with symmetry center 0):

zα = x1−α, 0 < α < 1/2.

Hence,
P(−zα/2 ≤ N(0, 1) ≤ zα/2) = Φ(zα/2) − Φ(−zα/2) = 1 − α .

Generally, if  the interval probabilities (1.13) can be calculated byX = N(μ, σ2),
using the standardized normal distribution:

P(a ≤ X ≤ b) = Φ⎛
⎝

b − μ
σ

⎞
⎠ − Φ⎛

⎝
a − μ

σ
⎞
⎠ .

Logarithmic Normal Distribution  A random variable X has a logarithmic normal
distribution with parameters μ and σ if it has density

f (y) = 1
2π σ y

exp
⎧

⎩
⎨−1

2
⎛
⎝

ln y − μ
σ

⎞
⎠

2⎫

⎭
⎬; y > 0, σ > 0, − ∞ < μ < ∞

Thus, X has a logarithmic normal distribution with parameters μ and σ if it has struc-
ture  where  Equivalently, X has a logarithmic normal distribu-X = eY, Y = N(μ, σ2).
tion if  has a normal distribution. Therefore, the distribution function of X isY = ln X

F(y) = Φ⎛
⎝

ln y − μ
σ

⎞
⎠ , x > 0.

Mean value and variance are

E(X ) = eμ+σ2/2, Var(X ) = e2μ+σ2 ⎛
⎝e

σ2
− 1⎞⎠ .

Cauchy Distribution A random variable X has a Cauchy distribution with parame-
ters  and  if it has densityλ μ

f (x) = λ
π [λ2 + (x − μ)2]

, − ∞ < x < ∞, λ > 0, − ∞ < μ < ∞ .

Mean value and variance do not exist.
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Inverse Gaussian Distribution A random variable X has an inverse Gaussian distri-
bution with parameters  and  if it has density  α β

f (x) = α
2π x3 exp

⎛

⎝
⎜−

α(x − β)2

2β2x

⎞

⎠
⎟ , x > 0, α > 0, β > 0.

The corresponding distribution function is

F(x) = Φ
⎛
⎝⎜

x − β
β αx

⎞
⎠⎟

+ e−2α/β Φ
⎛
⎝⎜
−

x + β
β αx

⎞
⎠⎟

, x > 0 .

Mean value and variance are
E(X) = β, Var(X) = β3/α .

Logistic Distribution  A random variable X has a logistic distribution with parame-
ters  and  if it has densityμ σ

f (x) =
π exp

⎛
⎝
⎜− π

3
x−μ
σ

⎞
⎠
⎟

3 σ
⎡

⎣
⎢1 + exp

⎛
⎝
⎜− π

3
x−μ
σ

⎞
⎠
⎟
⎤

⎦
⎥

2 , − ∞ < x < ∞, σ > 0, − ∞ < μ < ∞.

Mean value and variance are
E(X ) = μ, Var(X ) = σ2.

Example 1.5  A company needs wooden shafts of a length of 600 mm. It accepts de-
viations of maximal  The producer delivers shafts of random length X which±6 mm.
has an -distribution.N(200, σ2)

1) What percentage is rejected by the company if  ?  The probability that aσ = 3 mm
shaft will be rejected is

P( X − 600 > 6) = 1 − P( X − 600 ≤ 6) = 1 − P(594 ≤ X ≤ 606)

= 1 − Φ⎛
⎝

606 − 600
3

⎞
⎠ − Φ⎛

⎝
594 − 600

3
⎞
⎠

= 1 − [Φ(2) − Φ(−2)] = 2 [1 − Φ(2)]

= 2 ⋅ [1 − 0.97725]

= 0.0455.
Thus, 4.55 % of the shafts are rejected.

2) What is the value of  if the company rejects on average  of the shafts?σ 10%
By making use of the previous derivation with  replaced by ,σ = 3 σ
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P( X − 600 > 6) = 1 − [Φ(6/σ) − Φ(−6/σ)] = 2 [1 − Φ(6/σ)].

This probability must be equal to 0.1. Hence, the parameter  has to be determinedσ
from  or, equivalently, fromΦ(6/σ) = 0.95,

6/σ = z0.95 = 1.64,

since the 0.95-percentile of the standardized normal distribution is z0.95 = 1.64.
Thus,                                                                                                          σ = 3.658.

Example 1.6  In a certain geographical area of Southern Africa, mean value and var-
iance of the lifetime of the African wild dog have been determined as

 and . μ = 8.86230 [years] σ2 = 21.45964
1) Assuming that the lifetime of an African wild dog has a Weibull distribution, the
parameters  and  of this distribution satisfyθ β

E(X) = θ Γ(1 + 1/β) = 8.86230 ,

Var(X) = θ2 ⎡
⎣Γ(1 + 2/β) − (Γ(1 + 1/β))2 ⎤

⎦ = 21.45964 .

Combining these equations yields an equation in β :
Γ(1 + 2/β)

[Γ(1 + 1/β)]2 = 1.27323 .

The solution is  (Rayleigh-distribution). Hence, β = 2 θ = 10.

2) What is the probability that an African wild dog will survive 10 years on condi-
tion that it has survived  years? According to (1.4), the probability of interest is5

P(X > 10 X > 5)) = P(X > 10)
P(X > 5) = e−(10/10)2

e−(5/10)2

= e−0.75 = 0.47237.

Note that the (unconditional) probability for an African wild dog to reach an age of
at least 10 years is                                                         e−(10/10)2

= e−1 = 0.36788.

1.2.4  Mixtures of Random Variables

The probability distribution P  of any random variable X depends on one or moreX
numerical parameters. To emphasize the dependency on a special parameter , inθ
this section the notation P  instead of P  is used. Equivalently, in terms of dis-X,θ X
tribution function and density of X (if the latter exists),

   FX(x) = FX(x, θ), fX(x) = fX(x, θ) .
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Mixtures of random variables or their probability distributions arise from the as-
sumption that the parameter  is a realization of a random parameter  and all theθ Θ,
probability distributions being elements of the set {P } are mixedX,θ, θ ∈ RΘ .

1. Discrete Random Variable  with range   Let the random pa-Θ RΘ = {θ0, θ1, ...}
rameter  have probability distributionΘ

P  with   Θ = {q0, q1, ...} qn = P(Θ = θn}; n = 0, 1, ...

Then the mixture of probability distributions of type P  is defined asX,θ

G(x) = Σn=0
∞ FX (x, θn) qn .

2. Continuous Random Variable  with range   Let the random pa-Θ RΘ ⊆ (−∞, +∞)
rameter  have probability density  Then the mixture of probabilityΘ fΘ(θ), θ ∈ RΘ.
distributions of type P  is defined asX,θ

G(x) = ∫RΘ
FX (x, θ) fΘ(θ) d θ .

Thus, if  is discrete, then  is the weighted sum of the  with weightsΘ G(x) FX (x, θn)
 given by the probability distribution of . If  is continuous,  is the weight-qn Θ Θ G(x)

ed integral of  with weight function . In either case, the functionFX(x, θ) fΘ(x, θ)
G(x) satisfies properties (1.12). Hence, G(x) is the distribution function of a mixed
random variable Y and the probability distribution of Y is the weighted mixture of
probability distributions of type P .X,θ
If  is continuous, the respective densities of Y areX

g(x) = Σn=0
∞ fX(x, θn) qn and g(x) = ∫RΘ

fX(x, θ) fΘ(θ) d θ .

In either case, by (1.16) and (1.18),  is the mean value of the random variableG(x)
 and  is the mean value of the random variable :FX (x, Θ), g(x) fX(x, Θ)

G(x) = E(FX (x, Θ)) , g(x) = E( fX (x, Θ)).

If X is discrete with probability distribution
PX,θ = { pi(θ) = P(X = xi; θ); i = 0, 1, ...},

then the probability distribution of Y, given so far by its distribution function G(x),
can equivalently  characterized by its individual probabilitiesbe

                        (1.20)P(Y = xi) = Σn=0
∞ pi(θn) qn; i = 0, 1, ...

if  is discrete, andΘ

                     (1.21)P(Y = xi) = ∫RΘ
pi(θ) fΘ(θ) dθ; i = 0, 1, ...

if  is continuous.Θ
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The probability distribution of  is sometimes called structure or mixing distribu-Θ
tion. Hence, the probability distribution P  of the 'mixed random variable' Y is aY
mixture of probability distributions of type P  with regard to a structure distribu-X,θ
tion P .Θ

The mixture of probability distributions provides a method for producing types of
probability distributions, which are specifically tailored to serve the needs of certain
applications.

Example 1.7  ( mixture of exponential distributions )  Let X  have  an  exponential dis-
tribution with parameter :λ

FX(x, λ) = P(X ≤ x) = 1 − e−λ x, x ≥ 0.

This distribution is to be mixed with regard to a structure distribution P , where L isL
exponentially distributed with density

fL(λ) = μ e−μ λ .

Mixing yields the distribution function

G(x) = ∫0
+∞ FX(x, λ) fL(λ) d λ = ∫0

+∞(1 − e−λ x)μe−μ λ d λ

= 1 − μ /(x + μ) .

Hence, mixing exponential distributions with regard to an exponential structure dis-
tribution gives distribution function and density

G(x) = x
x + μ , g(x) =

μ
(x + μ)2 , x ≥ 0 .

This is a Pareto distribution.                                                                                        

Example 1.8 (mixture of binomial distributions)  Let X  have a binomial distribu-
tion with parameters  and p:n

P(X = i) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i, i = 0, 1, 2, ..., n.

The parameter n is considered to be a value of a Poisson with parameter  distribut-λ
ed random variable N:

P(N = n) = λn
n! e−λ; n = 0, 1, ... (λ fixed).

Then, from (1.20), using
⎛
⎝

n
i
⎞
⎠ = 0 for n < i,

the mixture of binomial distributions P ,  with regard to the structureX,n n = 0, 1, ...
distribution P  is obtained as follows:N
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P(Y = i) = Σ
n=0

∞ ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i λn

n! e−λ

= Σ
n=i

∞ ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i λn

n! e−λ

= (λ p)i

i ! e−λ Σ
k=0

∞ [λ (1−p)] k

k!

= (λ p)i

i ! e−λ eλ (1−p).

Thus,

P(Y = i) = (λ p)i

i !
e−λ p; i = 0, 1, ...

This is a Poisson distribution with parameter                                                       λ p.

Mixed Poisson Distribution  Let X  have a Poisson distribution with parameter :λ

PX,λ = {P(X = i) = λi
i !

e−λ ; i = 0, 1, ....; λ > 0}.

Then a random variable Y with range  is said to have mixed Poisson distri-{0, 1, ...}
bution if its probability distribution is a mixture of the Poisson distributions PX,λ
with regard to any structure distribution. For instance, if the structure distribution is
given by the density  of a positive random variable L (i.e. the parameter λ offL(λ)
the Poisson distribution is a realization of ), the distribution of Y is given byL

P(Y = i) = ∫
0

∞ λi
i !

e−λ fL(λ) d λ, i = 0, 1, ...

A mixed Poisson distributed random variable Y has the following properties:

(1)  E(Y) = E(L)

(2)  Var(Y) = E(L) + Var(L)

(3)  P(Y > n) = ∫
0

∞ λn
n ! e−λ FL(λ)) d λ ,

where  is the distribution function of L and FL(λ) = P(L ≤ λ) FL(λ) = 1 − FL(λ).

Example 1.9 (mixed Poisson distribution, gamma structure distribution)  Let the
random structure variable  have a gamma distribution with densityL

fL(λ) =
βα

Γ(α) λα−1e−β λ, λ > 0, α > 0, β > 0.

The corresponding mixed Poisson distribution is obtained as follows:
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P(Y = i) = ∫
0

∞ λi
i !

e−λ βα

Γ(α) λα−1e−βλ d λ

  = 1
i !

βα

Γ(α) ∫0

∞
λi+α−1e−λ (β+1) d λ

= 1
i !

βα

Γ(α)
1

(β + 1)i+α ∫
0

∞
xi+α−1e−x d x

= 1
i !

Γ(i + α)
Γ(α)

βα

(β + 1)i+α

= ⎛
⎝

i − 1 + α
i

⎞
⎠
⎛
⎝

1
β + 1

⎞
⎠

i ⎛
⎝

β
β + 1

⎞
⎠

α
; α > 0, β > 0, i = 0, 1, ...

This is a negative binomial distribution with parameters  Inr = α and p = 1/(β + 1).
deriving this result, the following property of the gamma function has been used:

                           Γ(i + α) = (i − 1 + α) Γ(i − 1 + α); i = 1, 2, ...

1.2.5   Functions of a Random Variable

Let X be a continuous random variable and  a real function. This chaptery = h(x)
deals with the probability distribution of the random variable Y = h(X).

Theorem 1.1  Let X and Y be linearly dependent:  Then,Y = α X + β.

FY (y) = FX
⎛
⎝

y−β
α

⎞
⎠ for α > 0,

FY (y) = 1 − FX
⎛
⎝

y−β
α

⎞
⎠ for α < 0,

fY (y) = 1
α fX ⎛⎝

y−β
α

⎞
⎠ for α ≠ 0 ,

E(Y ) = α E(X) + β, Var(Y) = α2Var(X) .

Proof  The distribution function of  is obtained as follows:Y

  for  FY(y) = P(Y ≤ y) = P(α X + β ≤ y) = P⎛⎝X ≤ y−β
α

⎞
⎠ = FX

⎛
⎝

y−β
α

⎞
⎠ α > 0 .

  for  FY(y) = P(Y ≤ y) = P(α X + β ≤ y) = P⎛⎝X > y−β
α

⎞
⎠ = 1 − FX

⎛
⎝

y−β
α

⎞
⎠ α < 0 .

The corresponding density  is obtained by differentiation of fY(y) FY(y).
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For  the variance of Y isα > 0,

Var(Y) = ∫ (y − E(Y))2fY(y)dy = ∫ (y − α E(X) − β)2 1
α fX ⎛⎝

y−β
α

⎞
⎠ dy.

Substituting  yieldsx = (y − β) /α

Var(Y) = ∫ (α x − α E(X))2 1
α fX(x) α dx = α2Var(X).

(The integrals involved refer to the ranges of X and Y.) The case  is done analo-α < 0
gously.                                                                                                                          

If , then the standardization of X, namelyX = N(μ, σ2)

Z =
X − μ

σ = 1
σ X −

μ
σ ,

also has a normal distribution. More generally, every linear transform  ofY = α X + β
X has a normal distribution. Usually,  has not the same distribution typeY = α X + β
as X. For instance, if  has distribution functionX

FX(x) = 1 − e−λ x, x ≥ 0,

then the distribution function of  isY = α X + β

FY(y) = FX
⎛
⎝

y−β
α

⎞
⎠ = 1 − e−λ y−β

α , y ≥ β, α > 0.

This distribution function characterizes the class of shifted exponential distributions.
As a consequence, the standardization of an exponentially distributed random varia-
ble does not have an exponential distribution.

Strictly Monotone Function y = h(x)  Let  be a strictly monotone functiony = h(x)
with inverse function x = h−1(y).
If  is strictly increasing, then, for any random variable X, the distributiony = h(x)
function of  is Y = h(X)

FY(y) = P(h(X) ≤ y) = P(X ≤ h−1(y)) = FX(h−1(y)).

If  is strictly decreasing, then, for any random variable X,y = h(x)

FY(y) = P(h(X) ≤ y) = P(X > h−1(y)).
Hence,

FY(y) = 1 − FX(h−1(y)).

By differentiation, applying the chain rule, the density of  is in either case seen to beY

fY(y) = fX(h−1(y)) d h−1(y)
d y = fX(x(y)) d x(y)

d y .

Note that the formulas given are only valid for y being element of the range of Y.
Outside of this range, the distribution function of Y is 0 or 1 and the density of Y is 0.
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Example 1.10  A solid of mass m moves along a straight line with a random velocity
X, which is uniformly distributed over the interval  The random kinetic energy[0, V ].
of the solid is

Y = 1
2 m X 2.

In view of  it follows thaty = h(x) = 1
2 m x 2,

x = h−1(y) = 2y /m and d x
d y = 1/(2my) , 0 < y < 1

2 m V 2.

Since
fX(x) = 1/V , 0 ≤ x ≤ V ,

the density of Y is

fY(y) = 1
V

1
2 m y , 0 ≤ y ≤ 1

2 m V 2 .

The mean kinetic energy of the solid is

E(Y) = ∫
0

m V 2/2
y 1

V 1/(2my) dy = 1
V 1/2m ∫

0

m V 2/2
y1/2dy

= 2
3V 1/2m ⎡⎣y

3/2 ⎤⎦0
m V 2/2 = 1

6 m V 2.

It is more convenient to determine  by means of (1.18):E(Y)

                       E(Y) = ∫0
V 1

2 m x2 1
V dx = 1

2 m 1
V ∫0

V x2dx = 1
6 m V 2.

1.3  TRANSFORMATION OF PROBABILITY DISTRIBUTIONS

The probability distributions or at least moments of random variables can frequently
be obtained from special functions, so called (probability- or moment-) generating
functions of random variables or, equivalently, of their probability distributions. This
is of importance, since it is in many applications of stochastic methods easier to de-
termine the generating function of a random variable instead of its probability distri-
bution. Examples will be considered in the following chapters. The method of deter-
mining the probability distribution or moments of a random variable from its generat-
ing function is theoretically justified, since to every probability distribution belongs
exactly one generating function of a given type and vice versa. Formally, going over
from a probability distribution to its generating function is a transformation of this
distribution. This section deals with the z-transformation for discrete nonnegative
random variables and with the Laplace transformation for continuous random varia-
bles.
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1.3.1  z-Transformation

The discrete random variable X has range  and probability distribution{0, 1, ...}

 with p0, p1, ... pi = P(X = i); i = 0, 1, ...

The z-transform of  or, equivalently, of its probability distribution, is defined asX,

M(z) = Σi=0
∞ pi zi,

where z is a complex number. For our purposes it is sufficient to assume that z is a
real number. If misunderstandings are possible, the notation  is used instead ofMX(z)

 From (1.16),  is the mean value of the random variable M(z). M(z) Y = zX :

                                              (1.22)M(z) = E(zX).

 converges absolutely for  M(z) z ≤ 1 :

M(z) ≤ Σi=0
∞ pi zi ≤ Σi=0

∞ pi = 1.

Therefore,  can be differentiated (as well as integrated) term by term:M(z)

M (z) = Σi=0
∞ i pi zi−1 .

Letting  yieldsz = 1
M (1) = Σi=0

∞ i pi = E(X).

Taking the second derivative of  givesM(z)

M (z) = Σi=0
∞ (i − 1) i pi zi−2 .

Letting  yieldsz = 1

.M (1) = Σi=0
∞ (i − 1) i pi = Σi=0

∞ i2 pi − Σi=0
∞ i pi

Therefore,  Thus, the first two moments of  areM (1) = E(X 2) − E(X). X

E(X) = M (1), E(X 2) = M (1) + M (1).

Continuing in this way, all moments of X can be generated by derivatives of M(z).
Hence, the -transform is indeed a moment generating function. In view of (1.19),z

            (1.23)E(X) = M (1), Var(X) = M (1) + M (1) − ⎡⎣M (1)⎤⎦
2.

On the other hand, by expanding a given z-transform M(z) into a power series in z,
the resulting coefficients of  are the probabilities  Hence, M(z) is alsozi pi = P(X = i).
called a probability generating function.

Poisson Distribution  X  has a Poisson distribution with parameter :λ

pi = P(X = i) = λi
i !

e−λ; i = 0, 1, ...
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Then,

M(z) = Σ
i=0

∞ λi
i! e−λ zi = e−λ Σ

i=0

∞ ( λ z)i

i! = e−λ e+λz.

Hence,
M(z) = eλ (z−1).

The first two derivatives are
M (z) = λ eλ (z−1), M (z) = λ2eλ (z−1).

Letting  yieldsz = 1
M (1) = λ , M (1) = λ2.

Thus, mean value, second moment and variance of  areX

E(X) = λ, Var(X) = λ, E(X 2) = λ (λ + 1).

Binomial Distribution  X has a binomial distribution with parameters  and p:n

pi = P(X = i) = (n
i ) pi(1 − p)n−i; i = 0, 1, ..., n.

Then,
M(z) = Σi=0

n (n
i ) pi(1 − p)n−i zi = Σi=0

n (n
i )(p z)i(1 − p)n−i.

This is a binomial series so that
M(z) = [p z + (1 − p)]n.

By differentiation,
M (z) = n p[ p z + (1 − p)]n−1,

M (z) = (n − 1) n p2[p z + (1 − p)]n−2.
Hence,

  and  M (1) = n p M (1) = (n − 1) n p2

so that
E(X) = n p, E(X2) = (n − 1)n p2 + n p, Var(X) = n p (1 − p).

Convolution  Let  and  be the respective probability distri-p0, p1, ... q0, q1, ...
bution of the discrete random variables X and Y with joint range {0,1,...} and let a se-
quence  be defined as follows{r0, r1, ...} :

        (1.24)rn = Σi=0
n pi qn−i = p0 qn + p1 qn−1 + . .. + pn q0, n = 0, 1, ...

The sequence  is called the convolution of the probability distributionsr0, r1, ...
 and . The convolution is the probability distribution of a cer-p0, p1, ... q0, q1, ...

tain random variable, since
Σn=0

∞ rn = 1, rn ≥ 0.
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For deriving the z-transform of the convolution, the following formula is needed:

                               (1.25)Σn=0
∞ Σi=0

n ain = Σi=0
∞ Σn=i

∞ ain .

If Z denotes that random variable whose probability distribution is the convolution
 then its z-transform is{r0, r1, ..., },

MZ(z) = Σn=0
∞ rn zn = Σn=0

∞ Σi=0
n pi qn−i zn

= Σi=0
∞ pi zi ⎛

⎝Σn=i
∞ qn−i zn−i ⎞

⎠

 = ⎛
⎝Σi=0

∞ pi zi ⎞
⎠
⎛
⎝Σk=0

∞ qk zk ⎞
⎠ .

Thus, the z-transform of  is the product of the z-transforms of X and Y:Z
                                      (1.26)MZ(z) = MX(z) ⋅ MY(z) .

1.3.2  Laplace Transformation

Let  be any real-valued function on  with propertiesf (x) [0, +∞)
1)  is piecewise continuous,f (x)
2) there exist real constants a and  such that  for all s0 f (x) ≤ a es0x x ≥ 0.

The Laplace transform  of  is defined as the parameter integralf (s) f (x)

f (s) = ∫0
∞ e−sxf (x) dx ,

where the parameter s is any complex number satisfying Re(s) > s0.

Notation  If  is any complex number (i.e.  and x, y are real numbers,z = x + iy i = −1
then  denotes the real part of z: R(z) R(z) = x.

Assumptions 1 and 2 make sure that  exists. With regard to the applications con-f (s)
sidered in this book, s can be assumed to be real. In this case, under the assumptions
1 ans 2,  exists in the half-plane given by f (s) {s, s > s0}.
Specifically, if  is the probability density of a nonnegative random variable X,f (x)
then  has a simple interpretation:f (s)

                                            (1.27)f (s) = E(e−sX) .

This relationship is identical to (1.22) if there z is written in the form .z = e−s

The n fold derivative of  with respect to s isf (s)

d n f (s)
dsn = (−1)n ∫0

∞ xn e−sx f (x) dx .

Hence, if  is the density of a random variable X, then its moments of all ordersf (x)
can be obtained from :f (s)
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                        (1.28)E(X n) = (−1)n d n f (s)
dsn

s=0
; n = 0, 1, ...

Thus, the Laplace transform is a moment generating function. However, the Laplace
transform is also a probability (density) generating function, since via a (complex)
inversion formula the density of X can be obtained from its Laplace transform.
In what follows, it is more convenient to use the notation

f (s) = L{ f }.

Partial integration in  yields f (s) (s > s0 ≥ 0)

                                     (1.29)L ∫0
x f (u) du = 1

s f (s)

and

                            (1.30)L d f (x)
dx = L{f (x)} = s f (s) − f (0).

More generally, if  denotes the nth derivative of  with respect to x, thenf (n)(x) f (x)

f (n)(s) = sn f (s) − sn−1 f (0) − sn−2 f (0) − . .. − s1f (n−2)(0) − f (n−1)(0).

Let  and  be any two functions satisfying assumptions 1) and 2). Then,f1 f2

                       (1.31)L f1 + f2 = L f1 + L f2 = f1(s) + f2(s).

Convolution  The convolution  of two functions  and , which are defin-f1 ∗ f2 f1 f2
ed on the interval  is given by[0, +∞),

( f1 ∗ f2)(x) = ∫0
x f2(x − u) f1(u) du.

The following formula is the 'continuous' analogue to (1.26):

                          (1.32)L f1 ∗ f2 = L f1 L f2 = f1(s) f2(s).

A proof of this relationship is easily established:

L f1 ∗ f2 = ∫0
∞ e−sx ∫0

x f2(x − u) f1(u) du dx

= ∫0
∞ e−su f1(u) ∫u

∞ e−s (x−u) f2(x − u) dx du

= ∫0
∞ e−su f1(u) ∫0

∞ e−s y f2(y) dy du

= f1(s) f2(s).

Verbally, formula (1.32) means that the Laplace transform of the convolution of two
functions is equal to the product of the Laplace transforms of these functions.
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In proving (1.32), Dirichlet's  formula had been applied:

                             (1.33)∫0
z ∫0

y
f (x, y) dx dy = ∫0

z ∫x
z f (x, y) dy dx.

Obviously,  formula (1.33) is the 'continuous analogue' to formula (1.25):

Retransformation The Laplace transform  is called the image of f (x) and f (x) isf (s)
the pre-image of . Finding the pre-image of a given Laplace transform (retrans-f (s)
formation) can be a difficult task. Properties (1.31) and (1.32) of the Laplace trans-
formation suggest that Laplace transforms should be decomposed as far as possible
into terms and factors (for instance, decomposing a fraction into partial fractions),
because the retransformations of the arising less complex terms and factors are usual-
ly easier done than the retransformation of the original image. Retransformation is
facilitated by contingency tables. These tables contain important functions and their
Laplace transforms. As already mentioned, there exists an explicit formula for obtain-
ing the pre-image of a given Laplace transform. Its application requires knowledge
of complex calculus.

Example 1.11  Let X have an exponential distribution with parameter :λ

f (x) = λ e−λ x, x ≥ 0 .

The Laplace transform of  isf (x)

f (s) = ∫0
∞ e−s x λ e−λ x dx = λ ∫0

∞ e−(s+λ) x dx = λ
s + λ .

It exists for  The n th derivative of  iss > −λ. f (s)

dn f (s)
dsn = (−1)n λ n!

(s + λ)n+1 .

Thus, the n th moment is

                                          E(Xn) = n!
λn ; n = 0, 1, ...

Example 1.12  The definition of the Laplace transform can be extended to functions
defined on the whole real axis  For instance, consider the density of an(−∞, +∞).

-distribution:N(μ, σ2)

f (x) = 1
2π σ

e
− (x−μ)2

2σ2 ; x ∈ (−∞, +∞).

Its Laplace transform is defined as

.f (s) = 1
2π σ

∫
−∞

+∞
e−sxe

− (x−μ)2

2σ2 dx
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Obviously, this improper parameter integral exists for all s. Substituting u = (x − μ)/σ
yields

f (s) = 1
2π

e−μs ∫
−∞

+∞
e−σ s ue− u2/2du

= 1
2π

e−μs+1
2σ2s2

∫
−∞

+∞
e−1

2 (u+σs)2
du.

The last integral is equal to  Hence,2π .

                                              f (s) = e−μs+1
2σ2s2

.

For probability densities  two important variants of the Laplace transform aref (x),
the moment generating  function and the characteristic function.

a) Moment Generating Function  Let X be a random variable with density f (x) and
 a real parameter. Then the parameter integralt

M (t) = E⎛⎝e
tX ⎞
⎠ = ∫−∞

+∞ et xf (x) dx

is called the moment generating function of X.  arises from the Laplace trans-M(t)
form of  by letting  (The terminology is a bit confusing, since, as mention-f (x) s = −t.
ed before, the Laplace transform is moment generating as well.)

b) Characteristic Function  Let X be a random variable with density , t a realf (x)
parameter and  Then the parameter integrali = −1 .

ψ(t) = E⎛⎝e
i tX ⎞

⎠ = ∫−∞
+∞ ei t xf (x) dx

is called the characteristic function of X. Obviously,  is the Fourier transform ofψ(t)
 The characteristic function  is obtained from the Laplace transform by let-f (x). ψ(t)

ting s = −i t.
Characteristic functions belong to the most important mathematical tools for solving
probability theoretic problems, e.g. for proving limit theorems and for characteriz-
ing and analyzing stochastic processes.
One of their main advantages to the Laplace transform and to the moment generating
function is that they always exist:

ψ(t) = ∫−∞
+∞ ei t xf (x) dx ≤ ∫−∞

+∞ ei t x f (x) dx = ∫−∞
+∞ f (x) dx = 1.

The characteristic function has quite analogous properties to the Laplace transform
(if the latter exists) with regard to its relationship to the probability distribution of
sums of independent random variables.
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1.4   CLASSES OF PROBABILITTY DISTRIBUTIONS BASED ON
AGING BEHAVIOUR

This section is restricted to the class of nonnegative random variables. Lifetimes of
technical systems and organisms are likely to be the most prominent members of this
class. Hence, a terminology is used tailored to this application. The lifetime of a sys-
tem is the time span from its starting up time point (birth) to its failure (death), where
'failure' is assumed to be an instantaneous event. In the engineering context, a failure
of a system need not be equivalent to the end of its useful life. If X is a lifetime with
distribution function  then  is called failure probability and F(⋅), F(x) F(x) = 1 − F(x)
is called survival probability with regard to the interval  because  and [0, x] , F(x) F(x)
are the respective probabilities that the system does or does not fail in [0, x] .
Residual Lifetime  Let  be the distribution function of the residual lifetime Ft(x) Xt
of a system, which has already worked for  time units without failing:t

Ft(x) = P(Xt ≤ x) = P(X − t ≤ x X > t).
According to (1.6),

Ft(x) = P(X − t ≤ x ∩ X > t)
P(X > t) = P(t < X ≤ t + x)

P(X > t) .

Formula (1.13) yields the desired result:

                          (1.34)Ft(x) = F(t + x) − F(t)
F(t)

; x ≥ 0, t ≥ 0.

The corresponding conditional survival probability  is given byFt(x) = 1 − Ft(x)

                               (1.35)Ft(x) = F(t + x)
F(t)

; x ≥ 0, t ≥ 0.

Hence, using (1.17), the mean residual lifetime  of a system isμ(t) = E(Xt)

                                       (1.36)μ(t) = 1
F(t) ∫t

∞ F(x) dx .

Example 1.13 (uniform distribution)  The random variable X has uniform distribu-
tion over  Then its density and distribution function are[0, T].

    f(x) =
⎧

⎩
⎨

1/T for 0 ≤ x ≤ T,
0, elsewhere,

F(x) =
⎧

⎩
⎨
⎪
⎪

0 for x < 0,
x/T for 0 ≤ x ≤ T,
1 for T < x.
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The conditional failure probability is

Ft(x) = x
T − t ; 0 ≤ t < T, 0 ≤ x ≤ T − t.

Thus,  is uniformly distributed over the interval and the conditional fai-Xt [0, T − t],
lure probability is increasing with increasing                                                 t, t < T.

Example 1.14 (exponential distribution) Let X have an exponential distribution with
parameter , i.e. its density and distribution function areλ

f (x) = λ e−λ x, F(x) = 1 − e−λx, x ≥ 0.

Given t, the corresponding conditional failure probability is for x ≥ 0 and t ≥ 0

             (1.37)Ft(x) = (1 − e−λ (t+x)) − (1 − e−λ t)
e−λt = 1 − e−λx = F(x) .

Thus, the residual lifetime of the system has the same distribution function as the life-
time of a new system, namely an exponential distribution with parameter . The ex-λ
ponential distribution is the only continuous probability distribution, which has this
so-called memoryless property or lack of memory property. Consequently, the age of
an operating system with exponential lifetime has no influence on its future failure
behaviour. Or, equivalently, if the system has not failed in the interval [0, t], then,
with respect to its failure behaviour in , it is at time t as good as new. Complex[t, ∞)
systems and electronic hardware often have this property if they have survived the
'early failure time period'.
The fundamental relationship  is equivalent toFt(x) = F(x)

 .                                          (1.38)F(t + x) = F(t) F(x)

It can be shown that the distribution function of the exponential distribution is the
only one which satisfies the functional equation (1.38).                                             

The engineering (biological) background of the conditional failure probability moti-
vates the following definition.

Definition 1.1 A system is aging (rejuvenating ) in the interval  if[t1, t2], t1 < t2,
for an arbitrary but fixed x, the conditional failure probability is increasingFt(x)
(decreasing) for increasing t, .                                                                    t1 ≤ t ≤ t2

In case of technical systems, periods of rejuvenation may be due to maintenance ac-
tions and, in case of human beings, due to successful medical treatments or adopting
a healthier lifestyle. Note that here and in what follows the terms 'increasing' and 'de-
creasing' have the meaning of 'nondecreasing' and 'nonincreasing', respectively.

Provided the existence of the density  another approach to modeling thef (x) = F (x),
aging behaviour of a system is based on the concept of its failure rate. To derive this
concept,  the conditional system failure probability   of a system in  isFt(Δt) [t, t + Δt]
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considered relative to the length  of this interval. This is a conditional failure prob-Δt
ability per unit time, i.e. a 'failure probability rate':

1
Δt Ft(Δt) = F(t + Δt) − F(t)

Δt ⋅ 1
F(t)

.

For , the first ratio on the right hand side tends to . Hence,Δt → 0 f (t)

lim
Δt→0

1
Δt Ft(Δt) = f (t) F(t) .

This limit is called failure rate or hazard function and denoted as λ(t) :

                                            (1.39)λ(t) = f (t) F(t) .
(In demograpy and in actuarial science,  is called  force of mortality.)  givesλ(t) λ(t)
information on both the instantaneous tendency of a system to fail and its 'state of
wear' at age t. Integration on both sides of (1.39) from  to  yieldst = 0 t = x

F(x) = 1 − e−∫0
x λ(t) d t

, x ≥ 0.

If introducing the integrated failure rate

Λ(x) = ∫0
x λ(t) dt ,

,  and the corresponding survival probabilities can be written as follows:F(x) Ft(x)

F(x) = 1 − e−Λ(x), F(x) = e−Λ(x),

                                  (1.40)Ft(x) = 1 − e−[Λ(t+x)−Λ(t)],

Ft(x) = e−[Λ(t+x)−Λ(t)]; x ≥ 0, t ≥ 0.

This representation of   implies an important property of the failure rate:Ft(x)

    A system ages in  if its failure rate  is increasing in this          [t1, t2] , t1 < t2, λ(t)
     interval.

For many applications, the following property of   is crucial:λ(t)

P(X − t ≤ Δt X > t) = λ(t) Δt + o(Δt),

where  is the Landau order symbol with respect to , i.e. any function of xo(x) x → 0
satisfying

                                              (1.41)lim
x→ 0

o(x)
x = 0.

Thus, for  being sufficiently small,  is approximately the probability that theΔt λ(t) Δt
system fails in  if it has survived interval  This property of the failure(t, t + Δt] [0, t].
rate can be used for its statistical estimation: At time   a specified number of in-t = 0
dependently operating, identical systems start working. Then the failure rate of these
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systems in the interval  is approximately equal to the number of systems,[t, t + Δt]
which fail in , divided by the product of  and the number of systems[t, t + Δt] Δt
which are still operating at time t.
For instance, if X  has a Weibull distribution with parameters  and , thenβ θ

λ(x) = (β/θ) (x/θ)β−1, x > 0.

Consequently, the failure rate is increasing in  if , and it is decreasing in[0, ∞) β > 1
 if  If  the failure rate is identically constant: .[0, ∞) β < 1. β = 1, λ(t) ≡ λ = 1/θ

Based on the behaviour of the conditional failure probability of a system, several
nonparametric classes of probability distributions have been proposed and investigat-
ed during the past 50 years. Originally, they were defined with regard to applications
in reliability engineering. Nowadays these classes also play an important role in
fields as demography and actuarial science. The most obvious classes are IFR
(increasing failure rate) and DFR (decreasing failure rate).

IFR- (DFR-) Distribution  is an IFR- (DFR-) distribution (briefly:  is IFRF(x) F(x)
(DFR)) if  is increasing (decreasing) in t for fixed, but arbitrary x. Ft(x)

If the density  exists, then, from (1.40):f (x) = F (x)

     is IFR (DFR) if and only if the corresponding failure rate  is increasing    F(x) λ(t)
     (decreasing) in t.

Another characterization of IFR and DFR is based on the Laplace transform  off (s)
the density . For  letf (x) = F (x) n = 1, 2, ...,

          (1.42)a−1(s) ≡ 1, a0(s) = 1
s ⎡
⎣1 − f (s)⎤⎦ , an(s) = (−1)n

n !
d na0(s)

dsn .

Then  is IFR (DFR) if and only ifF(x)

an
2(s) ≥

(≤)an−1(s) an+1(s); n = 0, 1, ...

(Vinogradov [85]). If  does not exist, then this statement remains valid if  isf (x) f (s)
the Laplace-Stieltjes transform of F(x).

The example of the Weibull distribution shows that, within one and the same param-
etric class of probability distributions, different distribution functions may belong to
different nonparametric classes of probability distributions:
If , then  is IFR, if , then  is DFR, if  (exponential distribu-β > 1 F(x) β < 1 F(x) β = 1
tion), then  is both IFR and DFR.F(x)

The IFR- (DFR-) class is equivalent to the aging (rejuvenation) concept proposed in
definition 1.1. The following nonparametric classes present modifications and more
general concepts of aging and rejuvenation than the ones given by definition 1.1.
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IFRA- (DFRA-) Distribution  The failure rate (force of mortality) of human beings
(as well as of other organisms), is usually not (strictly) increasing. In short time per-
iods, for instance, after having overcome a serious illness or another life-threaten-
ing situation, the failure rate is  likely  to  decrease.  But the average failure rate will
definitely increase. Analogously, technical systems, which operate under different,
time-dependent stress levels (temperature, pressure, speed) will not have a (strictly)
increasing failure rate. Hence, the definition of the classes IFRA (increasing failure
rate  and DFRA (decreasing failure rate average) makes senseaverage) :

 is an IFRA- (DFRA-) distribution if the functionF(x)

− 1
t ln F(t)

is increasing (decreasing) in .t

This definition is motivated by the fact that, assuming the existence of the probability
density according to (1.39), the average failure rate over the intervalf (x) = F (x),

 is[0, t]

λ(t) = 1
t ∫0

t λ(x) dx = − 1
t ln F(t) .

Another, equivalent characterization of IFRA (DFRA) is:  is IFRA (DFRA) ifF(x)

F(ax) ≥
(≤) ⎡⎣F(x)⎤⎦

a , a > 1, x ≥ 0.

NBU- (NWU-) Distribution  Since

Ft(x) = F(x)

is equivalent to  a new system has a smaller failure probabilityF(t + x) = F(t) F(x),
than a used system of age  if and only ift

F(t + x) ≤ F(t) F(x).
This motivates the concepts of NBU (new better than used) and NWU (new worse
than used):

 is an NBU- (NWU-) distribution ifF(t)

                                            (1.43)F(t + x) ≤
(≥)F(t) F(x)

for all x ≥ 0, t ≥ 0.

(Note that the equation  means that a 'used' system has the same lifetimeFt(x) ≡ F(x)
distribution as a new one.) As the classes IFR and DFR (as well as other classes),
NBU and NWU can be characterized by properties of Laplace transforms of its prob-
ability densities (Vinogradov [85]): With the notation (1.42),

 is NBU (NWU) if and only ifF(x)

   for all  , and an(s) am(s) ≥
(≤)an+m+1(s) m = 0, 1, ...; n = 0, 1, ... s ≥ 0.
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NBUE- (NWUE-) Distribution  According to (1.17) and (1.36), the mean life of a
new system  and the mean residual lifetime  of a system, which is still operat-μ μ(t)
ing at age  (used system) are given byt

                           (1.44)μ = ∫0
∞ F(x) dx, μ(t) = 1

F(t) ∫t
∞ F(x) dx .

When comparing  and , one arrives at the classes NBUE (new better than usedμ μ(t)
in expectation) and NWUE (new worse than used in expectation):

 is an NBUE- (NWUE-) distribution ifF(x)
1
μ ∫t

∞ F(x) dx ≤
(≥)F(t) for all t ≥ 0.

The survival function on the left-hand side of this inequality plays an important role
in renewal theory (section 3.3)  There it is denoted as.

FS(t) = 1
μ ∫t

∞ F(x) dx .

The corresponding distribution function is

                               (1.45)FS(t) = 1 − FS(t) = 1
μ ∫0

t F(x) dx .

Hence,  is an NBUE- (NWUE-) distribution if  and only ifF(x)

FS(x) ≤
(≥)F(x) for all x ≥ 0.

Note that, if  is IFR (DFR), then  is IFR (DFR), too.F(x) FS(x)

2-NBU- (2-NWU-) Distribution  is a 2-NBU- (2-NWU-) distribution if theF(x)
corresponding distribution function , defined by (1.45), satisfiesFS(x)

FS(t + x) ≤
(≥)FS(t) FS(x) .

Obviously, this is equivalent to  being NBU (NWU).FS(x)

NBUL- (NWUL-) Distribution  When applying the Laplace transform with s as a
real, nonnegative number to both sides of the defining relation (1.43) one obtains for
NBU

∫0
∞ e−sx F(t + x)dx ≤ F(t)∫0

∞ e−sx F(x)dx,

and for NWU,

∫0
∞ e−sx F(t + x)dx ≥ F(t)∫0

∞ e−sx F(x)dx.

This leads to the following definition:

 is an NBUL- (NWUL-) distribution (new better (worse) than used in LaplaceF(x)
ordering) if
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∫t
∞ e−s u F(u) du

∫0
∞ e−s u F(u) du

≤
(≥) e−s t F(t), s, t ≥ 0.

Equivalently,  is NBUL (NWUL) ifF(x)

∫0
∞ e−sx Ft(x)dx ≤

(≥) ∫0
∞ e−sx F(x) dx; s, t ≥ 0.

IMRL- (DMRL-) Distribution  The  monotonicity  behaviour of the mean residual
lifetime  motivates another class of nonparametric probability distributions:μ(t)

 is an IMRL- (DMRL-) distribution ifF(x)

μ(t2) ≥
(≤)μ(t1) for 0 ≤ t1 ≤ t2 .

Implications between some classes of nonparametric distribution classes are:

IFR ⇒ IFRA ⇒ NBU ⇒ NBUE
DFR ⇒ DFRA ⇒ NWU ⇒ NWUE

Knowledge of the nonparametric class a distribution function belongs to and know-
ledge of some of its numerical parameters allow the construction of lower and/or up-
per bounds on this otherwise unknown distribution function. The first and most im-
portant results along this line can be found in Barlow and Proschan ([3, 4]).

1) Let  be IFR and  the n th moment of X. Then,F(x) = P(X ≤ x) μn = E(X n)

F(x) ≥
⎧

⎩
⎨
⎪
⎪

exp[−x (n!/μn)1/n] for x ≤ μn
1/n

0 for x > μn
1/n .

In particular, for , with n = 1 μ = μ1 = E(X),

                                   (1.46)F(x) ≥
⎧

⎩
⎨

e−x /μ for x ≤ μ
0 for x > μ

.

2) The lower bound (1.46) can be improved (Solov'ev [77]):

 F(x) ≥
⎧

⎩
⎨

e−α x /μ for x ≤ βμ
0 for x > βμ

,

where

β =
μ2
μ2 +

⎛
⎝⎜

μ2
μ2 − 1

⎞
⎠⎟

α ⎛
⎝ln

1
1−α

⎞
⎠

−1
.

The parameter   satisfies  and is solution of the equationα 0 < α < 1

μ2
μ2 − 1 = 2α−α2+2(1−α) ln(1−α)

α2 .
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3) If  is DFR, thenF(x)

F(x) ≤
⎧

⎩
⎨

e−x /μ for x ≤ μ
μ(ex)−1 for x > μ

and (Brown [14])
F(x) ≥ e−(γ+x/μ), x ≥ 0,

where

.γ =
μ2

2μ2 − 1

It can be shown that
  if  is IFR (DFR).γ ≤

(≥)0 F(x)

The constant  also occurs in the estimates given under 4) and 5)γ .

4) If  is IFR, then (Solov'ev [77])F(x)

sup
x

F(x) − e−x/μ ≤ 1 − 2γ − 1 ,

5) If  is DFR, then (Brown [14]),F(x)

sup
x

F(x) − e−x/μ ≤ 1 − e−γ,

sup
x

F(x) − FS(x) ≤ 1 − e−γ,

where  is given by (1.45).FS(x)

6) If  is IFRA, thenF(x)

F(x) ≤ ⎧
⎩
⎨

1 for x < μ
e−r x for x ≥ μ

,

where  is solution ofr = r(x, μ)

1 − r μ = e−r x.

7) If  is NBUE, then,F(x)
F(x) ≤ x/μ for x ≤ μ .

8) If  is NBUE (NWUE), thenF(x)

FS(x) ≤
(≥)e−x/μ, x ≥ 0 .

Other results on nonparametric classes of distributions will be needed in subsequent
chapters and presented in connection with specific applications.
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1.5   ORDER RELATIONS BETWEEN RANDOM VARIABLES

Most classes of nonparametric probability distributions introduced in the previous
section can be embedded into the more general framework of order relations between
random variables. These 'stochastic orders' have proved a powerful tool for the
approximate analysis of complex stochastic models, which elude a mathematically
rig- orous treatment, in particular in queueing-, inventory-, and reliability theory, and
recently in actuarial science. The breakthrough in theory and application of stochas-
tic orders  with the publication of the English edition of the monograph Stoyancame
[79], see [80]. The present state of art of theory and applications can be found in the
monograph Müller and Stoyan [62].
In this section, the nonnegative random variables X and Y are assumed to have distri-
bution (survival) functions  and   F(x) G(x) (F(x) and G(x)).

Usual Stochastic Order  X is smaller than Y with regard to the usual stochastic or-
der if

                                       (1.47)F(x) ≤ G(x) for all x .

Thus, X assumes large values with lower probability than Y. This order relation bet-
ween two random variables had been for many years the only one to be known. For
that reason it was simply called the stochastic order. Mann and Whitney [58] were
probably the first ones who introduced and used this concept.
Notation: X

st
≤ Y

With regard to the previous section:  is IFR (DFR) if and only ifF(x)

Xt2 st
≤ Xt1

⎛
⎝Xt2 st

≥ Xt1
⎞
⎠ for 0 ≤ t1 ≤ t2 ,

where  is the residual lifetime of a system operating at time t.Xt

 is NBU (NWU) if and only ifF(x)

 . Xt st
≤ X ⎛

⎝Xt st
≥ X⎞⎠

Let the random variable  have the distribution function  given by (1.45),XS FS(x)
and  be the corresponding residual lifetime. Then, XS,t

 is 2-NBU (2-NWU) if and only ifF(x)

XS,t st
≤ XS

⎛
⎝XS,t st

≥ XS
⎞
⎠ .

Properties of the usual stochastic order (mean values are assumed to exist):
1) If , then X

st
≤ Y E(X) ≤ E(Y).

2) If , then  for all increasing functions  and vice versa.X
st
≤ Y E(h(X)) ≤ E(h(Y)) h(⋅)

3) If  then X and Y have the same distribution functions.X
st
≤ Y and E(X) = E(Y),
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Hazard Rate Order  This stochastic order is closely related to the distribution func-
tion of the residual lifetime. Let the residual lifetimes of systems with respective life-
times X and Y be denoted as  and  If the usual stochastic orderXt Yt.

Xt st
≤ Yt

is required to hold for all , then, according to (1.35), this is equivalent tot ≥ 0
F(t + x)

F(t)
≤ G(t + x)

G(t)
for all t ≥ 0,

or
F(t + x)
G(t + x)

≤ F(t)
G(t)

; t ≥ 0, x ≥ 0.

This relationship motivates the following order relation:

X is smaller than Y with respect to the hazard rate order (failure rate order) if the ra-
tio is decreasing with increasing t.F(t)/G(t)

Notation: X
hr
≤ Y

Properties of the hazard rate order:
1) If  X and Y  have continuous densities so that the respective failure rates  andλX(t)

 exist, then  if and only if   for  λY(t) X
hr
≤ Y λX(t) ≥ λY(t) t ≥ 0.

2) Let  and  be an increasing real function. Then, X
hr
≤ Y h(⋅) h(X)

hr
≤ h(Y).

3) If , then X
hr
≤ Y X

st
≤ Y .

Convex Orders  The usual stochastic order and the hazard rate order refer to the ab-
solute sizes of the random variables to be compared. However, for many applications
it is useful to include the variability aspect. If random variables X and Y have about
the same mean, usually the one with the smallest variability is preferred. This aspect
is taken into account by convex orders.

(a) X is said to be smaller than Y in convex order if for all real-valued convex func-
tions  with property that  and  exist,h(⋅) E(h(X)) E(h(Y))

E(h(X)) ≤ E(h(Y)).
Notation: X cx≤ Y

(b) X is said to be smaller than Y in increasing convex order if for all real-valued in-
creasing convex functions  with property that  and  exist,h(⋅) E(h(X)) E(h(Y))

E(h(X)) ≤ E(h(Y)).
Notation: X

icx
≤ Y
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(c) X is said to be smaller than Y in increasing concave order if for all real-valued
concave functions  with property that  and  exist,h(⋅) E(h(X)) E(h(Y))

                                           (1.48)E(h(X)) ≤ E(h(Y)).
Notation: X

icv
≤ Y

Before stochasticians started to thoroughly investigate these orders, some of them had
already been known in applied sciences for a couple of years. In actuarial science,
'increasing convex order' had been known as 'stop-loss order', whereas in decision
theory 'increasing concave order' had been called 'second order stochastic dominance'.

Properties of convex orders:

1)  if and only if X
icx
≤ Y −Y

icv
≤ −X .

Hence, only one of these stochastic orders needs to be investigated.

2)  holds if and only ifX cx≤ Y

 and X
icx
≤ Y E(X) = E(Y).

3) If , thenX cx≤ Y

 and E(Xn) ≤ E(Yn) E((X − E(X))n) ≤ E((Y − E(Y))n) for n = 2, 4, ...

Specifically,
if , then  X cx≤ Y Var(X) ≤ Var(Y).

4) Let  Then(c − x)+ = max(0, c − x).

X
icx
≤ Y

holds if and only if for all x
                                   (1.49)E((X − x)+) ≤ E((Y − x)+).

Thus, for defining , condition (1.48) needs to be checked only for a simpleX
icx
≤ Y

class of convex functions  namely the so-called wedge functions,
h(x) = (c − x)+ .

Note that the function
                                (1.50)πX(x) = E((X − x)+) = ∫x

∞ F(u) du

is convex and decreasing in x. In actuarial science, this function is called the stop-
loss-transform, since the net premium of a stop-loss reinsurance contract has this
structure.
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1.6    MULTIDIMENSIONAL RANDOM VARIABLES

1.6.1  Basic Concepts 

Let  be an n-dimensional vector, the components of which are ran-( X1, X2, ..., Xn)
dom variables. Then  is called a random vector, a multidimensional( X1, X2, ..., Xn)
random variable or, more precisely, an n-dimensional random vector or an n-dimen-
sional random variable. Its  joint distribution function or simply the joint distribution
function of the random variables  is defined byX1, X2, ..., Xn

                 (1.51)F(x1, x2, ..., xn) = P(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn).

This function characterizes the probability distribution of  The dis-( X1, X2, ..., Xn).
tribution functions of the  denoted asXi ,

,FXi
(x) = P(Xi ≤ xi)

can be obtained from the joint distribution function:

                    (1.52)FXi
(xi) = F(∞, ..., ∞, xi, ∞, ..., ∞); i = 1, 2, ..., n.

The one-dimensional distribution functions
FX1 (x), FX2 (x), ... , FXn (x)

are the marginal distributions of  The marginal distributions of a( X1, X2, ..., Xn).
 vector cannot fully characterize its probability distribution, since they do notrandom

contain information on the statistical dependency between the . Only if the ran-Xi
dom variables  are independent, joint distribution and the set of the marginal dis-Xi
tributions contain the same amount of information on X1, X2, ..., Xn.

Independence  The random variables  are said to be independent if forX1, X2, ..., Xn
all vectors  (x1, x2, ..., xn)

                   (1.53)F(x1, x2, ..., xn) = FX1 (x 1 ) FX2 (x2). .. FXn (xn) .

In this case, the distribution functions of the  fully determine the joint distributionXi
function.

Identical Distribution  The random variables  are called identicallyX1, X2, ..., Xn
distributed if they have the same distribution function (probability distribution):

F(x) = FXi
(x); i = 1, 2, ..., n.

For independent, identically distributed (iid) random variables ,

F(x1, x2, ..., xn) = F(x1) F(x2). .. Fn(xn) .

Thus, the joint distribution function of a random vector with independent compo-
nents is equal to the product of its marginal distribution functions.
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1.6.2    Two-Dimensional Random Vectors

1.6.2.1  Discrete Components
Consider a random vector , the components X and Y of which are discrete ran-(X, Y)
dom variables with respective ranges  and  and probabilityx0, x1, ... y0, y1, ...
distributions

 and  {pi = P(X = xi ; i = 0, 1, ...} {qj = P(Y = xj ; j = 0, 1, ...}.

Furthermore, let
rij = P(X = xi ∩ Y = yj).

The set of probabilities  is the joint or two-dimensional probability{rij; i, j = 0, 1, ...}
distribution of the random vector  From the definition of the (X, Y). rij,

                                 (1.54)pi = Σj=0
∞ rij , qj = Σi=0

∞ rij .

In accordance with the terminology introduced in section 1.6.1, the probability dis-
tributions  and  constitute the marginal distribution{ pi, i = 0, 1, ...} { qi, i = 0, 1, ...}
of   By (1.6), the conditional probabilities of  given  and (X, Y). X = xi Y = yj Y = yj
given  areX = xi

| |P(X = xi Y = yj) =
rij
qj

, P(Y = yj X = xi) =
rij
pi

.

The sets

  and  
ri j
qj

; i = 0, 1, ...
ri j
pi

; j = 0, 1, ...

are the conditional probability distributions of  X given  and of  Y given Y = yj X = xi ,
respectively. The corresponding conditional mean values are

E(X Y = yj) = Σ
i=0

∞
xi

ri j
qj

, E(Y X = xi) = Σ
j=0

∞
yj

ri j
pi

.

The conditional mean value  of X given Y is a random variable, since theE(X Y)
condition is random. Its range is

.{E(X Y = y0), E(X Y = y1), ...}
The mean value of  isE(X Y)

E(E(X Y)) = Σ
j=0

∞
E(X Y = yj) P(Y = yj) = Σ

j=0

∞
Σ
i=0

∞
xi

ri j
qj

qj

 = Σ
i=0

∞
xi Σ

j=0

∞
ri j = Σ

i=0

∞
xi pi = E(X) .

Because the roles of  and Y can be changed,X
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                        (1.55)E(E(X Y)) = E(X) and E(E(Y X)) = E(Y) .

From (1.53): X and Y are independent if and only if the random events  and”X = xi”
 are independent for all  Hence, if X and Y are independent, ”Y = yj” i, j = 0, 1, 2, ...

rij = pi qj ; i, j = 0, 1, ...

1.6.2.2  Continuous Components
Let X and Y be continuous random variables with respective distribution functions
and densities  The joint distribution function of ,FX(x) , FY(y), fX(x), fY(y) . (X, Y)

 ,FX,Y (x, y) = P(X ≤ x, Y ≤ y)

has the following properties:
1) FX,Y (−∞, −∞) = 0, FX,Y (+∞, +∞) = 1

2)  0 ≤ FX,Y (x, y) ≤ 1

3)                                                   (1.56)FX,Y (x, +∞) = FX(x), FX,Y (+∞, y) = FY(y)

4) For  and x1 ≤ x2 y1 ≤ y2

    FX,Y (x1, y1) ≤ FX,Y (x2, y1) ≤ FX,Y (x2, y2)

    FX,Y (x1, y1) ≤ FX,Y (x1, y2) ≤ FX,Y (x2, y2)

Conversely, any function of two variables which has these properties is the joint dis-
tribution function of a random vector  (Properties 1 to 4 also hold for random(X, Y).
vectors with discrete components.) The probability distributions of X and Y are called
the marginal distributions of the two-dimensional random variable (X, Y).
Assuming its existence, the partial derivative of  with respect to x and y,FX,Y (x, y)

fX,Y (x, y) =
∂FX,Y (x, y)

∂x ∂y ,

is called the joint probability density of . Equivalently, the joint density can be(X, Y)
defined as a function  satisfyingf (x, y)

                           (1.57)FX,Y (x, y) = ∫−∞
x ∫−∞

y f X,Y (u, v) du dv

for all  Every joint (probability) density has propertiesx, y.

fX,Y (x, y) ≥ 0, ∫−∞
+∞ ∫−∞

+∞ fX,Y (x, y) dx dy = 1.

Conversely, any function of two variables x and y satisfying these two conditions can
be considered to be the joint density of a random vector  Combining (1.56)(X, Y).
and (1.57), one obtains the marginal densities of :(X, Y)

               (1.58)fX(x) = ∫−∞
+∞ fX,Y (x, y) dy, fY (y) = ∫−∞

+∞ fX,Y (x, y) dx .
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Thus, the respective marginal densities of  are simply the densities of X and Y.(X, Y)

If  and Y are independent, then, according to (1.52),X

FX,Y (x, y) = FX(x) FY(y) .

Hence, in terms of the densities, if X and Y are independent, then the joint density of
the random vector  is the product of its marginal densities:(X, Y)

 fX,Y (x, y) = fX(x) fY(y) .

The conditional distribution function of Y given  and the corresponding condi-X = x
tional density of Y given  are denoted asX = x

FY(y x) = P(Y ≤ y X = x)

.fY(y x) = dFY(y x)/dy

For continuous random variables, condition  has probability 0 so that formulaX = x
(1.4) cannot directly be applied to deriving . Hence, consider for FY(y x) Δx > 0

P(Y ≤ y x ≤ X ≤ x + Δx) =
P(Y ≤ y ∩ x ≤ X ≤ x + Δx)

P(x ≤ X ≤ x + Δx)

=
∫−∞
y 1

Δx
⎛
⎝∫x

x+Δx fX,Y(u, v) d u⎞⎠ d v

1
Δ x ⎡⎣FX(x + Δx) − FX(x)⎤⎦

.

If  then, assuming Δx → 0, fX(x) > 0,

FY(y x) = 1
fX(x) ∫−∞

y f X,Y (x, v) dv .

Differentiation yields the desired conditional density:

                                         (1.59)fY(y x) =
fX,Y (x, y)

fX(x)
.

By changing the roles of X and Y, the conditional density of X given  isY

fX(x y) =
fX,Y (x, y)

fY(y)
.

The conditional mean value of  Y given  isX = x

E(Y x) = ∫−∞
+∞ y fY(y x) d y.

The conditional mean value of  given X isY

E(Y X) = ∫−∞
+∞ y fY(y X) d y.
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 is a random variable with propertiesE(Y X)

E(X Y) = E(X E(Y X))
E(E(Y X)) = E(Y)

                                           (1.60)E(Y1 + Y2 X) = E(Y1 X) + E(Y2 X).

If  and Y are independent, thenX
                                    (1.61)E(X Y = y) = E(X Y) = E(X)

                                           (1.62)E(X Y) = E(X) E(Y).

The covariance  between random variables X and Y is defined asCov(X, Y)
                             (1.63)Cov(X, Y) = E{[x − E(X)][Y − E(Y)]}.

This representation of the covariance is equivalent to
                                (1.64)Cov(X, Y) = E(X Y) − E(X) E(Y).

In particular,  is the variance of X:Cov(X, X)

Cov(X, X) = Var(X) = E((X − E(X))2).

From (1.62), if X and Y are independent, then covariance between these two random
variables is 0:  But if , then X and Y are not necessarilyCov(X, Y) = 0. Cov(X, Y) = 0
independent. The covariance can assume any value between  and . Neverthe-−∞ +∞
less, it  serves as a parameter giving information on the strength of the stochastic re-
lationship between two random variables X and Y.

The correlation coefficient between  and Y is defined asX

                                   (1.65)ρ(X, Y) = Cov(X,Y)
Var(X) Var(Y)

.

The correlation coefficient has the following properties:
1) If X and Y are independent, then ρ(X, Y) = 0.
2)  if and only if there exist constants a and b so that ρ(X, Y) = ±1 Y = a X + b.
3) For any random variables X and Y, −1 ≤ ρ(X, Y) ≤ 1.
The correlation coefficient is, therefore, a measure of the strength of the linear sto-
chastic relationship between random variables.
X and Y are said to be uncorrelated if . Otherwise they are called positiv-ρ(X, Y) = 0
ely or negatively correlated depending on the sign of . Obviously, X and Y areρ(X, Y)
uncorrelated if and only if

E(X Y) = E(X) E(Y).
Thus, if X and Y are independent, then they are uncorrelated. But if X and Y are un-
correlated, they need not be independent. To show this, two examples are given. Ex-
ample 1.15 takes into account that the definitions of covariance and correlation coef-
ficient and properties derived from them also refer to discrete random variables.
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Table 1.1  Joint distribution for example 1.15    

    X

    -1     0    +1

      Y     -2   1/16   1/16   1/16

    -1   2/16   1/16   2/16  

   +1   2/16   1/16   2/16

   +2   1/16   1/16   1/16

Example 1.15  Let X and Y be discrete random variables with ranges
RX = {−2, −1, 1, 2} and RY = {−1, 0, 1}.

Table 1.1 shows the joint distribution of . Accordingly, the mean values of X(X, Y)
and Y are:

E(X) = 3
16 ⋅ (−2) + 5

16 ⋅ (−1) + 5
16 ⋅ 1 + 3

16 ⋅ 2 = 0

E(Y) = 6
16 ⋅ (−1) + 4

16 ⋅ 0 + 6
16 ⋅ 1 = 0

The mean value of the product  isXY

E(X Y) = 1
16 ⋅ (−2)(−1) + 1

8 ⋅ (−1)(−1) + 1
8 ⋅ 1 ⋅ (−1) + 1

16 ⋅ 2 ⋅ (−1)

 + 1
16 ⋅ (−2) ⋅ 0 + 1

16 ⋅ (−1) ⋅ 0 + 1
16 ⋅ 1 ⋅ 0 + 1

16 ⋅ 2 ⋅ 0

   + 1
16 ⋅ (−2) ⋅ 1 + 1

8 ⋅ (−1) ⋅ 1 + 1
8 ⋅ 1 ⋅ 1 + 1

16 ⋅ 2 ⋅ 1 = 0.

Hence,  so that X and Y are uncorrelated.E(XY) = E(X) E(Y) = 0

On the other hand,

P(X = 2, Y = −1) = 1
16 ≠ P(X = 2) ⋅ P(Y = −1) = 3

16 ⋅ 6
16 = 18

256 = 9
128.

Thus,  X and Y are uncorrelated, but not independent.                                                 

Example 1.16  Let the random vector  have the joint probability density(X, Y)

fX,Y (x, y) = x2+y2

4π exp ⎧
⎩
⎨−

⎛
⎝⎜

x2+y2

2
⎞
⎠⎟
⎫

⎭
⎬, − ∞ < x, y < ∞.

According to (1.58), the marginal density  is obtained as follows:fX(x)

fX(x) = ∫
−∞

+∞ x2+y2

4π exp ⎧
⎩
⎨−

⎛
⎝⎜

x2+y2

2
⎞
⎠⎟
⎫

⎭
⎬dy
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= e−x2/2

2 2π

⎛

⎝
⎜x2 ∫

−∞

+∞
1
2π

e−y2/2 dy + ∫
−∞

+∞
y2 1

2π
e−y2/2 dy

⎞

⎠
⎟ .

The integrand in the first integral is the density of an -distributed random var-N(0, 1)
iable, the second integral is the variance of an -distributed random variable.N(0, 1)
Hence, both integrals are equal to 1. Thus ,

fX(x) = 1
2 2π

(x2 + 1) e−x2/2, − ∞ < x < +∞.

Since  is symmetric in x and y,fX,Y (x, y)

fY(y) = 1
2 2π

(y2 + 1) e−y2/2, − ∞ < y < +∞.

Obviously,  Hence, X and Y are statistically dependent ran-fX,Y (x, y) ≠ fX(x) ⋅ fY(y).
dom variables.
For  and  being symmetric with regard to the origin,  OnfX(y) fY(y) E(X) = E(Y) = 0.
the other side, the mean value of the product  isX Y

E(X Y) = ∫
−∞

+∞
∫

−∞

+∞
x y x2+y2

4π exp ⎧
⎩
⎨−

⎛
⎝⎜

x2+y2

2
⎞
⎠⎟
⎫

⎭
⎬dx dy

= 1
4π
⎛

⎝
⎜ ∫
−∞

+∞
x3 e−x2/2 dx

⎞

⎠
⎟ ⋅

⎛

⎝
⎜ ∫
−∞

+∞
y3 e−y2/2 dy

⎞

⎠
⎟ .

The integrands in the integrals of the second line are asymmetric with regard to the
origin. Thus, both integrals are equal to 0. Hence,

E(X Y) = E(X) E(Y) = 0.
This proves that X and Y are uncorrelated, but not independent.                                

The following example shows that the correlation coefficient may give absolutely
wrong information on the degree of the statistical dependency between two random
variables other than the linear one.

Example 1.17  Let with X uniformly distributed over the interval  Y = sin X [0, π] :
fX(x) = 1/π , 0 ≤ x ≤ π.

The mean values of interest are

     E(X) = π/2 , E(Y) = 1
π ∫0

π sin x dx = 2/π , E(X Y) = 1
π ∫0

π x sin x dx = 1 .

Thus, the covariance between X and Y is 0:

Cov (X, Y) = 1 − π
2 ⋅ 2

π = 0.

Hence,  Despite the functional relationship between the random variablesρ(X, Y) = 0.
X and Y, they are uncorrelated.                                                                                    
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Bivariate Normal Distribution  The random vector  has a bivariate normal  or(X, Y)
a bivariate Gaussian distribution with parameters

μx, μy, σx, σy and ρ, − ∞ < μx, μy < ∞, σx > 0, σy > 0, − 1 < ρ < 1

if it has joint density
                                                 (1.66)fX,Y (x, y) =

= 1

2πσxσy 1−ρ2
exp

⎧

⎩
⎨
⎪
⎪

− 1
2(1−ρ2)

⎛

⎝
⎜

(x−μx)2

σx
2 − 2ρ

(x−μx)(y−μy)
σxσy +

(y−μy)2

σy
2

⎞

⎠
⎟
⎫

⎭
⎬
⎪
⎪

with   By (1.58), the corresponding marginal densities are−∞ < x, y < +∞ .

fX(x) = 1
2π σx

exp
⎛

⎝
⎜−

(x − μx)2

2 σx
2

⎞

⎠
⎟ , − ∞ < x < +∞

fY(x) = 1
2π σy

exp
⎛

⎝
⎜−

(y−μy)2

2 σy
2

⎞

⎠
⎟ , − ∞ < y < +∞ .

Thus, if  has a bivariate normal distribution with parameters (X, Y) μx, σx, μy, σy,
and  then the random variables X and Y have each a normal distribution with res-ρ,
pective parameters  and . Since the independence of  X and Y is equiv-μx, σx μy, σy
alent to X and Y are independent if and only if  . It canfX,Y (x, y) = fX(x) fY(y), ρ = 0
easily be shown that the parameter  is equal to the correlation coefficient between Xρ
and Y. Therefore:

    If the random vector  has a bivariate normal distribution, then X and Y are     (X, Y)
    independent if and only if they are uncorrelated.

The conditional density of Y given  is obtained from  and (1.59):X = x f (x, y)

    (1.67)fY(y x) = 1

2π σy 1−ρ2
exp

⎧

⎩
⎨
⎪
⎪

− 1
2σy

2(1−ρ2)
⎡
⎣y − ρ

σy
σx (x − μx) − μy ⎤⎦

2⎫

⎭
⎬
⎪
⎪

.

Thus, on condition  the random variable Y has a normal distribution withX = x,
parameters

,            (1.68)E(Y X = x) = ρ
σy
σx (x − μx) + μy Var(Y X = x) = σy

2(1 − ρ2) .

Example 1.18  The daily consumptions of tap water X and Y of two neighbouring
houses have a joint normal distribution with parameters

,  and μx = μy = 16 [m3] σx = σy = 2 [m3] ρ = 0.5.
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The conditional probability density of Y on condition  has parametersX = x

E(Y x) = ρ
σy
σx (x − μx) + μy = 0.5 ⋅ 2

2 (x − 16) = x
2 + 8

Var(Y x) = σy
2(1 − ρ2) = 4 (1 − 0.52) = 3 .

Hence,

     fY(y x) = 1
2π 3

exp
⎧

⎩
⎨
⎪
⎪

− 1
2
⎛

⎝
⎜

y− x
2−8

3

⎞

⎠
⎟

2⎫

⎭
⎬
⎪
⎪

, − ∞ < y < +∞.

This is the density of an distributed random variable. Some condition-N(8 + x/2, 3)−
al interval probabilities are:

P(14 < Y ≤ 16 X = 10) = Φ
⎛
⎝
⎜ 16−13

3

⎞
⎠
⎟ − Φ

⎛
⎝
⎜ 14−13

3

⎞
⎠
⎟ = 0.958 − 0.718 = 0.240

P(14 < Y ≤ 16 X = 14) = Φ
⎛
⎝
⎜ 16−15

3

⎞
⎠
⎟ − Φ

⎛
⎝
⎜ 14−15

3

⎞
⎠
⎟ = 0.718 − 0.282 = 0.436.

The corresponding unconditional probability is

          P(14 < Y ≤ 16) = Φ⎛
⎝

16−16
2

⎞
⎠ − Φ⎛

⎝
14−16

2
⎞
⎠ = 0.500 − 0.159 = 0.341.

In  what follows,  the  joint  density of a vector   is  applied to determining the(X, Y)
probability distribution of a product and a ratio of two random variables.

Distribution of the Product of two Random Variables Let  be a random vec-(X, Y)
tor with joint probability density , andfX,Y (x, y)

Z = X Y.
The distribution function of   is given by (Figure 1.9)Z

FZ(z) = ∫∫
{(x,y); xy≤z}

fX,Y (x, y)dx dy

with Hence,{(x, y); xy ≤ z} = {−∞ < x ≤ 0, z/x ≤ y < ∞} {0 ≤ x < ∞, − ∞ < y ≤ z/x}.

FZ(z) = ∫−∞
0 ∫z/x

+∞ fX,Y (x, y) dy dx + ∫0
+∞ ∫−∞

z/x fX,Y (x, y) dy dx.

Differentiation with regard to z yields the probability density of :Z

fZ(z) = ∫−∞
0 ⎛

⎝− 1
x
⎞
⎠ fX,Y (x, z

x ) dx + ∫0
∞ 1

x fX,Y (x, z
x) dx.

This representation can be simplified:

                    (1.69)fZ(z) = ∫−∞
+∞ 1

x fX,Y (x, z
x) dx, z ∈ (−∞, +∞).

In case of nonnegative X and Y,
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FZ(z) = ∫0
+∞ ∫0

z/x fX,Y(x, y) dy dx, z ≥ 0,

                             (1.70)fZ(z) = ∫0
+∞ 1

x fX,Y (x, z
x ) dx, z ≥ 0.

Distribution of the Ratio of two Random Variables  Let  be a random vector(X, Y)
with joint probability density  andfX,Y (x, y),

Z = Y /X .
The distribution function of   is given by (Figure 1.10)Z

FZ(z) = ∫∫
(x,y); y

x≤z
fX,Y (x, y)dx dy

with Hence (x, y); y
x ≤ z = {−∞ < x ≤ 0, zx ≤ y < ∞} {0 ≤ x < ∞, − ∞ < y ≤ zx}.

FZ(z) = ∫−∞
0 ∫z x

+∞ fX,Y (x, y) dy dx + ∫0
+∞ ∫−∞

z x fX,Y (x, y) dy dx.
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Differentiation with regard to  yields the probability density of Z:z

                                  (1.71)fZ(z) = ∫−∞
+∞ x fX,Y (x, zx) dx.

In case of nonnegative  and Y,X

FZ(z) = ∫0
+∞ ∫0

z x fX,Y(x, y) dy dx, z ≥ 0

                              (1.72)fZ(z) = ∫0
+∞ x fX,Y (x, zx) dx, z ≥ 0.

Example 1.19  The random vector  has the joint density(X, Y)

fX,Y(x, y) = λμe−(λ x+ν y), x ≥ 0, y ≥ 0; λ > 0, ν > 0.

The structure of this joint density implies that X and Y are independent and have ex-
ponential distributions with parameters  and , respectively. Hence, the density ofλ ν
the ratio  isZ = Y/X

fZ(z) = ∫0
∞ x λν e−(λ+ν z)x dx, z ≥ 0.

 slight transformation yieldsA

fZ(z) = λν
λ+ν z ∫0

∞ x (λ + ν z)e−(λ+ν z) xdx, z ≥ 0.

The integral is the mean value of an exponentially distributed random variable with
parameter  Henceλ + ν z. ,

fZ(z) = λν
(λ + ν z)2 , FZ(z) = 1 − λ

λ + ν z , z ≥ 0.

The mean value of Z does not exist. (Try to apply (1.17) to determining        E(Z).)

Example 1.20  A system has the random lifetime (= time to failure) X. After a failure
it is replaced with a new system. It takes Y time units to replace a failed system.
Thus, within a (lifetime-replacement-) cycle, the random fraction the system is oper-
ating, is

A = X
X + Y .

A is the availability of the system in a cycle. Determining the distribution function of
 can be reduced to determining the distribution function of Z=Y/X sinceA

FA(t) = P⎛⎝
X

X+Y ≤ t⎞⎠ = 1 − P⎛⎝
Y
X < 1−t

t
⎞
⎠ .

Hence,

FA(t) = 1 − FZ
⎛
⎝

1−t
t
⎞
⎠ , 0 < t ≤ 1.

Differentiation with respect to  yields the probability density of A:t

fA(t) = 1
t2

fZ ⎛
⎝

1−t
t
⎞
⎠ , 0 < t ≤ 1.
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Specifically, if  is the same as in example 1.19, thenfZ(z)

fA(t) = λ ν
[(λ − ν)t + ν]2 , FA(t) = λ t

(λ − ν) t + ν , 0 ≤ t ≤ 1.

For , the mean value of A isλ ≠ ν

                                  (1.73)E(A) = ν
ν − λ

⎡
⎣1 + λ

ν − λ
⎤
⎦ ln λ

ν .

If  then A is uniformly distributed over  In this case,           λ = ν, [0, 1]. E(A) = 1/2.

1.6.3  n-Dimensional Random Variables

Let   be a random vector with joint distribution function(X1, X2, ..., Xn)

F(x1, x2, ..., xn) = P(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn).

Provided its existence, the nth mixed partial derivative of the joint distribution func-
tion with respect to the  is called the joint ( probability) density of thex1, x2, ... , xn
random vector ( X1, X2, ..., Xn) :

                            (1.74)f (x1, x2, ..., xn) =
∂nF(x1, x2, ... , xn)

∂x1∂x2. .. ∂xn
.

The characteristic properties of two-dimensional distribution functions and probabili-
ty densities can be extended in a straightforward way to n-dimensional distribution
functions and densities. Hence they will not be given here.
The marginal distribution functions are given by (1.52), whereas the marginal densi-
ties are

       (1.75)fXi
(xi) = ∫

−∞

+∞
∫

−∞

+∞
⋅⋅⋅ ∫

−∞

+∞
f (x1, ..., xi, ..., xn) dx1. .. dxi−1dxi+1. .. dxn.

If the  are independent, then, from (1.53), the joint density of  isXi (X1, X2, ..., Xn)
equal to the product of the densities of the :Xi

                     (1.76)f (x1, x2, ..., xn) = fX1 (x1) fX2 (x2). .. fXn (xn).

The joint distribution function (density) also allows for determining the joint proba-
bility distributions of all subsets of   For instance, the joint distribu-{ X1, X2, ..., Xn}.
tion function of the random vector   is(Xi, Xj), i < j,

FXi, Xj (xi, xj) = F(∞, ..., ∞, xi, ∞, ..., ∞, xj, ∞, ..., ∞)

and the joint distribution function of  isX1, X2, ..., Xk, k < n,

              (1.77)FX1, X2,...,Xk
(x1, x2, ..., xk) = F(x1, x2..., xk, ∞, ∞, ..., ∞).
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The corresponding joint densities are
fXi,Xj (xi, xj) =

∫
−∞

+∞
∫

−∞

+∞
. .. ∫

−∞

+∞
f (x1, x2, ..., xn) dx1. .. dxi−1dxi+1. .. dxj−1dxj+1. .. dxn

and
                                   (1.78)fX1,X2,...,Xk

(x1, x2, ..., xk)

= ∫
−∞

+∞
∫

−∞

+∞
. .. ∫

−∞

+∞
f (x1, x2, ..., xk, xk+1. .. xn) dxk+1dxk+2. .. dxn .

Conditional densities can be obtained analogously to the two-dimensional case: For
instance, the conditional density of  given  is( X1, X2, ..., Xn) Xi = xi, i = 1, 2, ..., n,

                    (1.79)f (x1, ..., xi−1, xi+1, ..., xn xi
⎞
⎠ =

f (x1, x2, ..., xn)
fXi

(xi)

and the conditional density of  given ' ' is( X1, X2, ..., Xn) X1 = x1, X2 = x2, ..., X = xk

|    (1.80)f (xk+1, xk+2, ..., xn x1, x2, ..., xk) =
f (x1, x2, ..., xn)

fX1,X2,...,Xk
(x1, x2, ..., xk)

, k < n.

Let  be a function of n variables. Then the mean value of the ran-y = h(x1, x2, ..., xn)
dom variable  is defined asY = h (X1, X2, ..., Xn)

     (1.81)E(Y) = ∫
−∞

+∞
∫

−∞

+∞
. .. ∫

−∞

+∞
h( x1, x2, …, xn) f (x1, x2, ..., xn) dx1dx2. .. dxn.

In particular, the mean value of the product  isY = X1 X2. .. Xn

E(X1 X2. .. Xn) = ∫
−∞

+∞
∫

−∞

+∞
. .. ∫

−∞

+∞
x1 x2. .. xn f (x1, x2, ..., xn) dx1dx2. .. dxn .

In view of (1.76), for independent  this n-dimensional integral simplifies toXi

                               (1.82)E(X1 X2. .. Xn) = E(X1) E(X2) . .. E(Xn) .

     The mean value of the product of independent random variables is equal to the     
     product of  the mean values of these random variables.

The conditional mean value of   givenY = h (X1, X2, ..., Xn)

' 'X1 = x1, X2 = x2, . .. , Xk = xk
is
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                                                       (1.83)E(Y x1, x2, . .. , xk) =

= ∫
−∞

+∞
∫

−∞

+∞
. .. ∫

−∞

+∞
h(x1, x2, ..., xn)

f (x1, x2, ..., xn)
fX1, X2,..., Xk

(x1, x2, ..., xk)
dxk+1dxk+2. .. dxn .

Replacing in (1.83) the  with the random variables  yieldsx1, x2, ..., xk X1, X2, ..., Xk
the corresponding random mean value of Y given :X1, X2, ..., Xk

E(Y X1, X2, ..., Xk ).

The mean value of this random variable (with respect to all  isX1, X2, ..., Xk)

                      (1.84)E X1,X2,...,Xk
( E(Y X1, X2, ..., Xk ) ) = E(Y).

The mean value of  with respect to, for instance, the random var-E(Y X1, X2, ..., Xk )
iables is again a random variable:X1, X2, ..., Xk−1

                  (1.85)E X1,X2,...,Xk−1
(E(Y X1, X2, ..., Xk )) = E(Y Xk ).

From this it is obvious how to obtain the conditional mean value
E(Y xi1 , xi2 , . .. , xik )

and its random analogue
E(Y Xi1 , Xi2 , . .. , Xik )

with regard to any subsets  and  of the respec-{xi1 , xi2 , . .. , xik } {Xi1 , Xi2 , . .. , Xik }

tive sets and {x1, x2, ..., xn} {X1, X2, ..., Xn}.

The conditional mean values of a sum of random variables have properties

      (1.86)E(Y1 + Y2 + . .. + Ym xi1 , xi2 , . .. , xik ) = Σi=1
m EYi xi1 , xi2 , . .. , xik )

and
          (1.87)E(Y1 + Y2 + . .. + Ym Xi1 , Xi2 , . .. , Xik ) = Σi=1

m EYi Xi1 , Xi2 , . .. , Xik ).

Let
ci j = Cov (Xi, Xj)

be the covariance between  and  It is useful to unite the  inXi Xj ; i, j = 1, 2, ..., n . cij
the covariance matrix :C

C = ((ci j)) ; i, j = 1, 2, ..., n .

The main diagonal of C consists of the variances of the Xi :

ci i = Var(Xi); i = 1, 2, ..., n.
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n-Dimensional Normal Distribution  Let  be an n-dimensional ran-( X1, X2, . .. , Xn)
dom vector with vector of mean values  and covariance matrixμ = (μ1, μ2, . .. , μn)

. Furthermore, let  and  be the positive determinant and the inverseC = ((cij)) C C−1

of , respectively, and  Then  has an n-dimen-C x = (x1, x2, . .. , xn). (X1, X2, . .. , Xn)
sionally normal (or Gaussian) distribution if it has joint density

                (1.88)f (x) = 1
(2π)n C

exp ⎛⎝−
1
2 (x − μ) C−1(x − μ)T ⎞

⎠ ,

where  is the transpose of the vector(x − μ)T

x − μ = (x1 − μ1, x2 − μ2, . .. , xn − μn).

By doing the matrix-vector-multiplication in (1.88),  becomesf (x)

                                             (1.89)f (x1, x2, ..., xn) =

1
(2π)n C

exp ⎛⎝−
1

2 C Σi=1
n Σj=1

n Ci j (xi − μi)(xj − μj
⎞
⎠ ,

where  is the cofactor of . Ci j ci j
For ,  and , (1.89) becomes the density of the bivariate normal dis-n = 2 x1 = x x2 = y
tribution (1.66). Generalizing from the bivariate special case, it can be shown that the
random variables  have an distribution with ; ifXi N(μi, σi

2)− σi
2 = cii i = 1, 2, ..., n,

 has an n-dimensional normal distribution. If the  are uncorrelat-( X1, X2, . .. , Xn) Xi
ed, then  is a diagonal matrix with  for  so that the productC = ((ci j)) ci j = 0 i ≠ j
form (1.76) of the joint density and, therefore, the independence of the  follows:Xi

           (1.90)fX(x1, x2, ⋅⋅⋅, xn) = Π
i=1

n ⎡

⎣
⎢⎢⎢

1
2π σi

exp
⎛
⎝⎜
−1

2
⎛
⎝

xi − μi
σi

⎞
⎠

2 ⎞
⎠⎟
⎤

⎦
⎥⎥⎥

.

Theorem 1.2  If the random vector  has an n-dimensionally normal(X1, X2, ..., Xn)
distribution and the random variables  are linear combinations of the Y1, Y2, ..., Ym

, i.e. if there exist constants  so thatXi ai j

Yi = Σj=1
mi ai j Xj ; i = 1, 2, ..., m ,

then the random vector   is m-dimensionally normally distributed.     (Y1, Y2, ..., Ym)

Maximum of n Independent Random Variables  Let  be indepen-X1, X2, ..., Xn
dent random variables and

X = max{ X1, X2, ..., Xn}.

Then the random event '  ' occurs if and only ifX ≤ x
' '.X1 ≤ x, X2 ≤ x, ..., Xn ≤ x
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Thus, the distribution function of the maximum of  independent random variables isn
                              (1.91)FX (x) = FX1 (x) ⋅ FX2 (x). .. FXn (x).

Minimum of n Independent Random Variables Let  be independ-X1, X2, ..., Xn
ent random variables

Y = min X1, X2, ..., Xn .
Then,

P(Y > x) = P( X1 > x, X2 > x, ..., Xn > x).
Hence,

                      (1.92)FY (x) = P(Y > x) = FX1 (x) ⋅ FX2 (x). .. FXn (x),

Thus, the distribution function of the minimum of  independent random variables isn

                          (1.93)FY (x) = 1 − FX1 (x) ⋅ FX2 (x). .. FXn (x).

Example 1.21 a) A system consists of n subsystems with independent lifetimes
 The system operates if at least one of its subsystems operatesX1, X2, ..., Xn.

(parallel system). Hence, its lifetime is
X = max X1, X2, ..., Xn

and has distribution function (1.91). In particular, if the lifetimes of the subsystems
are identically exponentially distributed with parameter ,λ

FX(x) = P(X ≤ x) = (1 − e−λx)n; x ≥ 0.
By (1.17)  the corresponding mean system lifetime is,

E(X) = ∫0
∞[1 − (1 − e−λx)n]dx .

Substituting  yieldsu = 1 − e−λx

E(X) = 1
λ ∫0

1 1 − un
1 − u du = 1

λ ∫0
1[1 + u + . .. + un−1] du.

Hence,

E(X) = 1
λ
⎡
⎣⎢
1 + 1

2 + 1
3 + . .. + 1

n
⎤
⎦⎥
.

b) Under otherwise the same assumptions as in case a), the system fails as soon as
the first subsystem fails (series system). Thus, its lifetime is

Y = min{ X1, X2, ..., Xn}

and has distribution function (1.93). In particular, if the lifetimes of the subsystems
are identically exponentially distributed with parameter , thenλ

FY(x) = 1 − e−nλx, x ≥ 0.

The corresponding mean system lifetime is                                          E(Y) = 1/nλ .
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1.7    SUMS OF RANDOM VARIABLES

1.7.1  Sums of Discrete Random Variables

Mean Value of a Sum  The random vector  has the two discrete components X(X, Y)
and Y and its joint distribution is

{rij = P(X = xi ∩ Y = yj}; i, j = 0, 1, ...}.

Then the mean value of the sum  isZ = X + Y

E(Z) = Σi=0
∞ Σj=0

∞ (xi + yj) rij = Σi=0
∞ xiΣj=0

∞ rij + Σi=0
∞ yjΣj=0

∞ rij.

Thus, in view of (1.54),
                                       (1.94)E(X + Y) = E(X) + E(Y).

By induction, for any discrete random variables X1, X2, ..., Xn,

               (1.95)E( X1 + X2 + . .. + Xn) = E( X1) + E(X2) + . .. + E(Xn).

Distribution of a Sum  Let X and Y  be independent random variables with common
range   and probability distributionsR = {0, 1, ...}

  and  {pi = P(X = i; i = 0, 1, ...} {qj = P(Y = j; j = 0, 1, ...}.

Then,

P(Z = k) = P(X + Y = k) = Σi=0
k P(X = i) P(Y = k − i) .

Letting  yields for all  rk = P(Z = k) k = 0, 1, ...
rk = p0qk + p1qk−1 + . .. + pkq0 .

Thus, according to (1.24), the discrete probability distribution  is therk; k = 0, 1, ...
convolution of the probability distributions of X and Y. Hence, by (1.26),

                                        (1.96)MZ(z) = MX(z) MY(z).

    The z-transform  of the the sum  of two independent discrete         MZ(z) Z = X + Y
    random variables X and Y with common range  is equal to the            R = {0, 1, ...}
    product of the z-transforms of X and Y.

By induction, if  with independent , thenZ = X1 + X2 + . .. + Xn Xi
                             (1.97)MZ(z) = MX1 (z) MX2 (z). .. MXn (z).

Example 1.22  Let  be a sum of independent random varia-Z = X1 + X2 + . .. + Xn
bles, where  has a Poisson distribution with parameter  The z-Xi λi; i = 1, 2, ..., n.
transform of  is (section 1.3.1)Xi

MXi
(z) = eλi (z−1).
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From (1.97),
MZ(z) = e(λ1+λ2+. .. +λn) (z−1).

Thus, the sum of independent, Poisson distributed random variables has a Poisson
distribution the parameter of which is the sum of the parameters of the Poisson dis-
tributions of these random variables.                                                                          

1.7.2  Sums of Continuous Random Variables

In this section,  are random variables with respective distributionXi ; i = 1, 2, ..., n;
functions, densities, mean values and variances

   and   FXi
(xi), fXi

(xi), E(Xi), Var(Xi); i = 1, 2, ..., n.

The joint density of the  is denoted as   All mean valuesX1, X2, ..., Xn f (x1, x2, ..., xn).
and variances are assumed to be finite.

Mean Value of a Sum  Applying (1.81) with h(x1, x2, ..., xn) = x1 + x2 + . .. + xn
yields the mean value of a sum of n random variables:

E⎛⎝Σi=0
n Xi

⎞
⎠ = ∫

−∞

+∞
∫

−∞

+∞
. .. ∫

−∞

+∞
(x1 + x2 + . .. + xn) fX(x1, x2, ..., xn) dx1dx2. .. dxn.

From (1.75),

E⎛⎝Σi=0
n Xi

⎞
⎠ = Σi=0

n ∫−∞
+∞ xi fXi

(xi) dxi .

Hence,
              (1.98)E( X1 + X2 + . .. + Xn) = E( X1) + E( X2) + . .. + E(Xn).

    The mean value of the sum of (discrete or continuous) random variables                 
     is equal to the sum of the mean values of these random variables.

Variance of a Sum  The variance of the sum of  random variables isn

                       (1.99)Var⎛⎝Σi=0
n Xi

⎞
⎠ = Σi=0

n Σj=0
n Cov (Xi, Xj).

Since
 and  Cov (Xi, Xi) = Var(Xi) Cov (Xi, Xj) = Cov (Xj, Xi),

formula ( ) can be written in the form1.99

          (1.100)Var⎛⎝Σi=1
n Xi

⎞
⎠ = Σi=1

n Var( Xi) + 2 Σi,j=1;i<j
n Cov (Xi, Xj).

Thus, for uncorrelated ,Xi
      (1.101)Var( X1 + X2 + . .. + Xn) = Var( X1) + Var( X2) + . .. + Var(Xn).
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    The variance of a sum of uncorrelated random variables is equal to the sum            
     of the variances of these random variables.

Let  be any sequence of finite real numbers. Then,α1, α2, . .. , αn

                              (1.102)E⎛⎝Σi=1
n αi Xi

⎞
⎠ = Σi=1

n αi E( Xi)

  (1.103)Var⎛⎝Σi=1
n αi Xi

⎞
⎠ = Σi=1

n αi
2Var( Xi) + 2 Σi,j=1, i<j

n αi αj Cov (Xi, Xj).

If the  are uncorrelated,Xi

                       (1.104)Var⎛⎝Σi=1
n αi Xi

⎞
⎠ = Σi=1

n αi
2Var( Xi) .

For independent, identically distributed random variables with mean  and varianceμ
 formulas (1.74) and (1.75) simplify toσ2,

                  (1.105)E⎛⎝Σi=1
n Xi

⎞
⎠ = nμ , Var⎛⎝Σi=1

n Xi
⎞
⎠ = n σ2.

Note  Formulas (1.98) to (1.105) hold for discrete and continuous random variables.

Distribution of a Sum  Let X and Y be two independent, continuous random varia-
bles with distribution functions ,  and densities  On condi-FX(x) FY(y) fX(x), fY(y).
tion ,  the distribution function of the sum  isY = y Z = X + Y

FZ(Z ≤ z Y = y) = P(X + y ≤ z) = P(X ≤ z − y) = FX(z − y)

and, on condition X = x,
FZ(Z ≤ z X = x) = P(Y + x ≤ z) = P(Y ≤ z − x) = FY (z − x) .

Hence,
          (1.106)FZ(z) = ∫−∞

+∞ FX(z − y) fY(y) dy = ∫−∞
+∞ FY (z − x) fX (x) dx.

By differentiation, the probability density of the sum  is seen to beZ = X + Y

            (1.107)fZ(z) = ∫−∞
+∞ fX(z − y) fY(y) dy = ∫−∞

+∞ fY(z − x) fX(x) dx .

The integrals in (1.107) are equivalent definitions of the convolution of the densities
 and  fX fY.

Notation  fZ(z) = ( fX ∗ fY)(z) = ( fY ∗ fX)(z)

In terms of the distribution functions, since (1.106) can be written asdF(x) = f (x)dx,

            (1.108)FZ(z) = ∫−∞
+∞ FY(z − x) dFX(x) = ∫−∞

+∞ FX(z − y) dFY(y).

The integrals in (1.108) are equivalent definitions of the convolution of the distribu-
tion functions  and FX FY.

Notation  FZ(z) = FX ∗ FY(z) = FY ∗ FX(z)
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    The distribution function (probability density) of the sum of two independent         
     random variables is given by the convolution of their distribution functions            
     (probability densities).

Note With regard to the general definition of the convolution in mathematics (which
applies to our definition of the convolution of densities), the convolution of two dis-
tribution functions F and G with respective densities f and g is, by (1.106), simply
the convolution of F and g or, equivalently, the convolution of G and f.  

If X and Y are nonnegative, then (1.106) and (1.107) become

       (1.109)FZ(z) = ∫0
z FX(z − x) fY(x)dx = ∫0

z FY(z − y) fX (y)dy , z ≥ 0,

        (1.110)fZ(z) = ∫0
z fY(z − x) fX(x) dx = ∫0

z fX(z − y) fY(y) dy , z ≥ 0.

Moreover, if  denotes the Laplace transform of a function f defined on  (itsL( f ) [0, ∞)
existence provided), then, by (1.32),

                            (1.111)L( fZ) = L(fX ∗ fY) = L( FY) L( fX).

                            (1.112)L( FZ) = L(FX ∗ fY) = L(FX) L( fY).

    The Laplace transform of the density of the sum of two nonnegative, independent  
    random variables is equal to the product of their Laplace transforms.

By (1.29),  so thatL( FY) = L( fY)/s

                                    (1.113)L( FZ) = s L( FX) L( FY).

The density of a sum  of n independent, continuous randomZ = X1 + X2 + . .. + Xn
variables  is obtained by repeated application of formula (1.107). The resultingXi
function is the convolution of the densities  denoted asfX1 , fX2,..., fXn

                               (1.114)fZ(z) = fX1 ∗ fX2 ∗ . .. ∗ fXn (z).

In particular, if the  are identically distributed with density f , then  is the n-foldXi fZ
convolution of  f with itself or, equivalently, the nth convolution power  of   f.f ∗(n)(z)

 can be recursively obtained as follows:f ∗(n)(z)

                          (1.115)f ∗(i)(z) = ∫−∞
+∞ f ∗(i−1)(z − x) f (x)dx ,

 For nonnegative random variables, this formula simpli-i = 2, 3, ..., n ; f ∗(1)(x) ≡ f (x).
fies to

                       (1.116)f ∗(i)(z) = ∫0
z f ∗(i−1)(z − x) f (x) dx, z ≥ 0.
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From (1.111), by induction: The Laplace transform of the density  of the sum of nfZ
nonnegative, independent random variables  is equal to theZ = X1 + X2 + . .. + Xn
product of the Laplace transforms of these random variables:

                             (1.117)L( fZ) = L( fX1 ) L( fX2 ). .. L( fXn ).

The repeated application of (1.108) yields the distribution function of a sum of the n
independent random variables  in the formX1, X2, ..., Xn

                             (1.118)FZ(z) = FX1 ∗ FX2 ∗ . .. ∗ FXn (z).

In particular, if the  are independent and identically distributed with distributionXi
function F, then  is equal to the n th convolution power of F:FZ(z)

                                           (1.119FZ(z) = F∗(n)(z).

 can be recursively obtained fromFZ(z)

                          (1.120)F∗(i)(z) = ∫−∞
+∞ F ∗(i−1)(z − x) dF(x);

 If the  are nonnegative, then formulan = 2, 3, ...; F∗(0)(x) ≡ 1, F∗(1)(x) ≡ F(x). Xi
(1.120) becomes

                             (1.121)F∗(i)(z) = ∫0
z F ∗(i−1)(z − x) dF(x).

Example 1.23 (Erlang distribution)  Let the random variables  and  be inde-X1 X2
pendent and exponentially distributed with parameters  and :λ1 λ2

fXi
(x) = λi e−λi x, FXi

(x) = 1 − e−λi x; x ≥ 0, i = 1, 2.

(1.110) yields the density of  :Z = X1 + X2

fZ(z) = ∫0
z λ2 e−λ2(z−x) λ1e−λ1x dx

= λ1λ2e−λ2 z ∫0
z e−(λ1−λ2) x dx.

If , thenλ1 = λ2 = λ

                                   (1.122)fZ(z) = λ2 z e−λ z, z ≥ 0.
This is the density of an Erlang distribution with parameters  and  (section 1.3).n = 2 λ

If , thenλ1 ≠ λ2

fZ(z) =
λ1λ2

λ1 − λ2
⎛
⎝e

−λ2 z − e−λ1 z ⎞
⎠ , z ≥ 0.

Now let  be independent, identically distributed exponential randomX1, X2, ..., Xn
variables with density  The Laplace transform of  f  isf (x) = λ e−λ x; x ≥ 0.

f (s) = λ /(s + λ).
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Hence, by (1.114), the Laplace transform of the density of    isZ = X1 + X2 + . .. + Xn

fZ (s) = ⎛
⎝

λ
s + λ

⎞
⎠

n.

The pre-image of this Laplace transform is

fZ(z) = λ (λ z) n−1

(n − 1)! e−λ z, z ≥ 0.

Hence, Z has an Erlang distribution with parameters n and λ.                                   �

Example 1.24 (Normal distribution)  The random variables  are independent andXi
have a normal distribution with parameters  and :μi σi

2; i = 1, 2

fXi
(x) = 1

2π σi
exp

⎛

⎝
⎜⎜⎜
− 1

2
(x − μi)2

σi
2

⎞

⎠
⎟⎟⎟

; i = 1, 2.

According to example 1.12 (page 33), the Laplace transforms of the  are Xi

fXi
(s) = e−μis+1

2σi
2s2

; i = 1, 2.

By (1.111), the density of the sum  has the Laplace transformZ = X1 + X2

f Z(s) = fX1 (s) fX2 (s) = e−(μ1+μ2)s+1
2 (σ1

2+σ2
2) s2

.

But this is the Laplace transform of an -distributed random var-N(μ1 + μ2, σ1
2 + σ2

2)
iable. Thus, the sum of two independent, normally distributed random variables also
has a normal distribution. By induction, if

Z = X1 + X2 + . .. + Xn

is a sum of independent random variables with  thenXi = N(μi, σi
2); i = 1, 2, ..., n;

                  (1.123)Z = N(μ1 + μ2 + . .. + μn, σ1
2 + σ2

2 + . .. + σn
2).

As a corollary from this result:
If  then, for every  X can be represented as sum of independ-X = N(μ, σ2), n = 1, 2, ...,
ent, identically as -distributed random variables.                                   �N(μ/n, σ2/n)

According to theorem 1.2, if  has a joint normal distribution, then the(X1, X2, ..., Xn)
sum  has a normal distribution. In particular, if  has a bivar-X1 + X2 + . .. + Xn (X, Y)
iate normal distribution with parameters  and , then  has a nor-μx, μy, σx, σy ρ X + Y
mal distribution with

            (1.124)E(X + Y) = μx + μy, Var(X + Y) = σx
2 + 2ρσxσy + σy

2.
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1.7.3  Sums of a Random Number of Random Variables

Frequently, sums of a random number of random variables have to be investigated.
For instance, the total claim size an insurance company is confronted with a year is
the sum of a random number of random individual claim sizes.

Theorem 1.3 (Wald's identities)  Let  be a sequence of independent ran-X1, X2, ...
dom variables, which are identically distributed as X with  Let further N beE(X) < ∞.
a positive, integer-valued random variable, which is independent of all X1, X2, ...
Then mean value and variance of the sum  areZ = X1 + X2 + . .. + XN

                                          (1.125)E(Z) = E(X) E(N)
                         (1.126)Var(Z) = Var(X) E(N) + [E(X)]2Var(N).

Proof  By conditioning,

 E(Z) = Σn=1
∞ E(X1 + X2 + . .. + XN N = n) P(N = n)

= Σn=1
∞ E(X1 + X2 + . .. + Xn) P(N = n)

= E(X) Σn=1
∞ n P(N = n).

This proves (1.125).
To verify (1.126), the second moment of  is determined:Z

 E(Z2) = Σn=1
∞ E(Z2 N = n) P(N = n)

   = Σn=1
∞ E([X1 + X2 + . .. + Xn]2) P(N = n).

By making use of (1.19),

E(Z2) = Σn=1
∞ {Var(X1 + X2 + . .. + Xn) + [E(X1 + X2 + . .. + Xn)]2} P(N = n)

= Σn=1
∞ {n Var(X) + n2 [E(X)]2} P(N = n)

= Var(X) E(N) + [E(X)]2 E(N2).
Hence,

Var(Z) = E(Z2) − [E(Z)]2

= Var(X) E(N) + [E(X)]2 E(N2) − [E(X) ]2[E(N)]2

= Var(X) E(N) + [E(X)]2 Var(N).

This is the identity (1.126).                                                            �

Wald's identity (1.125) remains valid if the assumption that N is independent of all
 is somewhat weakened. To see this, the concept of a stopping time is in-X1, X2, ...

troduced.
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Definition 1.2 (stopping time)  A positive, integer-valued random variable N is said
to be a stopping time for the sequence of independent random variables  ifX1, X2, ...
the occurrence of the random event ' ' is completely determined by the sequenceN = n

, and, therefore, independent of all .                  zX1, X2, ..., Xn Xn+1, Xn+2, ..., n = 1, 2, ...

Hint A random event  A is said to be independent of a random variable X if A is in-
dependent of the events ' ' for all x and y with x < X ≤ y x < y.

Sometimes,  a  stopping  time  defined in this way is called a Markov time and only a
finite Markov time is called a stopping time. (Note that a random variable Y is said to
be  finite if  In this case,  The notation 'stopping time' can beP(Y < ∞) = 1. E(Y) < ∞.)
motivated as follows: The  are observed one after the other. As soon as theX1, X2, ...
event ' ' occurs, the observation is stopped, i.e. the  will not beN = n Xn+1, Xn+2, ...
observed. 

Theorem 1.4  Under otherwise the same assumptions and notation as in theorem 1.3,
let N be a finite stopping time for the sequence . ThenX1, X2, ...

                                          (1.127)E(Z) = E(X) E(N).

Proof  Let binary random variables  be defined as follows:Yi

Yi =
⎧

⎩
⎨

1, if N ≥ i
0, if N < i

, i = 1, 2, ... .

 holds if and only if no stopping has occurred after having observed the Yi = 1 i − 1
random variable . Since N is a stopping time,  is independent ofX1, X2, ..., Xi−1 Yi

  Since  and Xi, Xi+1, ... E(Yi) = P(N ≥ i) E(Xi Yi) = E(Xi) E(Yi).

E⎛⎝Σi=1
N Xi

⎞
⎠ = E⎛⎝Σi=1

∞ Xi Yi
⎞
⎠

= Σi=1
∞ E(Xi) E(Yi) = E(X) Σi=1

∞ E(Yi)

= E(X) Σi=1
∞ P(N ≥ i).

Now formula (1.15) implies (1.127).                                                                           �

Example 1.25  a) Let  if the i th flipping of a fair coin yields 'head' and Xi = 1 Xi = 0
otherwise. Then

                           (1.128)N = min{n; X1 + X2 + . .. + Xn = 8}

is a finite stopping time for the sequence  From (1.127),{ X1, X2, ...}.

E(X1 + X2 + . .. + Xn) = 1
2 E(N).

According to the definition of N, . Hence, .X1 + X2 + . .. + Xn = 8 E(N) = 16
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b) Let  if the i th flipping of a fair coin yields 'head' and  otherwise.Xi = 1 Xi = −1
Then N given by (1.128)  is again a finite stopping time for  A formal{ X1, X2, ...}.
application of Wald's equation  yields(1.127)

E(X1 + X2 + . .. + XN) = E(X) E(N).

The left hand side of this equation is equal to 8. The right hand side contains factor
 Therefore, Wald's equation (1.127) is not applicable.                                 �E(X) = 0.

1.8   INEQUALITIES IN PROBABILITY THEORY

1.8.1  Inequalities for Probabilities

Inequalities in probability theory are useful tools for estimating probabilities and mo-
ments of random variables  the  exact  calculation of which is only possible with ex-
tremely high effort or is even impossible in view of incomplete information on the
underlying probability distribution. All occurring mean values are assumed to exist.

Inequality of Chebyshev  For any random variable X with mean value  andμ = E(X)
variance ,σ2 = Var(X)

                                          (1.129)P( X − μ ≥ ε) ≤ σ2/ε2.

To proof (1.129), assume for simplicity that X has density . Then, for any f (x) ε > 0,

σ2 = ∫−∞
+∞(x − μ)2f (x) dx ≥ ∫

{x, x−μ ≥ε}
(x − μ)2f(x)dx

≥ ∫
{x, x−μ ≥ε}

ε2 f(x)dx = ε2P( X − μ ≥ ε).

This proves the two-sided Chebychev inequality (1.129). The following one-sided
Chebychev inequality is proved analogously:

P(X − μ ≥ ε) ≤ σ2

σ2 + ε2 .

Example 1.26  The height X of trees in a forest stand has mean value  andμ = 20 m
standard deviation . To obtain an upper limit of the probability that the heightσ = 2 m
of a tree differs at least 4 m from   Chebyshev's inequality is applied:μ,

P( X − 20 ≥ 4) ≤ 4/16 = 0.250 .
For the sake of comparison, assume that the height of trees in this forest stand has a
normal distribution. Then the exact probability that the height of a tree differs at least
4 m from  isμ

70                                                                                     STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



P( X − 20 ≥ 4) = P(X − 20 ≥ 4) + P(X − 20 ≤ −4)

= 2 Φ(−2) = 0.046 .

Thus, Chebyshev's inequality gives a rather rough estimate.                                     �
 

nσ-Rules  a) For any random variable X,

P( X − μ ≤ n σ) ≥ 1 − 1/n2 ; n = 1, 2, ...

This results from (1.128) by letting there ε = nσ.

b) For any random variable X with a bell-shaped density  and mode equal to ,f (x) μ

P( X − μ ≤ n σ) ≥ 1 − 4
9n2 ; n = 1, 2, ...

(Any probability density is called bell-shaped if it has exactly one mode.)

Inequalities of Markov Type  Let  be a nonnegative, strictly increasingy = h(x)
function on   Then, for any  there holds the general Markov inequality[0, ∞). ε > 0,

                                     (1.130)P( X ≥ ε) ≤ E(h( X ))
h(ε)

.

(1.130) is proved as follows:

E(h( X )) = ∫−∞
+∞ h( y ) f(y)dy

≥ ∫+ε
+∞ h( y ) f(y)dy + ∫−∞

−ε h( y ) f(y)dy

≥ h( ε )∫+ε
+∞ f(y)dy + h( ε )∫−∞

−ε f(y)dy

= h( ε ) P( X ≥ ε).

The special case  yields Markov's inequality as such:h(x) = xa, a > 0,

                                       (1.131)P( X ≥ ε) ≤ E( X a)
εa .

From (1.131) Chebychev's inequality is obtained by letting  and replacing Xa = 2
with X − μ.

If  Markov's inequality (1.131 yields an exponential inequality:h(x) = ebx, b > 0,

                                 (1.132)P( X ≥ ε) ≤ e−bε E⎛⎝e
b X )⎞⎠ .

Markov's inequality (1.131) and the exponential inequality (1.132) are usually super-
ior  to  Chebychev's  inequality,  since,  given X and ,  their  right  hand  sides  can  beε
minimized with respect to a and b.
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1.8.2  Inequalities for Moments

Inequalities of Chebychev  Let functions  and  be either both nonincreas-g(x) h(x)
ing or both nondecreasing. Then ,

                              (1.133)E(g(X)) E(h(X)) ≤ E(g(X) h(X)).

If  is nonincreasing and h nondecreasing or vice versa, theng

                              (1.134)E(g(X)) E(h(X)) ≥ E(g(X) h(X)).

As an important special case, let
 and  g(x) = xr h(x) = xs; r, s ≥ 0.

Then
                                (1.135)E( Xr ) E( Xs ) ≤ E( Xr+s ).

Inequality of Schwarz 
[ E( X Y )]2 ≤ E( X 2) E( Y 2)].

Hölder's Inequality  Let r and s be positive numbers satisfying
1
r + 1

s = 1.

Then
E( X Y ) ≤ [E( X r)]1/r [E( Y s)]1/s.

For  Hölder's inequality implies the inequality of Schwarz.r = s = 2,

Inequality of Minkovski  For r ≥ 1,

[E( X + Y r)]1/r ≤ [E( X r)]1/r + [E( Y r)]1/r.

Inequality of Jensen  Let  be a convex (concave) function. Then, for any X,h(x)

                                        (1.136)h(E(X)) ≤
(≥) E(h(X)).

In particular, if X is nonnegative and  (convex for  and  concaveh(x) = xa a ≥ 1 a ≤ 0,
for  (convex), and  (concave), the respective inequal-0 ≤ a ≤ 1), h(x) = ex h(x) = ln x
ities of Jensen are

[E(X)]a ≤ E(X a) for a > 1 or a < 0,

[E(X)]a ≥ E(X a) for 0 < a < 1,

exp(E(X)) ≤ E(exp(X)),

ln E(X) ≥ E(ln X).
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1.9    LIMIT THEOREMS

1.9.1  Convergence Criteria for Sequences of Random Variables

Limit theorems in probability theory are based on certain convergence criteria for se-
quences of random variables, which next have to be introduced.

1) Convergence in Probability  A sequence of random variables  con-{ X1, X2, ...}
verges in probability towards a random variable X if for all ε > 0,

                                   (1.137)lim
i→∞

P( Xi − X > ε) = 0.

2) Mean Convergence of pth Order  A sequence of random variables { X1, X2, ...}
with property

E( Xi
p ) < ∞ ; i = 1, 2, ...

converges in mean of the pth order towards a random variable X if, for all p with
1 ≤ p < ∞,

                    (1.138)limn→∞ E( Xi − X p) = 0 and E( X p) < ∞.

Specifically, if  then the sequence  converges in mean towards X.p = 1, { X1, X2, ...}
If , then  converges in mean square or in square mean towards X.p = 2 { X1, X2, ...}

3) Convergence with Probability 1  A sequence of random variables { X1, X2, ...}
converges with probability 1 or almost sure towards a random variable  ifX

P( lim
i→∞

Xi = X) = 1.

4) Convergence in Distribution  Let the random variables  have distributionXi
functions   Then the sequence  converges towards aFXi

(x) ; i = 1, 2, ... { X1, X2, ...}
random variable X with distribution function  in distribution if, for all pointsFX(x)
of continuity x of ,FX(x)

lim
i→∞

FXi
(x) = lim

i→∞
P(Xi ≤ x) = P(X ≤ x) = FX(x).

Implications
a) 3 implies 4, 2 implies 1, and 1 implies 4. Moreover:

b) If  converges towards a finite constant a in distribution, then{ X1, X2, ...}
 converges towards a in probability. Hence, if the limit is a finite con-{ X1, X2, ...}

stant, convergence in distribution and convergence in probability are equivalent.
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c) If  converges towards a random variable X in probability, then there{ X1, X2, ...}
exists a subsequence  of , which converges towards X{ Xi1 , Xi2 , ...} { X1, X2, ...}
with probability 1.

1.9.2   Laws of Large Numbers

There are weak and strong laws of large numbers. They essentially deal with the
convergence behaviour of arithmetic means  for  whereXn n → ∞,

Xn = 1
n Σi=1

n Xi.

Theorem 1.5  Let  be a sequence of independent, identically distributed{ X1, X2, ...}
random variables with finite mean  and variance  Then the sequence of arithme-μ σ2.
tic means  converges in probability towards :{X1, X2, ...} μ

limn→∞ P⎛⎝ Xn − μ > ε⎞⎠ = 0.

Proof  In view of , Chebyshev's inequality (1.129) yieldsVar(Xn) = σ2/n

P⎛⎝ Xn − μ > ε⎞⎠ ≤ σ2

n ε2 .

Letting  proves the theorem.                                                                             �n → ∞

A generalization of theorem 1.5 is the following one.

Theorem 1.6  Let  be a sequence of (not necessarily independent) ran-{ X1, X2, ...}
dom variables  with finite means   On conditionXi μi = E(Xi); i = 1, 2, ...

lim
i→∞

Var(Xi) = 0,

the sequence  converges in probability towards 0.                 �{X1 − μ1, X2 − μ2, ...}

Example 1.27  Let   be the indicator variable of the occurrence of random event A:X

X = 1 if A occurs
0 otherwise

with
p = P(A) = P(X = 1), 1 − p = P(X = 0) = P(A).

Thus,  has a Bernoulli distribution withX
 E(X) = p, Var(X) = p(1 − p).

To estimate the probability  the random experiment with outcomes  A andp = P(A),
 is repeated n times independently of each other. The corresponding sequence ofA
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indicator variables be . The  are independent and identically distri-X1, X2, ..., Xn Xi
buted as . Hence, theorem 1.5 is applicable: With respect to convergence in proba-X
bility,

limn→∞ Xn = limn→∞
1
n Σi=1

n Xi = p .

Note that  is the relative frequency of the occurrence of random event Apn(A) = Xn
in a series of n random experiments (section1.1). Thus,  is a suitable estimatorpn(A)
for the probability of any random event A.                                                                  �

The following theorem does not need assumptions on variances. Instead, the pairwise
independence of the sequence  is required, i.e.  and  are independ-{ X1, X2, ...} Xi Xj
ent for i ≠ j.

Theorem 1.7  Let  be a sequence of pairwise independent, identically{ X1, X2, ...}
distributed random variables with finite mean . Then the corresponding sequence ofμ
arithmetic means  converges in probability towards                            �X1, X2, ... μ.

Theorems 1.5 to 1.7 are called weak laws of great numbers, whereas the following
two theorems are strong laws of great numbers, since the underlying convergence
criterion is convergence with probability 1.

Theorem 1.8  Let  be a sequence of independent, identically distributed{ X1, X2, ...}
random variables with finite mean . Then the corresponding sequence of arithmeticμ
means  converges with probability 1 towards                                      �X1, X2, ... μ.

Theorems 1.5 and 1.8 imply that the sequence of relative frequencies
p1(A), p2(A), ...

converges towards  both with respect to convergence in probability andp = P(A)
with probability 1. The following theorem abandons the assumption of identically
distributed random variables.

Theorem 1.9  Let  be a sequence of independent random variables with{ X1, X2, ...}
parameters

  and   μi = E(Xi) σi
2 = Var(Xi); i = 1, 2, ...

On condition that
,Σi=1

∞ (σi/i)2 < ∞

the sequence  withY1, Y2, ...

Yn = Xn − 1
n Σi=1

n μi

converges with probability 1 towards 0.                                                                      �
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1.9.3  Central Limit Theorem

The central limit theorem provides the theoretical base for the dominant role of the
normal distribution in probability theory and its applications. Intuitively, it states that
a random variable which arises from additive superposition of many random influen-
ces, where none of them is dominant, has approximately a normal distribution. There
are several variations of the central limit theorem. The simplest is the following one.

Theorem 1.10 (Lindeberg and Lèvy)  Let  be the sum of nYn = X1 + X2 + . .. + Xn
independent, identically distributed random variables  with finite mean Xi E(Xi) = μ
and finite variance  and let  be the standardization of :Var(Xi) = σ2, Zn Yn

Zn =
Yn − nμ
σ n

.

Then,

                             �limn→∞ P(Zn ≤ x) = Φ(x) = 1
2π

∫
−∞

x
e−u2/2du.

Corollary  Under the conditions of theorem 1.10,  has approximately a normalYn
distribution with mean value  and variance nμ σ2/n :

                                         (1.139)Yn ≈ N(nμ, σ2/n).

Thus,  is asymptotically normally distributed as  (The fact that  hasYn n → ∞. Yn
mean value  and variance  follows from (1.105).)nμ n σ2

As a rule of thumb, (1.139) gives satisfactory results if  The following theo-n ≥ 20.
rem shows that the assumptions of theorem 1.10 can be weakened.

Theorem 1.11 (Lindeberg and Feller) Let  be the sum of in-Yn = X1 + X2 + . .. + Xn
dependent random variables  with finite means  and finite variancesXi μi = E(Xi)

 , and let  be the standardization of σi
2 = Var(Xi) Zn Yn :

Zn = Yn − E(Yn)
Var(Yn)

=
Yn − Σi=1

n μi

Σi=1
n σi

2
.

Then  has the propertiesZn

                   (1.140)limn→∞
P(Zn ≤ x) = Φ(x) = 1

2π
∫

−∞

x
e−u2/2du ,

                                         (1.141)limn→∞
E(Zn) → ∞,

and
                                 (1.142)limn→∞ max

i=1,2,...,n
(σi/E(Zn)) → 0
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if and only if the Lindeberg condition

   limn→∞
1

Var(Zn) Σ
i=1

n
∫

x−μi >ε Var(Zn)
(x − μi)2 fXi

(x)dx = 0

is fulfilled for all                                                                                                 �ε > 0.

Conditions (1.141) and (1.142) imply that no term  in the sum dominates the restXi
and that, for , the contributions of the  to the sum uniformly tend to 0. Un-n → ∞ Xi
der the assumptions of theorem 1.10, the  a priori have this property.Xi

Example 1.28   On weekdays,  a  car  dealer  sells  on average  one  car  (of a certain
make) per  days with a standard deviation of μ = 2.4 σ = 1.6.
1) What is the probability that the dealer sells at least 35 cars during a quarter (75
weekdays)?  Let  be the time span between selling the (i - 1)thXi; i = 1, 2, ..., X0 = 0
and the  car. Then  is the time point, at which the n th cari th Yn = X1 + X2 + . .. + Xn
is sold (selling times negligibly small). Hence, the probability

P(Y35 ≤ 75)
has to be determined. If the  are assumed to be independent,Xi

  and  E(Y35) = 35 ⋅ 2.4 = 84 Var(Y35) = 35 ⋅ 1.62 = 89.6.

In view of (1.139),  has approximately an -distribution. Hence,Y35 N(84, 89.6)

P(Y35 ≤ 75) ≈ Φ⎛
⎝

75 − 84
9.466

⎞
⎠ = Φ(−0.95) = 0.171.

2) How many cars  has the dealer at least to stock at the beginning of a quarternmin
to make sure that every customer can immediately buy a car with probability 0.95?
(It is assumed that this special make of a car is delivered by the manufacturer at no
other times.)  Obviously,  is the smallest n with property thatn = nmin

P(Yn+1 > 75) ≥ 0.95.

Equivalently,  is the smallest n with propertynmin

  or  P(Yn+1 ≤ 75) ≤ 0.05 Φ
⎛

⎝
⎜

75 − 2.4 (n + 1)
1.6 n + 1

⎞

⎠
⎟ ≤ 0.05.

Since the 0.05-percentile of an -distribution is , the latter in-N(0, 1) x0.05 = −1.64
equality  equivalent is to

75 − 2.4 (n + 1)
1.6 n + 1

≤ −1.64 or (n − 30.85)2 ≥ 37.7.

Hence,                                                                                                         �nmin = 37.
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Normal Approximation to the Binomial Distribution  As pointed out in section
1.2, the binomial distribution arises in connection with a Bernoulli trial: Let A be a
random event and X its indicator variable:

X =
1 if A occurs
0 otherwise

with
 and p = P(X = 1) = P(A) 1 − p = P(X = 0) = P(A).

A series of n random experiments with respective outcomes  is carriedX1, X2, ..., Xn
out, where the  are independent and identically distributed as X. ThenXi

Yn = X1 + X2 + . .. + Xn

is the number of random experiments with outcome A, whereas  is the numbern − Yn
of random experiments with outcome . The random variable  has a binomialA Yn
distribution with parameters  and p. Hence, its mean value and variance aren

E(Yn) = np, Var(Yn) = np (1 − p) .

Since the assumptions of theorem 1.10 are fulfilled,  has approximately a normalYn
distribution:

Zn = N(np, np(1 − p)).
Thus,

P(i1 ≤ Zn ≤ i2) ≈ Φ
⎛

⎝
⎜⎜⎜

i2 + 1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟

− Φ
⎛

⎝
⎜⎜⎜

i1 − 1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟

; 0 ≤ i1 ≤ i2 ≤ n.

In particular,

 P(Zn = i) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i

≈ Φ
⎛

⎝
⎜⎜⎜

i + 1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟

− Φ
⎛

⎝
⎜⎜⎜

i − 1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟

, 0 ≤ i ≤ n.

The term  is called a continuity correction. It improves the accuracy of this ap-±1/2
proximation, since a discrete distribution is approximated by a continuous one. These
approximation formulas are the better, the larger n is and the nearer p is to 1/2. The
'normal approximation' of the binomial distribution yields satisfactory results if

        and    E(Zn) = np > 35 Var(Zn) = np(1 − p) > 10.

The approximation of the binomial distribution by the normal distribution is known
as the central limit theorem of  Moivre-Laplace.
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Theorem 1.12 (Moivre-Laplace)  If the random variable X has a binomial distribu-
tion with parameters  and p,  then, for all x,n

                          �limn→∞ P
⎛

⎝
⎜⎜⎜

X − np
np(1 − p)

≤ x
⎞

⎠
⎟⎟⎟ = 1

2π
∫

−∞

x
e−u2/2du .

Example 1.29  Electronic circuits are subjected to a quality test. It is known that 5%
of the production is faulty. What is the probability that the proportion of faulty units
in a sample of 1000 circuits is between 4% and 6%?
Let X be the random number of faulty circuits in the sample. Then X has a binomial
distribution with parameters

 and n = 1000 p = 0.05.

Hence, the desired probability is

P(40 ≤ X ≤ 60) = Σ
i=40

60 ⎛
⎝

1000
i

⎞
⎠ (0.05)i (0.95)1000−i.

For numerical reasons, it makes sense to apply the normal approximation  Since:

E(X) = 1000 ⋅ 0.05 = 50 > 35 and Var(X) = 1000 ⋅ 0.05 ⋅ 0.95 = 47.5 > 10,

its application will yield satisfactory results:

P(40 ≤ X ≤ 60) ≈ Φ⎛
⎝

60 + 0.5 − 50
6.892

⎞
⎠ − Φ⎛

⎝
40 − 0.5 − 50

6.892
⎞
⎠

 = Φ(1.523) − Φ(−1.523)

                                                         �= 0.972.

Normal Approximation to the Poisson Distribution  Let
Yn = X1 + X2 + . .. + Xn

be the sum of n independent, Poisson distributed random variables  X1, X2, . .. , Xn
with respective parameters  Then, by example 1.22 (section 1.7.1),λ1, λ2, ..., λn.

MYn (z) = e(λ1+λ2+. .. +λn) z.

Thus,  has a Poisson distribution with parameter . As a conse-Yn λ1 + λ2 + . .. + λn
quence, every random variable X which has a Poisson distribution with parameter λ
can be represented as a sum of n independent random variables, each of which has a
Poisson distribution with parameter  Since the assumptions of theorem 1.10 areλ/n.
fulfilled, it is justified to approximate the Poisson distribution by the normal distribu-
tion: If X has a Poisson distribution with parameter  thenλ,

  and  E(X) = λ Var(X) = λ.
Therefore,
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X ≈ N(λ, λ), FX(x) ≈ Φ
⎛

⎝
⎜ x − λ

λ

⎞

⎠
⎟ .

so that, using the continuity correction  as in the case of the normal approxima-1/2
tion to the binomial distribution,

P⎛⎝i1 ≤ X ≤ i2 ⎞⎠ ≈ Φ
⎛

⎝
⎜⎜⎜

i2 + 1
2 − λ

λ

⎞

⎠
⎟⎟⎟

− Φ
⎛

⎝
⎜⎜⎜

i1 − 1
2 − λ

λ

⎞

⎠
⎟⎟⎟

,

P(X = i) ≈ Φ
⎛

⎝
⎜⎜⎜

i + 1
2 − λ

λ

⎞

⎠
⎟⎟⎟

− Φ
⎛

⎝
⎜⎜⎜

i − 1
2 − λ

λ

⎞

⎠
⎟⎟⎟

.

Since the distribution of a nonnegative random variable is approximated by the nor-
mal distribution, the assumption

E(X) = λ > 3 Var(X) = 3 λ

has to be made. Hence, the normal approximation to the Poisson distribution should
only be applied if λ > 9.

Example 1.30  The number X of traffic accidents in a town a day is known to have a
Poisson distribution with parameter λ = E(X) = 12.

1) What is the probability that there are exactly  traffic accidents a day? 10

P(X = 10) = 1210
10! e−12 = 0.104.

The normal approximation yields

P(X = 10) ≈ Φ
⎛

⎝
⎜ 10 + 0.5 − 12

12

⎞

⎠
⎟ − Φ

⎛

⎝
⎜ 10 − 0.5 − 12

12

⎞

⎠
⎟

= 0.3325 − 0.2330

= 0.0995.
2) What is the probability that there are at least 10 traffic accidents a day?
For computational reasons, it is convenient to apply the normal approximation:

P(X ≥ 10) = Σ
i=10

∞ 12i
i !

e−12 ≈ 1 − Φ
⎛

⎝
⎜ 9 + 0.5 − 12

12

⎞

⎠
⎟

                                                      �= 0.7673.
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1.10  EXERCISES

Sections 1.1 to section 1.3
1.1) Castings are produced weighing either 1, 5, 10 or . Let  and  be the20 kg A, B C
events that a casting does not weigh more than 1 or , exactly , and at least5 kg 10 kg
20 kg, respectively. Characterize verbally the events

A ∩ B, A ∪ B, A ∩ C, and (A ∪ B) ∩ C .

1.2) Three persons have been tested for the occurrence of gene g. Based on this ran-
dom experiment, three random events are introduced as follows:

A = 'no person has gene g'
B='at least one person has gene g'

 C = 'not more than one person has gene  g'
(1) Characterize verbally the random events A ∩ B, B ∪ C and (A ∪ B) ∩ C.
(2) By introducing a suitable sample space, determine the sets of elementary events
which characterize the random events occurring under (1).

1.3) Let P(A) = 0.3;  P(B) = 0.5  and  P(A  B) = 0.2.∩
Determine the probabilities .   P(A ∪ B), P(A ∩ B) and P(A ∪ B)

1.4) 200 plates are checked for surface quality (acceptable, non acceptable) and for
satisfying given tolerance limits of the diameter (yes, no). The results are:

surface quality
   acceptable     unacceptable

  diameter     yes          170     15
       no              8       7

A plate is selected at random from these 200. Let A be the event that its diameter is
within the tolerance limits, and let B the event that its surface quality is acceptable.
(1) Determine the probabilities  and  from the matrix. By usingP(A), P(B) P( A ∩ B)
the rules developed in section 1.1, determine  and P( A ∪ B) P( A ∪ B).
(2) Are  A and B independent?

1.5) A company optionally equips its newly developed PC Ibson with 2 or 3 hard
disk drives and with or without extra software and analyzes the first 1000 orders:

hard disk drives
three    two

   extra software yes          520     90
 no    70   320
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A PC is selected at random from the first 1000 orders. Let A be the event that this PC
has three hard disk drives and let B be the event this PC has extra software.
(1) Determine the probabilities

P(A), P(B), and P(A ∩ B)
from the matrix.
(2) By using the rules developed in section 1.1 determine the probabilities

 and  |P(A ∪ B), P(A B), P(B A), P(A ∪ B B) P(A B) .

1.6) 1000 bits are independently transmitted from a source to a sink. The probability
of a faulty transmission of a bit is 0.0005.
What is the probability that the transmission of at least two bits is not successful?

1.7) To construct a circuit a student needs, among others, 12 chips of a certain type.
The student knows that 4% of these chips are defective.
How many chips have to be provided so that, with a probability of not less than 0.9,
the student has a sufficient number of nondefective chips in order to be able to con-
struct the circuit?

1.8) It costs $ 50 to find out whether a spare part required for repairing a failed device
is faulty or not. Installing a faulty spare part causes a damage of $ 1000.
Is it on average more profitable to use a spare part without checking if
(1)   1% of all spare parts of that type
(2)   3% of all spare parts of that type
(3) 10 % of all spare parts of that type
are faulty ? 

1.9) A test procedure for diagnosing faults in circuits indicates no fault with probabil-
ity 0.99 if the circuit is faultless. It indicates a fault with probability 0.90 if the circuit
is faulty. Let the probability that a circuit is faulty be 0.02.
(1) What is the probability that a circuit is faulty if the test procedure indicates a
fault?
(2) What is the probability that a circuit is faultless if the test procedure indicates that
it is faultless?

1.10) Suppose 2% of cotton fabric rolls and 3% of nylon fabric rolls contain flaws.
Of the rolls used by a manufacturer, 70% are cotton and 30% are nylon.
(1) What is the probability that a randomly selected roll used by the manufacturer
contains flaws?
(2) Given that a randomly selected roll used by the manufacturer does not contain
flaws, what is the probability that it is a nylon fabric roll?
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1.11) Transmission of information between computers s and t (see figure) is possible
if there is at least one closed path between s and t. The figure indicates the possible
interruption of an edge (connection between two nodes of the transmission graph) by
a switch. In practice, such an interruption may be caused by a cable break or if the
transmission capacity of a channel is exceeded. All 5 switches operate independent-
ly. Each one is closed with probability p and open with probability 1 - p. Only switch
3 allows for transmitting information into both directions.
(1) What is the probability  that s can send information to t ?ws,t(p)
(2) Draw the graph of  as a function of p,  .ws,t(p) 0 ≤ p ≤ 1

1.12) From a source, symbols 0 and 1 are transmitted independently of each other in
proportion .  Random noise may cause transmission failures: If a 0 was sent,1 : 4
then a 1 will arrive at the sink with probability 0.1. If a 1 was sent, then a 0 will ar-
rive at the sink with probability 0.05. (Figure).

(1) A 1 has arrived. What is the probability that a 1 had been sent?
(2) A 0 has arrived. What is the probability that a 1 had been sent?

1.13) A biologist measured the weight of 132 eggs of a certain bird species [gram]:

    i     1         2       3       4       5        6       7       8       9      10
   weight    38        41     42     43     44       45     46     47     48      50xi
   number of eggs    4        6       7      10     13       26     33     16      10         7 ni
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There are no eggs weighing less than 38 or more than 49. Let X denote the weight of
an egg selected randomly from this population.
(1) Determine the probability distribution of X, i.e. pi = P(X = xi); i = 1, 2, ..., 10.
(2) Determine P(43 ≤ X ≤ 48) and P(X > 45).
(3) Draw the distribution function of X.

1.14) 120 nails are classified by length:

      i             1         2         3         4         5         6
      length  (in mm)              15.0    15.1    15.2    15.3    15.4    15.5  xi < 15.0 > 15.5
      number of nails                        8       26       42       24       15         5           0ni 0

Let X denote the length of a nail selected randomly from this population.
(1) Determine the probabilities pi = P(X = xi); i = 1, 2, ..., 6.
(2) Determine the probabilities P(X ≤ 15.1), P(X > 15.4), and P(15.0 < X ≤ 15.5).
(3) Draw the distribution function of X.

1.15) Let X  be given by exercise 1.13. Determine  and E(X) Var(X).

1.16) Let X  be given by exercise 1.14. Determine  and E(X) Var(X).

1.17) Because it happens that not all airline passengers show up for their reserved
seats, an airline would sell 602 tickets for a flight that holds only 600 passengers.
The probability that for some reason or other a passenger does not show up is 0.008.
The passengers behave independently.
What is the probability that every passenger who shows up will have a seat?

1.18) Water samples are taken from a river once a week. Let X denote the number of
samples taken over a period of 20 weeks which are polluted. It is known that on

 10% of the samples are polluted. Assuming independence of the outcomesaverage
of the sample analyses, what is the probability that X exceeds its mean by more than
one standard deviation?

1.19) From the 300 chickens of a farm, 100 have attracted bird flue. If four chickens
are randomly selected from the population of 300, what is the probability that all of
them have bird flue?

1.20) Some of the 140 trees in a park are infested with a fungus. A sample of 10 ran-
domly selected trees is taken.
(1) If 25 trees from the 140 are infested, what is the probability that the sample con-
tains at least one infested tree?
(2) If 5 trees from the 140 are infested, what is the probability that the sample con-
tains at least two infested trees?
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1.21) Flaws occur at random along the length of a thin copper wire. Suppose that the
number of flaws follows a Poisson distribution with a mean of 0.15 flaws per centi-
metre. What is the probability of more than 2 flaws in a section of length 10 centime-
tre?

1.22) The number of dust particles which occur on the reflector surface of a teles-
cope has a Poisson distribution with intensity 0.1 per centimetre squared. What is the
probability of not more than 2 particles on an area of 10 squared centimetres?

1.23) The random number of crackle sounds produced per hour by an old  radio has a
Poisson distribution with parameter  What is the probability that there is noλ = 12.
crackle sound during the 4 minutes transmission of a listener's favourite hit?

1.24) Show that the following functions are probability density functions for some
value of  and determine c:c

(1)  f (x) = c x2, 0 ≤ x ≤ 4

(2) f (x) = c (1 + 2x), 0 ≤ x ≤ 2

(3) f (x) = c e−x, 0 ≤ x < ∞

These functions are assumed to be identically 0 outside their respective ranges.

1.25) Consider a random variable X with probability density function

f (x) = x e−x2/2, x ≥ 0.
Determine x such that

P(X < x) = 0.5, P(X ≤ x) = 0.5, and P(X > x) = 0.95.

1.26) A road traffic light is switched on every day at 5:00 a.m. It always begins with
'red' and holds this colour 2 minutes. Then it changes to 'green' and holds this colour
4 minutes. This cycle continues till midnight. A car driver arrives at this traffic light
at a time point which is uniformly distributed between 9:00 and 9:10 a.m.
(1) What is the probability that the driver has to wait in front of the traffic light?
(2) Determine the same probability on condition that the driver's arrival time point
has a uniform distribution over the interval [8:58, 9:08]?

1.27) According to the timetable, a lecture begins at 8:15. The arrival time of profes-
sor Durrick in the venue is uniformly distributed between 8:13 and 8:20, whereas the
arrival time of student Slugish is uniformly distributed between 8:05 to 8:30.
What is the probability that Sluggish arrives after Durrick in the venue?

1.28) Determine  and  of the three random variables X with probabilityE(X) Var(X)
density functions specified in exercise 1.24.

1  PROBABILITY THEORY                                                                                      85

© 2006 by Taylor & Francis Group, LLC



1.29) The lifetimes of bulbs of a particular type have an exponential distribution with
parameter  . Five bulbs of this type are switched on at time  Their life-λ [h−1] t = 0.
times can be assumed independent.
(1) What is the probability that at time  a) all 5, b) at least 3 bulbs are failed?t = 1/λ
(2) What is the probability that at least one bulb survives  hours?5/λ

1.30) The probability density function of the annual energy consumption of an enter-
prise [in ] is108kwh

f (x) = 30(x − 2)2 ⎡⎣1 − 2(x − 2) + (x − 2)2 ⎤⎦ , 2 ≤ x ≤ 3 .

(1) Determine the distribution function of X.
(2) What is the probability that the annual energy consumption exceeds 2.8?
(3) What is the mean annual energy consumption? 

1.31) Assume X  is normally distributed with mean 5 and standard deviation 4.
Determine the respective values of x which satisfy ,P(X > x) = 0.5 P(X > x) = 0.95,

, , and .P(x < X < 9) = 0.2 P(3 < X < x) = 0.95 P(−x < X < +x) = 0.99

1.32) The response time of an average male car driver is normally distributed with
mean value 0.5  and standard deviation 0.06 (in seconds).
(1) What is the probability that the response time is greater than 0.6 seconds?
(2) What is the probability that the response time is between 0.5 and 0.55 seconds?

1.33) The tensile strength of a certain brand of polythene sheet can be modeled by a
normal distribution with mean 36 psi and standard deviation 4 psi.
(1) Determine the probability that the tensile strength of a sample is at least 28  psi. 
(2) If the specifications require the tensile strength to exceed 30 psi, what proportion
of the production has to be scrapped?

1.34) The total monthly sick-leave time X of employees of a small company has a
normal distribution with mean 100 hours and standard deviation 20 hours. (1) What is
the probability that the total monthly sick-leave time is between 50 and 80 hours?
(2) How much time has to be budgeted for sick leave to make sure that the budgeted
amount is exceeded with a probability not greater than 0.1?

1.35) Let  have a geometric distribution withX = Xθ
pi = P(X = i) = (1 − θ) θ i; i = 0, 1, ...; 0 ≤ θ ≤ 1.

By mixing the  with regard to a suitable structure distribution density, show thatXθ

Σ
i=0

∞ 1
(i + 1)(i + 2)

= 1.
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1.36) A random variable  have distribution functionX = Xα

Fα(x) = e−α /x; α > 0, x > 0

(Frechet distribution). What distribution type arises when mixing the  with regardFα
to the structure distribution density

f (α) = λ e−λα, λ > 0, α > 0 ?

Sections 1.4 and 1.5
1.37) The times between the arrivals of taxis at a rank are independent and identical-
ly exponentially distributed with parameter  Assume that an arriving cus-λ = 4 [h−1].
tomer does not find an available taxi, the previous one left 3 minutes ago, and no
other customers are waiting. What is the probability that the customer has to wait at
least 5 minutes for the next free taxi?

1.38) The random variable X has distribution function
F(x) = λ x /(1 + λ x), λ > 0, x ≥ 0.

Check whether there is a subinterval of  on which  is DFR.[0, ∞) F(x)

1.39)*  Consider lifetimes X and Y with the respective probability densities

f (x) = 1/4, 0 ≤ x ≤ 4
0, otherwise

, g(x) =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎪
⎪

1
10 x, 0 ≤ x ≤ 2
5
10 x, 2 ≤ x ≤ 3
3
10 x, 3 ≤ x ≤ 4

0, otherwise

.

With the notation introduced in section 1.4, let  and  be the corresponding resi-X2 Y2
dual lifetimes given that  and  respectively.X > 2 Y > 2,

(1) Show that   (2) Check whether  and interpret the result.X
st
≤ Y. X2 st

≤ Y2

1.40)* Let the random variables A and B have uniform distributions over  and[0, a]
respectively.[0, b], a < b,

(1) Show that  and A
st
≤ B A

hr
≤ B.

(2) Let X be defined by  Show that if X is independent ofP(X = 0) = P(X = 1) = 1/2.
A and B then A + X

hr
≤/ B + X.

(3) Let  be the random variables arising by mixing A and B, respectively,AX and BX
with regard to the distribution of X as structure distribution. Show that

AX hr
≤/ BX.
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Sections 1.6 to 1.9

1.41)  Every day a car dealer sells X cars of type I and Y cars of type II. The table
shows the joint distribution  of ri j = P(X = i, Y = j); i, j = 0, 1, 3 (X, Y) :

         Y       0      1     2
X    0     0.1     0.1     0
       1     0.1     0.3    0.1
       2       0     0.2    0.1

(1) Determine the marginal distributions of (X, Y).
(2) Are X and Y independent?
(3) Determine the conditional mean values  and E(X Y = 1) E(Y X = 0).

1.42) The random vector  has joint density(X, Y)
fX,Y(x, y) = x + y, 0 ≤ x, y ≤ 1.

(1) Are X and Y independent?
(2) Determine the probability density of Z = X Y.

1.43)  The random vector  has joint density(X, Y)

fX,Y(x, y) = 6x2y, 0 ≤ x, y ≤ 1.

(1) Are X and Y independent?  (2) Determine the density of Z = X Y.

1.44) A supermarket employes 24 shop-assistants. 20 of them achieve an average
daily turnover of $8000, whereas 4 achieve an average daily turnover of $ 10,000.
The corresponding standard deviations are $ 2400 and $ 3000, respectively. The daily
turnovers of all shop-assistants are independent and have a normal distribution. Let Z
be the daily total turnover of all shop-assistants.
(1) Determine  and .E(Z) Var(Z)
(2) What is the probability that the daily total turnover Z is greater than $ 190,000?

1.45) A helicopter is allowed to carry at most 8 persons provided that their total
weight does not exceed 620 kg. The weights of the passengers are independent, iden-
tically normally distributed random variables with mean value  and standard76 kg
deviation 18 kg.
(1) What are the probabilities of exceeding the permissible load with 7 and 8 passen-
gers, respectively?
(2) What would the maximum total permissible load have to be to ensure that, with
probability 0.99, the helicopter will be allowed to fly 8 passengers?
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1.46) A freighter has to be loaded with 2000 tons of hard coal. The coal arrives at the
harbor by railway carriages each of which holds independently of each other a ran-
dom load X with E(X) = 50 and Var(X) = 64.
What is the smallest number  of railway carriages which are necessary ton = nmin
make sure that with a probability of not less than 0.99 the freighter can be loaded
with at least 2000 tons of coal?

1.47) In a certain geographical region, the height X of women has a normal distri-
bution with  and , whereas the height Y of men has aE(X ) = 168 cm Var(X ) = 64 cm
normal distribution with  and .E(Y) = 175 cm Var(Y) = 100 cm
Determine the probability that a randomly selected woman is taller than a randomly
selected man.
Hint  The desired probability has structure P(X ≥ Y) = P(X + (−Y) ≥ 0).

1.48)* Let  and  be independent and identically distributed with densityX1 X2

f (x) = 1
π

λ
1 + x2 , x ∈ (−∞, +∞).

This is a Cauchy distribution with parameters  and  (section 1.2.3.2).λ = 1 μ = 0
Verify that  has a Cauchy distribution with parameters  and X1 + X2 λ = 2 μ = 0.

1.49)  Let X have a geometric distribution with parameter p, 0 < p < 1 :

P(X = i) = p (1 − p)i−1; i = 1, 2, ...

(1) Determine the z-transform of  X and by means of it  and E(X ) Var(X ).
(2) Let  and  be independent random variables, identically distributed as X.X1 X2
Determine the z-transform of  and by means of it  and Z = X1 + X2 E(Z) Var(Z).
Verify the 2nd moment obtained in this way by another method.

1.50) Let  be independent, binomially distributed random variablesX1, X2, ..., Xk
with respective parameters (n1, p1), (n2, p2), ..., (nk, pk).
Under which condition has the sum  a binomial distribution?   Z = X1 + X2 + . .. + Xk
Hint  Determine the z-transform of Z.

1.51)   has a uniform distribution over the square , i.e. its(X, Y) [0 ≤ x ≤ T, 0 ≤ y ≤ T ]
joint density is

fX,Y(x, y) =
⎧

⎩
⎨

1/T2, 0 ≤ x, y ≤ T
0, otherwise

.

(1) Are X and Y independent?
(2) Determine the density of the sum Z = X + Y.
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1.52) Let  X have a Laplace distribution with parameters  and , i.e. X  has densityλ μ

f (x) = λ
2 e−λ x−μ , λ > 0, − ∞ < μ < +∞, − ∞ < x < +∞.

Determine the Laplace transform of  and, by means of it,f (x)

 and E(X), E(X2), Var(X).

1.53) 6% of the citizens in a large town suffer from severe hypertension. Let  beBn
the number of people in a sample of n randomly selected citizens from this town
which suffer from this desease (Bernoulli trial).

(1) By making use of the Chebychev inequality find a positive integer  with prop-n0
erty

  for all n with                      (i)P⎛⎝
Bn
n − 0.06 ≥ 0.01⎞⎠ ≤ 0.05 n ≥ n0.

(2) Find a positive integer  satisfying relationship (i) by making use of the centraln0
limit theorem.
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CHAPTER 2

Basics of Stochastic Processes

2.1  MOTIVATION AND TERMINOLOGY 

A random variable X is the outcome of a random experiment under fixed conditions.
A change of these conditions will influence the outcome of the experiment, i.e. the
probability distribution of X will change. Varying conditions can be taken into ac-
count by considering random variables which depend on a deterministic parameter t:

. This approach leads to more general random experiments than the ones de-X = X(t)
fined in section 1.1. To illustrate such generalized random experiments, two simple
examples will be considered.

Example 2.1 a) At a fixed geographical point, the temperature is measured every
day at 12:00. Let  be the temperature measured on the ith day of a year. The valuexi
of  will vary from year to year and, therefore, it can be considered a realization of axi
random variable  . Thus,  is the (random) temperature measured on the ith dayXi Xi
of a year at 12:00. Apart from random fluctuations of the temperature, the  alsoXi
depend on a deterministic parameter, namely on the time, or, more precisely, on the
day of the year. However, if one is only interested in the temperatures  onX1, X2, X3
the first 3 days (or any other 3 consecutive days) of the year, then these temperatures
are at least approximately identically distributed. Nevertheless, indexing the daily
temperatures is necessary, because modeling the obviously existing statistical de-
pendence between the daily temperatures requires knowledge of the joint probability
distribution of the random vector . This situation and the problems( X1, X2, X3)
connected with it motivate the introduction of the generalized random experiment
'daily measurement of the temperature at a given geographical point at 12:00 during
a year'. The random outcomes of this generalized random experiment are sequences
of random variables  with the  being generally neither indepen-{X1, X2, ..., X365} Xi
dent nor identically distributed. If on the ith day temperature  has been measured,xi
then the vector  can be interpreted as a function , defined at(x1, x2, ..., x365) x = x(t)
discrete time points t,   for   Vector t ∈ [1, 2, ..., 365] : x(t) = xi t = i. (x1, x2, ..., x365)
is a realization of the random vector (X1, X2, ..., X365).

b) If a sensor graphically records the temperature over the year, then the outcome of
the measurement is a continuous function of time t:  where  isx = x(t), 0 ≤ t ≤ 1, x(t)
realization of the random temperature  at time t at a fixed geographical location.X(t)
Hence it makes sense to introduce the generalized random experiment 'continuous
measurement of the temperature during a year at a given geographical location'. It
will be denoted as {X(t), 0 ≤ t ≤ 1}.
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A complete probabilistic characterization of this generalized random experiment re-
quires knowledge of the joint probability distributions  all possible random vectorsof

 (X(t1), X(t2), ..., X(tn)); 0 ≤ t1 < t2 < . .. < tn ≤ 1; n = 1, 2, ...

This knowledge allows for statistically modelling the dependence between the X(ti)
in any sequence of random variables

X(t1), X(t2), ..., X(tn).
It is quite obvious that, for small time differences , there is a strong statisticalti+1 − ti
dependence between  and  However, there is also a dependence bet-X(ti) X(ti+1).
ween  and  for large time differences  due to the inertia of weatherX(ti) X(tk) tk − ti
patterns over an area.                                                                                                  �

Example 2.2  The deterministic parameter, which influences the outcome of a ran-
dom experiment, need not be time. For instance, if at a fixed time point and a fixed
observation point the temperature is measured along a vertical of length L to the
earth's  surface,  then  one  obtains  a function  which obviouslyx = x(h) with 0 ≤ h ≤ L
depends on the distance h of the measurement point to the earth's surface. But if the
experiment is repeated in the following years under the same conditions (same time,
location and measurement procedure), then, in view of the occurrence of nonpredict-
able influences, different functions  will be obtained. Hence, the temperaturex = x(h)
at distance h is a random variable  and the generalized random experiment 'meas-X(h)
uring the temperature along a vertical of length L', denoted as  has{X(h), 0 ≤ h ≤ L},
outcomes, which are real functions of h: x = x(h), 0 ≤ h ≤ L.
In this situation, it also makes sense to consider the temperature in dependence of
both h and the time point of observation :t

x = x(h, t); 0 ≤ h ≤ L, t ≥ 0.
Then the observation x depends on a vector of deterministic parameters:

x = x(θ), θ = (h, t).
In this case, the outcomes of the corresponding generalized random experiment are
surfaces in the -space. However, this book only considers one-dimensional(h, t, x)
parameter spaces.

An already 'classical' example for illustrating the fact that the parameter need not be
time is essentially due to Cramer and Leadbetter [22]: A machine is required to con-
tinuously produce ropes of length 10 m with a given nominal diameter of 5 mm. De-
spite maintaining constant production conditions, minor variations of the rope diame-
ter can technologically not be avoided. Thus, when measuring the actual diameter x
of a single rope at a distance d from the origin, one gets a function  withx = x(d)

 This function will randomly vary from rope to rope. This suggests the in-0 ≤ d ≤ 10.
troduction of the generalized random experiment 'continuous measurement of the

 diameter in dependence on the distance d from the origin'. If X(d) denotes therope
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diameter of a randomly selected rope at a distance d from the origin, then it makes
sense  introduce the corresponding generalized random experimentto

{X(d ), 0 ≤ d ≤ 10}

with outcomes  (Figure 2.1).                                                      �x = x(d ) , 0 ≤ d ≤ 10

In contrast to the random experiments considered in chapter 1, the outcomes of
which are real numbers, the outcomes of the generalized random experiments, dealt
with in examples 2.1 and 2.2, are real functions. Hence, in literature, such general-
ized random experiments are frequently called random functions. However, the ter-
minology stochastic processes is more common and will be used throughout the
book. In order to characterize the concept of a stochastic process more precisely,
further notation is required: Let the random variable of interest X depend on a param-
eter t which assumes values from a set T: . To simplify the termino-X = X(t), t ∈ T
logy and in view of the overwhelming majority of applications, in this book the pa-
rameter t is interpreted as time. Thus, X(t) is the random variable X at time t and T
denotes the whole observation time span. Further, let Z denote the set of all values,
the random variables can assume for all X(t) t ∈ T.

Stochastic process  A family of random variables  is called a stochastic{X(t), t ∈ T}
process with parameter space T and state space Z .

If T is a finite or countably infinite set, then  is called a stochastic pro-{X(t), t ∈ T}
cess in discrete time or a discrete-time stochastic process. Such processes can be
written as a sequence of random variables  (example 2.1 a). On the{X1, X2, ...}
other hand, every sequence of random variables can be thought of as a stochastic
process in discrete time. If T is an interval, then  is a stochastic process{X(t), t ∈ T}
in continuous time or a continuous-time stochastic process. A stochastic process

 is said to be discrete if its state space Z is a finite or a countably infi-{X(t), t ∈ T}
nite set, and a stochastic process  is said to be continuous if Z is an in-{X(t), t ∈ T}
terval. Thus, there are discrete stochastic processes in discrete time, discrete stochas-
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tic processes in continuous time, continuous stochastic processes in discrete time,
and continuous stochastic processes in continuous time. Throughout this book the
state space Z is assumed to be a subset of the real axis.
If the stochastic process  is observed over the whole time period T, i.e.{X(t), t ∈ T}
the values of X(t) are registered for all  then one obtains a real functiont ∈ T,

. Such a function is called a sample path, a trajectory or a realizationx = x(t), t ∈ T
of the stochastic process. In this book the concept sample path is used. The sample
paths of a stochastic process in discrete time are, therefore, sequences of real num-
bers, whereas the sample paths of stochastic processes in continuous time can be any
functions of time. The sample paths of a discrete stochastic process in continuous

 are piecewise constant functions (step functions). The set of all sample paths oftime
a stochastic process with parameter space T is, therefore, a subset of all functions
over the domain T.
In engineering, science and economics there are many time-dependent random phe-
nomena which can be modeled by stochastic processes: In an electrical circuit it is
not possible to keep the voltage strictly constant. Random fluctuations of the voltage
are for instance caused by thermal noise. If v(t) denotes the voltage measured at  time
point t, then  is a sample path of a stochastic process  where V(t)v = v(t) {V(t), t ≥ 0}
is the random voltage at time t (Figure 2.2). Producers of radar and satellite support-
ed communication systems have to take into account a phenomenon called  fading.
This is characterized by random fluctuations in the energy of received signals caused
by the dispersion of radio waves as a result of inhomogeneities in the atmosphere and
by meteorological and industrial noise. (Both meteorological and industrial noise
cause electrical discharges in the atmosphere which occur at random time points with
randomly varying intensity.) 'Classic' applications of stochastic processes in econo-
mics are modeling the development of share prices, profits, and prices of commodi-
ties over time.  In operations research,  stochastic  processes  describe  the  develop-
ment in time of the 'states' of queueing, inventory and reliability systems. In statisti-
cal quality control, they model the fluctuation of quality criteria over time. In medi-
cine, the development in time of 'quality parameters' of health as blood pressure and
cholesterol level are typical examples of stochastic processes. One of the first ap-
plications of stochastic processes can be found in biology: modeling the development
in time of the number of species in a population.
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2.2  CHARACTERISTICS AND EXAMPLES

From the mathematical point of view, the heuristic explanation of a stochastic pro-
cess given needs to be supplemented. Let  be the distribution function of X(t):Ft(x)

Ft(x) = P(X(t) ≤ x), t ∈ T.

The family of the one-dimensional distribution functions
{Ft(x), t ∈ T}

is the one-dimensional probability distribution of  In view of the statis-{X(t), t ∈ T}.
tical dependence, which generally exists between the  for anyX(t1), X(t2), ..., X(tn)

, the family of the one-dimensional distribution functions t1, t2, ..., tn {Ft(x), t ∈ T}
does not completely characterize a stochastic process (see examples  2.1 and 2.2). A
stochastic process  is only then completely characterized if, for all{X(t), t ∈ T}

 for all n-tuples  with , and for all  withn = 1, 2, ..., t1, t2, ..., tn ti ∈ T {x1, x2, ..., xn}
, the joint distribution function of  the random vectorxi ∈ Z

(X(t1), X(t2), ..., X(tn))
is known:
                   (2.1)Ft1,t2,...,tn (x1, x2, ..., xn) = P(X(t1) ≤ x1, X(t2) ≤ x2, ..., X(tn) ≤ xn).

The set of all these joint distribution functions defines the probability distribution of
the stochastic process. For a discrete stochastic process, it is generally simpler to
characterize its probability distribution by the probabilities

P(X(t1) ∈ A1, X(t2) ∈ A2, ... , X(tn) ∈ An)

for all  with  and  t1, t2, ..., tn ti ∈ T Ai ⊆ Z; i = 1, 2, ..., n; n = 1, 2, ...

Trend Function  Assuming the existence of  for all , the trend or trendE(X(t)) t ∈ T
function of the stochastic process  is the mean value of X(t) as a func-{X(t), t ∈ T}
tion of t:

                                         (2.2)m(t) = E(X(t)), t ∈ T.

Thus, the trend function of a stochastic process describes its average development in
time. If the densities  exist, thenft(x) = dFt(x) /dx

m(t) = ∫−∞
+∞ x ft(x) dx , t ∈ T .

Covariance Function  The covariance function of a stochastic process {X(t), t ∈ T}
is the covariance between random variables  and X(t) as a function of s and t.X(s)
Hence, in view of (1.63) and (1.64),

        (2.3)C(s, t) = Cov (X(s), X(t)) = E([X(s) − m(s)] [X(t) − m(t)]) ; s, t ∈ T,
or

                          (2.4)C(s, t) = E(X(s) X(t)) − m(s)m(t); s, t ∈ T.
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In particular,
                                              (2.5)C(t, t) = Var(X(t)).

The covariance function is a symmetric function of s and t:

                                                (2.6)C(s, t) = C(t, s).

Since the covariance function  is a measure for the degree of the statistical de-C(s, t)
pendence between  and , one expects thatX(s) X(t)

                                              (2.7)lim
t−s →∞

C(s, t) = 0.

However, example 2.3 shows that this need not be the case.

Correlation Function  The correlation function of  is the correlation{X(t), t ∈ T}
coefficient  between X(s) and X(t) as a function of s and t. Ac-ρ(s, t) = ρ(X(s), X(t))
cording to (1.65),

                                        (2.8)ρ(s, t) = Cov (X(s), X(t))
Var(X(s) Var(X(t)

.

The covariance function of a stochastic process is also called autocovariance func-
tion  and  the correlation function autocorrelation function. This is useful when con-
sidering covariances and correlations between  and  with regard to differentX(s) Y(s)
stochastic processes  and {X(t), t ∈ T} {Y(t), t ∈ T}.

Example 2.3 (cosine wave with random amplitude)  Let
X(t) = A cos ωt ,

where A is a nonnegative random variable with  The process E(A) < ∞. {X(t), t ≥ 0}
can be interpreted as the output of an oscillator which is selected from a set of identi-
cal ones. (Random deviations of the amplitudes from a nominal value are technolog-
ically unavoidable.) The trend function of this process is

m(t) = E(A) cos ωt.
By (2.4)  its covariance function is,

C(s, t) = E([A cos ωs][A cos ωt]) − m(s)m(t)

= [E(A2) − (E(A))2](cos ωs)(cos(ωt)).
Hence,

C(s, t) = Var(A)(cos ωs)(cos ωt).

Obviously, the process does not have property (2.7). Since there is a functional
relationship between  and  for any s and t,  and  cannot tend toX(s) X(t) X(s) X(t)
become independent as . Actually, the correlation function between X(s)t − s → ∞
and  is identically equal to 1:  For a modification of this process, seeX(t) ρ(s, t) ≡ 1.
example 2.6.                                                                                                                �
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The stochastic process considered in example 2.3 has a special feature: Once the ran-
dom variable A has assumed a value a, the process develops in a strictly determini-
stic way. That means, by only observing a sample path of such a process over an ar-
bitrarily small time interval, one can predict the further development of the sample
path with absolute certainty. (The same comment refers to examples 2.6 and 2.7).
More complicated stochastic processes arise when random influences continuously,
or at least repeatedly, affect the phenomenon of interest. The following example
belongs to this category.

Example 2.4 (pulse code modulation)  A source generates symbols 0 or 1 independ-
ently with probabilities p and , respectively. The symbol  0  is transmitted by1 − p
sending nothing during a time interval of length one. The symbol 1 is transmitted by
sending a pulse with constant amplitude a during a time unit of length one. The

 has started operating in the past. A stochastic signal (sequence of symbols)source
generated in this way is represented by the stochastic process {X(t), t ∈ (−∞, +∞)}
with

                           (2.9)X(t) = Σ
n=−∞

+∞
An h(t − n) , n ≤ t < n + 1 ,

where the  are independent binary random variables defined byAn; n = 0, ±1, ±2, ...;

,An =
⎧

⎩
⎨

0 with probability p
a with probability 1 − p

and  is given byh(t)

h(t) =
⎧

⎩
⎨

1 for 0 ≤ t < 1
0 elsewhere

.

For any t,

.X(t) = 0 with probability p
a with probability 1 − p

For example, the section of a sample path  plotted in Figure 2.3 is generatedx = x(t)
by the following partial sequence of a signal:

. .. 1 0 1 1 0 0 1 . ..
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Note that the time point  coincides with the beginning of a new transmission pe-t = 0
riod. The process has a constant trend function:

m(t) ≡ a ⋅ P(X(t) = a) + 0 ⋅ P(X(t) = 0) = a(1 − p) .

For n ≤ s, t < n + 1; n = 0, ±1, ±2, ...,

E(X(s)X(t)) = E(X(s)X(t) X(s) = a) ⋅ P(X(s) = a)

+ E(X(s)X(t) X(s) = 0) ⋅ P(X(s) = 0)

= a2(1 − p).

If , then  and  are independent.m ≤ s < m + 1 and n ≤ t < n + 1 with m ≠ n X(s) X(t)
Hence the covariance function of  {X(t), t ∈ (−∞, +∞)} is

C(s, t) =
⎧

⎩
⎨

a2p(1 − p) for n ≤ s, t < n + 1; n = 0, ±1, ±2, ...
0 elsewhere

.

Although the stochastic process  analyzed in this example  has a rather simple struc-
ture, it is of considerable importance in physics, electrical engineering, and commu-
nication. A modification of the pulse code modulation process is considered in exam-
ple 2.8.  As  the  following  example  shows,  the  pulse code modulation is a special
shot noise process.                                                                                                   �

Example 2.5 (shot noise process)  At time points  pulses of random intensity Tn, An
are induced. The sequences  and  are assumed to be discrete-{T1, T1, ...} {A1, A2, ...}
time stochastic processes with properties
1) With probability 1,  and T1 < T2 < . .. limn→∞ Tn = ∞,

2) E(An) < ∞; n = 1, 2, ...

In communication theory, the sequence  is called a pulse pro-{(Tn, An); n = 1, 2, ...}
cess. (In section 3.1, it will be called a marked point process.) Let function , theh(t)
response of a system to a pulse  have properties,

                           (2.10)h(t) = 0 for t < 0 and lim
t→∞

h(t) = 0.

The stochastic process  defined by{X(t), t ∈ (−∞, +∞)}

                                        (2.11)X(t) = Σn=1
∞ An h(t − Tn)

is called a shot noise process or just shot noise. It quantifies the additive superposi-
tion of the responses of a system to pulses. The factors  are sometimes called am-An
plitudes of the shot noise process. In many applications, the  are independent,An
identically distributed random variables, or, as in example 2.4, even constant.
If the sequences of the  and  are doubly infinite, Tn An

{Tn; n = 0, ±1, ±2, ...} and {An; n = 0, ±1, ±2, ...},
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then the shot noise process  is defined as{X(t), t ∈ (−∞, +∞)}

                                   (2.12)X(t) = Σ
n=−∞

∞
An h(t − Tn).

A well-known physical phenomenon, which can be modeled by a shot noise process,
is the fluctuation of the anode current in vacuum tubes ('tube noise'). This fluctuation
is caused by random current impulses, which are initiated by emissions of electrons
from the anode at random time points (Schottky effect).
The term shot noise has its origin in the fact that the effect of firing small shot at a
metal slab can be modeled by a stochastic process of structure (2.11). More examples
of shot noise processes are discussed in chapter 3, where special assumptions on the
underlying pulse process are made.                                                                            �

2.3  CLASSIFICATION OF STOCHASTIC PROCESSES

Stochastic processes are classified with regard to properties which reflect for instance
their dependence on time, the statistical dependence of their developments over dis-
joint time intervals, and the influence of the history or the current state of a stochas-
tic process on its future evolvement. In the context of example 2.1: Has the date any
influence on the daily temperature at 12:00? (That need not be the case if the meas-
urement point is near to the equator.) Or, has the sample path of the temperature in
January any influence on the temperature curve in February? For reliably predicting
tomorrow's temperature at 12:00, is it sufficient to know the present temperature or
would knowledge of the temperature curve during the past two days allow a more ac-
curate prediction? What influence has time on trend or covariance function?
Special importance have those stochastic processes, for which the joint distribution
functions (2.1) only depend on the distances between  and  i.e. only the relativeti ti+1,
positions of  to each other have an impact on the joint distribution of thet1, t2, ..., tn
random variables X(t1), X(t2), ..., X(tn).

Strong Stationarity  A stochastic process  is said to be strongly station-{X(t), t ∈ T}
ary or strictly stationary if for all  for any h, for all n-tuplesn = 1, 2, ...,

  with  and   (t1, t2, ..., tn) ti ∈ T ti + h ∈ T; i = 1, 2, ..., n;

and for all n-tuples , the joint distribution function of the random vec-(x1, x2, ..., xn)
tor  has the following property(X(t1), X(t2), ..., X(tn)) :

         (2.13)Ft1, t2,..., tn (x1, x2, ..., xn) = Ft1+h, t2+h,..., tn+h(x1, x2, ..., xn).

Thus, the probability distribution of a strongly stationary stochastic process is invar-
iant against absolute time shifts. In particular, by letting  property (2.13) im-n = 1,
plies that the one-dimensional distribution functions  do not depend on t. In thisFt(x)
case there exists a distribution function  so thatF(x)
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                                         (2.14)Ft(x) ≡ F(x) , t ∈ T.

Hence, trend- and variance function of  do not depend on t either:{X(t), t ∈ T}

                                   (2.15)m(t) = E(X(t)) ≡ m = constant ,

.Var(X(t)) ≡ constant

The trend function of a strongly stationary process is, therefore, a parallel to the time
axis and the fluctuations of its sample paths around the trend function experience no
systematic changes with increasing t.
Substituting  in (2.13) yields for all ,n = 2, t1 = 0, t2 = t − s and h = s s < t

F0, t−s(x1, x2) = Fs, t(x1, x2),

i.e. the joint distribution function of the random vector , and, therefore, the(Xs, Xt)
mean value of the product ,  depend only on the difference , and not onXs Xt τ = t − s
the absolute values of s and  Since, according to (2.4), t.

C(s, t) = E[X(s) X(t)] − m2 for s, t ∈ T,

 must have the same property:C(s, t)
C(s, t) = C(s, s + τ) = C(0, τ) = C(τ).

Therefore, the covariance function of strongly stationary processes depends only on
one variable: For all s ∈ T,

                                    (2.16)C(τ) = Cov (X(s), X(s + τ)).

Since the covariance function  of a stochastic process is symmetric in the var-C(s, t)
iables s and t, the covariance function of a strongly stationary process is symmetric
with respect to  i.e.  or, equivalently,τ = 0, C(τ) = C(−τ)

                                             (2.17)C(τ) = C( τ ) .

In practical situations it is generally not possible to determine the probability dis-
tributions of all possible random vectors  in order to check{X(t1), X(t2), . .. , X(tn)}
whether a stochastic process is strongly stationary or not. The user of stochastic pro-
cesses is, therefore, frequently satisfied with the validity of properties (2.15) and
(2.16). Hence, based on these two properties, another concept of stationarity has
been introduced. It is, however, only defined for second order processes.

Second Order Process  A stochastic process  is said to be a second or-{X(t), t ∈ T}
der process if

                                       (2.18)E(X 2(t)) < ∞ for all t ∈ T.

The existence of the second moments of  as required by assumption (2.18)X(t)
implies the existence of the covariance function  for all s and t, and, therefore,C(s, t)
the existence of the variances  and mean values  for all  (seeVar(X(t)) E(X(t)) t ∈ T
inequality of Schwarz, section 1.8.2).
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Weak Stationarity  A stochastic process   is  said to be weakly station-{X(t), t ∈ T}
ary if it is a second order process, which has properties (2.15) and (2.16).

A strongly stationary process is not necessarily weakly stationary, since there are
strongly stationary processes, which are not second order processes. But, if a second
order process is strongly stationary, then, as shown above, it is also weakly station-
ary. Weakly stationary processes are also called wide-sense stationary, covariance
stationary or second-order stationary. Further important properties of stochastic pro-
cesses are based on properties of their increments.

Homogeneous Increments  The increment of a stochastic process  with{X(t), t ∈ T}
respect to the interval  is the difference .[t1, t2] X(t2) − X(t1)

A stochastic process  is said to have homogeneous or stationary incre-{X(t), t ∈ T}
ments if for arbitrary, but fixed  the increment  has thet1, t2 ∈ T X(t2 + τ) − X(t1 + τ)
same probability distribution for all  with property τ t1 + τ ∈ T, t2 + τ ∈ T.
An equivalent definition of processes with homogeneous increments is the following
one:  has homogeneous increments if the probability distribution of{X(t), t ∈ T}

 does not depend on t for any fixed X(t + τ) − X(t) τ; t, t + τ ∈ T.
A stochastic process with homogeneous (stationary) increments need not be station-
ary in any sense.

Independent Increments  A stochastic process  has independent incre-{X(t), t ∈ T}
ments if for all  and for all n-tuples  with  andn = 2, 3, ... (t1, t2, ..., tn) ti ∈ T

t1 < t2 < t3 < . .. < tn
the increments

X(t2) − X(t1), X(t3) − X(t2), . .. , X(tn) − X(tn−1)

are independent random variables.

Gaussian Process  A stochastic process  is a Gaussian process if the{X(t), t ∈ T}
random vectors  have a joint Normal (Gaussian) distribution(X(t1), X(t2), ..., X(tn))
for all n-tuples   with   and (t1, t2, ..., tn) ti ∈ T t1 < t2 < . .. < tn; n = 1, 2, ...

Gaussian processes have an important property: A Gaussian process is strongly sta-
tionary if and only if it is weakly stationary. Important Gaussian processes will be
considered later.

Markov Process  A stochastic process  has the Markov(ian) property if{X(t), t ∈ T}
for all   with  and  and for(n + 1)−tuples (t1, t2, ..., tn+1) ti ∈ T t1 < t2 < . .. < tn+1,
any Ai ⊆ Z; i = 1, 2, ..., n + 1;

P(X(tn+1) ∈ An+1 X(tn) ∈ An, X(tn−1) ∈ An−1, ... , X(t1) ∈ A1)

                                    (2.19)= P(X(tn+1) ∈ An+1 X(tn) ∈ An) .
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The Markov property has the following implication: If  is a time point in the fu-tn+1
ture,  the present time point and, correspondingly,  time points in thetn t1, t2, ..., tn−1
past, then the future development of a process having the Markov property does not
depend on its evolvement in the past, but only on its present state. Stochastic proces-
ses having the Markov property are called Markov processes.
A Markov process with finite or countably infinite parameter space T is called a dis-
crete-time Markov process. Otherwise it is called a continuous-time Markov process.
Markov processes with finite or countably infinite state spaces Z are called Markov
chains. Thus, a discrete-time Markov chain has both a discrete state space and a dis-
crete parameter space. However, deviations from this notation can be found in litera-
ture.
Markov processes play an important role in all sorts of applications, mainly for four
reasons: 1) Many practical phenomena can be modeled by Markov processes. 2) The
input necessary for their practical application is generally more easily provided than
the necessary input for other classes of stochastic processes. 3) Computer algorithms
are available for numerical evaluations. 4) Stochastic processes with independent in-
crements always have the Markov property. In this book, the practical importance of
Markov processes is illustrated by many examples.

Theorem 2.1 A Markov process is strongly stationary if and only if its one-dimen-
sional probability distributions do not depend on time, i.e. if there exists a distribu-
tion function F(x) with

                               �Ft(x) = P(X(t) ≤ x) = F(x) for all t ∈ T.

Hence condition (2.14) is necessary and sufficient for a Markov process to be strong-
ly stationary.

Mean-Square Continuous  A second order process  is said to be mean-{X(t), t ∈ T}
square continuous at point  ift = t0 ∈ T

                             (2.20)lim
h→ 0

E([X(t0 + h) − X(t0)]2) = 0 .

The process  is said to be mean-square continuous in the region {X(t), t ∈ T} T0,
 if it is mean-square continuous at all points T0 ⊆ T, t ∈ T0.

According to section 1.9.1, the convergence used in (2.20) is called convergence in
mean square.
There is a simple criterion for a second order stochastic process to be mean-square
continuous at : A second order process  is mean-square continuous att0 {X(t), t ∈ T}

 if and only if its covariance function   is continuous at t0 C(s, t) (s, t) = (t0, t0).

As a corollary from this statement: A weakly stationary process {X(t), t ∈ (−∞, +∞)}
is mean-square  continuous  in    if  and only if it is mean-square continuous(−∞, +∞)
at time point t = 0.
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The following two examples make use of two addition formulas from trigonometry:

cos α cos β = 1
2 [cos(β − α) + cos(α + β)] ,

cos(β − α) = cos α cos β + sin α sin β .

Example 2.6 (cosine wave with random amplitude and random phase)  In modify-
ing example 2.3, let

X(t) = A cos(ωt + Φ),

where A is a nonnegative random variable with finite mean value and finite variance.
The random parameter  is assumed to be uniformly distributed over  and in-Φ [0, 2π]
dependent of A. The stochastic process  can be thought of the{X(t), t ∈ (−∞, +∞)}
output of an oscillator, selected from a set of oscillators of the same kind and having
been turned on at different times. Since

E(cos(ωt + Φ)) = 1
2π ∫0

2π cos(ωt + ϕ) dϕ

= 1
2π[sin(ωt + ϕ)]0

2π = 0,

the trend function of this process is identically zero:  From (2.4), its covar-m(t) ≡ 0.
iance function is

C(s, t) = E{[A cos(ωs + Φ)][A cos(ωt + Φ)]}

= E(A2) 1
2π ∫0

2π cos(ωs + ϕ) cos(ωt + ϕ) dϕ

= E(A2) 1
2π ∫0

2π 1
2{cos ω(t − s) + cos [ω(s + t) + 2ϕ]} dϕ .

The first integrand is a constant with respect to integration. Since the integral of the
second term is zero,  depends only on the difference C(s, t) τ = t − s :

C(τ) = 1
2 E(A2) cos wτ .

Thus, the process is weakly stationary.                                                                       �

Example  2.7  Let A and B be two uncorrelated random variables satisfying
E(A) = E(B) = 0 and Var(A) = Var(B) = σ2 < ∞ .

The stochastic process  be defined by{X(t), t ∈ (−∞, +∞)}

X(t) = A cos ωt + B sin ωt .

Since  for all t,  is a second order process. ItsVar(X(t)) = σ2 < ∞ {X(t), t ∈ (−∞, +∞)}
trend function is identically zero:  Thus, from (2.4),m(t) ≡ 0 .

C(s, t) = E(X(s) X(t)).

For A and B being uncorrelated,  Hence,E(AB) = E(A) E(B).
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C(s, t) = E(A2cos ωs cos ωt + B2sin ωs sin ωt)

+ E(AB cos ωs sin ωt + AB sin ωs cos ωt)

= σ2 (cos ωs cos ωt + sin ωs sin ωt)

+ E(AB) (cos ωs sin ωt + sin ωs cos ωt)

= σ2cos ω(t − s) .
Therefore, the covariance function depends only on the difference τ = t − s :

C(τ) = σ2cos ωτ .
Thus, the process  is weakly stationary.                                     �{X(t), t ∈ (−∞, +∞)}

Example 2.8 (randomly delayed pulse code modulation) Based on the stochastic
process  defined in example 2.4, the stochastic process{X(t), t ∈ (−∞, +∞)}

 with  {Y(t), t ∈ (−∞, +∞)} Y(t) = X(t − Z)

is introduced, where Z is uniformly distributed over . Thus, when shifting the[0, 1]
sample paths of the process  exactly Z time units to the right, one{X(t), t ∈ (−∞, +∞)}
obtains the corresponding sample paths of the process  For in-{Y(t), t ∈ (−∞, +∞)}.
stance, shifting the section of the sample path shown in Figure 2.3 exactly  timeZ = z
units to the right yields the corresponding section of the sample path of the process

 shown in Figure 2.4.{Y(t), t ∈ (−∞, +∞)}
The trend function of the process  is{Y(t), t ∈ (−∞, +∞)}

m(t) ≡ a (1 − p).
To determine the covariance function, let  denote the random event thatB = B(s, t)

 and X(t) are separated by a switching point   ThenX(s) n + Z; n = 0, ±1, ±2, ...

P(B) = t − s , P(B) = 1 − t − s .

The random variables X(s) and X(t) are independent if  and/or B occurs.t − s > 1
Therefore,

C(s, t) = 0 if t − s > 1 and/or B occurs.

If ,  and  are only then independent if B occurs. Hence, the covar-t − s ≤ 1 X(s) X(t)
iance function of  given  can be obtained as follows:{Y(t), t ∈ (−∞, +∞)} t − s ≤ 1
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C(s, t) = E(X(s) X(t) B)P(B) + E(X(s) X(t) B) P(B) − m(s) m(t)

= E(X(s)) E(X(t)) P(B) + E([X(s)]2) P(B) − m(s) m(t)

= [a(1 − p)]2 t − s + a2(1 − p)(1 − t − s ) − [a(1 − p)]2 .

Finally, with ,  the covariance function becomesτ = t − s

C(τ) =
⎧

⎩
⎨

a2p(1 − p)(1 − τ ) for τ ≤ 1
0 elsewhere

.

Thus, the process  is weakly stationary. Analogously to the tran-{Y(t), t ∈ (−∞, +∞)}
sition from example 2.3 to example 2.6, stationarity is achieved by introducing a uni-
formly distributed phase shift in the pulse code modulation of example 2.4.             �

2.4   EXERCISES

2.1) A stochastic process  has the one-dimensional distribution{X(t), t > 0}

Ft(x) = P(X(t) ≤ x) = 1 − e−(x/t)2
, x ≥ 0.

Is this process weakly stationary?

2.2) The one-dimensional distribution of the stochastic process  is{X(t), t > 0}

Ft(x) = P(X(t) ≤ x) = 1
2π t σ

∫
−∞

x
e

−(u−μ t)2

2σ2 t du

with μ > 0, σ > 0; x ∈ (−∞ + ∞) .
Determine its trend function  and, for  and , sketch the functionsm(t) μ = 2 σ = 0.5

y1(t) = m(t) + Var(X(t)) and y2(t) = m(t) − Var(X(t)) , 0 ≤ t ≤ 10.

2.3) Let , where A and  are independent, nonnegative randomX(t) = A sin(ω t + Φ) Φ
variables with  being uniformly distributed over  and Φ [0, 2π] E(A2) < ∞.
(1) Determine trend-, covariance- and correlation function of {X(t), t ∈ (−∞, +∞)}.
(2) Is the stochastic process  weakly and/or strongly stationary?{X(t), t ∈ (−∞, +∞)}
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2.4) Let , where A(t) and  are independent, nonnegative ran-X(t) = A(t) sin(ω t + Φ) Φ
dom variables for all t, and let  be uniformly distributed over Φ [0, 2π].
Verify: If  is a weakly stationary process, then the stochastic{A(t), t ∈ (−∞, +∞)}
process  is also weakly stationary.{X(t), t ∈ (−∞, +∞)}

2.5) Let  be a sequence of real numbers and  a se-a1, a2, ..., an {Φ1, Φ2, ..., Φn}
quence of independent random variables which are uniformly distributed over the in-
terval [ ]. Determine covariance- and correlation function of the stochastic pro-0, 2π
cess  given by{X(t), t ∈ (−∞, +∞)}

X(t) = Σi=1
n ai sin(ω t + Φ i) .

2.6)* A modulated signal (pulse code modulation)  is given by{X(t), t ∈ (−∞, +∞)}

X(t) = Σ−∞
+∞ An h(t − n) ,

where the   are independent and identically distributed random variables whichAn
can only take on values  and +1 and have mean value 0. Further, let−1

h(t) = 1 for 0 ≤ t < 1/2
0 elsewhere

.

1) Sketch a section of a possible sample path of the process {X(t), t ∈ (−∞, +∞)}.
2) Determine the covariance function of this process.
3) Let  where the random variable Z  has a uniform distribution overY(t) = X(t − Z),

. Is the stochastic process  weakly stationary?[0, 1] {Y(t), t ∈ (−∞, +∞)}

2.7) Let  be two independent, weakly{X(t), t ∈ (−∞, +∞)} and {Y(t), t ∈ (−∞, +∞)}
stationary  stochastic  processes,  whose  trend  functions  are  identically 0 and which
have the same covariance function .C(τ)
Prove: The stochastic process  with{Z(t), t ∈ (−∞, +∞)}

Z(t) = X(t) cos ωt − Y(t) sin ωt
is weakly stationary.

2.8) Let , where Φ is uniformly distributed over the interval X(t) = sin Φt [0, 2π].
Verify: (1) The discrete-time stochastic process  is weakly, but not{X(t); t = 1, 2, ...}
strongly stationary. (2) The continuous-time stochastic process  is nei-{X(t), t ≥ 0}
ther weakly nor strongly stationary.

2.9) Let  and  be two independent stochastic{X(t), t ∈ (−∞, +∞)} {Y(t), t ∈ (−∞, +∞)}
processes with trend- and covariance functions  and mX(t), mY(t) CX(s, t), CY(s, t),
respectively. Further, let U(t) = X(t) + Y(t) and V(t) = X(t) − Y(t) , t ∈ (−∞, +∞).

Determine the covariance functions of the stochastic processes {U(t), t ∈ (−∞, +∞)}
and {V(t), t ∈ (−∞, +∞)}.

106                                                                                   STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



CHAPTER 3

Random Point Processes

3.1  BASIC CONCEPTS

A point process is a sequence of real numbers  with properties{t1, t2, ...}

                                    (3.1)t1 < t2 < . .. and lim
i→ ∞

ti = +∞ .

That means, a point process is a strictly increasing sequence of real numbers, which
does not have a finite limit point. In practice, point processes occur in numerous sit-
uations: arrival time points of customers at service stations (workshops, filling sta-
tions, supermarkets, ...), failure time points of machines, time points of traffic acci-
dents, occurrence of nature catastrophies, occurrence of supernovas,... Generally, at
time point  a certain event happens. Hence, the  are called event times. With re-ti ti
gard to the arrival of customers at service stations, the  are also called arrival times.ti
If not stated otherwise, the assumption  is made.t1 ≥ 0
Although the majority of applications of point processes refer to sequences of time
points, there are other interpretations as well. For instance, sequences  can{t1, t2, ...}
be generated by the location of potholes in a road. Then  denotes the distance of theti

 pothole from the beginning of the road. Or, the location is measured, at which ani th
imaginary straight line, which runs through a forest stand, hits trees. (This is the base
of the well-known Bitterlich method for estimating the total number of trees in a for-
est stand.) Strictly speaking, since both road and straight line through a forest stand
have finite lengths, to meet assumption (3.1), they have to be considered finite sam-
ples from a point process.
A  point  process  can equivalently be represented by the sequen  of  its{t1, t2, ...} ce
interevent (interarrival) times

{ y1, y2, ...} with yi = ti − ti−1; i = 1, 2, ...; t0 = 0.

Counting Process  Frequently, the event times are of less interest than the number of
events, which occur in an interval  This number is denoted as :(0, t], t > 0. n(t)

n(t) = max {n, tn ≤ t}.

For obvious reasons,  is said to be the counting process belonging to the{n(t), t ≥ 0}
point process  Here and in what follows, it is assumed that more than one{t1, t2, ...}.
event cannot occur at a time. Point processes with this property are called simple.
The number of events, which occur in an interval , is(s, t] s < t,

 n(s, t) = n(t) − n(s).
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To be able to count the number  of events which occur in an arbitrary subset An(A)
of   the indicator function of the event  '  belongs to A'  is introduced:[0, ∞) ti

                                         (3.2)Ii(A) = ⎧
⎩
⎨

1 if ti ∈ A
0 otherwise

.

Then,
n(A) = Σi=0

∞ Ii(A) .

Example 3.1  Let be given a finite sample from a point process:
{2, 4, 10, 18, 24, 31, 35, 38, 40, 44, 45, 51, 57, 59}

The figures indicate the times (in seconds) at which within a time span of a minute a
car passes a control point. Then, within the first 16 seconds,  cars passedn(16) = 3
the control point, and in the interval  exactly (31, 49] n(31, 49) = n(49) − n(30) = 5
cars passed the control point. In terms of the indicator function (3.2), given the time
span A = (10, 20] [51, 60]

I18(A) = I24(A) = I51(A) = I57(A) = I59(A) = 1,

    for Ii(A) = 0 i ≠ 18, 24, 51, 57, 59.
Hence,

                                �n(A) = Σi=0
∞ Ii(A) = Σi=0

60 Ii(A) = 5 .

Recurrence Times  The  forward recurrence time of a point process  with{t1, t2, ...}
respect to time point  is defined ast

                 (3.3)a(t) = tn+1 − t for tn ≤ t < tn+1; n = 0, 1, ..., t0 = 0.
Hence,  is the time span from t (usually interpreted as the 'presence') to the occur-a(t)
rence of the next event. A simpler way of characterizing  isa(t)

                                             (3.4)a(t) = tn(t)+1 − t .

 is the largest event time before t and  is the smallest event time after t.tn(t) tn(t)+1
The backward recurrence time  with respect to time point t isb(t)

                                              (3.5)b(t) = t − tn(t) .

Thus,  is the time which has elapsed from the last event time before t to time t.b(t)

Marked Point Processes Frequently, in addition to their arrival times, events come
with another piece of information. For instance: If  is the time point the i th custom-ti
er arrives at a supermarket, then the customer will spend there a certain amount of
money . If  is the failure time point of a machine, then the time (or cost)  ne-mi ti mi
cessary for removing the failure may be assigned to . If  denotes the time of theti ti

 bank robbery in a town, then the amount  the robbers got away with is of in-i th mi
terest. If is the arrival time of the ith claim at an insurance company, then the sizeti
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 of this claim is of particular importance to the company. If  is the time of the mi ti i th
supernova in a century, then its light intensity  is of  interest to astronomers, andmi
so on. This leads to the concept of a marked point process: Given a point process

 a sequence of two-dimensional vectors{t1, t2, ...},

                                          (3.6){(t1, m1), (t2, m2), ...}

with  being an element of a mark space M is called a marked point process. Inmi
most applications, as in the four examples above, the mark space M is a subset of the
real axis   with the respective unites of measurements attached.(−∞, + ∞)

Random Point Processes  Usually the event times are random variables. A sequence
of random variables  with{T1, T2, ...}

  and                               (3.7)T1 < T2 < . .. P( lim
i→ ∞

Ti = +∞) = 1

is a random point process. By introducing the random interevent (interarrival) times
Yi = Ti − Ti−1; i = 1, 2, ...; T0 = 0,

a random point process can equivalently be defined as a sequence of positive random
variables  with property{Y1, Y2, ...}

P( limn→ ∞ Σi=0
n Yi = ∞) = 1.

In either case, with the terminology introduced in section 2.1, a random point process
is a discrete-time stochastic process with state space  Thus, a point pro-Z = [0, +∞).
cess (3.1) is a sample path, a realization or a trajectory of a random point process. A
point process is called simple if at any time point t not more than one event can occur.

Recurrent Point Processes  A random point process  is said to be recur-{T1, T2, ...}
rent if its corresponding sequence of interarrival times  is a sequence of{Y1, Y2, ...}
independent, identically distributed random variables. The most important recurrent
point processes are homogenous Poisson processess and renewal processes (sections
3.2.1 and 3.3).

Random Counting Processes  Let
N(t) = max {n, Tn ≤ t}

be the random number of events occurring in the interval  Then the contin-(0, t].
uous-time stochastic process  with state space  is called the{N(t), t ≥ 0} Z = {0, 1, ...}
random counting process belonging to the random point process  Any{T1, T2, ...}.
counting process  has properties{N(t), t ≥ 0}
1) N(0) = 0,
2) N(s) ≤ N(t) for s ≤ t ,
3) For any s, t  with  the increment  is equal to the num-0 ≤ s < t, N(s, t) = N(t) − N(s)
ber of events which occur in (s, t].
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Conversely, every stochastic process  in continuous time having these{N(t), t ≥ 0}
three properties is the counting process of a certain point process  Thus,{T1, T2, ...}.
from the statistical point of view  the stochastic processes,

,  ,  and  {T1, T2, ...} {Y1, Y2, ...} {N(t), t ≥ 0}

are equivalent. For that reason, a random point process is frequently defined as a con-
tinuous-time stochastic process  with properties 1 to 3. Note that{N(t), t ≥ 0}

N(t) = N(0, t).
The most important characteristic of a counting process  is the probabil-{N(t), t ≥ 0}
ity distribution of its increments , which determines for all inter-N(s, t) = N(t) − N(s)
vals  the probabilities[s, t), s < t,

 pk(s, t) = P(N(s, t) = k); k = 0, 1, ...

The mean numbers of events in  is(s, t]

                    (3.8)m(s, t) = m(t) − m(s) = E(N(s, t)) = Σk=0
∞ k pk(s, t).

With
pk(t) = pk(0, t),

the trend function of the counting process  is{N(t), t ≥ 0}

                             (3.9)m(t) = E(N(t)) = Σk=0
∞ k pk(t), t ≥ 0.

A random counting process is called simple if the underlying point process is simple.
Figure 3.1 shows a possible sample path of a simple random counting process.
Note  In what follows the attribute 'random' is usually omitted if it is obvious from the
notation or the context that random point processes or random counting processes are
being dealt with.

Definition 3.1 (stationarity)  A point process  is called stationary if its{T1, T2, ...}
sequence of interarrival times  is strongly stationary (section 2.3), that is{Y1, Y2, ...}
if for any sequence of integers  with  andi1, i2, ..., ik 1 ≤ i1 < i2 < . .. < ik, k = 1, 2, ...
for any  the joint distribution functions of the following two randomτ = 0, 1, 2, ...,
vectors coincide:

  and                          z{Yi1 , Yi2 , ..., Yik } {Yi1+τ, Yi2+τ, ..., Yik+τ}.
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It is an easy exercise to show that if the sequence  is strongly stationary,{Y1, Y2, ...}
the corresponding counting process  has homogeneous increments and{N(t), t ≥ 0}
vice versa. This implies the following corollary from definition 3.1:

Corollary  A point process  is stationary if and only if its corresponding{T1, T2, ...}
counting process  has homogeneous increments.{N(t), t ≥ 0}

Hence, for a stationary point process, the probability distribution of any increment
 depends only on the difference N(s, t) τ = t − s :

               (3.10)pk(τ) = P(N(s, s + τ) = k); k = 0, 1, ...; s ≥ 0, τ > 0.

Thus, for a stationary point process,
             (3.11)m(τ) = m(s, s + τ) = m(s + τ) − m(s) for all s ≥ 0, τ ≥ 0.

For having nondecreasing sample paths, neither the point process  nor its{T1, T2, ...}
corresponding counting process  can be stationary as defined in section{N(t), t ≥ 0}
2.3. In particular, since only simple point processes are considered, the sample paths
of are step functions with jump heights being equal to 1.{N(t), t ≥ 0}

Remark  Sometimes it is more convenient or even necessary to define random point
processes  doubly infinite sequencesas

{..., T−2, T1, T0, T1, T2, ...},

which tend to infinity to the left and to the right with probability 1. Then their sample
paths are also doubly infinite sequences:  and only the in-{..., t−2, t1, t0, t1, t2, ...}
crements of the corresponding counting process over finite intervals are finite.

Intensity of Random Point Processes  For stationary point processes, the mean
number of events occurring in  is called the intensity of the process and will be[0, 1]
denoted as  By making use of notation (3.9),λ.

                                    (3.12)λ = m(1) = Σk=0
∞ k pk(1).

In view of the stationarity,  is equal to the mean number of events occurring in anyλ
interval of length 1:

λ = m(s, s + 1), s ≥ 0.
Hence, the mean number of events occurring in any interval  of length  is(s, t] τ = t − s

m(s, t) = λ (t − s) = λτ.
Given a sample path  of a stationary random point process,  is estimated{t1, t2, ...} λ
by the number of events occurring in  divided by the length of this interval:[0, t]

λ = n(t)/t ,
In example 3.1, an estimate of the intensity of the underlying point process (assumed
to be stationary) is λ = 14 /60 ≈ 0.233.
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In case of a nonstationary point process, the role of the constant intensity  is takenλ
over by an intensity function  This function allows to determine the mean num-λ(t).
ber of events  occurring in an interval  For any m(s, t) (s, t] : s, t with 0 ≤ s < t,

m(s, t)) = ∫s
t λ(x) dx .

Specifically, the mean number of events in  is the trend function of the corres-[0, t]
ponding counting process:

                                 (3.13)m(t) = m(0, t) = ∫0
t λ(x) dx , t ≥ 0.

Hence, for Δt → 0,
                                     (3.14)Δm(t) = λ(t) Δt + o(Δt) ,

so that for small  the product  is approximately the mean number of eventsΔt λ(t) Δt
in  Another interpretation of (3.14) is: If  is sufficiently small, then(t, t + Δt]. Δt

 is approximately the probability of the occurrence of an event in the intervalλ(t) Δt
 Hence, the intensity function  is the arrival rate of events at time t.[t, t + Δt]. λ(t)

(For Landau's order symbol , see (1.41).)o(x)

Random Marked Point Processes  Let  be a random point process with{T1, T2, ...}
random marks  assigned to the event times . Then the sequenceMi Ti

                                     (3.15){(T1, M1), (T2, M2), ...}

is called a random marked point process. Its (2-dimensional) sample paths are given
by (3.6). The pulse process  considered in example 2.5 is a{(Tn, An); n = 1, 2, ...}
special marked point processes.
Random marked point processes are dealt with in full generality in Matthes, Kerstan,
and Mecke [60]. For other  mathematically prestigious treatments, see, for instance,
König and Schmidt [51] or Stigman [78].

Compound Stochastic Processes  Let  be a random mark-{(T1, M1), (T2, M2), ...}
ed point process and  be the counting process belonging to the point{N(t), t ≥ 0}
process . The stochastic process  defined by{T1, T2, ...} {C(t), t ≥ 0}

C(t) =
⎧

⎩
⎨
⎪
⎪

0 for 0 ≤ t < T1

Σi=1
N(t)

Mi for t ≥ T1

is called a compound (cumulative, aggregate) stochastic process. According to the
underlying point process, there are, for instance, compound Poisson processes and
compound renewal processes. If  is a claim arrival process and  the{T1, T2, ...} Mi
size of the i th claim, then  is the total claim amount in . If  is the time ofC(t) [0, t) Ti
the i th breakdown of a machine and  the corresponding repair cost, then  isMi C(t)
the total repair cost in [0, t).
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3.2  POISSON PROCESSES

3.2.1     Homogeneous Poisson Processes

3.2.1.1  Definition and Properties
In the theory of stochastic processes, and maybe even more in its applications, the
homogeneous Poisson process is just as popular as the exponential distribution in
probability theory. Moreover, there is a close relationship between the homogeneous
Poisson process and the exponential distribution (theorem 3.2).

Definition 3.2 (homogeneous Poisson process)  A counting process  is{N(t), t ≥ 0}
a homogeneous Poisson process with intensity  if it has the following prop-λ, λ > 0,
erties:
1) N(0) = 0,
2)  is a stochastic process with independent increments.{N(t), t ≥ 0}
3) Its increments  have a Poisson distribution with pa-N(s, t) = N(t) − N(s), 0 ≤ s < t,
rameter :λ(t − s)

                                     (3.16)P(N(s, t) = i) = (λ(t − s))i

i! e−λ(t−s); i = 0, 1, .... ,

or, equivalently, introducing the length  of the interval  for all τ = t − s [s, t], τ > 0,

                                                         (3.17)P(N(s, s + τ) = i) = (λτ)i

i! e−λτ; i = 0, 1, ....

                                                                                              z
(3.16) implies that the homogeneous Poisson process has homogeneous increments.
Thus, the corresponding  Poisson point process  is stationary in the sense{T1, T2, ...}
of definition 3.1.

Theorem 3.1 A counting process  with  is a homogeneous Pois-{N(t), t ≥ 0} N(0) = 0
son process with intensity  if and only if it has the following properties:λ
a)  has homogeneous and independent increments.{N(t), t ≥ 0}
b) The process is simple, i.e. .P(N(t, t + h) ≥ 2) = o(h)
c) .P(N(t, t + h) = 1) = λ h + o(h)

Proof  To prove that definition 3.2 implies properties a), b) and c),  it  is only neces-
sary to show that a homogeneous Poisson process satisfies properties b) and c).
The simplicity of the Poisson process easily results from (3.17):

P(N(t, t + h) ≥ 2) = e−λh Σ
i=2

∞ (λh)i

i!

= λ2 h2e−λh Σ
i=0

∞ (λh)i

(i + 2)!
≤ λ2h2 = o(h).
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Another application of (3.17) and the simplicity of the Poisson process proves c):

 P(N(t, t + h) = 1) = 1 − P(N(t, t + h) = 0) − P(N(t, t + h) ≥ 2)

= 1 − e−λh + o(h) = 1 − (1 − λ h) + o(h)
.= λ h + o(h)

Conversely, it needs to be shown that a stochastic process with properties a), b) and
c) is a homogeneous Poisson process. In view of the assumed homogeneity of the in-
crements, it is sufficient to prove the validity of (3.17) for . Thus, lettings = 0

pi(t) = P(N(0, t) = i) = P(N(t) = i) ; i = 0, 1, ...

it is to show that

                                                 (3.18)pi(t) = (λt)i

i! e−λt; i = 0, 1, ....

From a),
p0(t + h) = P(N(t + h) = 0) = P(N(t) = 0, N(t, t + h) = 0)

= P(N(t) = 0) P( N(t, t + h) = 0) = p0(t) p0(h) .

In view of b) and c)  this result implies,

p0(t + h) = p0(t)(1 − λh) + o(h)
or, equivalently,

p0(t + h) − p0(t)
h = −λ p0(t) + o(h).

Taking the limit as  yieldsh → 0

.p0(t) = −λ p0(t)

Since , the solution of this differential equation isp0(0) = 1

p0(t) = e−λ t, t ≥ 0,

so that (3.18) holds for .i = 0
Analogously, for i ≥ 1,

pi(t + h) = P(N(t + h) = i)

= P(N(t) = i, N(t + h) − N(t) = 0) + P(N(t) = i − 1, N(t + h) − N(t) = 1)

+Σk=2
i P(N(t) = k, N(t + h) − N(t) = i − k) .

Because of c), the sum in the last row is  Using properties a) and b),o(h).

pi(t + h) = pi(t) p0(h) + pi−1(t) p1(h) + o(h)

= pi(t) (1 − λ h) + pi−1(t) λh + o(h),
or, equivalently,
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pi(t + h) − pi(t)
h = −λ [ pi(t) − pi−1(t)] + o(h).

Taking the limit as  yields a system of linear differential equations in the h → 0 pi(t)

                         (3.19)pi (t) = −λ[ pi(t) − pi−1(t)]; i = 1, 2, ...

Starting with  the solution (3.18) is obtained by induction.                  �p0(t) = e−λt,

The practical importance of theorem 3.1 is that the properties a), b) and c) can be
verified without any quantitative investigations, only by qualitative reasoning based
on  the  physical  or  other nature of  the  process. In particular,  the  simplicity of  the
homogeneous Poisson process implies that the occurrence of more than one event at
the same time has probability 0.
Note  Throughout this chapter, those events, which are counted by a Poisson process

 will be called Poisson events. {N(t), t ≥ 0},

Let  be the point process, which belongs to the homogeneous Poisson{T1, T2, ...}
process  i.e.  is the random time point at which the n th Poisson event{N(t), t ≥ 0}, Tn
occurs The obvious relationship.

 if and only if Tn ≤ t N(t) ≥ n
implies

                                     (3.20)P(Tn ≤ t) = P(N(t) ≥ n) .
Therefore,  has  distribution functionTn

                                      (3.21)FTn (t) = P(N(t) ≥ n) = Σ
i=n

∞ (λt)i

i! e−λt ; n = 1, 2, ...

Differentiation of  with respect to t yields the density of :FTn (t) Tn

fTn (t) = λ e−λt Σ
i=n

∞ (λt)i−1

(i − 1)!
− λe−λt Σ

i=n

∞ (λt)i

i! .

On the right-hand side of this equation, all terms but one cancel:

                                             (3.22)fTn (t) = λ(λt)n−1

(n − 1)!e−λt; t ≥ 0, n = 1, 2, ...

Thus,  has an Erlang distribution with parameters n and  In particular,  has anTn λ. T1
exponential distribution with parameter  and the interevent timesλ

 Yi = Ti − Ti−1; i = 1, 2, ...; k = 1, 2, ...; T0 = 0.

are independent and identically distributed as  (see example 1.23). Moreover,T1

Tn = Σi=1
n Yi.

These results yield the most simple and, at the same time, the most important charac-
terization of the homogeneous Poisson process:
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Theorem 3.2  Let  be a counting process and  be the corres-{N(t), t ≥ 0} {Y1, Y2, ...}
ponding sequence of interarrival times. Then  is a homogeneous Poisson{N(t), t ≥ 0}
process with intensity  if and only if the  are independent, exponentiallyλ Y1, Y2, ...
with parameter  distributed random variables.                                                          �λ

The counting process  is statistically equivalent to both its corresponding{N(t), t ≥ 0}
point process  of event times and the sequence of interarrival times{T1, T2, ...}

 Hence,  and  are sometimes also called Poisson{Y1, Y2, ....}. {T1, T2, ...} {Y1, Y2, ...}
processes.

Example 3.2  From previous observations it is known that the number of traffic acci-
dents N(t) in an area over the time interval  can be described by a homogeneous[0, t)
Poisson process  On an average, there is one accident within 4 hours,{N(t), t ≥ 0}.
i.e. the intensity of the process is

.λ = 0.25 [h−1]

(1) What is the probability p of the event (time unit: hour)
"at most one accident in [0, 10), at least two accidents in [10, 16), and no
 accident in [16, 24)"?

This probability is
p = P(N(10) − N(0) ≤ 1, N(16) − N(10) ≥ 2, N(24) − N(16) = 0).

In view of the independence and the homogeneity of the increments of {N(t), t ≥ 0},
 can be determined as follows:p

p = P(N(10) − N(0) ≤ 1) P(N(16) − N(10) ≥ 2) P(N(24) − N(16) = 0)

= P(N(10) ≤ 1) P(N(6) ≥ 2) P(N(8) = 0) .
Now,

P(N(10) ≤ 1) = P(N(10) = 0) + P(N(10) = 1)

= e−0.25⋅10 + 0.25 ⋅ 10 ⋅ e−0.25⋅10 = 0.2873,

P(N(6) ≥ 2) = 1 − e−0.25⋅6 − 0.25 ⋅ 6 ⋅ e0.25⋅6 = 0.4422,

P(N(8) = 0) = e−0.25⋅8 = 0.1353.

Hence, the desired probability is p = 0.0172 .

(2) What is the probability that the  accident occurs not before 5 hours?2 nd
Since the random time of the occurrence of the second accident, has an ErlangT2,
distribution with parameters  and n = 2 λ = 0.25,

P(T2 > 5) = 1 − FT2 (5) = e−0.25⋅5(1 + 0.25 ⋅ 5).

Thus,                                                                                          �P(T2 > 5) = 0.6446 .
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The following examples make use of the hyperbolic sine and cosine functions:

sinh x = ex − e−x
2 , cosh x = ex + e−x

2 , x ∈ (−∞, +∞) .

Example 3.3 (random telegraph signal )  A random signal  have structureX(t)

                                      (3.23)X(t) = Y (−1)N(t), t ≥ 0,
where  is a homogeneous Poisson process with intensity  and Y is a bi-{N(t), t ≥ 0} λ
nary random variable with

P(Y = 1) = P(Y = −1) = 1/2 ,

which is independent of N(t) for all t. Signals of this structure are called random tele-
graph signals. Random telegraph signals are basic modules for generating signals
with a more complicated structure. Obviously, or  and Y determinesX(t) = 1 X(t) = −1
the sign of . Figure 3.2 shows a sample path  of the stochastic processX(0) x = x(t)

 on condition  and {X(t), t ≥ 0} Y = 1 Tn = tn; n = 1, 2, ...

 is wide-sense stationary. To see this, firstly note that{X(t), t ≥ 0}
  for all X(t) 2 = 1 < ∞ t ≥ 0.

Hence,  is a second-order process. With{X(t), t ≥ 0}
I(t) = (−1)N(t) ,

its trend function is   Hence, since m(t) = E(X(t)) = E(Y) E(I(t)). E(Y) = 0,
m(t) ≡ 0.

It remains to show that the covariance function  of this process depends onlyC(s, t)
on  This requires knowledge of the probability distribution of I(t): A transitiont − s .
from  to  or, conversely, from  to  occurs at thoseI(t) = −1 I(t) = +1 I(t) = +1 I(t) = −1
time points, at which Poisson events occur, i.e. when  jumps:N(t)

P(I(t) = 1) = P(even number of jumps in [0, t])

            = e−λt Σ
i=0

∞ (λt)2i

(2i)! = e−λtcosh λt ,
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Analogously,
P(I(t) = −1) = P(odd number of jumps in [0, t])

= e−λt Σ
i=0

∞ (λt)2i+1

(2i + 1)!
= e−λt sinh λt .

Hence the mean value of  isI(t)

E[I(t)] = 1 ⋅ P(I(t) = 1) + (−1) ⋅ P(I(t) = −1)

= e−λt[cosh λt − sinh λt] = e−2 λt.
Since

C(s, t) = Cov [X(s), X(t)]

= E[(X(s) X(t))] = E[Y I(s) Y I(t)]

= E[Y2 I(s) I(t)] = E(Y2) E[I(s) I(t)]

and   the covariance function of  has structureE(Y2) = 1, {X(t), t ≥ 0}
C(s, t) = E[I(s) I(t)] .

Thus, in order to evaluate , the joint distribution of  has to be deter-C(s, t) (I(s), I(t))
mined: From (1.6) and the homogeneity of the increments of  assuming{N(t), t ≥ 0},
s < t ,

p1,1 = P(I(s) = 1, I(t) = 1) = P(I(s) = 1)P( I(t) = 1 I(s) = 1)

= e−λscosh λs P(even number of jumps in (s, t])

= e−λscosh λs e−λ(t−s)cosh λ(t − s)

= e−λtcosh λs cosh λ(t − s) .

Analogously,
p1,−1 = P(I(s) = 1, I(t) = −1) = e−λt cosh λs sinh λ(t − s) ,

p−1,1 = P(I(s) = −1, I(t) = 1) = e−λt sinh λs sinh λ(t − s) ,

p−1,−1 = P(I(s) = −1, I(t) = −1) = e−λt sinh λs cosh λ(t − s) .

Now
,E[I(s)I(t)] = p1,1 + p−1,−1 − p1,−1 − p−1,1

so that
C(s, t) = e−2 λ(t−s), s < t.

Since the order of  and t can be changed,s

C(s, t) = e−2 λ t−s .

Hence, the random telegraph signal  is a weakly stationary process.     �{X(t), t ≥ 0}
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Theorem 3.3  Let  be a homogeneous Poisson process with intensity {N(t), t ≥ 0} λ .
Then the random number of Poisson events which occur in the interval  on con-[0, s]
dition that exactly n events occur in    has a binomial distri-[0, t], s < t ; i = 0, 1, ..., n ;
bution with parameters  and n.p = s/t
Proof  In view of the homogeneity and independence of the increments of the Pois-
son process {N(t), t ≥ 0},

P(N(s) = i N(t) = n) = P(N(s) = i, N(t) = n)
P(N(t) = n)

= P(N(s) = i, N(s, t) = n − i)
P(N(t) = n)

   = P(N(s) = i) P( N(s, t) = n − i)
P(N(t) = n) =

(λs)i

i! e−λs [λ(t−s)]n−i

(n−i)! e−λ(t−s)

(λs)n

n! e−λt

                                       (3.24)= ⎛
⎝

n
i
⎞
⎠
⎛
⎝

s
t
⎞
⎠

i ⎛
⎝1 − s

t
⎞
⎠

n−i
; i = 0, 1, ..., n.

This proves the theorem.                                                                                             �

3.2.1.2  Homogeneous Poisson Process and Uniform Distribution
Theorem 3.3 implies that on condition ' ' the random time  to the first andN(t) = 1 T1
only event occuring in  is uniformly distributed over this interval, since, from[0, t]
(3.24), for s < t,

P(T1 ≤ s T1 ≤ t) = P(N(s) = 1 N(t) = 1) = s
t .

This relationship between the homogeneous Poisson process and the uniform distri-
bution is a special case of a more general result. To prove it, the joint probability
density of the random vector  is needed.(T1, T2, ..., Tn)

Theorem 3.4  The joint probability density of the random vector  is(T1, T2, ..., Tn)

                           (3.25)f (t1, t2, ..., tn) =
⎧

⎩
⎨

λne−λtn for 0 ≤ t1 < t2 < . .. < tn
0 elsewhere

.

Proof  For , the joint distribution function of  is given by0 ≤ t1 < t2 (T1, T2)

P(T1 ≤ t1, T2 ≤ t2) = ∫0
t1 P(T2 ≤ t2 T1 = t) fT1 (t) dt .

According to theorem 3.2  the interarrival times,
Yi = Ti − Ti−1; i = 1, 2, ...,

are independent, identically distributed random variables which have an exponential
distribution with parameter λ.
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Hence, since ,T1 = Y1

P(T1 ≤ t1, T2 ≤ t2) = ∫0
t1 P(T2 ≤ t2 T1 = t ) λe−λtdt .

Given ' ', the random eventT1 = t
' '  and  ' 'T2 ≤ t2 Y2 ≤ t2 − t

are equivalent. Thus, the desired two-dimensional distribution function is

F(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) = ∫0
t1(1 − e−λ(t2−t)) λ e−λtdt

= λ ∫0
t1(e−λt − e−λ t2 ) dt.

Hence,
F(t1, t2) = 1 − e−λt1 − λt1e−λt2 , t1 < t2.

Partial differentiation yields the corresponding two-dimensional probability density

f (t1, t2) =
⎧

⎩
⎨
⎪
⎪

λ2e−λt2 for 0 ≤ t1 < t2
0 elsewhere

.

The proof of the theorem is now easily completed by induction.                                �

The formulation of the following theorem requires a result from the theory of order-
ed samples: Let  be a random sample taken from X, i.e. the  are{X1, X2, ..., Xn} Xi
independent, identically as X distributed random variables. The corresponding order-
ed sample is denoted as

(X1
∗, X2

∗, . .. , Xn∗), 0 ≤ X1
∗ ≤ X2

∗ ≤ . .. ≤ Xn∗.

Given that X has a uniform distribution over  the joint probability density of[0, x],
the random vector  is{X1

∗, X2
∗, ..., Xn∗}

         (3.26)f ∗(x1
∗, x2

∗, ..., xn∗) =
⎧

⎩
⎨

n!/ xn, 0 ≤ x1
∗ < x2

∗ < . .. < xn∗ ≤ x,
0 , elsewhere

.

For the sake of comparison: The joint probability density of the original (unordered)
sample  is{X1, X2, ..., Xn}

                     (3.27)f (x1, x2, ..., xn) =
⎧

⎩
⎨

1/ xn, 0 ≤ xi ≤ x
0 , elsewhere

.

Theorem 3.5  Let  be a homogeneous Poisson process with intensity ,{N(t), t ≥ 0} λ
and let  be  event time;  Given  theTi i th i = 1, 2, ...; T0 = 0. N(t) = n; n = 1, 2, ...,
random vector  has the same joint probability density as an ordered{T1, T2, ..., Tn}
random sample taken from a uniform distribution over [0, t].

120                                                                                    STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



Proof  By definition, for disjoint, but otherwise arbitrary subintervals  of[ti, ti + hi]
, the joint probability density of  on condition  is[0, t] {T1, T2, ..., Tn} N(t) = n

f (t1, t2, ..., tn N(t) = n)

= lim
max(h1,h2,...,hn)→0

P(ti ≤ Ti < ti + hi; i = 1, 2, ..., n N(t) = n)
h1h2. .. hn

.

Since the event ' ' is equivalent to N(t) = n Tn ≤ t < Tn+1,

P(ti ≤ Ti < ti + hi; i = 1, 2, ..., n N(t) = n)

=
P(ti ≤ Ti < ti + hi, i = 1, 2, ..., n ; t < Tn+1)

P(N(t) = n)

=
∫
t

∞
∫
tn

tn+hn
∫

tn−1

tn−1+hn−1
... ∫

t1

t1+h1
λn+1 e−λxn+1 dx1. .. dxn dxn+1

(λt)n

n! e−λt

=
h1h2. .. hn λne−λt

(λt)n

n! e−λt
=

h1h2. .. hn
tn

n! .

Hence, the desired conditional joint probability density is

        (3.28)f (t1, t2, ..., tn N(t) = n) =
⎧

⎩
⎨

n! /tn, 0 ≤ t1 < t2 < . .. < tn ≤ t
0 , elsewhere

.

Apart from the notation of the variables, this is the joint density (3.26).                    �

The relationship between homogeneous Poisson processes and the uniform
distribution proved in this theorem motivates the common phrase that a homogen-
eous Poisson process is a purely random process, since, given  the eventN(t) = n,
times  are 'purely randomly' distributed over T1, T2, ..., Tn [0, t].

Example 3.4 (shot noise)  Shot noise processes have been formally introduced in ex-
ample 2.5. Now an application is discussed in detail: In the circuit, depicted in Figure
3.3, a light source is switched on at time  A current pulse is initiated in the cir-t = 0.
cuit as soon as the cathode emits a photoelectron due to the light falling on it. Such a
current pulse can be quantified by a function  with propertiesh(t)

                               (3.29)h(t) ≥ 0, h(t) = 0 for t < 0 and ∫0
∞ h(t) dt < ∞.
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Let  be the sequence of random time points, at which the cathode emitsT1, T2, ...
photoelectrons and  be the corresponding counting process. Then the to-{N(t), t ≥ 0}
tal current flowing in the circuit at time  ist

                                       (3.30)X(t) = Σi=1
∞ h(t − Ti) .

In view of (3.29),  can also be written in the formX(t)

X(t) = Σi=1
N(t)

h(t − Ti) .

In what follows,  is assumed to be a homogeneous Poisson process with{N(t), t ≥ 0}
parameter  For determining the trend function of the shot noise  noteλ. {X(t), t ≥ 0},
that according to theorem 3.5, on condition ' ', the  are uniform-N(t) = n T1, T2, ..., Tn
ly distributed over  Hence,[0, t].

E(h(t − Ti) N(t) = n) = 1
t ∫0

t h(t − x) dx = 1
t ∫0

t h(x) dx .

Therefore,

E(X(t) N(t) = n) = E⎛⎝ Σi=1
n h(t − Ti) N(t) = n⎞⎠

= Σi=1
n E(h(t − Ti) N(t) = n)

= ⎛
⎝

1
t ∫0

t h(x) dx⎞⎠ n .

The total probability rule  yields(1.7)

E(X(t)) = Σn=0
∞ E(X(t) N(t) = n) P(N(t) = n)

= 1
t ∫0

t h(x) dx Σn=0
∞ n (λ t)n

n! e−λt

= ⎛
⎝

1
t ∫0

t h(x) dx⎞⎠ E(N(t)) = ⎛
⎝

1
t ∫0

t h(x) dx⎞⎠ (λt) .
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Therefore, the trend function of the shot noise process is

                                          (3.31)m(t) = λ ∫0
t h(x) dx .

In order to obtain the covariance variance function, the mean value of the product
X(s) X(t) has to be determined:

E(X(s)X(t)) = Σi,j=1
∞ E[h(s − Ti) h(t − Tj)]

= Σi=1
∞ E(h(s − Ti) h(t − Ti))

+ Σ
i,j=1, i≠j

∞
E⎡⎣h(s − Ti) h(t − Tj)⎤⎦.

Since, on condition ' ', the  are uniformly distributed over ,N(t) = n T1, T2, ..., Tn [0, t]

E(h(s − Ti) h(t − Ti) N(t) = n) = 1
t ∫0

t h(s − y)h(t − y) dy .

Thus, for  substituting s < t, x = s − y,

E(h(s − Ti) h(t − Ti) N(t) = n) = 1
t ∫0

s h(x) h(t − s + x) dx .

Moreover, by theorem 3.5, on condition ' ' the  are independent.N(t) = n T1, T2, ..., Tn
Hence,

E(h(s − Ti) h(t − Tj) N(t) = n) = E(h(s − Ti) N(t) = n) E(h(t − Tj) N(t) = n)

= ⎛
⎝

1
t ∫0

s h(s − x) dx⎞⎠
⎛
⎝

1
t ∫0

t h(t − x) dx⎞⎠

= ⎛
⎝

1
t ∫0

s h(x) dx⎞⎠
⎛
⎝

1
t ∫0

t h(x) dx⎞⎠ .

Thus, for s < t,

E(X(s) X(t) N(t) = n) = ⎛
⎝

1
t ∫0

s h(x)h(t − s + x) dx⎞⎠ n

+⎛⎝
1
t ∫0

s h(x) dx⎞⎠
⎛
⎝

1
t ∫0

t h(x) dx⎞⎠ (n − 1) n .

Applying once more the total probability rule,

E(X(s) X(t)) = ⎛
⎝

1
t ∫0

s h(x)h(t − s + x) dx⎞⎠E(N(t))

+⎛⎝
1
t ∫0

s h(x) dx⎞⎠
⎛
⎝

1
t ∫0

t h(x) dx⎞⎠ ⎡⎣E(N 2(t)) − E(N(t))⎤⎦ .

In view of
  and  ,E(N(t)) = λt E(N 2(t)) = λt (λt + 1)

making use of (3.31) and (2.4) yields the covariance function:

C(s, t) = λ ∫0
s h(x)h(t − s + x) d x, s < t .
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More generally, for any s and t,  can be written in the formC(s, t)

C(s, t) = λ ∫0
min(s,t)

h(x) h( t − s + x) d x.

Letting  yields the variance of s = t X(t) :

Var(X(t)) = λ ∫0
t h2(x) d x .

By letting , keeping  constant, trend- and covariance function becomes → ∞ τ = t − s

                                           (3.32)m = λ ∫0
∞ h(x) dx ,

                                   (3.33)C(τ) = λ ∫0
∞ h(x) h( τ + x) dx .

These two formulas are known as Campell's theorem. They imply that, for large t,
the shot noise process  is approximately weakly stationary. (For another{X(t), t ≥ 0}
proof of Campell's theorem see exercise 3.7, and for more general formulations of
this theorem see, for instance, Brandt, Franken, and Lisek [13], Stigman [78].)
If the current impulses induced by photoelectrons have random intensities  thenAi,
the total current flowing in the circuit at time  ist

X(t) = Σi=1
N(t)

Ai h(t − Ti) .

Provided the  are identically distributed as A, independent of each other, and  in-Ai
dependent of all , then determining  trend- and covariance function of the general-Tk
ized shot noise  does not give rise to principally new problems. Provided{X(t), t ≥ 0}
the first two moments of  exist, one obtainsA

                                      (3.34)m(t) = λ E(A)∫0
t h(x) dx ,

                     (3.35)C(s, t) = λ E(A2)∫0
min(s,t)

h(x) h( t − s + x) d x.

If the process of inducing current impulses by photoelectrons has already been oper-
ating for an unboundedly long time (the circuit was switched on a sufficiently long
time ago), then the underlying shot noise process  is given by{X(t), t ∈ (−∞, +∞)}

X(t) = Σ−∞
+∞ Ai h(t − Ti) .

In this case the process is a priori stationary.                                                              �

Example 3.5  Customers arrive at a service station (service system, queueing system)
according to a homogeneous Poisson process  with intensity . Hence,{N(t), t ≥ 0} λ
the arrival of a customer is a Poisson event. The number of servers in the system is
assumed to be so large that an incoming customer will always find an available ser-
ver. To cope with this situation, the service system must be modeled as having an in-
finite number of servers. The service times of all customers are assumed to be inde-
pendent random variables, which are identically distributed as Z.
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Let  be the distribution function of Z, and X(t) be the random numberG(t) = P(Z ≤ t)
of customers in the system at time t,  The aim is to determine the state prob-X(0) = 0.
abilities  of the system:pi(t)

pi(t) = P(X(t) = i); i = 0, 1, ...; t ≥ 0.

A customer arriving at time x is still in the system at time  with probabilityt, t > x,
i.e. its service has not yet been finished by t. Given the arrival1 − G(t − x), N(t) = n,

times  of the n customers in the system are, by theorem 3.4, independentT1, T2, ..., Tn
and uniformly distributed over  For calculating the state probabilities, the order[0, t].
of the  is not relevant. Thus, the probability that any of the n customers who arriv-Ti
ed in  is still in the system at time t, is[0, t]

p(t) = ∫0
t (1 − G(t − x)) 1

t dx = 1
t ∫0

t (1 − G(x)) dx .

Since, by assumption, the service times are independent of each other,

P(X(t) = i N(t) = n) = ⎛
⎝

n
i
⎞
⎠ [p(t)]i[1 − p(t)]n−i; i = 0, 1, ..., n .

By the total probability rule (1.7),

pi(t) = Σ
n=i

∞
P(X(t) = i N(t) = n) ⋅ P(N(t) = n)

= Σ
n=i

∞ ⎛
⎝

n
i
⎞
⎠ [p(t)]i[1 − p(t)]n−i ⋅ (λt)n

n! e−λt.

This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Thus, from example 1.8 (there the parameter  has to be replaced with ), theλ λt
state probabilities of the system are

 pi(t) = [λt p(t)]i

i! ⋅ e−λ t p(t); i = 0, 1, ...

Hence,  has a Poisson distribution with parameterX(t)
E(X(t)) = λ t p(t).

Consequently, the trend function of the stochastic process  is{X(t), t ≥ 0}

m(t) = λ ∫0
t (1 − G(x)) dx , t ≥ 0.

For  the trend function tends tot → ∞

                                           (3.36)lim
t→∞

m(t) = E(Z)
E(Y) ,

where  is the mean interarrival time and  the mean service time of aE(Y) = 1/λ E(Z)
customer:

E(Z) = ∫0
∞(1 − G(x)) dx .
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By letting
ρ = E(Z)/E(Y) ,

the stationary state probabilities of the system become

                           (3.37)pi = lim
t→∞

pi(t) =
ρi

i! e−ρ; i = 0, 1, ...

If Z has an exponential distribution with parameter , thenμ

m(t) = λ ∫0
t e−μx dx = λ

μ
⎛
⎝1 − e−μt ⎞

⎠ .

In this case,                                                                                                    �ρ = λ/μ.

3.2.2   Nonhomogeneous Poisson Processses

In this section a stochastic process is investigated, which, except for the homogeneity
of its increments, has all the other properties listed in theorem 3.1. Abandoning the
assumption of homogeneous increments implies that a time-dependent intensity func-
tion   takes over the role of  This leads to the concept of a nonhomogene-λ = λ(t) λ.
ous Poisson process. As in section 3.1, the following notation will be used:

N(s, t) = N(t) − N(s), 0 ≤ s < t,

Definition 3.3  A counting process  satisfying  is called a non-{N(t), t ≥ 0} N(0) = 0
homogeneous Poisson process with intensity function  if it has propertiesλ(t)
(1)  has independent increments,{N(t), t ≥ 0}
(2) P(N(t, t + h) ≥ 2) = o(h),
(3)                                                                              zP(N(t, t + h) = 1) = λ(t) h + o(h) .

Three problems will be considered:
1) Computation of the probability distribution of increments :N(s, t)

pi(s, t) = P(N(s, t) = i); 0 ≤ s < t, i = 0, 1, ...
2) Computation of the probability density of the random event time  (time point atTi
which the i th Poisson event occurs).
3) Computation of the joint probability density of (T1, T2, ..., Tn); n = 1, 2, ...
1) In view of the assumed independence of the increments, for h > 0,

p0(s, t + h) = P(N(s, t + h) = 0)

= P(N(s, t) = 0, N(t, t + h) = 0)

= P(N(s, t) = 0) ⋅ P( N(t, t + h) = 0)

= p0(s, t) [1 − λ(t) h + o(h)] .
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Thus,   
p0(s, t + h) − p0(s, t)

h = −λ(t) p0(s, t) + o(h)
h .

Letting  yields a partial differential equation of the first order:h → 0
∂
∂t p0(s, t) = −λ(t) p0(s, t).

Since  or, equivalently, , the solution isN(0) = 0 p0(0, 0) = 1

                                      (3.38)p0(s, t) = e−[Λ(t)−Λ(s)] ,
where

                                      (3.39)Λ(x) = ∫0
x λ(u) du ; x ≥ 0.

Starting with  the probabilities  for  can be determined by induc-p0(s, t), pi(s, t) i ≥ 1
tion:

                                     (3.40)pi(s, t) =
[Λ(t)−Λ(s)] i

i! e−[Λ(t)−Λ(s)]; i = 0, 1, 2, ...

In particular  the absolute state probabilities,

pi(t) = pi(0, t) = P(N(t) = i)

of the nonhomogeneous Poisson process at time  aret

                           (3.41)pi(t) =
[Λ(t)] i

i! e−Λ(t); i = 0, 1, 2, ...

Hence, the mean number of Poisson events  occurring in the inter-m(s, t) = E(N(s, t))
val  is[s, t], s < t,

                                (3.42)m(s, t) = Λ(t) − Λ(s) = ∫s
t λ(x) dx .

In particular  the trend function of the nonhomogeneous Poisson process is,

m(t) = Λ(t) = ∫0
t λ(x) dx, t ≥ 0.

2) Let  be the distribution function and  the probability den-FT1 (t) = P(T1 ≤ t) fT1 (t)
sity of the random time  to the occurrence of the first Poisson event. ThenT1

p0(t) = p0(0, t) = P(T1 > t) = 1 − FT1 (t) .

From (3.38),
p0(t) = e−Λ(t).

Hence,

           (3.43)FT1 (t) = 1 − e−∫0
t λ(x) dx, fT1 (t) = λ(t)e−∫0

t λ(x) dx, t ≥ 0.
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A comparison of (3.43) with (1.40) shows that the intensity function  of the non-λ(t)
homogeneous Poisson process  is identical to the failure rate belonging{N(t), t ≥ 0}
to  SinceT1.

                             (3.44)FTn (t) = P(Tn ≤ t) = P(N(t) ≥ n),

the distribution function of the nth event time  isTn

                         (3.45)FTn (t) = Σ
i=n

∞ [Λ(t)]i

i! e−Λ(t) , n = 1, 2, ...

Differentiation with respect to t yields the probability density of :Tn

                  (3.46)fTn (t) = [Λ(t)]n−1

(n − 1)! λ(t) e−Λ(t); t ≥ 0 , n = 1, 2, ...

Equivalently,

fTn (t) = [Λ(t)]n−1

(n − 1)! fT1 (t); t ≥ 0 , n = 1, 2, ...

By (1.17), the mean value of  isTn

                                                      (3.47)E(Tn) = ∫
0

∞
e−Λ(t) ⎛

⎝
⎜ Σ

i=0

n−1 [Λ(t)]i

i!
⎞

⎠
⎟ dt .

Hence, the mean time
E(Yn) = E(Tn) − E(Tn−1)

between the  and the  event is(n − 1) th n th

               (3.48)E(Yn) = 1
(n − 1)! ∫0

∞ [Λ(t)]n−1 e−Λ(t) dt ; n = 1, 2, ...

Letting  and  yields the corresponding characteristics for the homo-λ(t) ≡ λ Λ(t) ≡ λ t
geneous Poisson process, in particular .E(Yn) = 1/λ

3) The conditional probability  is equal to the probability that atP(T2 ≤ t2 T1 = t1 ⎞⎠
least one Poisson event occurs in  Thus, from (3.40),(t1, t2], t1 < t2.

FT2 (t2 t1) = 1 − p0(t1, t2) = 1 − e−[Λ(t2)−Λ(t1)].

Differentiation with respect to  yields the corresponding probability density:t2

fT2 (t2 t1) = λ(t2) e−[Λ(t2)−Λ(t1)] , 0 ≤ t1 < t2.

By (1.59), the joint probability density of   is(T1, T2)

f (t1, t2) =
⎧

⎩
⎨

λ(t1) fT1 (t2) for t1 < t2
0, elsewhere

.
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Starting with , one inductively obtains the joint density of :f (t1, t2) (T1, T2, ..., Tn)

 (3.49)f (t1, t2, ..., tn) =
⎧

⎩
⎨

λ(t1)λ(t2). .. λ(tn−1) fT1 (tn) for 0 ≤ t1 < t2 < . .. < tn
0, elsewhere

This result includes as a special case formula (3.25).

As with the homogeneous Poisson process, the nonhomogeneous Poisson counting
process the corresponding point process of Poisson event times{N(t), t ≥ 0},

 and the sequence of interevent times  are statistically equiv-{T1, T2, ...} {Y1, Y2, ...}
alent stochastic processes.

Example 3.6   From historical observations it is known that the number of cars arriv-
ing for petrol at a particular filling station weekdays between 5:00 and 11:00 a.m.
can be modeled by an nonhomogeneous Poisson process  with intensity{N(t), t ≥ 0}
function (Figure 3.4)

λ(t) = 10 + 35.4 (t − 5) e−(t−5)2/8, 5 ≤ t ≤ 11.

1) What is the mean number of cars arriving for petrol weekdays between 5:00 and
11:00? According to (3.42)  this mean number is,

E(N(5, 11)) = ∫5
11 λ(t) dt = ∫0

6 ⎛
⎝10 + 35.4 t e−t2/8 ⎞

⎠ dt

= ⎡
⎣⎢10 t − 141.6 e−t2/8 ⎤

⎦⎥0

6
= 200.

2) What is the probability that at least 90 cars arrive for petrol weekdays between
6:00 and 8:00  The mean number of cars arriving between 6:00 and 8:00 is?

∫6
8 λ(t) dt = ∫1

3(10 + 35.4 t e−t2/8) dt

= ⎡
⎣⎢10 t − 141.6 e−t2/8 ⎤

⎦⎥1

3
= 99.
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Hence, the random number of cars  arriving between 6:00 andN(6, 8) = N(8) − N(6)
8:00 has a Poisson distribution with parameter  Thus, desired probability is99.

P(N(6, 8) ≥ 90) = Σ
n=90

∞ 99n
n! e−0.99.

By using the normal approximation to the Poisson distribution (section 1.9.3):

Σ
n=90

∞ 99n
n! e−0.99 ≈ 1 − Φ

⎛

⎝
⎜ 90 − 99

99

⎞

⎠
⎟ ≈ 1 − 0.1827.

Hence,
                                           P(N(6, 8) ≥ 90) = 0.8173.

3.2.3  Mixed Poisson Processes

Mixed Poisson processes were already introduced by Dubourdieu [24] for model-
ing claim number processes in accident and sickness insurance. In view of their flex-
ibility, they are now a favourite point process model for many other applications. A
recent monograph on mixed Poisson processes is Grandell [35].
Let  be a homogeneous Poisson process  with  parameter . To explic-{N(t), t ≥ 0} λ
itely express the dependence of this process on  in this section the notationλ,

 for the process  is adopted. The basic idea of Dubourdieu{Nλ(t), t ≥ 0} {N(t), t ≥ 0}
was to consider  a realization of a positive random variable L, which is called theλ
(random) structure or mixing parameter. Correspondingly, the probability distribu-
tion of L is called the structure or mixing distribution (see section 1.2.4).

Definition 3.4  Let L be a positive random variable with range  Then the count-RL.
ing process  is said to be a mixed Poisson process with structure param-{NL(t), t ≥ 0}
eter L if it has the following properties:

(1)  has independent, homogeneous increments for all {NL L=λ(t), t ≥ 0} λ ∈ RL.

(2)                                  P⎛⎝NL L=λ(t) = i⎞⎠ = (λ t)i

i !
e−λ t for all λ ∈ RL, i = 0, 1, ...

Thus, on condition  the mixed Poisson process is a homogeneous Poisson pro-L = λ,
cess with parameter :λ

{NL L=λ(t), t ≥ 0} = {Nλ(t), t ≥ 0}.

The absolute state probabilities  of the mixed Poisson process atpi(t) = P(NL(t) = i)
time t are

                        (3.50)P⎛⎝NL(t) = i⎞⎠ = E
⎛

⎝
⎜

(L t)i

i !
e−L t ⎞

⎠
⎟ ; i = 0, 1, ..
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If L is a discrete random variable with  thenP(L = λk) = πk ; k = 0, 1, ...;

                           (3.51)P⎛⎝NL(t) = i⎞⎠ = Σ
k=0

∞ (λk t)i

i !
e−λk t πk .

In applications, a binary structure parameter  is particularly important. In this case,L

                   (3.52)P⎛⎝NL(t) = i⎞⎠ =
(λ1 t)i

i !
e−λ1 t π +

(λ2 t)i

i !
e−λ2 t (1 − π)

for 0 ≤ π ≤ 1, λ1 ≠ λ2.

The basic results, obtained in what follows, do not depend on the probability distri-
bution of L. Hence, for convenience, throughout this section the assumption is made
that L is a continuous random variable with density  Then,fL(λ).

pi(t) = ∫
0

∞ (λ t)i

i !
e−λ t fL(λ) d λ ; i = 0, 1, ...

Obviously, the probability  is the Laplace transform of p0(t) = P(NL(t) = 0) fL(λ)
with parameter  (section 1.3.2):s = t

p0(t) = f L (t) = E(e−L t) = ∫0
∞ e−λ t fL(λ) d λ .

The  derivative of  isi th p0(t)

d ip0(t)

d it
= p0

(i)(t) = ∫0
∞(−λ) ie−λ t fL(λ) d λ .

Therefore, all state probabilities of a mixed Poisson process can be written in terms
of p0(t) :

                 (3.53)pi(t) = P(NL(t) = i) = (−1)i t i
i !

p0
(i)(t) ; i = 1, 2, ...

Mean value and variance of  are (compare with the parameters of the mixedNL(t)
Poisson distribution given in section 1.2.4)):

               (3.54)E(NL(t)) = t E(L), Var (NL(t)) = t E(L) + t 2Var(L) .

The following theorem lists two important properties of mixed Poisson processes.

Theorem 3.6  (1) A mixed Poisson process  has homogeneous incre-{NL(t), t ≥ 0}
ments.
(2) If L is not a constant (i.e. the structure distribution is not degenerate), then the in-
crements of the mixed Poisson process  are not independent.{NL(t), t ≥ 0}

Proof (1) Let  Then, for any nonnegative integers0 = t0 < t1 < . .. < tn; n = 1, 2, ...
i1, i2, ..., in,
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P(NL(tk−1 + τ, tk + τ) = ik; k = 1, 2, ..., n)

= ∫0
∞ P(Nλ(tk−1 + τ, tk + τ) = ik; k = 1, 2, ..., n) fL(λ) d λ

= ∫0
∞ P(Nλ(tk−1, tk) = ik; k = 1, 2, ..., n) fL(λ)d λ

= P(NL(tk−1, tk) = ik; k = 1, 2, ..., n).

(2) Let  Then,0 ≤ t1 < t2 < t3.

P(NL(t1, t2) = i1, NL(t2, t3) = i2)

  = ∫0
∞ P(Nλ(t1, t2) = i1, Nλ(t2, t3) = i2) fL(λ)dλ

= ∫0
∞ P(Nλ(t1, t2) = i1) P( Nλ(t2, t3) = i2) fL(λ)dλ

 ≠ ∫0
∞ P(Nλ(t1, t2) = i1) fL(λ)dλ ∫0

∞ P( Nλ(t2, t3) = i2) fL(λ)dλ

= P(NL(t1, t2) = i1) P( NL(t2, t3) = i2) .

This proves the theorem if the mixing parameter L is a continuous random variable.
If L is discrete, the same pattern applies.                                                                      

Multinomial Criterion  Let  Then, for any nonneg-0 = t0 < t1 < . .. < tn; n = 1, 2, ...
ative integers  with i1, i2, ..., in i = i1 + i2 + . .. + in ,

P(NL(tk−1, tk) = ik; k = 1, 2, ..., n NL(tn) = i)

                      (3.55)= i !
i1! i2!. .. in!

⎛
⎝

t1
tn
⎞
⎠

i1 ⎛
⎝

t2 − t1
tn

⎞
⎠

i2 . .. ⎛
⎝

tn − tn−1
tn

⎞
⎠

in
.

Interestingly, this conditional probability does not depend on the structure distribu-
tion (compare to theorem 3.4). Although the derivation of the multinomial criterion
is elementary, it is not done here (exercise 3.15).

As an application of the multinomial criterion (3.55), the joint distibution of the in-
crements  and  will be derived:NL(0, t) = NL(t) NL(t, t + τ)

P(NL(t) = i, NL(t, t + τ) = k)

= P(NL(t) = i NL(t + τ) = i + k) P(NL(t + τ) = i + k)

= (i + k)!
i ! k!

⎛
⎝

t
t + τ

⎞
⎠

i ⎛
⎝

τ
t + τ

⎞
⎠

k
∫
0

∞ [λ(t + τ)]i+k

(i + k) !
e−λ (t+τ) fL(λ) d λ .

Hence, the joint distribution is
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       (3.56)P(NL(0, t) = i, NL(t, t + τ) = k) = t i τk
i ! k! ∫0

∞ λi+k e−λ (t+τ) fL(λ) d λ

for i, k = 0, 1, ...

Since a mixed Poisson process has dependent increments, it is important to get infor-
mation on the nature and strength of the statistical dependence between two neigh-
bouring increments. As a first step into this direction, the mean value of the product
of the increments  and  has to be determined. FromNL(t) = NL(0, t) NL(t, t + τ)
(3.56),

E([NL(t)] [NL(t, t + τ)]) = Σ
i=1

∞
Σ

k=1

∞
i k t i τk

i ! k! ∫0
∞ λi+k e−λ (t+τ) fL(λ) d λ

= t τ ∫
0

∞
λ2 Σ

i=0

∞ (λ t)i

i ! Σ
k=0

∞ (λ τ)k

k !
e−λ (t+τ) fL(λ) d λ

= t τ ∫0
∞ Σi=0

∞ λ2 eλ teλ τe−λ (t+τ) fL(λ) d λ

= t τ ∫0
∞ λ2 fL(λ) d λ .

Thus,
                            (3.57)E([NL(t)] [NL(t, t + τ)]) = t τ E(L2) .

Hence, in view of  (2.4) and (3.57),

Cov (NL(τ), NL(τ, τ + t)) = t τ Var (L) .

Thus, two neighbouring increments of a mixed Poisson process are positively corre-
lated. Consequently, a large number of events in an interval will on average induce a
large number of events in the following interval ('large' relative to the respective
lengths of these intervals). This property of  a  stochastic  process is also called  posi-
tive contagion.

Polya Process  A mixed Poisson process with a gamma distributed structure parame-
ter  is called a Polya process (or Polya-Lundberg process).L
Let the gamma density of  beL

fL(λ) =
βα

Γ(α) λα−1 e−βλ, λ > 0, α > 0, β > 0.

Then, proceeding as in example  (section 1.2.4) yields1.9

P(NL(t) = i) = ∫0
∞ (λ t)i

i !
e−λ t βα

Γ(α) λα−1e−βλ d λ

= Γ(i + α)
i ! Γ(α)

tiβα

(β + t)i+α .
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Hence,

        (3.58)P⎛⎝NL(t) = i⎞⎠ = ⎛
⎝

i − 1 + α
i

⎞
⎠
⎛
⎝

t
β + t

⎞
⎠

i ⎛
⎝

β
β + t

⎞
⎠

α
; i = 0, 1, ...

Thus, the one-dimensional distribution of the Polya process  is a nega-{ NL(t), t ≥ 0}
tive binomial distribution with parameters  and  In particular, forr = α p = t /(β + t).
an exponential structure distribution ,  has a geometric distribution with(α = 1) NL(t)
parameter p = t /(t + β).

To determine the n-dimensional distribution of the Polya process, (3.58) and the
multinomial criterion (3.55) are used:

For and  0 = t0 < t1 < . .. < tn; n = 1, 2, ... i0 = 0,

P(NL(tk) = ik; k = 1, 2, ..., n)

= P(NL(tk) = ik; k = 1, 2, ..., n NL(tn) = in ) P(NL(tn) = in)

= P(NL(tk−1, tk) = ik − ik−1; k = 1, 2, ..., n NL(tn) = in) P(NL(tn) = in)

= in!
Πk=1

n (ik − ik−1)!
Π
k=1

n ⎛
⎝

tk − tk−1
tn

⎞
⎠

ik−ik−1 ⎛
⎝

in − 1 + α
in

⎞
⎠
⎛
⎝

tn
β + tn

⎞
⎠

in ⎛
⎝

β
β + tn

⎞
⎠

α
.

After some algebra, the n-dimensional distribution of the Polya process becomes

P(NL(tk) = ik; k = 1, 2, ..., n)

   (3.59)= in!
Πk=1

n (ik − ik−1)!
⎛
⎝

in − 1 + α
in

⎞
⎠
⎛
⎝

β
β + tn

⎞
⎠

α
Π
k=1

n ⎛
⎝

tk − tk−1
β + tn

⎞
⎠

ik−ik−1
.

For the following three reasons it is not surprising that the Polya process is increas-
ingly used for modeling real-life point processes, in particular customer flows:
1) The finite dimensional distributions of this process are explicitely available.
2) Dependent increments occur more frequently than independent ones.
3) The two free parameters  and  of this process allow its adaptation to a wide va-α β
riety of data sets.

Example 3.7 An insurance company analyzed the incoming flow of claims and
found that the arrival intensity  is subjected to random fluctuations, which can beλ
modeled by the probability density  of a gamma distributed random variable LfL(λ)
with mean value  and variance  (unit: working hour). TheE(L) = 0.24 Var(L) = 0.16
parameters  and  of this gamma distribution can be obtained fromα β

E(L) = 0.24 = α /β, Var(L) = 0.16 = α /β2.

134                                                                                   STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



Hence,  and  Thus, L has densityα = 0.36 β = 1.5.

fL(λ) = (1.5)0.36

Γ(0.36) λ−0.64 e−(1.5) λ, λ > 0.

In time intervals, in which the arrival rate was nearly constant, the flow of claims be-
haved like a homogeneous Poisson process. Hence, the insurance company modeled
the incoming flow of claims by a Polya process  with the one-dimen-{ NL(t), t ≥ 0}
sional probability distribution

 P⎛⎝NL(t) = i⎞⎠ = ⎛
⎝

i − 0.64
i

⎞
⎠
⎛
⎝

t
1.5 + t

⎞
⎠

i ⎛
⎝

1.5
1.5 + t

⎞
⎠

0.36
; i = 0, 1, ...

According to (3.54), mean value and variance of  areNL(t)

E(NL(t)) = 0.24 t, Var (NL(t)) = 0.24 t + 0.16 t 2.

As illustrated by this example, the Polya process (as any other mixed Poisson pro-
cess)  is a more appropriate model  than a homogeneous Poisson process with inten-
sity  for fitting claim number developments, which exhibit a greater variabil-λ = E(L)
ity with increasing t.                                                                                                      

Doubly Stochastic Poisson Process  The mixed Poisson process generalizes the ho-
mogeneous Poisson process by replacing its parameter  with a random variable L.λ
The corresponding generalization of the nonhomogeneous Poisson process leads to
the concept of a doubly stochastic Poisson process. A doubly stochastic Poisson pro-
cess  can be thought of as a nonhomogeneous Poisson process the{NL(⋅)(t), t ≥ 0}
intensity function  of which has been replaced with a stochastic processλ(t)

 called intensity process. Thus, a sample path of a doubly stochastic{L(t), t ≥ 0}
 process  can be generated as follows:Poisson {NL(⋅)(t), t ≥ 0}

1) A sample path  of a given intensity process  is simulated{λ(t), t ≥ 0} {L(t), t ≥ 0}
according to the probability distribution of {L(t), t ≥ 0}.

2) Given  the process  evolves like a nonhomogeneous{λ(t), t ≥ 0}, {NL(⋅)(t), t ≥ 0}
Poisson process with intensity function λ(t).

Thus, a doubly stochastic Poisson process  is generated by two inde-{NL(⋅)(t), t ≥ 0}
pendent 'stochastic mechanisms'.

The absolute state probabilities of the doubly stochastic Poisson process at time  aret

        (3.60)P(NL(⋅)(t) = i) = 1
i !

E
⎛
⎝
⎜ ⎡⎣∫0

t L(x) dx⎤⎦
i
e−∫0

t L(x) dx ⎞
⎠
⎟ ; i = 0, 1, ...

In this formula, the mean value operation ' ' eliminates the randomness generated byE
the intensity process in [0, t].
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The trend function of  is{NL(⋅)(t), t ≥ 0}

m(t) = E⎛⎝∫0
t L(x) dx⎞⎠ = ∫0

t E(L(x)) dx , t ≥ 0.

A nonhomogeneous Poisson process with intensity function  can beλ(t) = E(L(t))
used as an approximation to the doubly stochastic Poisson process {NL(⋅)(t), t ≥ 0}.

The doubly stochastic Poisson process becomes
1. the homogeneous Poisson process if  is a constant ,L(t) λ
2. the nonhomogeneous process if  is a nonrandom function L(t) λ(t), t ≥ 0,
3. the mixed Poisson process if  is a random variable L, which does not dependL(t)
on t.

The two 'degrees of freedom' a doubly stochastic Poisson process has make this pro-
cess a universal point process model. The term 'doubly stochastic Poisson process'
was introduced by Cox [21], who was the first to investigate this class of point pro-
cesses. Hence, these processes are also called Cox processes. For detailed treatments
and applications in engineering and insurance, respectively, see, for instance, Snyder
[76] and Grandell [34].

3.2.4    Superposition and Thinning of Poisson Processes

3.2.4.1  Superposition
Assume that a service station recruits its customers from n different sources. For in-
stance,  a  branch  bank  serves customers from n different towns, or a car workshop
repairs  and  maintains n different makes of cars.  Each  town  or  each  make  of  cars,
respectively,  generates its own arrival process (flow of demands). Let

{Ni(t), t ≥ 0}; i = 1, 2, ..., n,
be the corresponding counting processes. Then, the total number of customers arriv-
ing at the service station in  is[0, t]

N(t) = N1(t) + N2(t) + . .. + Nn(t) .
Note that  can be thought of as the counting process of a marked point{N(t), t ≥ 0}
process, where the marks indicate from which source the 'customers' come.
On condition  that  is  a homogeneous Poisson process with parameter{Ni(t), t ≥ 0}

  what type of counting process is λi; i = 1, 2, ..., n, {N(t), t ≥ 0}?
From example 1.22 (section 1.7.1) it is known that the z-transform of  isN(t)

MN(t)(z) = e−(λ1+λ2+ . .. +λn) t (z−1).

Therefore,  has a Poisson distribution with parameterN(t)
(λ1 + λ2 + . .. + λn) t.
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Since the counting processes  have homogeneous and independent in-{Ni(t), t ≥ 0}
crements, their additive superposition  also has homogeneous and inde-{N(t), t ≥ 0}
pendent increments. This proves the following theorem:

Theorem 3.7  The  additive  superposition  of  independent  homoge-{N(t), t ≥ 0}
neous  Poisson processes  with intensities   is a homo-{Ni(t), t ≥ 0} λi; i = 1, 2, ..., n ;
geneous Poisson process with intensity                                  λ = λ1 + λ2 + . .. + λn.

Quite analogously, if the  are independent nonhomogeneous Poisson{Ni(t), t ≥ 0}
processes with intensity functions ; then their additive superposi-λi(t) i = 1, 2, ..., n ;
tion  is a nonhomogeneous Poisson process with intensity function{N(t), t ≥ 0}

λ(t) = λ1(t) + λ2(t) + . .. + λn(t).

3.2.4.2  Thinning
There are many situations in which not superposition, but the opposite operation,

 thinning or splitting, of a Poisson process occurs. For instance, a cosmic par-namely
ticle counter registers only -particles and ignores other types of particles. Or, aα
reinsurance company is only interested in claims, the size of which exceeds, say, one
million dollars. Formally, a marked point process  arrives{(T1, M1), (T2, M2), ...}
and only events with special marks will be taken into account. It is assumed that the
marks  are independent of each other and independent of  and thatMi {T1, T2, ...},
they are identically distributed as

M =
⎧

⎩
⎨

m1 with probability 1 − p
m2 with probability p ,

i.e. the mark space only consists of two elements:  In this case, thereM = {m1, m2}.
are two different types of events, type 1-events (attached with mark ) and typem1
2-events (attached with mark  If only type 1-events are counted, of what kind ism2).
the arising point process ?

Let  be the first event time with mark . Note that if , then there is surelyY m2 t < T1
no type 2-event in , and if , then there are exactly n events in [0, t] Tn ≤ t < Tn+1 [0, t]
and  is the probability that none of them is a type -event. Hence,(1 − p)n 2

P(Y > t) = P(0 < t < T1) + Σn=1
∞ P(Tn ≤ t < Tn+1) (1 − p)n.

Since P(Tn ≤ t < Tn+1) = P(N(t) = n),

P(Y > t) = e−λt + Σ
n=1

∞ ⎛
⎝

(λ t)n

n! e−λt ⎞
⎠ (1 − p)n

= e−λt + e−λt Σ
n=1

∞ [λ (1−p) t]n

n! = e−λt + e−λt ⎡⎣e
λ(1− p) t − 1⎤⎦.
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Hence,
P(Y > t) = e−λ p t, t ≥ 0.

Hence, the interevent times between type 2-events have an exponential distribution
with parameter  Moreover, in view of our assumptions, these interevent times arepλ.
independent. By changing the roles of type 1 and type 2-events, theorem 3.2 implies
theorem 3.8:

Theorem 3.8  Given a homogeneous Poisson process  with intensity {N(t), t ≥ 0} λ
and two types of Poisson events 1 and 2, which occur independently with respective
probabilities  and . Then  can be represented in the form1 − p p N(t)

                                        (3.61)N(t) = N1(t) + N2(t),

where  and  are two independent homogeneous Poisson{N1(t), t ≥ 0} {N2(t), t ≥ 0}
processes with respective intensities  and which count only type 1- and(1 − p) λ p λ ,
type 2-events, respectively.                                                                                         

Nonhomogeneous Poisson Process  Now the situation is somewhat generalized by
assuming that the underlying counting process  is a nonhomogeneous{N(t), t ≥ 0}
Poisson process with intensity function  and that an event, occurring at time t, isλ(t)
of type 1 with probability  and  of  type 2 with probability  Let  be the1 − p(t) p(t). Y
time to the first occurrence of a type - event,2

G(t) = P(Y ≤ t)

its distribution function, and  Then the relationshipG(t) = 1 − G(t).

P(t < Y ≤ t + Δt Y > t) = p(t) λ(t) Δt + o(Δt) .

implies
1

G(t)
⋅ G(t + Δt) − G(t)

Δt = p(t) λ(t) + o(Δt)
Δt .

Letting  tend to 0 yields,Δt
G (t)
G(t)

= p(t) λ(t) .

By integration,

                                  (3.62)G(t) = e−∫0
t p(x) λ(x) dx , t ≥ 0.

If  then   is the survival function of the system.p(t) ≡ 1, G

Theorem 3.9  Given a nonhomogeneous Poisson process  with intensity{N(t), t ≥ 0}
function  and two types of events 1 and 2, which occur independently with res-λ(t)
pective probabilities  and  if t is an event time. Then  can be repre-1 − p(t) p(t) N(t)
sented in the form

N(t) = N1(t) + N2(t),
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where  and  are independent nonhomogeneous Poisson{N1(t), t ≥ 0} {N2(t), t ≥ 0}
processes with respective intensity functions

 and ,(1 − p(t))λ(t) p(t)λ(t)

which count only type 1 and type 2-events, respectively.                                           

In section 3.2.6.3, some more sophisticated results will be needed: Let  be the ran-Z
dom number of type - events to the occurrence of the first type 2-event. Then1

P(Z = 0) = ∫0
∞ p(t) f(t) dt ,

where  is the density of the first event time  as given by (3.43):f (t) = f T1 (t) T1

f (t) = λ(t) e−∫0
t λ(x) dx, t ≥ 0.

From (3.49), for k ≥ 1,

P(Z = k) = ∫0
∞ ∫0

xk+1 . .. ∫0
x3 ∫0

x2 Πi=1
k p(xi) λ(xi) dxi p(xk+1) f (xk+1) dxk+1.

By making use of the well-known formula

 (3.63)∫0
t ∫0

xn . .. ∫0
x3 ∫0

x2 Πi=1
n g(xi) dx1dx2. .. dxn = 1

n!
⎡
⎣∫0

t g(x) dx⎤⎦
n

, n ≥ 2,

the desired probability is seen to be

         (3.64)P(Z = k) = 1
k! ∫0

∞ ⎛
⎝∫0

t p(x) λ(x) dx⎞⎠
k
p(t) f(t) dt , k = 0, 1, ...

After some algebra,

                      (3.65)E(Z) = Σk=1
∞ k P(Z = k) = ∫0

∞ Λ(t) dG(t) − 1.

If  then Z has a geometric distribution with parameter p so thatp(t) ≡ p > 0,

                                                (3.66)E(Z) =
1 − p

p

and  has structureG(t)

                                        (3.67)G(t) = [F(t)]p; t ≥ 0.

Now, let  be the random number of type 1-events in  andZt (0, min(Y, t))

rt(k) = P(Zt = k Y = t); k = 0, 1, ...

Then, by (1.6),

rt(k) = lim
Δt→0

P(Zt = k ∩ t ≤ Y ≤ t + Δt)
P(t ≤ Y ≤ t + Δt)

                              (3.68)= lim
Δt→0

P(t ≤ Y = Xk+1 ≤ t + Δt)
G(t + Δt) − G(t) .
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From (3.49) and (3.63)  the numerator in (3.68) becomes,

P(t ≤ Y = Xk+1 ≤ t + Δt)

= ∫t
t+Δt ∫0

xk+1 . .. ∫0
x3 ∫0

x2 Πi=1
k p(xi) λ(xi) dxi p(xk+1) f(xk+1) dxk+1

= 1
k! ∫t

t+Δt ⎛
⎝∫0

y
p(x) λ(x) dx⎞⎠

k
p(y) f(y) dy.

Dividing numerator and denominator in (3.68) by  and taking the limit as Δt Δt → 0
yields

rt(k) = 1
k!
⎛
⎝∫0

t p(x) λ(x) dx⎞⎠
k
e−∫0

t p(x) λ(x) dx; k = 0, 1, ...

Hence, given  the random variable  has a Poisson distribution with meanY = t, Zt

                                 (3.69)E(Zt Y = t) = ∫0
t p(x) λ(x) dx ,

so that

E(Zt Y < t) = ∫0
t E(Zx Y = x) dG(x)/G(t)

                                 (3.70)= ∫0
t ∫0

x p(y) λ(y) dy dG(x)/G(t)

and
                       (3.71)E(Zt Y ≥ t) = E(Zt Y = t) = ∫0

t p(x) λ(x) dx.

Now the (unconditional) mean value of  can be otained fromZt

E(Zt) = E(Zt Y < t) G(t) + E(Zt Y ≥ t) G(t).

The result is
                                     (3.72)E(Zt) = ∫0

t G(x) λ(x) dx − G(t).

For these and related results see Beichelt [5].

3.2.5   Compound Poisson Processes

Let  be a marked point process, where  is a{(Ti, Mi); i = 1, 2, ...} {Ti; i = 1, 2, ...}
 point process with corresponding counting process  Then thePoisson {N(t), t ≥ 0}.

stochastic process  defined by{C(t), t ≥ 0}

C(t) = Σi=0
N(t)

Mi

with  is called a compound (cumulative, aggregate) Poisson process.M0 = 0
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Compound Poisson processes occur in many situations: 1) If  is the time point atTi
which the  customer arrives at an insurance company and  its claim size, theni th Mi

 is the total claim amount the company is confronted with in time interval .C(t) [0, t]
2) If  is the time of the  breakdown of a machine and  the corresponding re-Ti i th Mi
pair cost, then  is the total repair cost in . 3) If  is the time point the C(t) [0, t] Ti i th
shock occurs and  the amount of (mechanical) wear this shock contributes to theMi
degree of wear of an item, then  is the degree of wear of the item at time t. (ForC(t)
the brake discs of a car, every application of the brakes is a shock, which increases
their degree of mechanical wear. For the tires of the undercarriage of an aircraft, every
takeoff and touchdown is a shock, which diminishes their tread depth.)
In what follows,  is assumed to be a homogeneous Poisson process with{N(t), t ≥ 0}
intensity . If the  are independent and identically distributed as M and independ-λ Mi
ent of then  has the following properties:{T1, T2, ...}, {C(t), t ≥ 0}
1)  has independent, homogeneous increments.{C(t), t ≥ 0}
2) The Laplace transform of  isC(t)

                                       (3.73)Ct(s) = eλ t [ M(s)−1] ,
where

M(s) = E⎛⎝e
−s M ⎞

⎠

is the Laplace transform of M. The proof of (3.73) is straightforward: By (1.27),

Ct(s) = E⎛⎝e
−s C(t) ⎞

⎠ = E⎛⎝e
−s (M0+M1+M2+. .. +MN(t) ⎞

⎠

= Σ
n=0

∞
E⎛⎝e

−s (M0+M1+M2+. .. +Mn ⎞
⎠ P(N(t) = n)

= Σ
n=0

∞
E⎛⎝e

−s M ⎞
⎠

n (λt)n

n! e−λt

= e−λ t Σ
n=0

∞ [λt M(s)]n

n! = eλ t [ M(s)−1] .

From , all the moments of  can be obtained by making use of (1.28). In par-Ct(s) C(t)
ticular, mean value and variance of  areC(t)

                       (3.74)E(C(t)) = λt E(M ), Var(C(t)) = λt E(M 2).

These formulas also follow from (1.125) and (1.126).
Now the compound Poisson process is considered on condition that M has a Ber-
noulli distribution:

M =
1 with probability p
0 with probability 1 − p .
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Then  as a sum of independent and Bernoulli distributed randomM1 + M2 + . .. + Mn
variables is binomially distributed with parameters  and p (section 1.2.2.2). Hence,n

P(C(t) = k) = Σ0=1
n P( M0 + M1 + . .. + Mn = k N(t) = n) P(N(t) = n)

= Σ
n=0

∞ ⎛
⎝

n
k
⎞
⎠ pk (1 − p)n−k (λt)n

n! e−λt .

This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Hence, by example 1.8 (section 1.2.4),  has a Poisson distribution with pa-C(t)
rameter :λ p t

 P(C(t) = k) =
(λ p t)n

n! e−λ p t; k = 0, 1, ...

Corollary If the marks of a compound Poisson process  have a Bernoulli{C(t), t ≥ 0}
distribution with parameter p, then  is a thinned homogeneous Poisson{C(t), t ≥ 0}
process with parameter λp.

If the underlying counting process  is a nonhomogeneous Poisson pro-{N(t), t ≥ 0}
cess with intensity function

 and λ(t) Λ(t) = ∫0
t λ(x) dx,

then (3.73) and (3.74) become

Ct(s) = eΛ(t) [ M(s)−1]

and
                  (3.75)E(C(t)) = Λ(t) E(M ), Var(C(t)) = Λ(t) E(M 2).

Again, formulas (3.75) are an immediate consequence of (1.125) and (1.126). For
compound renewal processes, see section 3.3.7.

3.2.6    Applications to Maintenance 

3.2.6.1  Nonhomogeneous Poisson Process and Minimal Repair
The nonhomogeneous Poisson process is an important mathematical tool for optimiz-
ing the maintenance of technical systems with respect to cost and reliability criteria
by applying proper maintenance policies (strategies). Maintenance policies prescribe
when to carry out (preventive) repairs, replacements or other maintenance measures.
Repairs after system failures usually only tackle the causes which triggered off the
failures. A minimal repair performed after a failure enables the system to continue its
work but does not affect the failure rate of the system. In other words, after a mini-
mal repair the failure rate of the system has the same value as immediately before the
failure. For example, if a failure of a complicated electronic system is caused by a
defective plug and socket connection, then removing this cause of failure can be con-
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sidered a minimal repair. Preventive replacements (renewals) and preventive repairs
are not initiated by system failures, but they are carried out to prevent or at least to
postpone future ones. Of course, preventive minimal repairs make no sense.
In what follows it is assumed that all renewals and repairs take only negligibly small
times and that, after completing a renewal or a repair, the system immediately resum-
es its work. The random lifetime T of the system has probability density f (t), distri-
bution function F(t), survival probability , and failure rate λ(t). For aF(t) = 1 − F(t)
recent survey see Kapur, Garg, and Kumar [44]. The following maintenance policy is
directly related to a nonhomogeneous Poisson process.

Basic Policy  Every system failure is (and can be) removed by a minimal repair.

Let  be the random time point, at which the  system failure (minimal repair)Tn n th
occurs. Then

Yn = Tn − Tn−1

is the length of the time span between the  and the  system failure,(n − 1)th n th
. The first failure of the system after starting to work at time t = 0n = 1, 2, ...; T0 = 0

occurs at time  Given  the failure rate of the system after completionT = T1. T1 = t,
of the repair is . Hence, the future failure behaviour of the system is the same asλ(t)
that of a system which has worked up to time point t  failing. Therefore, fromwithout
(1.34), the time between the first and the second system failure  givenY2 = T2 − T1

,   has distribution functionT1 = t

Ft(y) = P(Y2 ≤ y) = F(t + y) − F(t)
F(t)

.

According to (1.40) and (3.38), equivalent representations of  areFt(y)

                                    (3.76)Ft(y) = 1 − e−[Λ(t+y)−Λ(t)]

and
Ft(y) = 1 − p0(t, t + y).

Obviously, these equations are also valid if t is not the time point of the first failure,
but the time point of any failure, for instance the  failure. Then  is  the distri-n th Ft(y)
bution function of the  interarrival time  given that (n + 1) th Yn = Tn+1 − Tn Tn = t.
The occurrence of system failures (minimal repairs) is, therefore, governed by the

 probability distribution as the occurrence of Poisson events generated by asame
nonhomogeneous Poisson process with intensity function . Specifically, the ran-λ(t)
dom vector  has the joint probability density (3.49) for all (T1, T2, ..., Tn) n = 1, 2, ...
Therefore, if N(t) denotes the number of system failures (minimal repairs) in ,[0, t]
then  is a nonhomogeneous Poisson process with intensity function .{N(t), t ≥ 0} λ(t)
In particular, N(t) has a Poisson distribution with parameter :Λ(t)

                                     (3.77)E(N(t)) = Λ(t) = ∫0
t λ(x) dx.
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The nonhomogeneous Poisson point process  is an ingredient to a mark-{T1, T2, ...}
ed point process  where  denotes the cost of the i th min-{(T1, M1), (T2, M2), ...}, Mi
imal repair. The corresponding compound process  is given by{M(t), t ≥ 0}

M(t) = Σi=0
N(t)

Mi , M0 = 0,

where  is the total repair cost in . The  are assumed to be inde-M(t) [0, t] M1, M2, ...
pendent of each other, independent of N(t), and identically distributed as M with

. Then the trend function of  iscm = E(M) < ∞ {M(t), t ≥ 0}

                                     (3.78)m(t) = E(M(t)) = cm Λ(t) .

3.2.6.2  Standard Replacement Policies with Minimal Repair
The basic policy discussed in the previous section provides the theoretical fundament
for analyzing a number of more sophisticated maintenance policies. In what follows,
four policies of this kind will be considered. To justify preventive replacements, the
assumption has to be made that the underlying system is aging (section 1.4, defini-
tion 1.1), i.e. its failure rate  is increasing. In addition, all replacement and repairλ(t)
times are assumed to be negligibly small. The latter assumption is merely a matter of
convenience.
The criterion for evaluating the efficiency of maintenance policies will be the aver-
age maintenance cost per unit time over an infinite time span. To establish this criter-
ion, the time axis is partitioned into replacement cycles, i.e. into the times between
two neighbouring replacements. Let  be the random length of the i th replacementLi
cycle and  the total random maintenance cost (replacement + repair cost) in the i thCi
replacement cycle. It is assumed that the  are independent and identicallyL1, L2, ...
distributed as L. This assumption implies that a replaced system is statistically as
good as the previous one ('as good as new') from the point of view of its lifetime.
The  are assumed to be independent, identically distributed as , and inde-C1, C2, ... C
pendent on the . Then the maintenance cost per unit time over an infinite timeLi
span is

K = limn→∞
Σi=1

n Ci

Σi=1
n Li

.

The strong law of the large numbers implies that

                                                 (3.79)K = E(C)
E(L) .

For the sake of brevity, K is referred to as the (long-run) maintenance cost rate.
Thus, the maintenance cost rate is equal to the mean maintenance cost per cycle di-
vided by the mean cycle length. In what follows,  denotes the cost of a preventivecp
replacement, and  is the cost of a minimal repair;  constant.cm cp, cm
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Policy 1  A system is preventively replaced at fixed times   Failures betweenτ, 2τ, ...
replacements are removed by minimal repairs.

This policy reflects the common approach of preventively overhauling complicated
systems after fixed time periods whilst in between only the absolutely necessary re-
pairs are done. With this policy, all cycle lengths are equal to , and, in view ofτ
(3.77), the mean cost per cycle is equal to

cp + cmΛ(τ).
Hence, the corresponding maintenance cost rate is

K1(τ) =
cp + cm Λ(τ)

τ .

A replacement interval , which minimizes , satisfies conditionτ = τ∗ K1(τ)

τ λ(τ) − Λ(τ) = cp /cm .

If  tends to  as , there exists a unique solution  of this equation.λ(t) ∞ t → ∞ τ = τ∗
The corresponding minimal maintenance cost rate is

K1(τ∗) = cm λ(τ∗) .

Policy 2  A system is replaced at the first failure which occurs after a fixed time .τ
Failures which occur between replacements are removed by minimal repairs.

This policy fully makes use of the system lifetime so that, from this point of view, it
is preferable to policy 1. However, the partial uncertainty about the times of replace-
ments leads to larger replacement costs than with policy 1. Thus, in practice the
maintenance cost rate of policy 2 may actually exceed the one of policy 1.
The residual lifetime  of the system after time point , when having survived in-Tτ τ
terval  ,  has, according to (1.36), the mean value[0, τ]

                              (3.80)μ(τ) = E(Tτ) = e Λ(τ)∫τ
∞ e−Λ(t)dt .

The mean maintenance cost per cycle is, from the notational point of view, equal to
that of policy 1  Thus, the maintenance cost rate is.

K2(τ) =
cp + cmΛ(τ)

τ + μ(τ) ,

since  is the mean cycle length. An optimal renewal interval  satisfiesτ + μ(τ) τ = τ∗
the necessary condition ,  i.e.dK2(τ)/d τ = 0

(Λ(τ) +
cp
cm − 1) μ(τ) = τ .

If  exists, then the minimal maintenance cost rate isτ∗

K2(τ∗) =
cp + cm[Λ(τ∗) − 1]

τ∗ .
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Example 3.8  Let the system lifetime T have a Rayleigh distribution with failure rate
. The corresponding mean residual lifetime of the system after havingλ(t) = 2t / θ2

survived  is[0, τ]

μ(τ) = θ π e(τ / θ)2 ⎡

⎣
⎢1 − Φ

⎛
⎝⎜

2
θ τ

⎞
⎠⎟
⎤

⎦
⎥ .

In particular, if  , , and , the optimal parameters areθ = 100 [h−1] cm = 1 cp = 5

,                                          �τ∗= 180 [h] K2(τ∗) = 0.0402.

Policy 3 Each failure is removed by a minimal repair. On the first failure after a given
time  an unscheduled replacement is carried out. However, if there is no replace-τ1,
ment in  then at time point  a preventive replacement is done[τ1, τ2], τ1 < τ2, τ2 .

Under this policy, the random cycle length is
L = τ1 + min(Tτ1 , τ2 − τ1) ,

so that the mean cycle length is

E(L) = τ1 + μ(τ1, τ2) with μ(τ1, τ2) = ∫0
τ2−τ1 Fτ1 (t) dt.

Hence, if  is the cost of an unscheduled replacement, the maintenance cost rate iscr

K3(τ1, τ2) =
cm Λ(τ1) + cr Fτ1 (τ2 − τ1) + cp Fτ1 (τ2 − τ1)

τ1 + μ(τ1, τ2) .

An optimal pair  is solution of the equation system(τ1, τ2) = (τ1
∗, τ2

∗)

λ(τ2) μ(τ1, τ2) + Fτ1 (τ2 − τ1) − cm/(cr − cp) = 0,

λ(τ2) −
cm Λ(τ1) + cr − cm

(cr − cp) τ1
= 0 .

A sufficient condition for the existence of a unique solution  which satisfies(τ1
∗, τ2

∗)
the condition  is0 ≤ τ1

∗ < τ2
∗

  and  λ(t) → ∞ 0 < cr − cp < cm < cr < ∞.
In this case, the minimal maintenance cost rate is

K3(τ1
∗, τ2

∗) = (cr − cp) λ(τ2
∗) .

Policy 4  The first  failures are removed by minimal repairs. At the time point ofn − 1
the  failure, an (unscheduled) replacement is carried out.n th
The random cycle length is  Hence, the maintenance cost rate isL = Tn.

 K4(n) = cr + (n − 1)cm
E(Tn) ,

where the mean cycle length  is given by (3.47).E(Tn)
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By analyzing the behaviour of the difference  an optimal  isK4(n) − K4(n − 1), n = n∗
seen to be the smallest integer  satisfyingk

                 (3.81)E(Tn) − [n − 1 + cr /cm] E(Yn+1) ≥ 0; n = 1, 2, ...,

where the mean time  between the  and the  minimal repair is giv-E(Yn) (n − 1)th n th
en by formula (3.48). 

Example 3.9  Let the system lifetime  have a Weibull distribution:T

                        (3.82)λ(t) = β
θ
⎛
⎝

t
θ
⎞
⎠

β−1
, Λ(t) = ⎛

⎝
t
θ
⎞
⎠

β
, β > 1.

Under this assumption  condition (3.82) becomes,

β n − [n − 1 + cr/cm] ≥ 0 .
Hence, if cr > cm,

n ∗ = 1
β−1

⎛
⎝

cr
cm − 1⎞⎠ + 1,

where  is the largest integer being less than or equal to x. (If then   �x x < 0, x = 0.)

3.2.6.3  Replacement Policies for Systems with two Failure Types
So far, it has been assumed that every system failure can be removed by a minimal
repair. This is not always possible. For example, the restoration of the roadworth-
iness of a car after a serious traffic accident can surely not be achieved by a minimal
repair. To be able to model such situations, two failure types are introduced:
Type 1: Failures of this type are (and can be) removed by minimal repairs.
Type 2: Failures of this type are removed by replacements.
Type 1 failures are minor ones, which can be removed without much effort, whereas
type 2 failures may be complete system breakdowns. A failure occuring at system
age t is a type 2 failure with probability  and a type 1 failure with probabilityp(t)

 The types of failures are assumed to occur independently of each other. Ob-1 − p(t).
viously, this is the same situation as discussed in section 3.2.4.2: The type 1 (type 2)
Poisson events introduced there are here interpreted as type 1 (type 2) failures.

Policy 5  The system is maintained according to the failure type.

Under policy 5, a replacement cycle is the time between two neighbouring type 2 fai-
lures. Hence, according to (3.62), the distribution function of the cycle length  isL

                               (3.83)G(t) = 1 − e−∫0
t p(x)λ(x)dx, t ≥ 0.

The random number Z of minimal repairs between neighbouring replacements has
mean value (3.65). Thus, the maintenance cost rate is
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                               (3.84)K5 =
⎡⎣∫0

∞ Λ(t)dG(t) − 1⎤⎦cm + cr

∫0
∞ e−∫0

t p(x)λ(x)dxdt
.

In the special case  by (3.66) and (3.67),p(t) ≡ p > 0,

                                      (3.85)K5 = [(1 − p) /p] cm + cr

∫0
∞ ⎡⎣F(t)⎤⎦

pdt
.

Policy 6  The system is maintained according to the failure type. In addition, pre-
ventive replacements are carried out  time units after the previous replacement.τ

Let  with  denote the cost of a minimal repair, a re-cm, cr, and cp 0 < cm < cp < cr
placement after a type 2 failure (unscheduled replacement) and a preventive replace-
ment, respectively. Then

Lτ = min(Y, τ)

is the random length of a replacement cycle (time between successive replacements
of any type) and, if  denotes the random number of minimal repairs in a replace-Zτ
ment cycle  the maintenance cost rate has structure,

K6(τ) =
cm E(Zτ)) + cr G(τ) + cp G(τ)

E(Lτ) .

In view of (3.72) and
E(Lτ) = ∫0

τ G(t) dt ,

the maintenance cost rate becomes

               (3.86)K6(τ) =
cm ⎡⎣∫0

τ G(t)λ(t)dt − G(τ)⎤⎦ + cr G(τ) + cp G(τ)

∫0
τ G(t) dt

.

In particular, for p(t) ≡ p,

                       (3.87)K6(τ) =
{cr + [(1 − p)/p] cm}G(τ) + cp G(τ)

∫0
τ G(t) dt

.

If there exists an optimal preventive replacement interval  with regard to theτ = τ∗

maintenance cost rate   then it is solution of the equationK6(τ) ,

p λ(τ)∫0
τ G(t) dt − G(τ) =

p cp
(cr − cp − cm)p + cm

.

As proved in [5], a unique solution  exists if  is strictly increasing to infinityτ∗ λ(t)
and . If there is no preventive maintenance, i.e. , thencr − cp > cm(1 + p) /p τ = ∞
(3.86) and (3.87) reduce to (3.84) and (3.85), respectively.
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Minimal repairs and replacements are extreme maintenance actions in the sense that
they have no influence at all at the system reliability, or they restore the initial relia-
bility level, respectively. Beginning with the papers of Uematsu and Nishida [83]
and Kijma, Morimura and Suzuki [49], approaches to modeling general degrees of
repairs have been suggested which take into account the intermediate stages. For a
recent, comprehensive survey see Guo, Ascher and Love [37].

3.2.6.4  Repair Cost Limit Replacement Policies with Minimal Repair
Replacement policies based on repair cost limits are widely acknowledged as partic-
ularly userfriendly and efficient strategies for organizing the maintenance of complex
systems. Different from the maintenance policies considered so far, repair cost limit
replacement policies explicitely take into account that repair costs are random varia-
bles. The theoretical basis for the analysis of the repair cost limit replacement policy
considered in this section is the two failure type model introduced in the previous
section.

Policy 7 (Repair cost limit replacement policy)  After a system failure, the necessary
repair cost is estimated. The system is replaced by an equivalent new one if the repair
cost exceeds a given level  where t is the age of the system at the time of failure.c(t),
Otherwise, a minimal repair is carried out.

Let  be the random repair cost of the system if it fails at age t. Then the two failureCt
type model applies to policy 7 if the failure types are generated by  in the follow-Ct
ing way  A system failure at time t is of type 1 (type 2) if:

.Ct ≤ c(t) (Ct > c(t))
Thus, if

Rt(x) = P(Ct ≤ x)

denotes the distribution function of  and if , then the respectiveCt Rt(x) = 1 − Rt(x)
probabilities of type  and type 2 failures are1

                             (3.88)1 − p(t) = Rt(c(t)) , p(t) = Rt(c(t)).

As before, let  be the cost of a replacement after a type 2 failure. It is reasonable tocr
assume that, for all t ≥ 0,

   and    0 < c(t) < cr Rt(x) = 1 if x ≥ cr
0 if x ≤ 0

.

With the failure type probabilities given by (3.88), the length L of a replacement
 has, according to (3.83)  distribution functioncycle ,

                           (3.89)G(t) = 1 − e−∫0
t Rx(c(x))λ(x) dx, t ≥ 0.

By (3.86), the corresponding maintenance cost rate is
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         (3.90)K7 =

⎡

⎣
⎢∫0

∞ Λ(t)λ(t) Rt(c(t) e−∫0
t Rx(c(x))λ(x) dxdt − 1.

⎤

⎦
⎥cm + cr

∫0
∞ e−∫0

t Rx(c(x))λ(x) dxdt .
.

The problem consists in finding a repair cost limit function  which minimiz-c = c(t)
es (3.66). Generally, an explicit analytical solution cannot be given. Hence, some
special cases will be discussed. In particular, the system lifetime X is assumed to be
Weibull distributed:

                (3.91)F(t) = P(X ≤ t) = 1 − e−(t/θ)β
, t ≥ 0, β > 1, θ > 0.

The respective failure rate and integrated failure rate are given by (3.82).

Constant Repair Cost Limit  For the sake of comparison, next the case is consider-
ed that the repair cost limit is constant and that the cost of a repair C does not depend
on t, i.e.

 for all x and t.c(t) ≡ c and Rt(x) = R(x)

In this case, the probability  does not depend on time so that the length of ap = R(c)
replacement cycle has distribution function

G(t) = 1 − e−R(c) (t/θ)β
, t ≥ 0.

Hence, the mean cycle length is

E(L) = θ Γ(1 + 1/β) ⎡⎣ R(c)⎤⎦
−1/β.

The corresponding maintenance cost rate can immediately be obtained from (3.87):

K7(c) =

R(c)
R(c)

cm + cr

θ Γ(1 + 1/β) ⎡⎣ R(c)⎤⎦
−1/β .

This maintenance cost rate depends on c only via  The value of  mini-R(c). y = R(c)
mizing  is easily seen to beK7(c)

y∗ = R(c∗) =
β − 1
k − 1

with k = cr /cm.

By assumption,  and  Hence, since   an additional assumptionk > 1 β > 1. 0 < y∗ < 1,
has to be made:

                                                    (3.92)1 < β < k.

Given (3.92), for any  with inverse function  the optimal limit  isR R−1, c = c∗

                                           (3.93)c∗ = R−1 ⎛
⎝

β − 1
k − 1

⎞
⎠ .

Its application yields the smallest possible maintenance cost rate, which can be achiev-
ed with a constant repair cost limit:
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K7(c∗) =
β cm

θ Γ(1 + 1/β)
⎛
⎝

k − 1
β − 1

⎞
⎠

1−1/β
.

In particular, for  (Rayleigh distribution),β = 2

Γ1 + 1/β) = Γ(3/2) = π/4
so that

                      (3.94)K7(c∗) = 4 cm
θ

k − 1
π ≈ 2.2568 cm

θ k − 1 .

Hyperbolic Repair Cost Limit Function  System aging implies an increase in the
mean failure frequency and in the mean repair cost with increasing system age t.
Thus, a decreasing repair cost limit  is supposed to lead to a lower maintenancec(t)
cost rate than a constant repair cost limit or an increasing repair cost limit function.
To demonstrate this, the efficiency of the following nonincreasing repair cost limit
function will be investigated in conjunction with a repair cost C being uniformly dis-
tributed over the interval [0, cr] :

               (3.95)c(t) =
⎧

⎩
⎨

cr, 0 ≤ t < d/(cr − c)
c + d /t, d/(cr − c) ≤ t < ∞

, 0 ≤ c < cr ,

                         (3.96)R(x) = P(C ≤ x) =
⎧

⎩
⎨

x/cr, 0 ≤ x ≤ cr
1, cr < x < ∞

.

Combining (3.95) and (3.96) gives the probability that a system failure, which occurs
at age t, implies a replacement:

R(c(t)) =
⎧

⎩
⎨
⎪
⎪

0 , 0 ≤ t < d/(cr − c)
cr−c
cr − d

cr t , d
cr−c ≤ t < ∞

, 0 ≤ c < cr .

Letting
                                 (3.97)r = d /c, s = (cr − c) /cr, z = r /s

yields

                             (3.98)R(c(t)) =
⎧

⎩
⎨

0 , 0 ≤ t < z
s (1 − z/t) , z ≤ t < ∞

.

Scheduling replacements based on (3.98) is well motivated: Replacements of systems
in the first period of their useful life will not be scheduled. After this period, a sys-
tem failure makes a replacement more and more likely with increasing system age.
To obtain tractable formulas, the system lifetime is assumed to have a Rayleigh dis-
tribution (distribution function (3.91) with :β = 2)

                                  (3.99)λ(t) = 2 t /θ2 , Λ(t) = (t /θ)2 .
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Under these assumptions, the maintenance cost rate (3.90) can explicitely be evaluat-
ed by making use of the following three basic integrals:

∫0
∞ x3e−λ s x2

dx = 1
2(λs)2 ,

                                      (3.100)∫0
∞ x2e−λ s x2

dx = 1
4λs

π
λ s ,

∫0
∞ x e−λ s x2

dx = 1
2λ s .

The result is

K7(r, s) = 2
2 r + θ π s

⎛
⎝⎜
1 − s + 1

θ
π r
s + 1

s
⎛
⎝

r
θ
⎞
⎠

2
+ k⎞

⎠⎟
cm .

In order to minimize  with respect to r and s, in a first step  is mini-K7(r, s) K7(r, s)
mized with respect to r with s fixed. The corresponding optimal value of r, denoted
as   is solution of the quadratic equation r∗ = r∗(s), ∂ K7(r, s)/∂r = 0 :

⎛
⎝r + θ

2 π s ⎞
⎠

2
= θ2s

4 [4s(k − 1) + 4 − π] .

Since, by assumption,  the right-hand side of this equation is positive.k = cr/cm > 1,
Hence, a solution exists:

r∗(s) = θ
2 s ⎡

⎣ 4s(k − 1) + 4 − π − π ⎤
⎦ .

To make sure that  an additional assumption has to be made:r∗(s) > 0,

                                             (3.101)k > π − 2
2 s + 1.

The corresponding maintenance cost rate is

                        (3.102)K7(r∗(s), s) = cm
θ 4(k − 1) + 4 − π

s .

Since  the function  assumes its minimum at  Hence, s ≤ 1, K7(r∗(s), s) s = 1. c = 0.
With  condition (3.101) holds if and only if s = 1,

k > π/2 ≈ 1.57.
Since replacement costs are usually much higher than repair costs, this condition
hardly imposes a restriction on the application of the repair cost limit function (3.95).

Summarizing: If , the optimal repair cost limit function of structure (3.95) isk > π/2

  and  c = 0 d∗ = θ
2
⎡
⎣ 4k − π − π ⎤

⎦cr ,

and the corresponding minimal maintenance cost rate is

                                      (3.103)K7(d∗) = cm
θ 4k − π .
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Under what condition is  smaller than ?  The inequalityK7(d∗) K7(c∗)

K7(d∗) = cm
θ 4k − π < K7(c∗) = 4 cm

θ
k − 1

π
holds if and only if

k > k∗ = 16 − π2
16 − 4π .

Since  this restriction is slightly stronger than , but for the1.785 < k∗ < 1.786, k > π/2
same reasons as given above, will have no negative impact on practical applications.
Figure 3.5 compares the relative cost criteria

K∼ 7(d∗) = θ
cm K7(d∗) and K∼ 7(c∗) = θ

cm K7(c∗)

in dependence on k,  k ≥ k∗.

Age Dependent Repair Cost  Till now it has been assumed that the repair cost C
does not depend on the failure time. However, it is more realistic to assume that on
average repair costs increase with increasing system age. Hence, let the cost of a re-
pair, occurring at system age t, have a uniform distribution over  with [a, a + bt] a ≥ 0
and . Then,b > 0

                        (3.104)Rt(x) = P(Ct ≤ x) =
⎧

⎩
⎨
⎪
⎪

1 , 0 ≤ t < x−a
b

x−a
b t , x−a

b < t
.

Constant repair cost limit   For  the sake of comparison, next a constant repair cost  c
limit is applied. Then, a failure at time  implies a replacement with probabilityt

Rt (c) = P(Ct > c) =
⎧

⎩
⎨

0 , 0 ≤ t < r
1 − r/t , r ≤ t

,

where  With the lifetime characteristics (3.99) and again making use ofr = (c − a)/b.
the integrals (3.100), the maintenance cost rate (3.90) reduces to
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K7(r) =
⎡
⎣(r/θ)2 + r

θ π ⎤
⎦ cm + cr

r + θ π/4
.

The value  minimizing  isr = r∗ K7(r)

r∗ = θ
2
⎡
⎣ 4k − π − π ⎤

⎦,

where, as before,  To make sure that  the inequality  mustk = cr /cm. r∗ > 0, k > π/2
be satisfied. Then corresponding optimal repair cost limit   Its appli-is c∗ = a + b r∗.
cation yields

                                    (3.105)K7(c∗) = cm
θ 4k − π .

Decreasing repair cost limit  Let

c(t) =
⎧

⎩
⎨

c − d t , 0 ≤ t ≤ c/d
0 , c/d < t

, a < c, d > 0,

be a linearly decreasing repair cost limit and
r = (c − a)/b , s = (b + d)/b , y = (c − a)/d , z = r/s .

Then, from (3.104), a system failure at age  implies a replacement with probabilityt

Rt(c(t)) =
⎧

⎩
⎨
⎪
⎪

0 , 0 ≤ t < z
s (1 − z/t), z ≤ t ≤ y
1 , y < t

.

If  is assumed to be sufficiently small, then letting  will only have a negligi-d y = ∞
bly small effect on the maintenance cost rate (3.90). Moreover, the replacement prob-
ability  has the same functional structure as (3.98). Thus, for small d  the min-Rt(c(t))
imal maintenance cost rate is again given by (3.102):

                           (3.106)K7(r∗(s), s) = cm
θ 4(k − 1) + 4 − π

s .

Note that, different to the definition of s by (3.97), now  Hence, with s > 1. K7(c∗)
 by (3.105), one easily verifies thatgiven

K7(c∗) > K7(r∗(s), s).
Thus, a linearly decreasing repair cost limit function must exist,  which is more effi-
cient than  a  constant repair cost limit. However, an optimal parameter  cannots = s∗

be constructed by minimizing (3.106), since  decreases with increasing s,K7(r∗(s), s)
but for (3.106) to be approximately valid, the assumption  's is sufficiently near to 1'
had to be made.
The results obtained in this section indicate that the application of decreasing repair
cost limits leads to lower maintenance cost rates than the application of constant
repair cost limits if the total repair cost is progressively increasing in time.
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3.3    RENEWAL PROCESSES

3.3.1  Definitions and Examples  

The motivation for this chapter is a simple maintenance policy: A system is replaced
on every failure by a statistically equivalent new one in negligible time and, after
that, the new system (or the 'renewed system') immediately starts operating. In this
context, the replacements of failed systems are also called renewals. The sequence of
the system lifetimes after renewals generates a renewal process.

Definition 3.5  An ordinary renewal process is a sequence of nonnegative, indepen-
dent, and identically distributed random variables                           {Yi; i = 1, 2, ...}.

Thus,  is the time between the  and the i th renewal; Yi (i − 1)th i = 1, 2, ..., Y0 = 0.
Renewal processes do not only play an important role in engineering, but also in the
natural, economical and social sciences. They are a basic stochastic tool for modeling
particle counting, population development, and arrivals of customers at a service
station. In the latter context,  is the time between the arrival of the  and theYi (i − 1)th

customer. Renewal processes are particularly important in actuarial risk analysis,i th
namely for modeling the arrival of claims at an insurance company (section 3.5).  In
this chapter a terminology is adopted which refers to the 'simple maintenance policy'.
If  the  observation  of  a  renewal process starts at time   and  the  process  hast = 0
already been operating for a while, then the lifetime of the system operating at time

 is a 'residual lifetime' and will, therefore, usually not have the same probabilityt = 0
distribution as the lifetime of a system after a renewal.  Hence  it makes sense to
define a generalized renewal process by assuming that only the  are identi-Y2, Y3, ...
cally distributed. This leads to the following definition:

Definition 3.6  Let  be a sequence of nonnegative, independent random{Y1, Y2, ...}
variables with property that  has distribution functionY1

,F1(t) = P(Y1 ≤ t)

whereas the random variables  are identically distributed as Y with distribu-Y2, Y3, ...
tion function

F(t) = P(Y ≤ t), F1(t) ≡/ F(t).

Then  is called a delayed renewal process.                                               {Y1, Y2, ...}

The random time point at which the  renewal takes place isn th

Tn = Σi=1
n Yi ; n = 1, 2, ...

The random point process  is called the process of the time points of{T1, T2, ...}
renewals. The time intervals between two neighbouring renewals are renewal cycles.
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The corresponding counting process , defined by{N(t), t ≥ 0}

, N(t) =
⎧

⎩
⎨

max (n; Tn ≤ t)
0 for t < T1

is called renewal counting process. Note that  is the random number of renewalsN(t)
in .  The relationship(0, t]

  if and only if                                 (3.107)N(t) ≥ n Tn ≤ t,

implies
                              (3.108)FTn (t) = P(Tn ≤ t) = P(N(t) ≥ n).

Because of the independence of the the distribution function  is the convo-Yi, FTn (t)
lution of  with the  th convolution power of F (see section 1.7.2): F1(t) (n − 1)

                     (3.109)FTn (t) = F1 ∗ F∗(n−1)(t), F∗(0)(t) ≡ 1, t ≥ 0 ; n = 1, 2, ...

If the densities
 f1(t) = F1(t) and f (t) = F (t)

exist, then the density of  isTn

                   (3.110)fTn (t) = f1 ∗ f∗(n−1)(t), f∗(0)(t) ≡ 1, t ≥ 0; n = 1, 2, ...

Using (3.108) and
P(N(t) ≥ n) = P(N(t) = n) + P(N(t) ≥ n + 1),

the probability distribution of  is seen to beN(t)

                      (3.111)P(N(t) = n) = FTn (t) − FTn+1 (t), FT0 (t) ≡ 1; n = 0, 1, ....

Example 3.10  Let  be an ordinary renewal process with property that{Y1, Y2, ...}
the renewal cycle lengths  have an exponential distribution with parameter Yi λ :

F(t) = P(Y ≤ t) = 1 − e−λt, t ≥ 0.

Then, by theorem 3.2, the corresponding counting process  is the homo-{ N(t), t ≥ 0}
geneous Poisson process with intensity  In particular, by (3.21),  has an Erlangλ. Tn
distribution with parameters n and :λ

                                    FTn (t) = P(Tn ≤ t) = e−λ t Σ
i=n

∞ (λ t)i

i !
.

Apart from the homogeneous Poisson process, there are two other important ordinary
renewal processes for which the convolution powers of the renewal cycle length dis-
tributions explicitely exist so that the distribution functions of the renewal times Tn
can be given:
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1) Erlang Distribution  The renewal cycle length Y has an Erlang distribution with
parameters m and  Then,  is a sum of mn independent, identically distributedλ. Tn
exponential random variables with parameter  (example 1.23, section 1.7.2). There-λ
fore,  has an Erlang distribution with parameters  and Tn mn λ :

                   (3.112)F∗(n)(t) = P(Tn ≤ t) = e−λt Σ
i=mn

∞ (λt)i

i! , t ≥ 0.

This result is of general importance, since the probability distribution of any nonneg-
ative random variable can be arbitrarily accurately approximated by an Erlang distri-
bution by proper choice of the parameters of this distribution.

2) Normal Distribution  Let the renewal cycle length Y have a normal distribution
with parameters  and , . (The assumption  is necesssary for makingμ σ μ > 3σ μ > 3σ
sure that the cycle lengths are practically nonnegative. However, renewal theory has
been extended to negative 'cycle lengths'.) Since the sum of independent, normally
distributed random variables is again normally distributed, where the parameters of
the sum are obtained by summing up the parameters of the summands (example 1.24,
section 1.7.2),  has distribution functionTn

                      (3.113)F∗(n)(t) = P(Tn ≤ t) = Φ⎛
⎝⎜

t − nμ
σ n

⎞
⎠⎟

, t ≥ 0.

This result also has a more general meaning: Since  is the sum of n independent,Tn
identically distributed random variables, then, by the central limit theorem 1.9, Tn
has approximately the distribution function (3.113) if n is sufficiently large  i.e.,

 if Tn ≈ N(nμ, σ2n) n ≥ 20.

Example 3.11 The distribution function of  can be used to solve the so-calledTn
spare part problem: How many spare parts (spare systems) are absolutely necessary
for making sure that the renewal process can be maintained over the intervall [0, t]
with probability ?1 − α
This requires the computation of the smallest integer  satisfyingn

1 − FTn (t) = P(N(t) ≤ n) ≥ 1 − α .

For instance, let be
 and μ = E(Y) = 8 σ2 = Var(Y) = 25.

If  and , thent = 200 1 − α = 0.99

1 − FTn (200) = 1 − Φ⎛
⎝

200−8 n
5 n

⎞
⎠ ≥ 1 − α = 0.99

is equivalent to

z0.01 = 2.32 ≤ 8 n−200
5 n .
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Thus, at least  spare parts have to be in stock to ensure that with probabil-nmin = 34
ity 0.99 every failed part can be replaced by a new one over the interval . In(0, 200]
view of  the application of the normal approximation to the distribution ofnmin ≥ 20,

 is justified.                                                                                                              Tn

3.3.2    Renewal Function

3.3.2.1  Renewal Equations
The mean number of renewals which occur in a given time interval is of great practi-
cal and theoretical importance.

Definition 3.7  The mean value of the random number  of renewals occurring in N(t)
 as a function of t is called renewal function.                                                      (0, t]

Thus, with the terminology and the notation introduced in section 2.2, the renewal
function is the trend function of the renewal counting process :{N(t), t ≥ 0}

m(t) = E(N(t)).

However, to be in line with the majority of publications on renewal theory, in what
follows, the renewal functions belonging to an ordinary and a delayed renewal pro-
cess are denoted as  and , respectively.H(t) H1(t)

If not stated otherwise, it is assumed throughout section 3 that the densities of Y and
 exist. Hence,Y1

dF(t) = f (t) dt and dF1(t) = f1(t) dt.

In this case, the first derivatives of  and  also exist:H1(t) H(t)

h1(t) =
dH1(t)

dt , h(t) = dH(t)
dt .

The functions  and  are the renewal densities of a delayed and of an ordina-h1(t) h(t)
ry renewal process, respectively. From (1.15), a sum representation of the renewal
function is

                          (3.114)H1(t) = E(N(t)) = Σn=1
∞ P(N(t) ≥ n).

In view of (3.108) and (3.109),

                              (3.115)H1(t) = Σn=1
∞ F1 ∗ F∗(n−1)(t) .

In particular, the renewal function of an ordinary renewal process is

                                      (3.116)H(t) = Σn=1
∞ F∗(n)(t) .

By differentiation of (3.114) and (3.115) with respect to t, one obtains sum represen-
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tations of the respective renewal densities:

h1(t) = Σn=1
∞ f1 ∗ f∗(n−1)(t) , h(t) = Σn=1

∞ f∗(n)(t) .

Remark  These sum representations allow a useful probabilistic interpretation of the
renewal density: For  sufficiently small,Δt

h1(t) Δt

is approximately equal to the probability of the occurrence of a renewal in the inter-
val [t, t + Δt].

In view of (3.115) and the definition of the convolution power of distribution func-
tions,

H1(t) = Σn=0
∞ F1 ∗ F∗(n)(t)

= F1(t) + Σn=1
∞ ∫0

t F1 ∗ F∗(n−1)(t − x) dF(x)

= F1(t) + ∫0
t Σn=1

∞ ⎛
⎝F1 ∗ F∗(n−1)(t − x)⎞⎠ dF(x) .

Again by (3.115), the integrand is equal to . Hence,  satisfiesH1(t − x) H1(t)

                                                (3.117)H1(t) = F1(t) + ∫0
t H1(t − x) dF(x) .

According to (1.32), the integral in (3.117) is the convolution  of the renewalH1 ∗ f
function  with  In particular, the renewal function  of an ordinary renewalH1 f . H(t)
process satisfies

                                                (3.118)H(t) = F(t) + ∫0
t H(t − x) dF(x) .

Another derivation of formula (3.118) can be done by conditioning with regard to
the time point of the first renewal: Given that the first renewal occurs at time x, the
mean number of renewals in  is[0, t]

[1 + H(t − x)], 0 < x ≤ t.

Since the first renewal occurs at time x with 'probability' , taking intodF(x) = f (x) dx
account all possible values of x, yields (3.118). The same argument yields an integral
equation for the renewal function of a delayed renewal process:

                             (3.119)H1(t) = F1(t) + ∫0
t H(t − x) dF1(x) .

This is because after the first renewal at time x the process develops in  as an or-(x, t]
dinary renewal process. By partial integration of the convolutions, the renewal equa-
tions can be rewritten. For instance, integral equation (3.117)  equivalent tois

                             (3.120)H1(t) = F1(t) + ∫0
t F(t − x) dH1(x) .
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By differentiating the renewal equations (3.117) to (3.119) with respect to t, one ob-
tains the following integral equations of renewal type for  and :h1(t) h(t)

                                                (3.121)h1(t) = f1(t) + ∫0
t h1(t − x) f (x) dx,

                                                    (3.122)h(t) = f (t) + ∫0
t h(t − x) f (x) dx,

                                (3.123)h1(t) = f1(t) + ∫0
t h(t − x) f1(x) dx.

Generally, solutions of integral equations of renewal type can only be obtained by
numerical methods. However, since all these integral equations involve convolu-
tions, it is easily possible to find their solutions in the image space of the Laplace
transformation: Let  be the respective Laplace transformsh1(s), h(s), f1(s) and f (s)
of  and . Then, by (1.33), applying the Laplace transform to theh1(t), h(t), f1(t) f (t)
integral equations (3.121) and (3.122) yields algebraic equations for  and :h1(s) h(s)

h1(s) = f1(s) + h1(s) ⋅ f (s), h(s) = f (s) + h(s) ⋅ f (s) .

The solutions are

                          (3.124)h1(s) =
f1(s)

1 − f(s)
, h(s) =

f (s)

1 − f (s)
.

Thus, for ordinary renewal processes there is a one-to-one correspondence between
the renewal function and the probability distribution of the cycle length. By (1.29),
the Laplace transforms  the corresponding renewal functions areof

                      (3.125)H1(s) =
f1(s)

s (1 − f (s))
, H(s) = f (s)

s (1 − f (s))
.

Integral Equations of Renewal Type  The integral equations (3.117) to (3.119) and
the equivalent ones derived from these are called renewal equations. They belong to
the broader class of integral equations of renewal type. A function Z(t) is said to sat-
isfy an integral equation of renewal type if for any function g(t), which is bounded
on intervals of finite length, and for any distribution function F(t) with probability
density f (t),

                                                            (3.126)Z(t) = g(t) + ∫0
t Z(t − x) f (x)dx.

The unique solution of this integral equation is

                                (3.127)Z(t) = g(t) + ∫0
t g(t − x)h(x) dx,

where h(t) is the renewal density of the ordinary renewal process generated by  f (t).
For a proof, see Feller [28]. A function Z(t) given by (3.127) need not be the trend
function of a renewal counting process.
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Example 3.12  Let
f1(t) = f (t) = λ e−λ t, t ≥ 0.

The Laplace transform of  f (t) is

f (s) = λ
s + λ .

By (3.125),

H(s) = λ
s + λ

⎛
⎝s − λ s

s + λ
⎞
⎠ = λ

s2 .

The corresponding pre-image is
H(t) = λ t .

Thus, an ordinary renewal process has exponentially with parameter  distributedλ
cycle lengths if and only if its renewal function is given by                      H(t) = λ t.

Example 3.13  Let the cycle length of an ordinary renewal process have distribution
function

F(t) = (1 − e− t)2, t ≥ 0 .

Thus,  can be thought of the survival function of a parallel system con-F(t) = 1 − F(t)
sisting of two subsystems, whose lifetimes are independent, identically distributed
exponential random variables with parameter . The corresponding probabilityλ = 1
density and its Laplace transform are

f (t) = 2 (e− t − e−2 t) and f (s) = 2
(s + 1)(s + 2) .

From (3.124), the Laplace transform of the corresponding renewal density is

h(s) = 2
s (s + 3) .

By splitting the fraction into partial fractions, the pre-image of   is seen to beh(s)

h(t) = 2
3 (1 − e−3 t ) .

Integration yields the renewal function:

                                         H(t) = 2
3
⎡
⎣⎢
t + 1

3
⎛
⎝e

−3 t − 1⎞⎠
⎤
⎦⎥

.

Explicit formulas for the renewal function of ordinary renewal processes exist for the
following two classes of cycle length distributions:

1) Erlang Distribution  Let the cycle lengths be Erlang distributed with parameters
m and . Then, by (3.108), (3.112), and (3.116),λ

     H(t) = e−λt Σ
n=1

∞
Σ

i=mn

∞ (λt)i

i! .
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Special cases are:

                                                      (homogeneous Poisson process)m = 1 : H(t) = λ t

m = 2 : H(t) = 1
2
⎡
⎣⎢
λ t − 1

2 + 1
2 e−2 λt ⎤

⎦⎥

m = 3 : H(t) = 1
3
⎡

⎣
⎢⎢⎢λ t − 1 + 2

3
e−1,5 λt sin

⎛

⎝
⎜

3
2 λ t + π

3
⎞

⎠
⎟
⎤

⎦
⎥⎥⎥

m = 4 : H(t) = 1
4
⎡
⎣⎢
λ t − 3

2 + 1
2e−2 λ t + 2 e−λ t sin ⎛⎝λ t + π

4
⎞
⎠
⎤
⎦⎥
.

2) Normal distribution Let the cycle lengths be normally distributed with mean val-
ue µ and variance ,    From (3.108), (3.113) and (3.116),σ2 μ > 3σ2.

                                     (3.128)H(t) = Σ
n=1

∞
Φ⎛
⎝⎜

t − n μ
σ n

⎞
⎠⎟

.

This sum representation is very convenient for numerical computations, since only
the sum of the first few terms approximates the renewal function with sufficient ac-
curacy.
As shown in example 3.12  an ordinary renewal process has renewal function,

  if and only if  H(t) = λ t = t /μ f (t) = λe−λt, t ≥ 0,

where  Hence an interesting question is, whether, for given F(t), a delayedμ = E(Y).
renewal process exists which also has renewal function .H1(t) = t /μ

Theorem 3.10  Let  be a delayed renewal process with cycle lengths{Y1, Y2, ...}
 being identically distributed as Y. If Y has finite mean value  and distri-Y2, Y3, ... μ

bution function , then  has renewal functionF(t) = P(Y ≤ t) {Y1, Y2, ...}

                                               (3.129)H1(t) = t /μ

if and only if the length of the first renewal cycle  has density , whereY1 f1(t) ≡ fS(t)

                                   (3.130)fS(t) = 1
μ (1 − F(t)) , t ≥ 0 .

Equivalently,  has renewal function (3.129) if and only if  has distri-{Y1, Y2, ...} Y1
bution function  withF1(t) ≡ FS(t)

                              (3.131)FS(t) = 1
μ ∫0

t (1 − F(x)) dx, t ≥ 0 .

Proof  Let  and  be the respective Laplace transforms of  and f (s) f S(s) f (t) fS(t).
Then, by applying the Laplace transformation to both sides of (3.130) and taking into
account (1.29),

f S(s) = 1
μ s (1 − f (s)) .
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Replacing in the first equation of (3.125)  with  yields the Laplace trans-f1(s) f S(s)
form of the corresponding renewal function H1(t) = HS(t) :

HS(s) = 1/(μ s2) .

Retransformation of  gives the desired result: .                               HS(s) HS(t) = t /μ

The random variable  with density (3.130) (distribution function (3.131)) plays anS
important role in characterizing stationary renewal processes (section 3.3.5). More-
over, this distribution type already occurred in section 1.4 in connection with the
NBUE-distribution (formula (1.45).  The first two moments of  are (exercise 3.24)S

                           (3.132)E(S) =
μ2 + σ2

2μ and E(S2) =
μ3
3μ ,

where
.σ2 = Var(Y) and μ3 = E(Y3)

Higher Moments of N(t)  Apart from the renewal function, which is the first mo-
ment of N(t), higher moments of N(t) also have some importance, in particular when
investigating the behaviour of the renewal function as t → ∞.
Let  an ordinary renewal process and  its corresponding re-{Y1, Y2, ...} {N(t), t ≥ 0}
newal counting process. Then, moments of higher order can be derived from bino-
mial moments of . The binomial moment of the order n of N(t) is defined asN(t)

                 (3.133)E⎛⎝
N(t)

n
⎞
⎠ = 1

n ! E{[N(t)][N(t) − 1]. .. [N(t) − (n − 1)]}.

The binomial moment of order n of N(t) is equal to the   convolution power ofn th
the renewal function:

E⎛⎝
N(t)

n
⎞
⎠ = H∗(n)(t).

Specifically, for n = 2,

E⎛⎝
N(t)

2
⎞
⎠ = 1

2 E{[N(t)][N(t) − 1]} = 1
2 E[N(t)]2 − H(t) = H∗(2)(t)

so that the variance of  is equal toN(t)

Var(N(t)) = 2 ∫0
t H(t − x) dH(x) + H(t) − [H(t)]2 .

Since
   for  ,H(t − x) ≤ H(t) 0 ≤ x ≤ t

this equation implies an upper bound for the variance of :N(t)

Var(N(t)) ≤ [H(t)]2 + H(t) .
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3.3.2.2  Bounds on the Renewal Function
Generally, integral equations of renewal type have to be solved by numerical meth-
ods. Hence, bounds on H(t), which only require information on one or more numeri-
cal parameters of the cycle length distribution, are of special interest. This section
presents bounds on the renewal function of ordinary renewal processes.

1) Elementary Bounds  By definition of Tn ,

max
1≤i ≤n

Yi ≤ Σi=1
n Yi = Tn .

Hence, for any t with ,F(t) < 1

F∗(n)(t) = P(Tn ≤ t) ≤ P( max
1≤i ≤n

Yi ≤ t) = [F(t)]n .

Summing from  on both sides of this inequality, the sum representation ofn = 1 to ∞
the renewal function (3.116) and the geometric series yield

 F(t) ≤ H(t) ≤ F(t)
1 − F(t) .

Note that the left-hand side of this inequality is the first term of the sum (3.116).
These 'elementary bounds' are only useful for small t.

2) Linear Bounds   Let  andF = {t ; t ≥ 0, F(t) < 1}, μ = E(Y), F(t) = 1 − F(t),

a0 = inf
t∈F

F(t) − FS(t)
F(t)

, a1 = sup
t∈F

F(t) − FS(t)
F(t)

,

where  is given by (3.131). Then (Marshall [59])FS(t)

                                    (3.134)t
μ + a0 ≤ H(t) ≤ t

μ + a1.

The derivation of these bounds is straightforward and very instructive: According to
the definition of  and a0 a1,

a0 F(t) ≤ F(t) − FS(t) ≤ a1 F(t) .

Convolution of both sides with  leads toF∗(n)(t)

a0 ⎡⎣F∗(n)(t) − F∗(n+1)(t)⎤⎦ ≤ F∗(n+1)(t) − FS ∗ F∗(n)(t) ≤ a1 ⎡⎣F
∗(n)(t) − F∗(n+1)(t)⎤⎦.

In view of (3.116) and theorem 3.10, summing up from  on both sides ofn = 0 to ∞
this inequality proves (3.134)  Since.

  for all 
F(t) − FS(t)

F(t)
≥ −FS(t) ≥ −1 t ≥ 0,

formula (3.134) implies a simpler lower bound on :H(t)

H(t) ≥ t
μ − FS(t) ≥ t

μ − 1 .
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Let
λS(t) = fS(t) /FS(t)

be the failure rate belonging to :FS(t)

λS(t) = F(t)
∫t
∞ F(x) dx

.

Then  and  can be rewritten as follows:a0 a1

a0 = 1
μ inf

t∈F
1

λS(t) − 1 and a1 = 1
μ sup

t∈F
1

λS(t) − 1.

Thus, (3.134) becomes

                (3.135)t
μ + 1

μ inf
t∈F

1
λS(t) − 1 ≤ H(t) ≤ t

μ + 1
μ sup

t∈F
1

λS(t) − 1.

Since
inf
t∈F

λ(t) ≤ inf
t∈F

λS(t) and sup
t∈F

λ(t) ≥ sup
t∈F

λS(t) ,

the bounds (3.135) can be simplified:

                   (3.136)t
μ + 1

μ inf
t∈F

1
λ(t) − 1 ≤ H(t) ≤ t

μ + 1
μ sup

t∈F
1

λ(t) − 1.

3) Upper Bound  If   and , then (Lorden [55])μ = E(Y) μ2 = E(Y2)

                                       (3.137)H(t) ≤ t
μ +

μ2
μ2 − 1 .

4) Upper Bound for IFR  If  is IFR, then (3.137) can be improved (Brown [14]):F(t)

H(t) ≤ t
μ +

μ2
2 μ2 − 1 .

5) Two-Sided Bounds for IFR  If  is IFR, then (Barlow and Proschan [4])F(t)

                     (3.138)t

∫0
t F(x) dx

− 1 ≤ H(t) ≤ t F(t)

∫0
t F(x) dx

, t > 0.

Example 3.14  As in example 3.13, let be

F(t) = (1 − e−t )2, t ≥ 0 ,
the distribution function of the cycle length Y of an ordinary renewal process. In this
case,  andμ = E(Y) = 3/2

FS(t) = 1
μ ∫t

∞ F(x) dx = 2
3
⎛
⎝2 − 1

2 e−t ⎞
⎠ e−t, t ≥ 0 .
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Therefore, the failure rates belonging to  F(t) and  are (Figure 3.6)FS(t)

λ(t) = 2(1 − e−t)
2 − e−t , λS(t) = 2 2 − e−t

4 − e−t , t ≥ 0 .

Both failure rates are strictly increasing in t and have, moreover, the properties
λ(0) = 0, λ(∞) = 1,

λS(0) = 2/3, λS(∞) = 1.

Hence, the respective bounds (3.135) and (3.136) are
2
3 t − 1

3 ≤ H(t) ≤ 2
3 t and 2

3 t − 1
3 ≤ H(t) ≤ ∞.

In this case, the upper bound in (3.136) contains no information on the renewal func-
tion. Figure 3.7 compares the bounds (3.135) with the exact graph of the renewal
function given in example 3.13. The deviation of the lower bound from H(t) is negli-
gibly small for                                                                                                    t ≥ 3.

3.3.3  Asymptotic Behaviour

This section investigates the behaviour of the renewal counting process {N(t), t ≥ 0}
and its trend function as . The results allow the construction of estimates of thet → ∞
renewal function and of the probability distribution of N(t) if t is sufficiently large.
Throughout this section, it is assumed that both  and  are finite. SomeE(Y1) E(Y) = μ
of the key results require that the cycle length Y or, equivalently, its distribution
function, is nonarithmetic, i.e. that there is no positive constant a with property that
the possible values of Y are multiples of a. Correspondingly, Y is called arithmetic if
there is a constant a so that Y has range  (The set R consists of allR = {0, a, 2a, ...}.
possible values, which Y can assume.) A continuous random variable is always non-
arithmetic.
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A simple consequence of the strong law of the large numbers is

                                      (3.139)P⎛⎝ lim
t→∞

N(t)
t = 1

μ
⎞
⎠ = 1.

To avoid technicalities, the proof is given for an ordinary renewal process: The in-
equality

TN(t) ≤ t < TN(t)+1
implies that

TN(t)
N(t) ≤ t

N(t) <
TN(t)+1

N(t) =
TN(t)+1
N(t)+1

N(t)+1
N(t)

, equivalently, thator
1

N(t) Σi=1
N(t)

Yi ≤ t
N(t) < ⎡

⎣
⎢ 1

N(t)+1 Σi=1
N(t)+1

Yi
⎤
⎦
⎥

N(t)+1
N(t) .

Since by assumption   tends to infinity as  Hence, theoremμ = E(Y) < ∞, N(t) t → ∞.
1.8 yields the desired result (3.139). For  being the mean distance between two re-μ
newals, this result is quite intuitive. The following theorem considers the correspon-
ding limit behaviour of the mean value of  As with theorems 3.12 and 3.13, noN(t).
proof  given.is

Theorem 3.11 (elementary renewal theorem)   renewal function satisfiesThe

                                                    lim
t→∞

H1(t)
t = 1

μ .

Thus, for large t,  The theorem shows that for  the influence of theH1(t) ≈ t /μ . t → ∞
first renewal interval with possibly  fades away. (For this property to beE(Y1) ≠ μ
valid, the assumption   had to be made.) In terms of the renewal density,E(Y1) < ∞
the analogue to theorem 3.11 is

lim
t→∞

h1(t) = 1
μ .

Note that (1.139) does not imply theorem 3.11. The following theorem was called
the fundamental renewal theorem by its discoverer W. L. Smith.

Theorem 3.12  (fundamental renewal theorem)  If F(t) is nonarithmetic and g(t) an
integrable function on , then[0, ∞)

                                  lim
t→∞ ∫0

t g(t − x) dH1(x) = 1
μ ∫0

∞ g(x) dx.

The fundamental renewal theorem (or key renewal theorem, theorem of Smith) has
proved a useful tool for solving many problems in applied probability theory and sto-
chastic modeling. Theorem 3.13 gives another variant of the fundamental renewal
theorem. It refers to the integral equation of renewal type (3.126).
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Theorem 3.13  Let  be an integrable function on  and  a probabilityg(t) [0, ∞) f (t)
density. If  satisfies the equation of renewal type (3.126), namelyZ(t)

Z(t) = g(t) + ∫0
t Z(t − x) f (x) dx ,

then

                                    (3.140)lim
t→∞

Z(t) = 1
μ ∫0

∞ g(x) dx.

                                            

Proofs of the now 'classic' theorems 3.11 to 3.13 can be found in [28]. The equiva-
lence of the theorems 3.12 and 3.12 results from the structure (3.127) of Z(t).

Blackwell's renewal theorem  Let

g(x) =
⎧

⎩
⎨

1 for 0 ≤ x ≤ h
0 elsewhere

.

Then the fundamental renewal theorem implies Blackwell's renewal theorem: If F(t)
is nonarithmetic, then, for any ,h > 0

                                  (3.141)lim
t→∞

[H1(t + h) − H1(t)] = h
μ .

Whereas the elementary renewal theorem refers to 'a global transition' into the statio-
nary regime, Blackwell's renewal theorem refers to the corresponding 'local beha-
viour' in a time interval of length h.

Theorem 3.14  If F(t) is nonarithmetic and  thenσ2 = Var(Y) < ∞,

                          (3.142)lim
t→∞

⎛
⎝H1(t) − t

μ
⎞
⎠ = σ2

2μ2 −
E(Y1)

μ + 1
2.

Proof  The renewal equation (3.120) is equivalent to

                            (3.143)H1(t) = F1(t) + ∫0
t F1(t − x) dH(x).

If  then, by theorem 3.10, this integral equation becomesF1(t) ≡ FS(t),

                               (3.144)t
μ = FS(t) + ∫0

t FS(t − x) dH(x).

By subtracting integral equation (3.144) from integral equation (3.143),

H1(t) − t
μ = FS(t) − F1(t) + ∫0

t FS(t − x) dH(x) − ∫0
t F1(t − x) dH(x) .

Applying  fundamental renewal theorem yieldsthe

lim
t→∞

⎛
⎝H1(t) − t

μ
⎞
⎠ = 1

μ ∫0
∞ FS(x) d(x) − 1

μ ∫0
∞ F1(x) d(x).

Now the desired results follows from (1.17) and (3.132).                                           
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For ordinary renewal processes  (3.142) simplifies to,

                               (3.145)lim
t→∞

⎛
⎝H(t) − t

μ
⎞
⎠ = 1

2
⎛

⎝
⎜σ2

μ2 − 1
⎞

⎠
⎟ .

Corollary  Under the assumptions of theorem 3.14, the fundamental renewal theo-
rem implies the elementary renewal theorem.

Theorem 3.15  For an ordinary renewal process, the integrated renewal function has
property

lim
t→∞

⎧

⎩
⎨∫0

t H(x) dx −
⎡

⎣
⎢⎢⎢

t2
2μ +

⎛

⎝
⎜

μ2
2μ2 − 1

⎞

⎠
⎟ t
⎤

⎦
⎥⎥⎥
⎫

⎭
⎬ =

μ2
2

4μ3 −
μ3

6 μ2

with                                                                               μ2 = E(Y2) and μ3 = E(Y3).

For a proof see, for instance, Tijms [81]. The following theorem is basically a conse-
quence of the central limit theorem (for details see Karlin and Taylor [45]).

Theorem 3.16  The random number  of renewals in  satisfiesN(t) [0, t]

                                        lim
t→∞

P
⎛

⎝
⎜⎜⎜

N(t) − t/μ

σ t μ−3
≤ x

⎞

⎠
⎟⎟⎟

= Φ(x) .

Thus, for t sufficiently large, N(t) is approximately normally distributed with mean
value  and variance :t /μ σ2t /μ3

                                     (3.146)N(t) ≈ N(t /μ, σ2t / μ3).

Hence, theorem 3.16 can be used to construct approximate intervals, which contain
N(t) with a given probability: If  is sufficiently large, thent

        (3.147)P⎛⎝
t
μ − zα/2 σ t μ−3 ≤ N(t) ≤ t

μ + zα/2 σ t μ−3 ⎞
⎠ = 1 − α .

As usual,  is the - percentile of the standard normal distribution.zα/2 (1 − α/2)

Example 3.15  Let  Since t = 1000, μ = 10, σ = 2, and α = 0.05. z0.025 ≈ 2,
                                           P(96 ≤ N(t) ≤ 104) = 0.95 .

Knowledge of the asymptotic distribution of N(t) makes it possible, without knowing
the exact distribution of Y, to approximately answer a question which already arose
in section 3.3.1: How many spare systems (spare parts) are necessary for guaran-
teeing that the (ordinary) renewal process can be maintained over an interval [0, t]
with a given probability of 1 − α ?
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Since with probability 1 − α ,
N(t) − t/μ

σ t μ−3
≤ zα ,

for large t the required number  is approximately equal tonmin

                                    (3.148)nmin ≈ t
μ + zα σ t μ−3 .

Example 3.16  The same numerical parameters as in example 3.11 are considered:

t = 200, μ = 8, σ2 = 25, and α = 0.01.
Since z0.01 = 2.32,

nmin ≥ 200
8 + 2.32 ⋅ 5 200 ⋅ 8−3 = 32.25.

Hence, about 33 spare parts are needed to make sure that with probability 0.99 the
renewal process can be maintained over a period of 200 time units. (Formula (3.113)
applied in example 3.11 yielded                                                               nmin = 34.)

3.3.4   Recurrence Times

For any point processes, recurrence times have been defined by (3.3) and (3.5). In
particular, if  is a renewal process and  is the corresponding{Y1, Y2, ...} {T1, T2, ...}
process of renewal time points, then its (random)  forward recurrence time A(t) is

A(t) = TN(t)+1 − t

and its (random) backward recurrence time B(t) is
B(t) = t − TN(t).

 is the residual lifetime and  the age of the system operating at time t.A(t) B(t)

The stochastic processes
, ,   and {Y1, Y2, ...} {T1, T2, ...} {N(t), t ≥ 0}, {A(t), t ≥ 0}, {B(t), t ≥ 0}

are statistically equivalent, since there is a one to one correspondence between their
sample paths, i.e. each of these five processes can be used to define a renewal pro-
cess (Figures 3.8 and 3.9).
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Figure 3.8  Illustration of the recurrence times
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Let
FA(t)(x) = P(A(t) ≤ x) and FB(t)(x) = P(B(t) ≤ x)

be the distribution functions of the forward and the backward recurrence times, res-
pectively. Then, for  by making use of (3.115),0 < x < t,

FA(t)(x) = P(TN(t)+1 − t ≤ x)

= Σn=0
∞ P(TN(t)+1 ≤ t + x, N(t) = n)

= F1(t + x) − F1(t) + Σn=1
∞ P(Tn ≤ t < Tn+1 ≤ t + x)

= F1(t + x) − F1(t) + Σn=1
∞ ∫0

t [F(x + t − y) − F(t − y)] dFTn (y)

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)]Σn=1

∞ dFTn (y)

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)]Σn=1

∞ d(F1 ∗ F∗(n−1)(y))

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)] d⎛⎝Σn=1

∞ F1 ∗ F∗(n−1)(y)⎞⎠

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)] dH1(y).

This representation of  can be simplified by combining it with (3.120). TheFA(t)
result is

             (3.149)FA(t)(x) = F1(t + x) − ∫0
t F(x + t − y) dH1(y) ; x, t ≥ 0.

Differentiation yields the probability density of :A(t)

             (3.150)fA(t)(x) = f1(t + x) + ∫0
t f (x + t − y) h1(y) dy ; x, t ≥ 0.

 is the probability that the system, which is working at time t,FA(t)(x) = 1 − FA(t)(x)
does not fail in  Therefore,  is sometimes called interval reliability.(t, t + x]. FA(t)(x)

For determining the mean value of the forward recurrence time of an ordinary renew-
al process,  is written in the formA(t)
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Figure 3.9  Sample paths of the backward and forward recurrence times processes 
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A(t) = Σi=1
N(t)+1

Yi − t ,

where the  are independent and identically distributed as  with Y1, Y2, ... Y μ = E(Y ).
Wald's identity (1.125) cannot be applied to obtain  since  is surelyE(A(t)), N(t) + 1
not independent of the sequence  However,  is a stopping time forY1, Y2, ... N(t) + 1
the sequence Y1, Y2, ... :

”N(t) + 1 = n” = ”N(t) = n − 1” = ”Y1 + Y2 + . .. + Yn−1 ≤ t < Y1 + Y2 + . .. + Yn”.

Thus, the event  is independent of all  so that, by defini-”N(t) + 1 = n” Yn+1, Yn+2, ...
tion 1.2,  is a stopping time for the sequence  Hence, the mean val-N(t) + 1 Y1, Y2, ...
ue of  can be obtained from (1.127) with :A(t) N = N(t) + 1

E(A(t)) = μ [H1(t) + 1] − t.

Thus, the mean forward recurrence time of an ordinary renewal process is

E(A(t)) = μ [H(t) + 1] − t .
The second moment of the forward recurrence time of an ordinary renewal process is
given without proof:

E((A(t))2) = E(Y2)[1 + H(t)] − 2 E(Y)[t + ∫0
t H(x) dx] + t2, t ≥ 0.

The probability distribution of the backward recurrence time is obtained as follows:

FB(t)(x) = P(t − x ≤ TN(t))

= Σn=1
∞ P(t − x ≤ Tn, N(t) = n)

= Σn=1
∞ P(t − x ≤ Tn ≤ t < Tn+1)

= Σn=1
∞ ∫t−x

t F(t − u) dFTn (u)

= ∫t−x
t F(t − u) d⎛⎝Σn=1

∞ F1 ∗ F∗(n) ⎞
⎠

= ∫t−x
t F(t − u) dH1(u) .

Hence, the distribution function of  isB(t)

                (3.151)FB(t)(x) =
⎧

⎩
⎨
⎪
⎪

∫
t−x

t
F(t − u) dH1(u) for 0 ≤ x ≤ t

1 for t > x
.

Differentiation yields the probability density of :B(t)

                     (3.152)fB(t)(x) =
⎧

⎩
⎨

F(x) h1(t − x) for 0 ≤ x ≤ t
0 for t < x

.
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One easily verifies that the forward and backward recurrence times of an ordinary
renewal process, whose cycle lengths are exponentially distributed with parameter ,λ
are also exponentially distributed with parameter λ :

fA(t)(x) = fB(t)(x) = λ e−λ x for all t ≥ 0.

In view of the memoryless property of the exponential distribution (example 1.14,
section 1.4), this result is not surprising. A direct consequence of the fundamental
renewal theorem is that , as defined by (3.131), is the limiting distribution func-FS(t)
tion of both backward and forward recurrence time as t tends to infinity:

                                  (3.153)lim
t→∞

FA(t)(x) = lim
t→∞

FB(t)(x) = FS(x), x ≥ 0.

Paradox of Renewal Theory  In  view  of  the  definition  of  the  forward  recurrence
time, one supposes that the following equation is true:

lim
t→∞

E(A(t)) = μ /2 .

However, according to (3.153) and (3.132),

lim
t→∞

E(A(t)) = ∫0
∞ FS(t) dt = E(S) =

μ2 + σ2

2μ >
μ
2 .

This 'contradiction' is known as the paradox of renewal theory. The intuitive expla-
nation of this phenomenon is that on average the 'reference time point' t is to be
found more frequently in longer renewal cycles than in shorter ones.

3.3.5  Stationary Renewal Processes

By definition 3.1, a renewal process  is stationary if for all  and{Y1, Y2, ...} k = 1, 2, ...
 sequence of integers  with  and  any  any i1, i2, ..., ik 1 ≤ i1 < i2 < . .. < ik τ = 0, 1, ...
 joint distribution functions of the vectorsthe

  and   (Yi1 , Yi2 , ..., Yik ) (Yi1+τ , Yi2+τ , ..., Yik+τ)

coincide,   According to the corollary after definition 3.1,  isk = 1, 2, ... {Y1, Y2, ...}
stationary if and only if the corresponding renewal counting process  has{N(t), t ≥ 0}
homogeneous increments. A third way of defining the stationarity of a renewal pro-
cess  makes use of the statistical equivalence between  and{Y1, Y2, ...} {Y1, Y2, ...}
the corresponding process  of its forward recurrence times:{A(t), t ≥ 0}

    A renewal process is stationary if and only if the process of its forward                   
    recurrence times  is strongly stationary.{A(t), t ≥ 0}

Of course, the process of backward recurrence times  would do as well:{B(t), t ≥ 0}
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    A renewal process is stationary if and only if the process of its backward                
    recurrence times  is strongly stationary.{B(t), t ≥ 0}

The stochastic process in continuous time  is a Markov process. This is{B(t), t ≥ 0}
quite intuitive, but a strict proof will not be given here. By theorem 2.1, a Markov
process  is strongly stationary if and only if its one-dimensional distri-{X(t), t ∈ T}
bution functions

Ft(x) = P(X(t) ≤ x)

do not depend on t. Hence, a renewal process is stationary if and only if there is a
distribution function  so thatF(x)

  for all FA(t)(x) = P(A(t) ≤ x) = F(x) x ≥ 0 and t ≥ 0.

The following theorem yields a simple criterion for the stationarity of renewal pro-
cesses.

Theorem 3.17  Let  be nonarithmetic and  Then a de-F(x) = P(Y ≤ x) μ = E(Y) < ∞.
layed renewal process given by  and F(x) is stationary if and only ifF1(x)

                                              (3.154)H1(t) = t /μ .

Equivalently,  as a consequence of theorem 3.10,  a delayed renewal process is sta-
tionary if and only if

   for all                      (3.155)F1(x) = FS(x) = 1
μ ∫0

x F(y) dy x ≥ 0.

Proof  If (3.154) holds, then (3.155) as well, so that, from (3.149),

FA(t)(x) = 1
μ ∫0

t+x F(y) dy − 1
μ ∫0

t F(x + t − y) dy

= 1
μ ∫0

t+x F(y) dy − 1
μ ∫x

t+x F(y) dy

= 1
μ ∫0

x F(y) dy .

Hence,  does not depend on t.FA(t)(x)

Conversely, if  does not depend on t, then (3.153) impliesFA(t)(x)

FA(t)(x) ≡ FS(x) for all t .

This completes the proof of the theorem.                                                                    

As a consequence from theorem 3.17 and the elementary renewal theorem: After a
sufficiently large time span (transient response time) every renewal process with non-
arithmetic distribution function F(t) and finite mean cycle length  behavesμ = E(Y)
as a stationary renewal process.
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3.3.6   Alternating Renewal Processes  

So far it has been assumed that renewals take only negligibly small amounts of time.
In order to be able to model practical situations, in which this assumption is not ful-
filled, the concept of a renewal process has to be generalized in the following way:
The renewal time of the system after its i th failure is assumed to be a positive ran-
dom variable  Immediately after a renewal the system starts operating.Zi; i = 1, 2, ...
In this way, a sequence of two-dimensional random vectors  is{(Yi, Zi); i = 1, 2, ...}
generated, where  denotes the lifetime of the system after the  renewal.Yi i th

Definition 3.8 (alternating renewal process)  If  and  are{Y1, Y2, ...} {Z1, Z2, ...}
two independent sequences of independent, nonnegative random variables, then the
sequence of two-dimensional random vectors  is said to be an{(Y1, Z1), (Y2, Z2), ...}
alternating renewal process.                                                                                       

The random variables

S1 = Y1; Sn = Σi=1
n−1(Yi + Zi) + Yn; n = 2, 3, ...,

are the time points at which failures occur  and the random variables,

Tn = Σi=1
n−1(Yi + Zi); n = 1, 2, ...

are the time points at which a renewed system starts operating. If an operating sys-
tem is assigned a '1' and a failed system a '0', then a binary indicator variable of the
system state is

                                       (3.156)X(t) =
⎧

⎩
⎨

0, if t ∈ [Sn, Tn), n = 1, 2, ...
1, elsewhere

Obviously, an alternating renewal process can equivalently be defined by the stochas-
tic process in continuous time  with  given by (3.156) (Figure 3.10).{X(t), t ≥ 0} X(t)
In what follows, all  and  are assumed to be distributed as Y and Z with distribu-Yi Zi
tion functions  and  , , respectively. By agreement,FY (y) = P(Y ≤ y) FZ(z) = P(Z ≤ z)

P(X(+0) = 1) = 1.
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Analogously to the concept of a delayed renewal process, the alternating renewal
process can be generalized by assigning the random lifetime  a probability distri-Y1
bution different from that of Y. However, this way of generalization and some other
possibilities will not be discussed here, although no principal difficulties would arise.
Let  and  be the respective numbers of failures and renewals in  SinceNf (t) Nr(t) (0, t].

 and  are sums of independent random variables (compare to (3.109)),Sn Tn

         (3.157)FSn (t) = P(Sn ≤ t) = P(Nf (t) ≥ n) = FY ∗ (FY ∗ FZ)∗(n−1)(t),

              (3.158)FTn (t) = P(Tn ≤ t) = P(Nr(t) ≥ n) = (FY ∗ FZ)∗(n)(t) .

Hence, analogously to the formulas (3.115) and (3.116), sum representations of

 and Hf (t) = E(Nf (t)) Hr(t) = E( Nr(t))

are
Hf (t) = Σn=1

∞ FY ∗ (FY ∗ FZ)∗(n−1)(t) ,

Hr(t) = Σn=1
∞ (FY ∗ FZ)∗(n)(t) .

 and  are referred to as the renewal functions of the alternating renewalHf (t) Hr(t)
process. Since  can be interpreted as the renewal function of a delayed renewalHf (t)
process, whose first system lifetime is distributed as Y, whereas the following 'system
lifetimes' are identically distributed as  it satisfies renewal equation (3.117)Y + Z ,
with

 and F1(t) ≡ FY(t) F(t) = FY ∗ FZ(t).

Analogously,  can be interpreted as the renewal function of an ordinary renewalHr(t)
process whose cycle lengths are identically distributed as  Therefore, Y + Z. Hr(t)
satisfies renewal equation (3.118) with  replaced by F(t) FY ∗ FZ(t).

Let  be the residual lifetime of the system if it is operating at time t. ThenRt
P(X(t) = 1, Rt > x)

is the probability that the system is working at time t and does not fail in the interval
. This probability is called interval availability (or interval reliability) and is(t, t + x]

denoted as  It can be obtained as follows:Ax(t).

Ax(t) = P(X(t) = 1, Rt > x)

= Σn=0
∞ P(Tn ≤ t, Tn + Yn+1 > t + x)

= FY(t + x) + Σn=1
∞ ∫0

t P( t + x < Tn + Yn+1 Tn = u) dFTn (u)

= FY(t + x) + ∫0
t P( t + x − u < Y) d Σn=1

∞ (FY ∗ FZ)∗(n)(u).
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Hence,

                     (3.159)Ax(t) = FY (t + x) + ∫0
t FY (t + x − u) dHr(u) .

Note  In this section 'A' no longer refers to 'forward recurrence time'.

Let  be the probability that the system is operating at time t, or, more generally,A(t)
that it is available at time t:

                                        (3.160)A(t) = P(X(t) = 1).
This important characteristic of an alternating renewal process is obtained from
(3.159) by letting there x = 0 :

                                                (3.161)A(t) = FY(t) + ∫0
t FY(t − u) dHr(u) .

 is called availability of the system (system availability) or, more exactly, pointA(t)
availability of the system, since it refers to a specific time point t. It is equal to the
mean value of the indicator variable of the system state:

E(X(t)) = 1 ⋅ P(X(t) = 1) + 0 ⋅ P(X(t) = 0) = P(X(t) = 1) = A(t).

The average availability of the system in the interval  is[0, t]

A(t) = 1
t ∫0

t A(x) dx .

The random total operating time U(t) of the system in the interval  is[0, t]

                                                             (3.162)U(t) = ∫0
t X(x) dx .

By changing the order of integration,

E(U(t)) = E⎛⎝∫0
t X(x) dx⎞⎠ = ∫0

t E(X(x)) dx .

Thus,

E(U(t)) = ∫0
t A(x) dx = t A(t) .

The following theorem provides information on the limiting behaviour of the interval
reliability and the point availability as t tends to infinity. A proof of the assertions
need not be given since they are an immediate consequence of the fundamental renew-
al theorem 3.12.

Theorem 3.18  If  and the distribution function   of theE(Y) + E(Z) < ∞ (FY ∗ FZ)(t)
sum   is nonarithmetic  thenY + Z ,

Ax = lim
t→∞

Ax(t) = 1
E(Y) + E(Z) ∫x

∞ FY(u) du ,

                                          (3.163)A = lim
t→∞

A(t) = lim
t→∞

A(t) = E(Y)
E(Y) + E(Z) .
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 is said to be the long-run or stationary interval availability (reliability) with re-Ax
gard to an interval of length x, and A is called the long-run or stationary availability.
Clearly, it is  If, analogously to renewal processes, the time between twoA = A0.
neighbouring time points at which a new system starts operating is called a renewal
cycle, then the long-run availability is equal to the mean share of the operating time
of a system in the mean renewal cycle length.
It should be mentioned that equation (3.163) is also valid if within renewal cycles Yi
and  depend on each other. As illustrated by the following example, in generalZi ,

                                                      (3.164)E⎛⎝
Y

Y + Z
⎞
⎠ ≠ E(Y)

E(Y) + E(Z) .

Example 3.17  Let life and renewal times have exponential distributions:

fY (y) = λ e−λ y, y ≥ 0 ; fZ(z) = νe−ν z, z ≥ 0.

Application of the Laplace transform to (3.161) yields

                 (3.165)A(s) = FY (s) + FY (s) ⋅ hr (s) = 1
s + λ

⎡
⎣1 + hr(s)⎤⎦.

The Laplace transform of the convolution of  and  isfY fZ

L fY ∗ fZ = λ v
(s + λ) (s + v) .

Hence, from the second equation of (3.126),

  hr (s) = λν
s (s + λ + ν) .

By inserting  into (3.165) and expanding  into partial fractions,hr (s) A(s)

A(s) = 1
s + λ + λ

s (s + λ) − λ
s (s + λ + ν) .

Retransformation yields the point availability:

                          (3.166)A(t) = ν
λ + ν + λ

λ + ν e−(λ+ν) t , t ≥ 0 .

Since
E(Y) = 1/λ and E(Z) = 1/ν,

taking in (3.166) the limit as  verifies relationship (3.163). On the other hand,t → ∞
if  , then, from example 1.20,λ ≠ ν

E⎛⎝
Y

Y + Z
⎞
⎠ = ν

ν − λ
⎛
⎝1 + λ

ν − λ ln λ
ν
⎞
⎠ .

For instance, if , thenE(Z) = 0.25 E(Y)

   and                        A = E(Y)
E(Y) + E(Z) = 0.800 E⎛⎝

Y
Y + Z

⎞
⎠ = 0.717.
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Generally, numerical methods have to be applied to determine interval and point
availability when applying formulas (3.159) and (3.161). This is again due to the fact
that there are either no explicit or rather complicated representations of the renewal
function for most of the common lifetime distributions. However, formulas (3.159)
and (3.161) can be applied for obtaining approximate values for interval and point
availability if they are used in conjunction with the bounds and approximations for
the renewal function given in sections 3.3.2.2 and 3.3.3.

3.3.7 Compound Renewal Processes

3.3.7.1 Definition and Properties
Compound stochastic processes arise by additive superposition of random variables
at random time points  (For motivation, see section 3.2.5.).

Definition 3.9  Let  be a random marked point process with{(T1, M1), (T2, M2), ...}
property that  is the sequence of renewal times of a renewal process{T1, T2, ...}

 and let  be the corresponding renewal counting process.{Y1, Y2, ...}, {N(t), t ≥ 0}
Then the stochastic process  defined by{C(t), t ≥ 0}

                              (3.167)C(t) =
⎧

⎩
⎨
⎪
⎪

Σi=1
N(t)

Mi if N(t) ≥ 1
0 if N(t) = 0

.

is called a compound (aggregate, cumulative) renewal process, and  is called aC(t)
compound random variable.                                                                                        

The compound Poisson process defined in section 3.2.5 is a compound renewal
process with property that the renewal cycle lengths  areYi = Ti − Ti−1, i = 1, 2, ...,
independent and identically exponentially distributed (theorem 3.2).
A compound renewal process is also called a renewal reward process, in particular,
if  is a 'profit' of any kind made at the renewal time points. In most applications,Mi

3  POINT PROCESSES                                                                                             179

t

Figure 3.11  Sample path of a compound process with positive increments

0 T1 T2 T3 T4 T5 T5

C(t)

C(T1) = M1

C(T3) = M1 + M2 + M3

C(T5) = M1 + M2 + M3 + M4 + M5

© 2006 by Taylor & Francis Group, LLC



however,  is a 'loss', for instance, replacement cost or claim size.  also can re-Mi Mi
present a 'loss' or 'gain' which accumulates over the ith renewal cycle (maintenance
cost, profit by operating the system). In any case,  is the total loss (gain), whichC(t)
has accumulated over the interval  The sample paths of a compound renewal(0, t].
process are step functions. Jumps occur at times  and the respective jump heightsTi
are  (Figure 3.11).Mi
Compound renewal processes are considered in this section under the following as-
sumptions:
1)  is a renewal counting process, which belongs to an ordinary renewal{N(t), t ≥ 0}
process .Y1, Y2, ...
2) The sequences are  and  are independent of each other{ M1, M2, ...} {Y1, Y2, ...}
and consist each of independent, nonnegative random variables, which are identical-
ly distributed as M and Y, respectively. However,  and  may depend on eachMi Yj
other if i.e. if they refer to the same renewal cycle.i = j,
3) The mean values of  and M are finite and positive.Y
Under these assumptions, Wald's equation (1.125) yields the trend function

 of a compound renewal process:m(t) = E(C(t))
                                         (3.168)m(t) = E(M) H(t) ,

where  is the renewal function of the underlying renewal processH(t) = E(N(t))
 Formula (3.168) and the elementary renewal theorem (theorem 3.11){Y1, Y2, ....}.

imply an important asymptotic property of the trend function of compound renewal
processes:

                                      (3.169)lim
t→∞

E(C(t))
t = E(M)

E(Y) .

Equation (3.169) means that the average long-run (stationary) loss or profit per unit
time is equal to the average loss or profit per unit time within a renewal cycle. The
'stochastic analogue' to (3.169) is: With probability 1,

                                         (3.170)lim
t→∞

C (t)
t = E(M)

E(Y) .

To verify (3.170)  consider the obvious relationship,

Σi=1
N(t)

Mi ≤ C(t) ≤ Σi=1
N(t)+1

Mi .

From this,

⎛
⎝

1
N(t) Σi=1

N(t)
Mi

⎞
⎠

N(t)
t ≤ C(t)

t ≤ ⎛
⎝

1
N(t) + 1 Σi=1

N(t)
Mi

⎞
⎠

N(t) + 1
t .

Now the strong law of the large numbers (theorem 1.8) and (3.139) imply (3.170).
The relationships (3.169) and (3.170) are called renewal reward theorems.
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Distribution of C(t)  If M has distribution function , then, given , theG(t) N(t) = n
compound random variable  has distribution functionC(t)

P(C(t) ≤ x N(t) = n) = G∗(n)(x) ,

where  is the  convolution power of  Hence, by the total probabili-G∗(n)(x) n th G(t).
ty rule,

             (3.171)FC(t)(x) = P(C(t) ≤ x) = Σn=1
∞ G∗(n)(x) P(N(t) = n) ,

where the probabilities  are given by (3.111). (In the light of sectionP(N(t) = n)
1.2.4,  is a mixture of the probability distribution functions  IfFC(t) G∗(1), G∗(2), ...)
Y has an exponential distribution with parameter , then  has distribution func-λ C(t)
tion

    (3.172)FC(t)(x) = e−λt Σ
n=0

∞
G∗(n)(x) (λt)n

n! ; G∗(0)(x) ≡ 1, x > 0, t > 0 .

If, in addition, M has a normal distribution with  thenE(M) ≥ 3 Var(M) ,

   (3.173)FC(t)(x) = e−λt
⎡

⎣
⎢⎢⎢
1 + Σ

n=1

∞
Φ
⎛

⎝
⎜

x − n E(M)
n Var(M)

⎞

⎠
⎟

(λt)n

n!

⎤

⎦
⎥⎥⎥

; x > 0, t > 0 .

The distribution function , for being composed of convolution powers of G andFC(t)
F, is usually not tractable and useful for numerical applications. Hence, much effort
has been put into constructing bounds on  and into establishing asymptoticFC(t)
expansions. For surveys, see, e.g. [67, 89]. The following result of Gut [38] is partic-
ularly useful.

Theorem 3.19  If 
                    ,                               (3.174)γ2 = Var (E(Y) M − E(M)Y ) > 0

then

lim
t→∞

P
⎛

⎝
⎜
⎜
⎜

C(t) − E(M)
E(Y) t

[E(Y)]−3/2 γ t
≤ x

⎞

⎠
⎟
⎟
⎟

= Φ(x) ,

where  is the distribution function of the standardized normal distribution.       Φ(x)

This theorem implies that for large t the compound variable  has approximately aC(t)
normal distribution with mean value    and variance   , i.e.E(M)

E(Y) t [E(Y)]−3 γ2 t

                                               (3.175)C(t) ≈ N⎛⎝
E(M)
E(Y) t, [E(Y)]−3 γ2 t⎞⎠ .

If M and Y are independent, then the parameter  can be written in the followingγ2

form:
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                                          (3.176)γ2 = [E(Y)]2 Var(M) + [E(M)]2 Var(Y ) .

In this case, in view of assumption 3, condition (3.174) is always fulfilled. Condition
(3.174) actually only excludes the case , i.e. linear dependence between Y andγ2 = 0
M. The following example presents an application of theorem 3.19. Its application to
actuarial risk analysis is illustrated in section 3.4.4.

Example 3.18  For an alternating renewal process  the total{(Yi, Zi); i = 1, 2, ...},
renewal time in  is given by (a possible renewal time running at time t is neg-(0, t]
lected)

C(t) = Σi=1
N(t)

Zi ,
where

N(t) = maxn {n, Tn < t}.

(Notation and assumptions as in section 3.3.6.) Hence, the development of the total
renewal time is governed by a compound stochastic process. In order to investigate
the asymptotic behaviour of C(t) as  by means of theorem 3.19, M has to bet → ∞
replaced with Z and Y with . Consequently, if t is sufficiently large, then C(t)Y + Z
has approximately a normal distribution with parameters

and   E(X(t)) = E(Z)
E(Y) + E(Z) t Var(X(t)) =

γ2

[E(Y) + E(Z)]3 t .

Because of the independence of  and Z,Y

γ2 = Var[Z E(Y + Z) − (Y + Z) E(Z)]

= Var[Z E(Y) − Y E(Z)]

= [E(Y)]2Var(Z) + [E(Z)]2Var(Y) > 0

so that assumption (3.174) is satisfied  In particular, let (all parameters in hours).

                    E(Y) = 120 , Var(Y) = 40 and E(Z) = 4 , Var(Z) = 2 .

Then,
  and  γ2 = 1202 ⋅ 4 + 16 ⋅ 1600 = 83200 γ = 288.4.

Consider, for example, the total renewal time in the interval  The[0, 104 hours].
probability that  does not exceed a nominal value of 350 hours isC(104)

P(C(104) ≤ 350) = Φ
⎛

⎝
⎜⎜⎜

350− 4
124 104

124−3/2 ⋅288.4⋅ 104

⎞

⎠
⎟⎟⎟ = Φ(1.313) .

Hence,
                                          P(C(104) ≤ 350) = 0.905.
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3.3.7.2  First Passage Time
The previous example motivates an investigation of the random time  at whichL(x),
the compound renewal process  exceeds a given nominal value x for the{C(t), t ≥ 0}
first time:

                                     (3.177)L(x) = inf
t

{t, C(t) > x}.

If, for instance, x is the critical wear limit of an item, then crossing level x is com-
monly referred to as the occurrence of a drift  failure. Hence, it is justified to denote
L as the lifetime of the system. Since, by assumption 2, the  are nonnegative ran-Mi
dom variables, the compound renewal process  has nondecreasing sam-{C(t), t ≥ 0}
ple paths. In such a case, the following relationship between the distribution function
of the first passage time L(x) and the distribution function of the compound random
variable C(t) is obvious (Figure 3.12):

                                     (3.178)P(L(x) ≤ t) = P(C(t) > x).

Specifically, if  is the homogeneous Poisson process, then, from formu-{N(t), t ≥ 0}
las (3.172) and (3.177),

P(L(x) > t) = e−λt Σ
n=0

∞
G∗(n)(x) (λt)n

n! ; t ≥ 0

with  fixed. The probability distribution of L(x) is generally not explicitlyx, x > 0,
available. Hence the following theorem (Gut [38]) is important for practical applica-
tions, since it provides information on the asymptotic behaviour of the distribution of
L(x) as  The analogy of this theorem to theorem 3.19 is obvious.x → ∞.

Theorem 3.20  If   thenγ2 = Var[E(Y) M − E(M) Y] > 0 ,

limx→∞
P
⎛

⎝
⎜
⎜
⎜

L(x) − E(Y)
E(M) x

[E(M)]−3/2 γ x
≤ t

⎞

⎠
⎟
⎟
⎟

= Φ(t) ,

where  is the distribution function of the standardized normal distribution.        Φ(t)
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Actually, in view of our assumption that the compound process  has{C(t), t ≥ 0}
nondecreasing sample paths, condition (3.178) implies that theorems 3.19 and 3.20
are equivalent.
A consequence of theorem 3.20 is that, for large x, the first passage time  hasL = L(x)
approximately  normal distribution with parametersa

   and   E(L(x)) = E(Y)
E(M) x Var(L(x)) = [E(M)]−3γ2 x ,

i.e.

                      (3.179)L(x) ≈ N⎛⎝
E(Y)
E(M) x , [E(M)]−3γ2 x⎞⎠ , x > 0.

The probability distribution given by (3.179) is called Birnbaum-Saunders distribu-
tion.

Example 3.19  Mechanical wear of an item is caused by shocks. (For instance, for
the brake discs of a car, every application of the brakes is a shock.) After the i th
shock the degree of wear of the item increases by  units. The  areMi M1, M2, ...
supposed to be independent random variables, which are identically normally distri-
buted as  with parametersM

 and E(M) = 9.2 Var(M) = 2.8 [in 10−4mm ].
The initial degree of wear of the item is zero. The item is replaced by an equivalent
new one if the total degree of wear exceeds a critical level of 0.1 mm.

(1) What is the probability  that the item has to be replaced before or at thep100
occurrence of the 100 th shock?  The degree of wear after 100 shocks is

C100 = Σi=1
100 Mi

and has approximately the distribution function (unit of x: )10−4 mm

P(C100 ≤ x) = Φ
⎛

⎝
⎜⎜⎜

x − 9.2 ⋅ 100

2.82 ⋅ 100

⎞

⎠
⎟⎟⎟

= Φ⎛
⎝

x − 920
28

⎞
⎠ .

Thus, the item survives the first  shocks with probability100
p100 = P(C100 ≤ 1000) = Φ(2.86).

Hence, p100 = 0.979.

(2) In addition to the parameters of M, the random cycle Y is assumed to have mean
value and variance

E(Y) = 6 and Var(Y) = 2 [hours].

What is the probability that the nominal value of  is not exceeded within the0.1 mm
time interval  (hours)?[0, 600]
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To answer this question,  theorem 3.20  can  be applied since  is sufficiently0.1 mm
large in comparison to the shock parameter  Provided M and Y are indepen-E(M ).
dent,  Hence,γ = 0.0024916.

P(L(0.1) > 600) = 1 − Φ
⎛

⎝
⎜⎜⎜

600 − 6
9.2 103

(9.2)−3/2 ⋅ 2491.6 ⋅ 0.1

⎞

⎠
⎟⎟⎟

= 1 − Φ(−1.848) .

Thus, the desired probability is                                          P(L(0.1) > 600) = 0.967.

3.3.8   Regenerative Stochastic Processes

At the beginning of this chapter on renewal theory it has been pointed out that, apart
from its own significance, renewal theory provides mathematical foundations for
analyzing the behaviour of complicated systems which have renewal points imbed-
ded in their running times. This is always the case if the running time of a system is
partitioned by so-called regeneration points into regeneration cycles with the follow-
ing characteristic properties:
1) After every regeneration point the future operation of the system is independent of
its past operation.
2) Within  every  regeneration  cycle  the  operation of the system is governed by the
same stochastic rules.
Thus, regeneration points are nothing but renewal points of a system and, hence, gen-
erate a renewal process. However, now it is not only the distance between regenera-
tion points that is interesting, but also the behaviour of the system within a regenera-
tion cycle.
For a mathematical definition of a regenerative stochastic process, an ordinary renew-
al process  is introduced, where  is the random length of the i th regen-{L1, L2, ...} Li
eration cycle. Thus, the  are independent and identically distributed as L. The timeLi
points

Tn = Σi=1
n Li ; n = 1, 2, ...

are now called regeneration points of the system. The  regeneration cycle isi th
given by

{(Li, Wi (x)), 0 ≤ x < Li},

where  denotes the state of the system at time x (with respect to the preceedingWi(x)
regeneration point). The verbally given  properties of regeneration points and regen-
eration cycles become mathematically precise by assuming that the regeneration cyc-
les  are  independent  of  each  other  and are identically distributed as the typical
regeneration  cycle  The probability distribution of the typical{(L, W(x)), 0 ≤ x < L}.
regeneration cycle is called the cycle distribution.
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Definition 3.10  Let  be the renewal counting process, which belongs to{N(t), t ≥ 0}
the ordinary renewal process  Then the stochastic process {L1, L2, ...}. {X(t), t ≥ 0}
defined by

                                      (3.180)X(t) = WN(t)(t − TN(t))

is said to be a regenerative stochastic process. The time points  areTn; n = 1, 2, ...;
its regeneration points.                                                                                                

Intuitively speaking, definition 3.10 means that  the regeneration point before t,TN(t),
is declared to be the new origin. After  the processTN(t)

 with {WN(t)(x), x ≥ 0} x = t − TN(t)

evolves from  to the following regeneration point , which is reached atx = 0 TN(t)+1
'cycle time'

x = LN(t)+1 = TN(t)+1 − TN(t).

Thus, a regenerative process restarts at every regeneration point.

Example 3.20  The alternating renewal process  is a simple ex-{(Yi, Zi); i = 1, 2, ...}
ample of a regenerative process. In this special case the cycle length  is given byLi
the sum of life- plus renewal time , where the random vectors  Li = Yi + Zi (Yi, Zi)
are independent of each other and identically distributed as . The stochastic(Y, Z)
process  indicates the working and renewal phases within a cycle:{W(x), x ≥ 0}

W(x) =
⎧

⎩
⎨

1 for 0 ≤ x < Y
0 for Y ≤ x < Y + Z

.

Therefore, the typical regeneration cycle is

{(L, W(x)), 0 ≤ x < L}

with . Thus, not only the lengths  of the regeneration cycles are of inter-L = Y + Z Li
est, but also the working and renewal phases within a cycle.                                      

Let B be a subset of the state space of  and  be the renewal func-{W(x), x ≥ 0} H(t)
tion belonging to the ordinary renewal process  Analogously to the der-{L1, L2, ....}.
ivation of (3.159) it can be shown that the one-dimensional probability distribution
of the regenerative stochastic process  is given by{X(t), t ≥ 0}

                                       (3.181)P(X(t) ∈ B) = Q(t, B) + ∫0
t Q(t − x, B) dH(x) ,

where
Q(x, B) = P(W(x) ∈ B, L > x).

The following theorem considers the behaviour of the probability (3.181) as  t → ∞.
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Theorem 3.21 (Theorem of  Smith)  If L is nonarithmetic and , thenE(L) > 0

                         (3.182)lim
t→∞

P(X(t) ∈ B) = 1
E(L) ∫0

∞ Q(x, B) dx

and

                                                   (3.183)lim
t→∞

1
t ∫0

t P(X(x) ∈ B) dx = 1
E(L) ∫0

∞ Q(x, B) dx .

                                                                                                                                     

This theorem is an immediate consequence of the fundamental renewal theorem 3.12.
The practical application of the stationary state probabilities (3.182) and (3.183) of a
regenerative stochastic process is illustrated by analyzing a standard maintenance
policy. This policy is a special case of policy 6 in section 3.2.6.3.

Example 3.21 (age replacement policy) The system is replaced upon failure or at
age  by a preventive renewal, whichever occurs first.τ

After a replacement the system has the same lifetime distribution as the original one,
i.e. it is 'as good as new'. Unscheduled and preventive replacements require the con-
stant times   and , respectively. Furthermore, let  be the distribu-dr dp F(t) = P(T ≤ t)
tion function of the system lifetime T,  the survival probability and F(t) = 1 − F(t) λ(t)
 the failure rate of the system.
To specify an underlying regenerative stochastic process, the time points at which a
system starts resuming its work are declared to be the regeneration points. Therefore,
the random length  of the typical renewal (replacement) cycle has structureL

L = min (T, τ) + Z ,
where the random replacement time  isZ

     or    Z =
⎧

⎩
⎨

dr for T < τ
dp for T ≥ τ

Z =
⎧

⎩
⎨

dr with probability F(τ)
dp with probability F(τ)

.

Since
E{min(T, τ)} = ∫0

τ F(t) dt,

the mean length of a regeneration cycle is

E(L) = ∫0
τ F(t) dt + dr F(τ) + dp F(τ) .

Let

W(x) =
⎧

⎩
⎨

1 if the system is working
0 otherwise

.

Then, for B = {1},

   Q(x, B) = P(W(x) = 1, L > x) =
⎧

⎩
⎨

0 for τ < x ≤ L
F(x) for 0 ≤ x ≤ τ

.
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Thus,

∫0
∞ Q(x, B) dx = ∫0

τ F(x) dx .

Now (3.182) yields the stationary availability of the system:

A(τ) = lim
t→∞

P(X(t) = 1) =
∫0
τ F(x) dx

∫0
τ F(x) dx + deF(τ) + dpF(τ)

.

The age replacement policy can also be described by an alternating renewal process.
Applying formula (3.163) would yield the same result.
Let  denote a renewal interval  which maximizes  Then  satisfies the nec-τ∗ τ A(τ). τ∗

essary condition

λ(τ)∫0
τ F(x) dx − F(τ) = d

1 − d
with .  A unique solution  exists if  is strictly increasing to infinityd = dp/de τ∗ λ(t)
and  The corresponding maximum availability isd < 1.

                                       A(τ∗) = 1
1 + (de − dp)λ(τ∗)

.

3.4    APPLICATIONS TO ACTUARIAL RISK ANALYSIS  

3.4.1  Basic Concepts

Random point processes are key tools for quantifying risk in the insurance industry.
(Principally, the following results are applicable to analyzing financial risk in many
other branches as well.) A risky situation for an insurance company arises if it has to
pay out a total claim amount, which tends to exceed the total premium income plus
its initial capital. To be able to establish the corresponding mathematical risk model,
next the concept of a risk process has to be introduced: An insurance company starts
its business at time  Claims arrive at random time points  and comet = 0. T1, T2, ...
with the respective random claim sizes  Thus, the insurance company isM1, M2, ...
subjected to a random marked point process  called risk{(T1, M1), (T2, M2), . .. }
process. The two components of the risk process are the claim arrival process

 and the claim size process  Let  be the ran-{T1, T2, ...} {M1, M2, ...}. {N(t), t ≥ 0}
dom counting process which belongs to the claim arrival process. Then the total
claim size , the company is faced with in the interval , is a compound ran-C(t) [0, t]
dom variable:

                             (3.184)C(t) =
⎧

⎩
⎨
⎪
⎪

Σi=1
N(t)

Mi if N(t) ≥ 1
0 if N(t) = 0

.
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The compound stochastic process
{C(t), t ≥ 0}

is the main ingredient of the risk model. With the terminology introduced in sections
3.2.5 and 3.3.7,  is a compound Poisson process if  is a Pois-{C(t), t ≥ 0} {N(t), t ≥ 0}
son process and a compound renewal process if  is a renewal process.  {N(t), t ≥ 0}
To equalize the loss caused by claims and to eventually make profit, an insurance
company imposes a premium on its clients. Let  be the total premium income ofκ(t)
the insurance company in  In case , the company has made a profit of[0, t]. C(t) < κ(t)

 κ(t) − C(t)
in the interval  With an initial capital or an initial reserve of x,  which the[0, t]. x ≥ 0,
company has at its disposal at the start, the risk reserve at time  is defined ast

                                      (3.185)R(t) = x + κ(t) − C(t).

The corresponding risk reserve process is
{R(t), t ≥ 0}.

If the sample path is negative at a time  the financial expenses of the company  int0,
 exceed its available capital at time  This leads to the definition of the ruin[0, t0] t0.

probability  of the company (Figure 3.13):p(x)

                 (3.186)p(x) = P(there is a positive, finite t so that R(t) < 0).

Consequently, the non-ruin probability or survival probability of the company is
q(x) = 1 − p(x).

The probabilities  refer to an infinite time horizon.p(x) and q(x)
The ruin probability of the company with regard to a finite time horizon  isτ

p(x, τ) = P(there is a finite t with 0 < t ≤ τ so that R(t) < 0).
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Of course, the ruin probabilities  and  decrease with increasing initial capi-p(x) p(x, τ)
tal x. Since ruin can only occur at the arrival times of claims (Figure 3.13),  andp(x)

 can also be defined in the following way:p(x, τ)

       (3.187)p(x) = P(there is a finite, positive integer n so that R(Tn) < 0),
and

p(x, τ) = P(there is a finite, positive integer n with Tn ≤ τ so that R(Tn) < 0),

where  is understood to be  i.e. the value of the risk reserve processR(Tn) R(+Tn),
including the effect of the nth claim. (In the actuarial literature, claim sizes are fre-
quently denoted as , the initial capital as u, and the ruin probability as )Ui ψ(u).

3.4.2  Poisson Claim Arrival Process

In this section, the problem of determining the ruin probability is considered under
the following 'classical assumptions':
1)  is a homogeneous Poisson process with parameter {N(t), t ≥ 0} λ = 1/μ .
2) The claim sizes  are independent, identically as M distributed randomM1, M2, ...
variables. The  are independent of Mi {N(t), t ≥ 0}.
3) The premium income is a linear function in t:

κ(t) = κ t, κ > 0, t ≥ 0.

The parameter  is the premium rate.κ
4) The time horizon is infinite (τ = ∞).
Under asumptions 1 and 2, risk analysis is subjected to a homogeneous portfolio, i.e.
claim sizes are independent, differences in the claim sizes are purely random and the
arrival rate of claims is constant. For instance, consider a portfolio which comprises
policies covering burgleries in houses. If the houses are in a demarcated area, have
about the same security standard and comparable valuables inside, then this portfolio
may be considered a homogeneous one. Generally, an insurance company tries to
establish its portfolios in such a way that they are approximately homogeneous.
Regardless of the terminology adopted, the subsequent risk analysis will not apply to
an insurance company as a whole, but to its basic operating blocks, the homogeneous
portfolios.
By assumption 1, the interarrival time Y of claims has an exponential distribution
with parameter  The mean claim size is denoted as . Hence,λ = 1/μ. ν

  and                                      (3.188)μ = E(Y) ν = E(M) .
By (3.74) or (3.168), under the assumptions 1 and 2, the trend function of the total
claim size process  is a linear function in time:{C(t), t ≥ 0}

                                      (3.189)E(C(t)) = ν
μ t , t ≥ 0 .
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This justifies assumption 3, namely a linear premium income in time. In the long-
run, an insurance company, however large its initial capital may be, cannot be suc-
cessful  if  the  average total claim cost in any interval  exceeds the premium[0, t]
income  in  Hence, in what follows, let[0, t].

κ − ν
μ =

κ μ − ν
μ > 0.

The positive difference  is called safety loading and will be denoted as :κ μ − ν σ
                                              (3.190)σ = κ μ − ν.

Let distribution function and density of the claim size  beM
B(y) = P(M ≤ y) and b(y) = dB(y)/dy .

To derive an integro-differential equation for , consider what may happen in theq(x)
time interval [0, Δt] :

1) No claim arrives in  Under this condition, the survival probability is[0, Δt].
q(x + κ Δt).

2) One claim arrives in  the risk reserve remains positive. Under this condi-[0, Δt],
tion, the survival probability is

∫0
x+κ Δt q(x + κ Δt − y) b(y) dy .

3) One claim arrives in  the risk reserve becomes negative (ruin occurs). Un-[0, Δt],
der this condition, the survival probability is 0.

4) At least 2 claims arrive in  Since the Poisson process is ordinary, the proba-[0, Δt].
bility of this event is o(Δt).

Therefore, given the initial capital x, 

q(x) = [1 − λ Δt + o(Δt)] q(x + κ Δt)

+[λ Δt + o(Δt)] ∫0
x+κ Δt q(x + κ Δt − y) b(y) dy + o(Δt).

From this, letting ,h = κ Δt

q(x + h) − q(x)
h = λ

κ q(x + h) − λ
κ ∫0

x+h q(x + h − y) b(y) dy + o(h)
h .

Assuming that  is differentiable, letting  yieldsq(x) h → 0

                           (3.191)q (x) = λ
κ ⎡⎣q(x) − ∫0

x q(x − y) b(y) dy⎤⎦.

A solution can be obtained in terms of Laplace transforms: Let  and  be theq(s) b(s)
Laplace transforms of  and  Then, applying the Laplace transformation toq(x) b(s).
(3.191), using its properties (1.30) and (1.33), and replacing  with  yieldsλ 1/μ
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                                 (3.192)q(s) = 1
s − 1

κμ [1 − b(s)]
q(0).

This representation of  involves the survival probability  on condition thatq(s) q(0)
there is no initial capital.

Example 3.22  Let the claim size M have an exponential distribution with parameter
. Then,1/ν

b(s) = ∫0
∞ e−s y 1

ν e−(1/ν) ydy = 1
ν s + 1 .

Hence,

q(s) = νs + 1
μκs (νs + 1) − ν s q(0) μ κ .

 introducing the coefficientBy

                              (3.193)α =
μ κ − ν

μ κ = σ
μ κ , 0 < α < 1,

 simplifies toq(s)

q(s) = ⎡
⎣⎢

1
s + α /ν

+ 1
νs ⋅ 1

s + α /ν
⎤
⎦⎥

q(0) .

Retransformation yields (mind formula (1.29))

q(x) = ⎡
⎣⎢e

−α
ν x + 1

α − 1
α e−α

ν x ⎤
⎦⎥ q(0).

Condition  yields the survival- and ruin probabilities in case q(+∞) = 1 x = 0 :

                                    (3.194)q(0) = α , p(0) = 1 − α

so that the parameter  is the company's probability to survive without any initialα
capital. Thus, survival and ruin probability are for x ≥ 0

                  (3.195)q(x) = 1 − (1 − α) e− α
ν x, p(x) = (1 − α) e− α

ν x.

Other explicit results can be obtained for mixed exponential claim size distributions,
for instance

                    b(y) = ε λ1e−λ1 y + (1 − ε) λ2e−λ2 y; y ≥ 0, 0 < ε < 1.

Renewal Equation for q(x) To be able to construct an approximation for  forq(x)
large x, the integro-differential equation (3.191) needs to be transformed into an
integral equation of renewal type, i.e. into an integral equation of type (3.126):

,                               (3.196)q(x) = a(x) + ∫0
x q(x − y) g(y) dy

where  is a probability density and  an integrable function on g(y) a(x) [0, ∞).
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1) Firstly, an integral equation for  will be constructed. Integrating (3.191) fromq(x)
 to  yieldsx = 0 x = t

             (3.197)q(t) − q(0) = 1
μκ ⎡

⎣∫0
t q(x) dx − ∫0

t ∫0
x q(x − y) b(y) dy dx⎤⎦.

By partial integration and application of Dirichlet's formula (1.33), the double inte-
gral in (3.197) becomes

∫0
t ∫0

x q(x − y) b(y) dy dx

= ∫0
t q(x)dx − q(0)∫0

t B(x)dx − ∫0
t ∫0

x q (x − y) B(y) dy dx

= ∫0
t q(x)dx − q(0)∫0

t B(x)dx − ∫0
t B(y) q(t − y) dy + q(0)∫0

t B(x)dx

= ∫0
t q(x)dx − ∫0

t B(y) q(t − y) dy .

By combining this result with (3.197) and replacing  with x,t

                        (3.198)q(x) = q(0) + 1
μκ ⎡⎣∫0

x q(x − y) B(y) dy ⎤⎦ .

Letting  in (3.198) yieldsx → ∞

q(∞) = q(0) + 1
μκ v q(∞) .

Since q(∞) = 1,
                                       (3.199)q(0) = 1 − ν

μ κ = α .

Interestingly, this probability depends on the probability distributions of the random
variables involved only via their mean values. Hence, its is not surprising that formu-
las (3.194) and (3.199) coincide.

2) To establish an integro-differential equation for the ruin probability , in for-p(x)
mula (3.198) the survival probability  is replaced with q(x) 1 − p(x) :

1 − p(x) = α + 1
μκ ⎡⎣∫0

x [1 − p(x − y)] B(y) dy ⎤⎦

= α + 1
μκ ∫0

x B(y) dy − 1
μκ ∫0

x p(x − y) B(y) dy .

Hence,

              (3.200)p(x) = 1 − α − 1
μκ ∫0

x B(y) dy + ∫0
x p(x − y) 1

μκ B(y) dy.

Formally, this integral equation in the ruin probability  looks like the integralp(x)
equation of renewal type (3.196) with functions a(x) and g(y) given by

      (3.201)a(x) = 1 − α − 1
μκ ∫0

x B(y) dy, g(y) = 1
μκ B(y), x ≥ 0, y ≥ 0.
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The function  is nonnegative, but it is not a probability density sinceg(y)

∫0
∞ g(y)dy = 1

μκ ∫0
∞ B(y) dy = v

μκ = 1 − α < 1.

However,  can be thought of as characterizing a defective probability distribu-g (y)
tion with a defect of . Hence, integral equation (3.200) is called a defective integralα
equation of renewal type.

3) Now a proper integral equation of renewal type for  will be constructed: Thep(x)
procedure is simple: The integral equation (3.200) will be multiplied by a factor er y

so that the product  is a probability density. Hence, the parameter r has to beer yg(y)
chosen such that

                                     (3.202)1
μκ ∫0

∞ er y B(y) dy = 1.

The unique constant r satisfying (3.202) is called a Lundberg exponent. It exists for
claim size probability densities with a sufficiently short tail, which implies that large
claim sizes occur very seldom. With  and  given by (3.201), leta(x) g(y)

ar (x) = er xa(x), gr(y) = er yg(y), pr(x) = er xp(x).

Then, multiplying (3.200) by , where r satisfies (3.202), gives aner x = er (x−y) ⋅ er y

integral equation of renewal type for the function :pr(x)

                           (3.203)pr(x) = ar(x) + ∫0
x pr(x − y) gr(y) dy .

This integral equation can easily be solved in the image space of the Laplace trans-
formation (just as (3.192)). When doing this, note that, for instance, the Laplace
transform of  is given byar

,L(ar) = a(s − r)

where  is the Laplace transform of a a.

Approximation of the Ruin Probability  For being able to apply theorem 3.13 to
the integral equation of renewal type (3.203), the following integrals have to be de-
termined:

   and   .∫0
∞ ar(x) dx ∫0

∞ y gr(y) dy

Since 1 − α = ν
μκ ,

 ∫0
∞ ar(x) dx = ∫0

∞ erx ⎡
⎣1 − α − 1

μκ ∫0
x B(y) dy⎤⎦ dx

= ∫0
∞ erx ⎡

⎣1 − α − 1
μκ

⎛
⎝ν − ∫x

∞ B(y) dy⎞⎠
⎤
⎦ dx

= 1
μκ ∫0

∞ erx ⎛
⎝∫x

∞ B(y) dy⎞⎠ dx .
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Now, changing the order of integration according to Dirichlet's formula (1.33) and
making use of (3.202) yields

∫0
∞ ar(x) dx = 1

μκ ∫0
∞ B(y) ⎡⎣∫0

y
erx dx⎤⎦ dy

= 1
r μκ ∫0

∞ B(y) [er y − 1] dy

= 1
r μκ ⎡⎣∫0

∞ ery B(y)dy − ν⎤⎦ .

Hence,

∫0
∞ ar(x) dx = α

r .

The mean value, which belongs to the density , isgr(y)

                        (3.204)m = ∫0
∞ y gr(y) dy = 1

μκ ∫0
∞ y er y B(y) dy .

Now, from theorem 3.13 (the constant  which occurs in theorem 3.13 is here denot-μ
ed as m),

limx→∞
pr(x) = limx→∞

er x p(x) = α
m r .

Hence, for large values of the initial capital ,x

                                          (3.205)p(x) ≈ α
m r e−r x ,

where the parameters  and m are given by (3.202) and (3.204), respectively. Thisr
approximation frequently yields excellent results even for small values of x. Formula
(3.205) is called the Cramér-Lundberg approximation to the ruin probability. Under
the assumptions stated, the ruin probability is bounded by

                                              (3.206)p(x) ≤ e−r x.

This is the famous Lundberg inequality. A proof will be given in section 6.2 by using
martingale based methods. Both H. Cramér and F. Lundberg did their pioneering re-
search in collective risk analysis in the first third of the 20th century.

Continuation of example 3.22  It is interesting to evaluate the Cramér-Lundberg ap-
proximation to the ruin probability if the claim size M has an exponential distribu-
tion, since in this case the exact value of the ruin probability is known. Thus, let M
have distribution function

F(y) = 1 − e−(1/ν) y, y ≥ 0 .
According to (3.202), the corresponding Lundberg exponent  is given byr

∫0
∞ er y e−(1/v) y dy = μκ .

Hence,
r = α /ν .
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By (3.204), the parameter m is obtained as follows:

m = 1
μκ ∫0

∞ y er y e−(1/v) y dy = 1
μκ ⋅ ν

1 − ν r ∫0
∞ y (1

ν − r) e−( 1
ν −r) ydy

= 1
μκ ⋅ ⎛⎝

ν
1 − ν r

⎞
⎠

2
.

Hence,
α

m r = 1 − α .

By comparing these results with (3.150): In case of exponentially distributed claim
sizes, the Cramér-Lundberg approximation gives the exact formula for the ruin prob-
ability.                                                                                                                         

3.4.3  Renewal Claim Arrival Process

Much effort has been put into determining the ruin probability under more general
assumptions than the 'classical' assumptions 1 to 4 stated in section 3.4.2. In what
follows, some results are listed on condition that, whilst retaining assumptions 2 to 3,
assumption 1 is replaced by assuming that claims arrive according to a renewal pro-
cess. Thus, the interarrival times need no longer be exponentially distributed. For
proofs and surveys on the state of art of actuarial risk theory, including first-passage
time behaviour of random walks, see Feller [28], Grandell [34, 35], Asmussen [1],
and Rolski et al. [67].

Ordinary Renewal Process  Let the sequence  of the claim interarrival{Y1, Y2, ...}
times  be an ordinary renewal process. In the ith cycle, the company makes theYi
random 'profit' (notation as introduced before)

Zi = κ Yi − Mi ; i = 1, 2, ...

The  are independent, identically as  distributed random varia-Z1, Z2, ... Z = κ Y − M
bles. Hence, the discrete-time stochastic process  with{S1, S2, ...}

                                (3.207)Sn = Σi=1
n Zi = κ Tn − C(Tn)

is a random walk with independent, identically distributed increments . Let  beZi L(a)
the first passage time of this random walk with regard to a negative level :a

L(a) = min
n=1,2,...

{n, Sn < a}.

Ruin will occur at time  if x is the initial capital of the company. Thus, deter-L(−x)
mining the ruin probability is closely related to the first passage time behaviour of
random walks. In particular, the ruin probability is given by

p(x) = P(L(−x) < ∞).
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As in section 3.4.2, to make sure that a positive safety loading  isp(x) < 1, σ = κ μ − ν
required. In this case, by (3.168), the stochastic process  has a nonnega-{S1, S2, ...}
tive, linearly increasing trend function:

m(t) = E(St) = (κ μ − ν) t ; t = 1, 2, ...

Let  be the Laplace transform of :z(s) Z = κ Y − M
z(s) = Ee−s Z)

Since M and Y are independent,

z(s) = E(e−s κY) E(es M) .
In terms of the Laplace transforms of the densities of  and M,Y

z(s) = f Y (s κ) b(−s) .
The Lundberg exponent  is now the positive solution ofr

                                               (3.208)z(r) = 1.
As under the assumption of a homogeneous Poisson claim arrival process, an explicit
formula for the ruin probability exists if M has an exponential distribution:

                                 (3.209)p(x) = (1 − rν) e−r x, x ≥ 0.

Given r as solution of (3.208), the Lundberg inequality has the same structure as
(3.206):

p(x) ≤ e−r x.

For large , there is also a Cramér-Lundberg approximation for the ruin probability:x

p(x) ≈ c e−r x.

However, the value of the constant c cannot be given here (see the references given
above).

Stationary Renewal Process  Let the sequence  of the claim interarrival{Y1, Y2, ...}
times  be a stationary renewal process. Then, by theorem 3.17, if the  areYi Y2, Y3, ...
identically distributed with distribution function ,  has distribution functionF(t) Y1
(3.155). Again by theorem 3.17 (formula (3.154)), the trend function of the total
claim size process  is a linear function in time:{C(t), t ≥ 0}

E(C(t)) = E⎛⎝Σi=1
N(t)

Mi
⎞
⎠ = E(N(t)) E(M) = t

μ ν = ν
μ t .

In what follows, the ruin probability referring to a stationary renewal claim arrival
process is denoted as  whereas  refers to the ordinary renewal claim arriv-ps(x), p(x)
al process. With a positive safety loading , there is the following rela-σ = κ μ − ν
tionship between and :ps(x) p(x)

                    (3.210)ps(x) = 1
κ μ ⎡⎣∫x

∞ B(y) dy + ∫0
x p(x − y) B(y) dy ⎤⎦.
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In particular, survival and ruin probabilities on condition  (no initial capital) arex = 0

qs(0) = 1 − ν
κ μ , ps(0) = ν

κ μ .

These probabilities do not depend on the type of the distributions of  Y and M, but
only on their mean values (insensitivity). Since in case of exponentially distributed
claim interarrival times  on condition   the probabilities   andF(t) ≡ FS(t), x = 0 qs(0)

 coincide with the 'classical' survival and ruin probabilities (3.194).ps(0)
For exponentially distributed claim sizes  inserting (3.209) in (3.210) yields,

ps(x) = v
κ μ e−r x, x ≥ 0 .

3.4.4  Normal Approximations for Risk Processes

Let the process of the claim interarrival times  be an ordinary renewal{Y1, Y2, ...}
process. Otherwise, assumptions 2 to 4 of section 3.4.2 will be retained. Then, by
theorem 3.19, if t is sufficiently large compared to  the total claim size in  hasμ, [0, t]
approximately a normal distribution with mean value  and variance ν

μ t μ−3γ2t :

                                     (3.211)C(t) ≈ N⎛⎝
ν
μ t, μ−3γ2t⎞⎠ ,

where
γ2 = μ2Var(M) + ν2Var(Y).

The random profit the insurance company has made in  is given by[0, t]

G(t) = R(t) − x = κ t − C(t) .

By (3.211),  has approximately a normal distribution with parametersG(t)

E(G(t)) = (κ − ν
μ) t and Var(G(t)) = μ−3γ2t .

The application of this result is illustrated by two examples. Note that examples 3.23
and 3.24 refer to the situation that, when being 'in red numbers' (ruin has happened),
the company continues operating until it reaches a profitable time period and so on.
In case of a positive safety loading, it will leave 'loss periods' with probability 1.

Example 3.23  Given a risk process  with{(Y1, M1), (Y2, M2), ...}

μ = E(Y) = 2 [h], Var(Y) = 3 [h2],

ν = E(M) = 900 [$], Var(M) = 360 000 [$2].

(1) What minimal premium per hour   has the insurance company to take in so thatκα
it will achieve a profit of at least  within  with probability 106 [$] 103 hours α = 0.95?
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Since γ = 1967.2,

P(G(104) ≥ 106) = P(C(t) < 104(κ 0.95 − 100))

   = Φ
⎛
⎝⎜

(κ 0.95 − 100) − 450

2−1.5 ⋅ 19.672
⎞
⎠⎟

.

Since the 0.95-percentile of the standardized normal distribution is  thez0.95 = 1.64,
desired premium per hour  satisfies equationκ0.95

κ 0.95 − 550
6.955 = 1.64 .

Hence,
κ0.95 = 561 [$/h].

Of course, this result does not take into account the fact that the premium size has an
influence on the claim flow.

(2) Let the premium income of the company be  Thus, the company hasκ = 460 [$/h].
a positive safety loading of  Given an initial capital of  what isσ = 10 [$]. x = 104 [$],
the probability of the company to be in the state of ruin at time t = 1000 [h]?
This probability is given by

P(G(103) < −10−4) = Φ
⎛

⎝
⎜

−104 − (460 − 450) 103

2−1.5 ⋅ 1967.2 ⋅ 1000

⎞

⎠
⎟

                                              = Φ(−0.910) = 0.181.

The following example uses the approximate distribution of the first passage time
 of the compound claim size process  with respect to level a asL(a) {C(t), t ≥ 0}

given by theorem (3.20):
L(a) ≈ N(μ

ν a, ν−3γ2a) .

Example 3.24  Let the parameters of a risk process  be{(Y1, M1), (Y2, M2), ...}

μ = E(Y) = 5 [h], Var(Y) = 25 [h2],
ν = E(M) = 1000 [$], Var(M) = 640 000 [$2].

What is the probability that the total claim reaches level  before the timea = 106 [$]
point ?t = 5500 [h]
Since γ = 6403,

P(L(106) < 6000) = Φ
⎛
⎝⎜

5500 − 5000
1000−1.5 ⋅ 6403 ⋅ 103

⎞
⎠⎟

                                                                    = Φ(2.45) = 0.993.
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3.5  EXERCISES

Sections 3.1 and 3.2
3.1) The number of catastrophic accidents at Sosal & Sons can be described by a
homogeneous Poisson process with intensity  a year.λ = 3
(1) What is the probability  that at least two catastrophic accidents will occur inp≥2
the second half of the current year?
(2) Determine the same probability given that two catastrophic accidents have occur-
red in the first half of the current year.

3.2) By making use of the independence and homogeneity of the increments of a
homogeneous Poisson process  with intensity  show that its covariance{N(t), t ≥ 0} λ
function is given by

C(s, t) = λ min(s, t).

3.3) The number of cars which pass a certain intersection daily between 12:00 and
14:00, follows a homogeneous Poisson process with intensity  per hour.λ = 40
Among these there are 0.8% which disregard the STOP-sign.
What is the probability  that at least one car disregards the STOP-sign betweenp≥1
12:00 and 13:00?

3.4) A Geiger counter is struck by radioactive particles according to a homogeneous
Poisson process with intensity  per 12 seconds. On average, the Geiger counterλ = 1
only records 4 out of 5 particles.
(1) What is the probability  that the Geiger counter records at least 2 particles ap≥2
minute?
(2) What are mean value [min] and variance [ ] of the random time Y betweenmin2

the occurrence of two successively recorded particles?

3.5) An electronic system is subject to two types of shocks which arrive indepen-
dently of each other according to homogeneous Poisson processes with intensities

 and  per hour,λ1 = 0.002 λ2 = 0.01

respectively. A shock of type 1 always causes a system failure, whereas a shock of
type 2 causes a system failure with probability 0.4.
What is the probability of the event A that the system fails within 24 hours due to a
shock?

3.6) Consider two independent homogeneous Poisson processes 1 and 2 with respec-
tive intensities  and  Determine the mean value of the random number ofλ1 λ2.
events of process 2 (type 2-events) which occur between any two successive events
of process 1 (type 1-events).
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3.7) Let  be a homogeneous Poisson process with intensity λ. Prove that{N(t), t ≥ 0}
for an arbitrary, but fixed positive h the stochastic process  defined by{X(t), t ≥ 0}

X(t) = N(t + h) − N(t)
is weakly stationary.

3.8) Let  be a homogeneous Poisson process with intensity  and let{N(t), t ≥ 0} λ
 be the associated point process. For  determine and sketch the{T1, T2, ...} t → ∞,

covariance function  of the (stochastic) shot noise process  given byC(τ) {X(t), t ≥ 0}

X(t) = Σi=1
N(t)

h(t − Ti) with h(t) = sin t for 0 ≤ t ≤ π
0, elsewhere

.

3.9)*  Let  be a homogeneous Poisson process with intensity  and let{N(t), t ≥ 0} λ
 be the associated random point process. Derive trend function m(t) and{T1, T2, ...}

covariance function  of the shot noise process  defined byC(s, t) {X(t), t ≥ 0}

X(t) = Σi=1
N(t)

h(t − Ti) with h(t) = 0 for t < 0, ∫0
∞ h(x) dx < ∞,

by partitioning the positive half axis  into intervals of length  and making[0, ∞) Δx
use of the homogeneity and independence of the increments of a homogeneous Pois-
son process.
Note that  is the same process as the one analyzed in example 3.4 with{X(t), t ≥ 0}
another technique.

3.10) At a used car dealer, cars of a specific type arrive according to a homogeneous
Poisson process  with intensity  Let  be the corresponding{N(t), t ≥ 0} λ. {T1, T2, ...}
arrival time process. The car arriving at time  can immediately be resaled by theTi
dealer at price , where the  are assumed to be independent and identical-Ci C1, C2, ...
ly distributed as C. However, if a buyer acquires the car, which arrived at , at timeTi

 then he only has to pay an amount ofTi + τ,

 with e−α τCi α > 0.

At time t, the dealer is in a position to sell all cars of this type to a customer. What
will be the mean total price  the car dealer achieves?E(K)

3.11) Statistical evaluation of a large sample justifies to model the number of cars
which arrive daily for petrol between 12:00 a.m. and 4:00 a.m. at a particular filling
station by a nonhomogeneous Poisson process  with intensity function{N(t), t ≥ 0}

λ(t) = 8 − 4 t + 3 t2 [h−1], 0 ≤ t ≤ 4 .

(1) How many cars arrive on average between 12:00 a.m. and 4:00 a.m.?
(2) What is the probability that at least 40 cars arrive between 2:00 and 4.00 a.m.?
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3.12)* Let  be a nonhomogeneous Poisson process with intensity func-{N(t), t ≥ 0}
tion  trend function  and arrival time point  of the ith Poissonλ(t), Λ(t) = ∫0

t λ(x) dx Ti
event. Show that, given  the random vector  has the sameN(t) = n, (T1, T2, ..., Tn)
probability distribution as n ordered, independent, and identically distributed random
variables with distribution function

F(x) =
⎧

⎩
⎨
⎪
⎪

Λ(x)
Λ(t) for 0 ≤ x < t

1, t ≤ x
.

Hint  Compare to theorem 3.5.

3.13) Determine the optimal renewal interval  and the corresponding maintenanceτ∗

cost rate  for policy 1 (section 3.2.6.2) given that the system lifetime has aK(τ)
Weibull distribution with form parameter  and scale parameter β θ; β > 1, θ > 0.

3.14) Clients arrive at an insurance company according to a mixed Poisson process
the structure parameter L of which has a uniform distribution over the interval [0, 1].
(1) Determine the state probabilities of this process at time t.
(2) Determine trend and variance function of this process.
(3) For what values of  and  are trend and variance function of a Polya arrivalα β
process identical to the ones obtained under (2)?

3.15)* Prove the multinomial criterion (formula 3.55). Assume that L has density fL.

3.16)* A system is maintained according to policy 7 (section 3.2.6.4). The repair cost
of a system failing at time t has a uniform distribution over the interval [a, a + bt]
with   and a ≥ 0 b > 0.
Under the same assumptions as in section 3.2.6.4 (in particular assumptions (3.96)
and (3.99)), show that every linearly increasing repair cost limit

   with   and  c(t) = c + dt a < c d < b
leads to a higher maintenance cost rate than  given by (3.105).K7(c∗)

3.17) A system is maintained according to policy 7 with a constant repair cost limit
c. System lifetime L and repair cost C have the respective distribution functions F(t)
and  The cost of a minimal repair is assumed (quite naturally) to depend on c asR(x).
follows: cm = cm(c) = E(C C ≤ c).
(1) Determine the corresponding maintenance cost rate via formula (3.85) for any
distribution function  and for any distribution function  withF(t) R(x) = P(C ≤ x)
density r(x) and property R(cr) = 1.
(2) Determine the optimal repair cost limit with  given by (3.91) and  givenF(t) R(x)
by (3.96)
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Sections 3.3 and 3.4
Note Exercises 3.18 to 3.29 refer to ordinary renewal processes. The functions f (t)
and  denote density and distribution function; the parameters  and  are meanF(t) μ μ2
value and second moment of the cycle length Y. N(t) is the (random) renewal count-
ing function and H(t) denotes the corresponding renewal function.

3.18) A system starts working at time  Its lifetime has approximately a normalt = 0.
distribution with mean value  and standard deviation  [hours]. After aμ = 120 σ = 24
failure, the system is replaced by an equivalent new one in negligible time and imme-
diately resumes its work. How many spare systems must be available in order to be
able maintain the replacement process over an interval of length 10,000 hours
(1) with probability 0.90,
(2) with probability 0.99 ?

3.19) (1) Use the Laplace transformation to find the renewal function H(t) of an ordi-
nary renewal process whose cycle lengths have an Erlang distribution with parame-
ters  and .n = 2 λ
(2) For  sketch the exact graph of the renewal function and the bounds (3.138)λ = 1,
in the interval  (Make sure that the bounds (3.138) are applicable.)0 ≤ t ≤ 6.

3.20) The probability density function of the cycle lengths of an ordinary renewal
process is the mixture of two exponential distributions:

f (t) = pλ1 e−λ1t + (1 − p)λ2e−λ2t, 0 ≤ p ≤ 1, t ≥ 0 .

By means of the Laplace transformation, determine the associate renewal function.

3.21)*  (1) Verify that the probability
p(t) = P(N(t) is odd)

satisfies the integral equation

p(t) = F(t) − ∫0
t p(t − x) f (x) dx, f (x) = F (x) .

(2) Determine p(t) if the cycle lengths are exponential with parameter λ.

3.22) An ordinary renewal process has the renewal function . DetermineH(t) = t /10
the probability P(N(10) ≥ 2).

3.23)* Verify that  satisfies the integral equationH2(t) = E(N 2(t))

H2(t) = 2H(t) − F(t) + ∫0
t H2(t − x) f(x) dx .

3.24) Given the existence of the first 3 moments of the cycle length Y, prove equa-
tions (3.132).
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3.25) The cycle length Y of an ordinary renewal process is a discrete random variable
with probability distribution pk = P(Y = k); k = 0, 1, 2, ...
(1) Show that the corresponding renewal function  satisfiesH(n); n = 0, 1, ...

H(n) = qn + H(0) pn + H(1) pn−1 + . .. + H(n) p0

with qn = P(Y ≤ n) = p0 + p1 + . .. + pn; n = 0, 1, ...

(2) Consider the special cycle length distribution
P(Y = 0) = p, P(Y = 1) = 1 − p

and determine the corresponding renewal function. (This special renewal process is
sometimes referred to as the negative binomial process.)

3.26) Consider an ordinary renewal process the cycle length Y of which has the dis-
tribution function

F(t) = 1 − e−t2 , t ≥ 0.

(1) What is the statement of theorem 3.12 if  g(x) = (x + 1)−2, x ≥ 0 ?

(2) What is the statement of theorem 3.14 (formula (3.145))?

3.27) The time intervals between the arrivals of successive particles at a counter ge-
nerate an ordinary renewal process. After having recorded 10 particles, the counter is
blocked for  time units. Particles arriving during a blocked period are not registered.τ
What is the distribution function of the time from the end of a blocked period to the
arrival of the first particle after this period if τ → ∞?

3.28) Let A(t) be the forward and B(t) the backward recurrence times of an ordinary
renewal process at time t. For  determine functional relationships betweenx > y/2,

 and the conditional probabilitiesF(t)

(1) ,P(A(t) > y − t B(t) = t − x), 0 ≤ x < t < y

(2) .P(A(t) ≤ y B(t) = x)

3.29)* Prove formula (3.145) by means of theorem 3.13.

Hint  Let Z(t) = H(t) − t/μ.

3.30) Let  be the typical cycle of an alternating renewal process, where Y and Z(Y, Z)
have an Erlang distribution with joint parameter  and parameters  and λ n = 2 n = 1,
respectively.
For  determine the probability that the system is in state 1 at time t and that itt → ∞,
stays in this state over the entire interval [t, t + x], x > 0.

Hint Process states as introduced in section 3.3.6.
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3.31) The time intervals between successive repairs of a system generate an ordinary
renewal process  with typical cycle length Y. The costs of repairs are{Y1, Y2, ...}
mutually independent, independent of  and identically distributed as M.{Y1, Y2, ...},
The random variables Y and M have parameters

  μ = E(Y ) = 180 [days], σ = Var(Y ) = 30,

ν = E(M ) = $ 200, Var(M ) = 40.
Determine approximately the probabilities that
(1) the total repair cost arising in  does not exceed [0, 3600 days] $ 4500,
(2) a total repair cost of  is not exceeded before 2200 days.$ 3000

3.32) A system is subjected to an age renewal policy with renewal interval  as des-τ
cribed in example 3.21. Determine the stationary availability of the system by model-
ing its operation by an alternating renewal process.

3.33) A system is subjected to an age renewal policy with renewal interval .τ
Contrary to example 3.21, it is assumed that renewals occur in negligible time and
that preventive and emergency renewals give rise to the respective constant costs

 Further, let F(t) be the distribution function of the sys-cp and ce with 0 < cp < ce.
tem lifetime T and  be the corresponding failure rate.λ(t)
(1) Determine the maintenance cost rate (total maintenance cost per unit time) K(τ)
for an unbounded running time of the system. (Note Total maintenance cost' includes
replacement and repair costs.)
(2) Give a necessary and sufficient condition for the existence of an optimal renewal
interval τ∗.
(3) Determine  if T has a uniform distribution over the interval τ∗ [0, z].

3.34) A system is preventively renewed at fixed time points  Failures bet-τ, 2τ, ...
ween these time points are removed by emergency renewals. (This replacement poli-
cy is called block replacement.)
(1) With the notation and assumptions of the previous problem, determine the main-
tenance cost rate  K(τ).
(2) On condition that the system lifetime has distribution function

F(t) = (1 − e−λ t)2, t ≥ 0,

give a necessary condition for a renewal interval  which is optimal with res-τ = τ∗

pect to  (Hint  Make use of the renewal function obtained in example 3.13.)K(τ).

3.35) Under the model assumptions of example 3.22,
(1) determine the ruin probability p(x) of an insurance company with an initial capi-
tal of  and operating parametersx = $ 20, 000
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 ,  and  1/μ = 2 [h−1], ν = $ 800 κ = 1700 [$/h],

(2) with the numerical parameters given under (1), determine the upper bound e−r x

of the Lundberg inequality (3.206),
(3) under otherwise the same conditions, draw the respective graphs of the ruin prob-
ability p(x) for  and  (no initial capital) in dependence on  over thex = 20, 000 x = 0 κ
interval 1600 ≤ κ ≤ 1800,

3.36) Under otherwise the same assumptions and numerical parameters as made in
exercise 3.35 (1),
(1) determine the ruin probability if claims arrive according to an ordinary renewal
process the typical cycle length of which has an Erlang distribution with parameters

 and n = 2 λ = 4,
(2) determine the ruin probability if claims arrive according to the corresponding sta-
tionary renewal process.

3.37) Under otherwise the same assumptions as made in example 3.22, determine the
ruin probability  the claim size M has densityif

b(y) = a2y e−a y, a > 0, y > 0.

3.38) Claims arrive at an insurance company according to an ordinary renewal pro-
cess  The corresponding claim sizes  are independent and{Y1, Y2, ....}. M1, M2, ...
identically distributed as M and independent of  Let the  be distribu-{Y1, Y2, ....}. Yi
ted as Y; i.e. Y is the typical interarrival interval. Then  is the typical interarriv-(Y, M)
al cycle  From historical observations it is known that.

μ = E(Y) = 2 [h], Var(Y) = 3, ν = E(M) = $ 900, Var(M) = 360, 000.
Find approximate answers to the following problems:
(1) What minimum premium per unit time  has the insurance company to takeκmin,α
in so that it will make a profit of at least  within  hours with probability$ 106 10, 000
α = 0.95 ?
(2) What is the probability that the total claim amount hits level  in the inter-$ 4 ⋅ 106

val [0, 7,000 hours]?

(Before possibly reaching its goals the insurance company may have experienced
one or more ruins with subsequent 'red number periods'.)
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CHAPTER 4

Discrete-Time Markov Chains

 4.1  FOUNDATIONS AND EXAMPLES

This chapter is subjected to discrete-time stochastic processes  with dis-{X0, X1, ...}
crete state space Z which have the Markov property. That is, on condition Xn = xn
the random variable  is independent of all  However, withoutXn+1 X0, X1, ..., Xn−1.
this condition,  may very well depend on all the other Xn+1 Xi, i ≤ n.

Definition 4.1  Let  be a stochastic process in discrete-time with discrete{X0, X1, ...}
state space Z. Then  is a discrete-time Markov chain if for all vectors{X0, X1, ...}

 with  and for all , x0, x1, ..., xn+1 xk ∈ Z n = 1, 2, ...

     (4.1)P(Xn+1 = xn+1 Xn = xn, ..., X1 = x1, X0 = x0
⎞
⎠ = P(Xn+1 = xn+1 Xn = xn)

     

Condtion (4.1) is called the the Markov property. It can be interpreted as follows: If
time point  is the present, then  is a future time point and the time pointst = n t = n + 1

 are in the past. Thus,t = n − 1, ..., 1, 0

     The future development of a discrete-time Markov chain depends only on its         
     present state, but not on its evolution in the past.

Note that for the special class of stochastic processes considered in this chapter defi-
nition 4.1 is equivalent to the definition of the Markov property via (2.19) in chapter
2. It usually requires much effort to check by statistical methods, whether a partic-
ular stochastic process has the Markov property (4.1). Hence one should first try to
confirm or to reject this hypothesis by considering properties of the underlying tech-
nical, physical, economical or other practical situation. For instance, the final profit
of a gambler usually depends on his present profit, but not on the way he has obtain-
ed it. If it is known that at the end of the n th month a manufacturer has sold a total of

 personal computers, then for predicting the total number of computersXn = xn
, sold a month later, knowledge about the number of computers sold within theXn+1

first  months will make no difference. A car driver checks the tread depth of hisn − 1
tires after every 5000 km. For predicting the tread depth after a further 5000 km, the
driver will only need the present tread depth, not how the tread depth has evolved to
its present value. On the other hand, for predicting the future concentration of nox-
ious substances in the air, it has been proved necessary to take into account not only
the present value of the concentration, but also the past development leading to this
value. In this chapter it will be assumed that the state space of the Markov chain is
given by  Hence, states will be denoted as Z = {0, ± 1, ± 2, ...}. i, j, k, ...
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Transition Probabilities  The conditional probabilities
pi j(n) = P(Xn+1 = j Xn = i); n = 0, 1, ...

are the one-step transition probabilities of the Markov chain. A Markov chain is said
to be homogeneous if it has homogeneous increments. Thus, a Markov chain is
homogeneous if and only if its one-step transition probabilities do not depend on n:

pi j(n) = pi j for all n = 0, 1, ...

Note This chapter only deals with homogeneous Markov chains. For the sake of brev-
ity, the attribute homogeneous is generally omitted.

The one-step transition probabilities are combined in the matrix of the one-step tran-
sition probabilities (shortly: transition matrix) P:

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜
⎜
⎜

p00 p01 p02 . ..

p10 p11 p12 . ..
.
..

.

..
.
.. . ..

pi 0 pi1 pi 2 . ..
.
..

.

..
.
.. . ..

⎞

⎠

⎟

⎟

⎟

⎟

⎟
⎟
⎟ .

 is the probability of a transition from state i  to state  j  in one step (or, equiva-pi j
lently, in one time unit, in one jump). With probability  the Markov chain remainspii
in state i for another time unit. The one-step transition probabilities have some ob-
vious properties:

                              (4.2)pi j ≥ 0, Σ
j∈Z

pi j = 1; i, j ∈ Z .

The m-step transition probabilities of a Markov chain are defined as

                        (4.3)pi j
(m) = P(Xn+m = j Xn = i) ; m = 1, 2, ...

Thus,  is the probability that the Markov chain, starting from state i, will bepi j
(m)

after m steps in state  j. However, in between the Markov chain may already have
arrived at state j. Note that . It is convenient to introduce the notationpi j = pi j

(1)

                                      (4.4)pi j
(0) = δij =

⎧

⎩
⎨

1 if i = j
0 if i =/ j

.

 defined in this way is called the Kronecker symbol.δij
The following relationship between the multi-step transition probabilities of a dis-
crete-time Markov chain is called Chapman-Kolmogorov equations:

                            (4.5)pi j
(m) = Σ

k∈Z
pi k

(r) pk j
(m−r); r = 0, 1, ..., m.
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The proof is easy: Conditioning with regard to the state, which the Markov chain as-
sumes after r time units,  and making use of the Markov property yields0 ≤ r ≤ m,

 pi j
(m) = P(Xm = j X0 = i) = Σ

k∈Z
P(Xm = j, Xr = k X0 = i)

= Σ
k∈Z

P(Xm = j Xr = k, X0 = i) P(Xr = k X0 = i )

= Σ
k∈Z

P(Xm = j Xr = k) P(Xr = k X0 = i )

= Σ
k∈Z

pi k
(r) pk j

(m−r) .

This proves formula (4.5).

It simplifies notation, when making use of the matrix of the m-step transition proba-
bilities of the Markov chain:

P(m) = ⎛
⎝
⎛
⎝pi j

(m) ⎞
⎠
⎞
⎠ ; m = 0, 1, ...

Then Chapman-Kolmogorov's equations can be written  the elegant formin

P(m) = P(r) P(m−r) ; r = 0, 1, ..., m.

This relationship implies that
P(m) = Pm.

Thus, the matrix of the m-step transition probabilities is equal to the m-fold product
of the matrix of the one-step transition probabilities.

A probability distribution  of  is said to be an initial distribution of the Mar-p(0) X0
kov chain:

                                         (4.6)p(0) =
⎧

⎩
⎨pi

(0) = P(X0 = i), i ∈ Z, Σ
i∈Z

pi
(0) = 1

⎫

⎭
⎬ .

A Markov chain is completely characterized by its transition matrix P and an initial
distribution . To prove this, one has to show that, given P and , all finite-p(0) p(0)

dimensional probabilities can be determined:  By the Markov property, for any finite
set of states  i0, i1, ..., in,

P(X0 = i0, X1 = i1, ..., Xn = in)

= P(Xn = in X0 = i0, X1 = i1, ..., Xn−1 = in−1) ⋅ P(X0 = i0, X1 = i1, ..., Xn−1 = in−1)

                    = P(Xn = in Xn−1 = in−1) ⋅ P(X0 = i0, X1 = i1, ..., Xn−1 = in−1)

= pin−1in ⋅ P(X0 = i0, X1 = i1, ..., Xn−1 = in−1).

The second factor in the last line is now treated in the same way. Continuing in this
way yields
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             (4.7)P(X0 = i0, X1 = i1, ..., Xn = in) = pi0
(0) ⋅ pi0i1 ⋅ pi1i2 ⋅ . .. ⋅ pin−1in .

This proves the assertion.

The absolute or one-dimensional state probabilities of the Markov chain after m
steps are

pj
(m) = P(Xm = j), j ∈ Z .

Given an initial distribution  by the total probability rule,p(0) = pi
(0) , i ∈ Z ,

                                                    (4.8)pj
(m) = Σ

i∈Z
pi

(0) pi j
(m) , m = 1, 2, ...

Definition 4.2  An initial distribution  is called stationary if{πi = P(X0 = i); i ∈ Z }
it satisfies the system of linear equations

                                        (4.9)πj = Σ
i∈Z

πi pi j ; j ∈ Z.

   
Furthermore, it can be shown by induction that in this case even the absolute state
probabilities after any number of steps are the same as in  the beginning:

                                               (4.10)pj
(m) = Σ

i∈Z
πi pi j

(m) = πj , m = 1, 2, ...

Thus, state probabilities  satisfying (4.9) are time-independent absolute state pro-πi
babilities, which, together with the transition matrix P fully characterize a stationary
probability distribution of the Markov chain. They are also called equilibrium state
probabilities of the Markov chain. Moreover, in this particular case, the structure
(4.7) of the n-dimensional state probabilities verifies theorem 2.1: A Markov chain is
strictly stationary if and only if its (one-dimensional) absolute state probabilities do
not depend on time.
Markov chains in discrete time virtually occur in all fields of science, engineering,
operations research, economics, risk analysis and finance. In what follows, this will
be illustrated by some examples. More examples will be given in the text.

Example 4.1 (random walk)  A particle moves along the real axis in one step from
an integer-valued coordinate i either to  or to  with equal probabilities. Thei + 1 i − 1
steps occur independently of each other. If   is  the starting position of the particleX0
and  the position of the particle after n steps, then  is a discrete-timeXn {X0, X1, ...}
Markov chain with state space  and one-step transition probabil-Z = {0, ±1, ±2, . .. }
ities

                                  pi j = 1/2 for j = i + 1 or j = i − 1
0 otherwise

.

210                                                                                   STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



Example 4.2 (random walk with absorbing barriers)  Example 4.1 is modified in
the following way: The starting position of the particle is restricted to 0 < X0 < 5.
There are absorbing barriers at  and , i.e. if the particle arrives at state 0 orx = 0 x = 6
at state 6, it cannot leave these states anymore. The state space of the corresponding
Markov chain  is  and the transition probabilities are{X0, X1, ...} Z = {0, 1, ..., 6}

pi j =
⎧

⎩
⎨
⎪
⎪

1/2 for j = i + 1 or j = i − 1 and 1 ≤ i ≤ 5
1 for i = j = 0 or i = j = 6
0 otherwise

.

The matrices of the one and two-step transition probabilities are

  P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

1 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 0 1/2 0 1/2
0 0 0 0 0 0 1

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

,

    P(2) =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

1 0 0 0 0 0 0
1/2 1/4 0 1/4 0 0 0
1/4 0 1/2 0 1/4 0 0
0 1/4 0 1/2 0 1/4 0
0 0 1/4 0 1/2 0 1/4
0 0 0 1/4 0 1/4 1/2
0 0 0 0 0 0 1

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

If the starting position of the particle  is uniformly distributed over {1, 2, ..., 5},X0

pi
(0) = P(X0 = i) = 1/5; i = 1, 2, ..., 5;

then  by (4.8), the absolute distribution of the position of the particle after 2 steps is,

                                 p(2) = 3
20, 2

20, 3
20, 3

20, 3
20, 3

20, 3
20 .

Example 4.3  (random walk with reflecting barriers)  For a given positive integer z,
the state space of a Markov chain is  A particle moves from posi-Z = {0, 1, . .. , 2z}.
tion  to position  j in one step with probabilityi

                                   (4.11)pi j =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

2z−i
2z for j = i + 1
i

2z for j = i − 1

0 otherwise

.
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Thus, the greater the distance of the particle from the central point z of Z, the greater
the probability that the particle moves in the next step into the direction of the central
point. Once the particle has arrived at one of the end points  or , it willx = 0 x = 2z
return in the next step with probability 1 to position  or , respectively.x = 1 x = 2z − 1
(Hence the terminology reflecting barriers.) If the particle is at , then the prob-x = z
abilities of moving to the left or to the right in the next step are equal, namely 1/2. In
this sense, the particle is at  in an equilibrium state. This situation may bex = z
thought of as caused by a force, which is situated at the central point. Its attraction to
a particle increases with the particle's distance from this point.                                  

Example 4.4  (Ehrenfest's diffusion model )  P. and T. Ehrenfest came across a ran-
dom walk with reflecting barriers as early as 1907 whilst investigating the following
diffusion model: In a closed container there are exactly 2z molecules of a particular
type. The container is separated into two equal parts by a membrane, which is per-
meable to these molecules. Let  be the random number of the molecules in oneXn
part of the container after n transitions of any molecule from one part of the contain-
er to the other. If  denotes the initial number of molecules in the specified part ofX0
the container, then they observed that the random sequence  behaves ap-{X0, X1, ...}
proximately as a Markov chain with transition probabilities (4.11). Thus, the more
molecules are in one part of the container, the more they want to move into the other
part. In other words, the system tends to the equilibrium state, i.e. to equal numbers
of particles in each part of the container. The system of linear equations (4.9) for the
stationary state probabilities is

π0 = π1 p10 ,

πj = πj−1 pj−1, j + πj+1 pj+1, j; j = 1, 2, ..., 2z − 1 .

π2z = π2z−1 p2z−1, 2z

The solution is

πj = ⎛
⎝

2 z
j
⎞
⎠ 2−2 z ; j = 0, 1, ..., 2z .

As expected, state z has the greatest stationary probability.                                       

Example 4.5 (electron orbits) Depending on its energy, an electron circles around
the atomic nucleus in one of the countably infinite set of trajectories . The{1, 2, ...}
one-step transition from trajectory i to trajectory  occurs with probabilityj

pi j = ai e−b i−j , b > 0 .

Hence  the two-step transition probabilities are,

pi j
(2) = aiΣk=1

∞ ak e−b( i−k + k−j ) .

The  cannot be chosen arbitrarily. In view of (4.2), they must satisfy conditionai
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ai
⎛
⎝ e−b(i−1) + e−b(i−2) + . .. + e−b ⎞

⎠ + aiΣk=0
∞ e−b k = 1,

or, equivalently,

ai
⎛
⎝⎜
e−b 1 − e−b(i−1)

1 − e−b + 1
1 − e−b

⎞
⎠⎟

= 1 .

Therefore,

ai = eb − 1
1 + eb − e−b(i−1) ; i = 1, 2, ...

The structure of the  implies that  for all                                  pi j ai = pi i i = 1, 2, ...

Example 4.6 (occurrence of traffic accidents)  Let  denote the number of trafficXn
accidents over a period of n weeks in a particular area, and let  be the correspond-Yi
ing number in the  week. Then,i th

Xn = Σi=1
n Yi .

The  are assumed to be independent and identically distributed as a random varia-Yi
ble Y with probability distribution  Then  is{qk = P(Y = k); k = 0, 1, ...}. {X1, X2, ...}
a Markov chain with state space  and transition probabilitiesZ = {0, 1, ...}

pi j =
⎧

⎩
⎨

qk if j = i + k; k = 0, 1, ...
0 otherwise

.

Example 4.7 (sequence of moving averages)  Let  be a sequence of{Yi; i = 0, 1, ...}
independent, identically distributed binary random variables with

P(Yi = 1) = P(Yi = −1) = 1/2 .
Moving averages  are defined as follows:Xn

Xn = 1
2 (Yn + Yn−1) ; n = 1, 2, ...

 has range  and probability distributionXn {−1, 0, + 1}

P(Xn = −1) = 1
4, P(Xn = 0) = 1

2, P(Xn = +1) = 1
4 .

Since  and  are independent for  the corresponding matrix of the m-Xn Xn+m m > 1,

step transition probabilities  ispi j
(m) = P(Xn+m = j Xn = i)

                    -1     0    +1 

P(m) =
−1

0
+1

⎛

⎝
⎜
⎜
⎜

1/4 1/2 1/4
1/4 1/2 1/4
1/4 1/2 1/4

⎞

⎠
⎟
⎟
⎟

.

The matrix of the one-step transition probabilities  ispi j = P(Xn+1 = j Xn = i)
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P(1) = P =
⎛

⎝
⎜
⎜
⎜

1/2 1/2 0
1/4 1/2 1/4
0 1/2 1/2

⎞

⎠
⎟
⎟
⎟

.

Since  the Chapman-Kolmogorov equations do not hold. There-P(1) ⋅ P(1) ≠ P(2),
fore, the sequence of moving averages  cannot be a Markov chain.       {X1, X2, ...}

4.2    CLASSIFICATION OF STATES

4.2.1  Closed Sets of States

A subset  of the state space Z of a Markov chain is said to be closed ifC
                      for all                                         (4.12)Σ

j∈C
pi j = 1 i ∈ C

If a Markov chain is in a closed set of states, then it cannot leave this set since (4.12)
is equivalent to  Furthermore, (4.12) implies  thatpi j = 0 for all i ∈ C, j ∉ C .

                                            (4.13)pi j
(m) = 0 for all i ∈ C, j ∉ C and m ≥ 1.

For  formula (4.12) can be proved as follows: From (4.5),m = 2

pi j
(2) = Σ

k∈C
pi k pk j + Σ

k∉C
pi k pk j = 0 ,

since  implies  in the first sum and  in the second sum. Nowj ∉ C pk j = 0 pi k = 0
formula (4.13) follows inductively from the Chapman-Kolmogorov equations.

A closed set of states is called minimal if it does not contain a proper closed subset.
In particular, a Markov chain is said to be irreducible if its state space Z is minimal.
Otherwise the Markov chain is reducible.

A state i is said to be absorbing if . Thus, if a Markov chain has arrived in anpi i = 1
absorbing state, it cannot leave this state anymore. Hence, an absorbing state is a

 closed set of states. Absorbing barriers of a random walk (example 4.2) areminimal
absorbing states.

Example 4.8  Let  be the state space of a Markov chain with transi-Z = {1, 2, 3, 4, 5}
tion matrix 

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0.2 0 0.5 0.3 0
0.1 0 0.9 0 0
0 1 0 0 0

0.4 0.1 0.2 0 0.3
0 0 0 0 1

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.
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It is helpful to illustrate the possible transitions between the states of a Markov chain
by transition graphs. The nodes of these graphs represent the states of the Markov
chain. A directed edge from node i to node j exists if and only if , that is, if apij > 0
one-step transition from state i to state  j is possible. The corresponding one-step tran-
sition probabilities are attached to the edges. Figure 4.1 shows that  is not{1, 2, 3, 4}
a closed set of states since condition (4.12) is not fulfilled for . State 5 is absorb-i = 4
ing  so  that {4}  is  a  minimal  closed  set  of  states.  This Markov chain is, therefore,
reducible.                                                                                                                     

4.2.2  Equivalence Classes

State  j is said to be accessible from state i (symbolically: )  if  there exists ani ⇒ j
 such that  The relation ' ' is transitive: If  and  therem ≥ 1 pi j

(m) > 0. ⇒ i ⇒ k k ⇒ j,

exist  and  with  and . Therefore,m > 0 n > 0 pi k
(m) > 0 pk j

(n) > 0

pi j
(m+n) = Σ

r∈Z
pi r

(m) pr j
(n) ≥ pi k

(m) pk j
(n) > 0.

Consequently,  imply , that is, the transitivity of ' '.i ⇒ k and k ⇒ j i ⇒ j ⇒

The set  consisting of all those states which are accessible from i isM(i) = {k, i ⇒ k}
closed. In order to prove this assertion it is to show that  im-k ∈ M(i) and j ∉ M(i)
ply  The proof is carried out indirectly: If under the assumptions stated ,k ⇒/ j. k ⇒ j
then  and the transitivity would imply . But this contradicts the definitioni ⇒ k i ⇒ j
of .M(i)

If  both   and  hold, then i and j are said to communicate (symbolically:i ⇒ j j ⇒ i
). Communication ' ' is an equivalence relation since it satisfies the threei ⇔ j ⇔

characteristic properties:
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(1)  .                                                                                                       reflexivityi ⇔ i
(2)  If  , then .                                                                         commutativityi ⇔ j j ⇔ i
(3)  If  and , then .                                                           associativityi ⇔ j j ⇔ k i ⇔ k

Properties (1) and (2) are an immediate consequence of the definition of  ' '. To⇔
verify property (3), note that  and  imply the existence of m and n so thati ⇔ j j ⇔ k

 and , respectively. Hence, by (4.5),pi j
(m) > 0 pj k

(n) > 0

pi k
(m+n) = Σ

r∈Z
pi r

(m) pr k
(n) ≥ pij

(m) pj k
(n) > 0 .

Likewise, there exist M and   withN

p k i
(M+N) ≥ pkj

(M) pj i
(N) > 0

so that the associativity is proved.
The equivalence relation ' ' partitions state space Z into disjoint, but not necessar-⇔
ily closed classes in the following way: Two states i and  j belong to the same class if
and only if they communicate. In what follows, the class containing state i is denoted
as C(i). Clearly, any state in a class can be used to characterize this class. All proper-
ties of states introduced in what follows will be class properties, i.e. if state i has one
of these properties, all states in C(i) have this property as well.
A state i is called essential if any state   j which is accessible from i has the property
that i is also accessible from  j. In this case, C(i) is called an essential class.
A state i is called inessential  if it is not essential. In this case, C(i) is called an ines-
sential class. If i is inessential, then there exists a state j for which   and . i ⇒ j j ⇒/ i
It is easily verified that essential and inessential are indeed class properties. In exam-
ple 4.8, the states 1, 2, 3 and 4 are inessential since state 5 is accessible from each of
these states but none of the states 1, 2, 3 or 4 is accessible from state 5.

Theorem 4.1 (1) Essential classes are minimal closed classes. (2) Inessential classes
are not closed.

Proof  (1) The assertion is a direct consequence of the definition of essential classes.
(2) If i is inessential,  then there is a state  j with .  Hence,  C(i).i ⇒ j and j ⇒/ i j ∉

Assuming C(i) is closed implies that  for all   and  C(i).pk j
(m) = 0 m ≥ 1, k ∈ C(i) j ∉

Therefore, C (i) cannot be closed. (According to the definition of the relation ,i ⇒ j

there exists a positive integer m with .)                                                         pi j
(m) > 0

Let  be the probability that the Markov chain, starting from state i, is in statepi
(m)(C)

set C after m time units:

pi
(m)(C) = Σ j∈C pi j

(m).
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Furthermore, let  and  be the sets of all essential and inessential states of aCw Cu
Markov chain. The following theorem asserts that a Markov chain with finite state
space, which starts from an inessential state, will leave the set of inessential states
with probability 1 and never return (for a proof see Chung [19]. This theorem
justifies the notation essential and inessential states. However, depending on the
transition probabilites, the Markov chain may in the initial phase return more or less
frequently to the set of inessential states if it has started there.

Theorem 4.2  Let the state space set Z be finite  Then,.

                                                                     limm→∞
pi

(m)(Cu) = 0 .

Example 4.9  If the number of states in a Markov chain is small, the essential and
inessential states can immediately be identified from the transition matrix. However,
it may be useful to create a more suitable form of this matrix by rearranging its rows
and colums, or, equivalently, by changing the notation of the states,  For instance,
consider a Markov chain with state space Z = {0, 1, 2, 3} and transition matrix

P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

3/5 0 2/5 0
0 3/4 0 1/4

1/3 0 2/3 0
0 1/2 0 1/2

⎞

⎠

⎟
⎟

⎟

⎟
⎟

.

By changing the order of rows and columns, an equivalent representation of  isP

,P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

3/5 2/5 0 0
1/3 2/3 0 0
0 0 3/4 1/4
0 0 1/2 1/2

⎞

⎠

⎟
⎟

⎟

⎟
⎟

=
⎛

⎝
⎜

Q11 0
0 Q22

⎞

⎠
⎟

where  and  are square matrices of order 2 and 0 is a square matrix with allQ11 Q22
elements equal to zero. Hence this Markov chain is reducible. Its state space (in new
notation) consists of two essential classes and  with transi-C(0) = {0, 1} C(2) = {2, 3}
tion matrices  and , respectively.                                                                  Q11 Q22

Example 4.10  Let  be the state space of a Markov chain with transi-Z = {0, 1, ..., 5}
tion matrix

  P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

1/3 2/3 0 0 0 0
1/2 1/2 0 0 0 0
0 0 1/3 2/3 0 0
0 0 2/3 1/3 0 0

0.4 0 0.2 0.1 0.1 0.2
0.1 0.2 0.1 0.2 0.3 0.1

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

=
⎛

⎝
⎜
⎜
⎜

Q11 0 0
0 Q22 0

Q31 Q32 Q33

⎞

⎠
⎟
⎟
⎟

,
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where the symbolic representation of the transition matrix, introduced in the previous
example, is used  This Markov chain has the two essential classes.

 and C(0) = {0, 1} C(2) = {2, 3}
and the inessential class

.C(4) = {4, 5}

It is evident that, from the class of inessential states, transitions both to essential and
inessential states are possible. However, according to theorem 4.2, the Markov chain
will sooner or later leave the inessential class for one of the essential classes and
never return.                                                                                                                  

4.2.3  Periodicity
Let  be the greatest common divisor of those indices  for which .di m ≥ 1 pii

(m) > 0

Then  is said to be the period of state i. If  for all , then the perioddi pii
(m) = 0 m > 0

of i is defined to be infinite. A state i is said to be aperiodic if  .di = 1

If i has period ,  then  holds if and only if m can be represented in thedi pi i
(m) > 0

form
m = n ⋅ di; n = 1, 2, ...

Hence, returning to state i is only possible after such a number of steps which is a
multiple of . The following theorem shows that the period is a class property.di

Theorem 4.3  All states of a class have the same period.

Proof  Let . Then there exist integers m and n with . Ifi ⇔ j pi j
(m) > 0 and pj i

(n) > 0

the inequality  holds for a positive integer r, then, from (4.5),pi i
(r) > 0

pj j
(n+r+m) ≥ pj i

(n) pi i
(r) pi j

(m) > 0 .

Since

,pi i
(2 r) ≥ pi i

(r) ⋅ pi i
(r) > 0

this inequality also holds if r is replaced with :2 r

pj j
(n+2 r+m) > 0 .

Thus,  divides the differencedj
(n + 2r + m) − (n + r + m) = r .

Since this holds for all r for which ,   must divide  . Changing the rolespi i
(r) > 0 dj di

of i and  j shows that  also divides  . Thus, .                                              di dj di = dj
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Example 4.11  Let a Markov chain have state space  and transitionZ = {0, 1, ..., 6}
matrix

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

1/3 2/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0
1 0 0 0 0 0 0
0 1/3 0 1/3 1/3 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1/2 1/2
0  0  0  0 1/2 0 1/2

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

Clearly, {0, 1, 2} is a closed set of essential states. State 4 is absorbing, so {4} is
another closed set. Having once arrived in a closed set of states the Markov chain
cannot leave it again. {3, 5, 6} is a set of inessential states. When starting in one of
its sets of inessential states, the Markov chain will at some stage leave this set and
never return. All states in {0, 1, 2} have period 1.                                                      

Theorem 4.4 (Chung [19])  The state space Z of an irreducible Markov chain with
period   can be partitioned into disjoint subsets  withd, d > 1, Z1, Z1, ..., Zd

Z =
k=1

d
Zk

such that from any state  a transition can only be made to a state .i ∈ Zk j ∈ Zk+1
(By agreement,  if .                                                                              j ∈ Z1 i ∈ Zd)

This theorem implies a characteristic structure of the transition matrix of a periodic
Markov chain. For instance, if , then the transition matrix P looks liked = 3

                                                                  Z1 Z2 Z3

,P =
Z1
Z2
Z3

⎛

⎝
⎜
⎜
⎜

0 Q1 0
0 0 Q2

Q3 0 0

⎞

⎠
⎟
⎟
⎟

where P may be rotated by 900.  (  and 0 refer to the notation introduced in exam-Qi
ple 4.10.) According to the definition of a period, if a Markov chain with period d
starts in , it will again be in   after d transitions. Hence the corresponding d-stepZi Zi
transition matrix is

                  Z1 Z2 Z3

.P(d) =
Z1
Z2
Z3

⎛

⎝
⎜
⎜
⎜

R1 0 0
0 R2 0
0 0 R3

⎞

⎠
⎟
⎟
⎟
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This structure of the transition matrix allows the following interpretation: A Markov
chain  with period d becomes a Markov chain with period 1 and closed{X0, X1, ...}
equivalence classes  if, with respect to transitions within the MarkovZ1, Z2, ..., Zd
chain  only the states after every d steps are registered.  {X0, X1, ...},

Example 4.12  Let a Markov chain have state space  and transitionZ = {0, 1, ..., 5}
matrix 

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

0 0 2/5 3/5 0 0
0 0 1 0 0 0
0 0 0 0 1/2 1/2
0 0 0 0 2/3 1/3

1/2 1/2 0 0 0 0
1/4 3/4 0 0 0 0

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

This Markov chain has period  One-step transitions are possible in the orderd = 3.
Z1 = {0, 1} → Z2 = {2, 3} → Z1 = {4, 5} → Z1.

The 3-step transition matrix is

                        P(3) =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

2/5 3/5 0 0 0 0
3/8 5/8 0 0 0 0
0 0 31/40 9/40 0 0
0 0 3/4 1/4 0 0
0 0 0 0 11/20 9/20
0 0 0 0 21/40 19/40

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

4.2.4  Recurrence and Transience

This section deals with the return of a Markov chain to an initial state. Such returns
are controlled by the  first-passage time probabilities

fi j
(m) = P(Xm = j; Xk ≠ j; k = 1, 2, ..., m − 1 X0 = i⎞⎠ ; i, j ∈ Z

Thus,  is the probability that the Markov chain, starting from state i, makes itsfi j
(m)

first transition into state j after m steps. Recall that  is the probability that thepi j
(m)

Markov chain, starting from state i, is in state j after m steps, but it may have been in
state  j in between. For m = 1,

fi j
(1) = pi j

(1) = pi j .
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The total probability rule yields a relationship between the m-step transition probabil-
ities  the first-passage time probabilitiesand

                                     (4.14)pi j
(m) = Σ

k=1

m
fi j

(k) pj j
(m−k) ,

where, by convention,  for all   Thus, the first-passage time probabil-pj j
(0) = 1 j ∈ Z.

ities can be determined recursivley from the following formula:

                                        (4.15)fi j
(m) = pi j

(m) − Σ
k=1

m−1
fi j

(k) pj j
(m−k) ; m = 2, 3, ...

The random variable  with probability distributionLi j

fi j
(m); m = 1, 2, ... ,

is a  first-passage time  Its mean value is.

μi j = E(Li j) = Σm=1
∞ m fi j

(m) .

The  probability of  ever  making a  transition into state  j if the process starts in state i
is

                                                               (4.16)fi j = Σm=1
∞ fi j

(m) .

In particular,  is the probability of ever returning to state i. This motivates thefi i
introduction of the following concepts:

     A state i is said to be recurrent if  and transient if .fi i = 1 fi i < 1

Clearly, if state i is transient, then . But, if i is recurrent, then   is alsoμi i = ∞ μi i = ∞
possible. Therefore, recurrent states are classified as follows:

     A recurrent state i is said to be positive recurrent if   and null-recurrent    μi i < ∞
     if  . An aperiodic and positive recurrent state is called ergodic.μi i = ∞

The random time points  at which the n th return into starting state iTi,n; n = 1, 2, ... ;
occurs, are regeneration points of the Markov chain (see definition 3.10, section
3.3.8). By convention, . The time spans between neighbouring regenerationTi,0 = 0
points  are called recurrence times. They are independentTi,n − Ti,n−1; n = 1, 2, ... ;
and identically distributed as  Hence the sequence of recurrence times consti-Li i.
tutes an ordinary renewal process  Let.

Ni(t) = max(n; Ti,n ≤ t), Hi(t) = E(Ni(t)),

Ni(∞) = lim
t→∞

Ni(t), Hi(∞) = lim
t→∞

Hi(t) .
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Theorem 4.5  State i is recurrent if and only if 
(1)  orHi(∞) = ∞ ,

(2) Σm=1
∞ pi i

(m) = ∞.

Proof  (1) If i is recurrent, then  for  The limit  isP(Ti,n = ∞) = 0 n = 1, 2, ... Ni(∞)
finite if and only if there is an n with . Therefore,Ti,n = ∞

P(Ni(∞) < ∞) ≤ Σi=1
∞ P(Ti,n = ∞) = 0 .

Thus, assumption  implies  and, therefore,  is true withfi i = 1 Ni(∞) = ∞ Hi(∞) = ∞
probability 1.
On the other hand, if  then the Markov chain will not return to state i with pos-fi i < 1,
itive probability . In this case,  has a geometric distribution with mean1 − fi i Ni(∞)
value (section 1.2.2.2)

E(Ni(∞)) = Hi(∞) =
fi i

1 − fi i
< ∞.

Both results together prove part (1) of the theorem.

(2) Let the indicator variable for the random event that the Markov chain is in state i
at time  bet = m

Im,i =
⎧

⎩
⎨

1 for Xm = i
0 for Xm ≠ i

; m = 1, 2, ...

Then,
Ni(∞) = Σm=1

∞ Im,i .

Hence,

Hi(∞) = E⎛⎝ Σm=1
∞ Im,i

⎞
⎠ = Σm=1

∞ E(Im,i )

= Σm=1
∞ P(Im,i = 1 ) = Σm=1

∞ pii
(m) .

Now assertion (2) follows from (1).                                                                            

By adding up both sides of (4.15) from  to  and changing the order of sum-m = 1 ∞
mation according to formula (1.25), theorem 4.5 implies the following corollary.

Corollary  If state  j is transient, then, for any ,i ∈ Z

Σm=1
∞ pi j

(m) < ∞

and, therefore,

                                               (4.17)limm→∞ pij
(m) = 0 .
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Theorem 4.6  Let i be a recurrent state and . Then state  j is also recurrent.i ⇔ j

Proof  By definition of the equivalence relation ' ', there are integers m and n with⇔

  and  pi j
(m) > 0 pj i

(n) > 0.

By (4.5),

pj j
n+r+m ≥ pj i

(n) pi i
(r) pi j

(m),

so that

Σr=1
∞ pj j

n+r+m ≥ pi j
(m) pj i

(n)Σr=1
∞ pi i

(r) = ∞ .

The assertion is now a consequence of theorem 4.5.                                               

Corollary  Recurrence and transience are class properties. Hence, an irreducible
Markov chain is either recurrent or transient.

The following statement is elementary, but important.

    An irreducible Markov chain with finite state space is recurrent. 

It is easy to see that an inessential state is transient. Therefore, each recurrent state is
essential. But not each essential state is recurrent. This assertion is proved by the fol-
lowing example.

Example 4.13 (unbounded random walk)  Starting from  a particle jumps ax = 0,
unit distance along the x-axis to the right with probability p or to the left with proba-
bility . The transitions occur independently of each other. Let  denote the1 − p Xn
location of the particle after the  jump. Then the Markov chain  withnth {X0, X1, ...}

 has period  . Thus,X0 = 0 d = 2

p00
(2m+1) = 0; m = 0, 1, ...

In order to be back in state  after  steps, the particle must jump m times tox = 0 2m
the left and m times to the right. There are  sample paths which satisfy this con-(2m

m )
dition. Hence,

p00
(2m) = ⎛

⎝
2m
m
⎞
⎠ pm (1 − p)m; m = 1, 2, ...

Letting  and making use  the well-known seriesx = p (1 − p) of

Σ
m=0

∞ ⎛
⎝

2m
m

⎞
⎠ xm = 1

1 − 4x
, − 1/4 < x < 1/4,

yields

Σ
m=0

∞
p00

(m) = 1

(1 − 2p)2
= 1

1 − 2p
, p ≠ 1/2 .
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Thus, the sum

Σm=0
∞ p00

(m)

is finite for all . Hence, by theorem 4.5, state 0 is transient. Consequently, byp ≠ 1/2
the corollary from theorem 4.6, the Markov chain is transient, since it is irreducible.

If  (symmetric random walk), thenp = 1/2

                                 (4.18)Σ
m=0

∞
p00

(m) = lim
p→1/2

1
1 − 2p

= ∞ .

Therefore, in this case all states are recurrent. However, for any p with  all0 < p < 1,
states are essential since there is always a positive probability of making a transition
to any state irrespective of the starting position.                                                         

The symmetric random walk along a straight line can easily be generalized to n-
dimensional Euclidian spaces: In the plane, the particle jumps one unit to the West,
South, East, or North, respectively, each with probability 1/4. In the 3-dimensional
Euclidian space, the particle jumps one unit to the West, South, East, North, upward,
or downward, respectively, each with probability 1/6. When analyzing these random
walks analogously to the one-dimensional case, an interesting phenomenon becomes
visible: the symmetric two-dimensional random walk (more exactly, the underlying
Markov chain) is recurrent like the one-dimensional symmetric random walk, but all
n-dimensional symmetric random walks with  are transient. Thus, there is a pos-n > 2
itive probability that somebody who randomly chooses one of the six possibilities in
a 3-dimensional labyrinth, each with probability 1/6, will never return to its starting
position.

Example 4.14  A particle jumps from  to  with probability  or to x = i x = 0 pi i + 1
with probability  The jumps are independent of each1 − pi; 0 < pi < 1, i = 0, 1, ...
other. Let  denote the position of the particle after the n th jump. Then the transi-Xn
tion matrix of the Markov chain  is{X0, X1, ...}

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

p0 1 − p0 0 0 0 . .. 0 0 . ..

p1 0 1 − p1 0 0 . .. 0 0 . ..

p2 0 0 1 − p2 0 . .. 0 0 . ..
.
..

.

..
.
..

.

..
.
.. . .. 0 0 . ..

pi 0 . .. . .. 0 . .. 1 − pi 0 . ..
.
..

.

..
.
..

.

..
.
.. . .. .

..
.
..

.

..

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟
.

The Markov chain  is irreducible and aperiodic. Hence, for finding the{X0, X1, ...}
conditions under which this Markov chain is recurrent or transient it is sufficient to
consider state 0, say. It is not difficult to determine :f00

(m)
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f00
(1) = p0 ,

f00
(m) =

⎛
⎝
⎜ Π

i=0

m−2
(1 − pi)

⎞
⎠
⎟ pm−1; m = 2, 3, ...

If  is replaced with , then  becomespm−1 (1 − (1 − pm−1)) f00
(m)

 f00
(m) =

⎛
⎝
⎜ Π

i=0

m−2
(1 − pi)

⎞
⎠
⎟ −

⎛
⎝
⎜ Π

i=0

m−1
(1 − pi)

⎞
⎠
⎟ ; m = 2, 3, ...

Hence,

Σ
n=1

m+1
f00

(n) = 1 −
⎛
⎝⎜
Π
i=0

m
(1 − pi)

⎞
⎠⎟

, m = 1, 2, ...

Thus, state 0 is recurrent if and only if

                                                            (4.19)limm→∞ Π
i=0

m
(1 − pi) = 0 .

Proposition  Condition (4.19) is true if and only if

                                                                   (4.20)Σi=0
∞ pi = ∞ .

To prove this proposition, note that
1 − pi ≤ e−pi ; i = 0, 1, ...

Hence,

Πi=0
m (1 − pi) ≤ exp ⎛⎝−Σi=0

m pi
⎞
⎠ .

Letting  proves that (4.19) follows from (4.20).m → ∞

The converse direction is proved indirectly: The assumption that (4.19) is true and
(4.20) is wrong implies the existence of a positive integer  satisfyingk

0 < Σi=k
m pi < 1 .

By induction,

Πi=k
m (1 − pi) > 1 − pk − pk+1 − . .. − pm = 1 − Σi=k

m pi .

Therefore,

limm→∞ Πi=k
m (1 − pi) > limm→∞

⎛
⎝1 − Σi=k

m pi
⎞
⎠ > 0 .

This contradicts  the assumption that condition (4.19) is true, and, hence,  completes
the proof of the proposition.

Thus, state 0 and with it the Markov chain are recurrent if and only if condition
(4.20) is true. This is the case, for instance, if                         pi = p > 0 ; i = 0, 1, ...
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4.3  LIMIT THEOREMS AND STATIONARY DISTRIBUTION

Theorem 4.7  Let state i and j communicate, i.e. . Then,i ⇔ j

                                      (4.21)limn→∞
1
n Σ

m=1

n
pi j

(m) = 1
μj j

.

Proof  Analogously to the proof of theorem 4.5 it can be shown that, given the Mar-
kov chain is in state i at time  the sumt = 0,

Σm=1
n pi j

(m)

is equal to the mean number of transitions into state  j in the time interval  The(0, n].
theorem is, therefore, a direct consequence of the elementary renewal theorem
(theorem 3.11). (If , the corresponding renewal process is delayed.)                   i ≠ j

Theorem 4.7 even holds if the sequence  has no limit. This is, forpi j
(m); m = 1, 2, ...

instance, the case if

 pi j
(1) = 1, pi j

(2) = 0, pi j
(3) = 1, ...

However,

limn→∞
1
n Σ

m=1

n
pi j

(m) = 1
2 .

But, if the limits

limm→∞ pi j
(m)

exist, then they coincide with the right hand side of (4.21) (indirect proof). Since it
can be shown that in case of an irreducible Markov chain these limits exist for all

, theorem 4.7 implies theorem 4.8:i, j ∈ Z

Theorem 4.8  Let  be the m-step transition probabilities of an irreducible, aperi-pi j
(m)

odic Markov chain. Then, for all ,i, j ∈ Z

limm→∞
pi j

(m) = 1
μj j

.

If state  is transient or null-recurrent, thenj

                                                    limm→∞
pi j

(m) = 0 .

Corollary  For an irreducible Markov chain with period ,d

limm→∞ pi j
(md ) = d

μj j
.
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Theorem 4.9  For any irreducible, aperiodic Markov chain, there are two possibili-
ties:  
(1) The Markov chain is transient or null-recurrent. Then a stationary distribution
does not exist.
(2) The Markov chain is positive recurrent. Then there exists a unique stationary
distribution , which for any  is given by{πj , j ∈ Z} i ∈ Z

πj = limm→∞
pi j

(m) = 1
μj j

.

Proof  Without loss of generality, let Z = {0, 1, ...}.

(1) By (4.10),  a stationary distribution  satisfies for any { pj; j = 0, 1, ...} m = 1, 2, ...
the system  linear algebraic equationsof

                             (4.22)pj = Σi=0
∞ pi pi j

(m) , m = 1, 2, ...

If

,limm→∞ pi j
(m) = 0

then there is no probability distribution  which is solution of (4.22).{ pi ; i = 0, 1, ...},

(2)  Next the existence of a stationary distribution is shown. For , any M < ∞ i ∈ Z,
and any m = 1, 2, ... ,

Σj=0
M pi j

(m) < Σj=0
∞ pi j

(m) = 1.

Passing to the limit as  yields for all Mm → ∞

Σj=0
M πj < 1

Therefore,
                                                                   (4.23)Σj=0

∞ πj ≤ 1.

Analogously  it follows from,

pi j
(m+1) = Σk=0

∞ pi k
(m) pk j > Σk=0

M pi k
(m) pk j

that
                                                                (4.24)πj ≥ Σj=0

∞ πk pk j .

If there exists at least one state j for which (4.24) is a proper inequality, then, by
summing up the inequalities (4.24) over all ,j

Σj=0
∞ πj > Σj=0

∞ Σk=0
∞ πk pk j = Σk=0

∞ πkΣj=0
∞ pk j

= Σk=0
∞ πk .
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But this is a contradiction to the fact that, by (4.23), the sum of the  is finite. There-πi
fore

πj = Σk=0
∞ πk pk j ; j = 0, 1, ...

Thus, at least one stationary distribution exists, namely  where{ pj; j = 0, 1, ...}

pj =
πj

Σi=0
∞ πi

, j ∈ Z.

From theorem 4.8, letting  in (4.22) for any stationary distribution of the Mar-m → ∞
kov chain { pj; j = 0, 1, ...}

pj = Σi=0
∞ pi πj = πjΣi=0

∞ pi = πj , j ∈ Z .

Thus,  with  is the only stationary distribution.                 {πj ; j = 0, 1, ...} πj = 1/μj j

Example 4.15  A particle moves along the real axis. Starting from a position (state) i
it jumps to state  with probability p and to state  with probability i + 1 i − 1 q = 1 − p,

  When the particle arrives at state 0, it remains there for a further time uniti = 1, 2, ...
with probability q or jumps to state 1 with probability p. Let  denote the positionXn
of the particle after the n th jump (time unit). Under which condition has the Markov
chain  a stationary distribution?{X0, X1, ...}
Since  the system (4.9) isp00 = q, pi i+1 = p and pi i−1 = q = 1 − p; i = 1, 2, ...,

π0 = π0 q + π1 q
πi = πi−1 p + πi+1 q ; i = 1, 2, ...

By recursively solving this system of equations,

πi = ⎛
⎝

p
q
⎞
⎠

i
π0 ; i = 0, 1, ...

To ensure that  condition  or, equivalently,  must hold. InΣi=0
∞ πi = 1, p < q p < 1/2 ,

this case,

                                   (4.25)πi = q − p
q

⎛
⎝

p
q
⎞
⎠

i
; i = 0, 1, ...

The necessary condition  for the existence of a stationary distribution is intui-p < 1/2
tive, since otherwise the particle would tend to drift to infinity. But then no time-
invariant behaviour of the Markov chain can be expected.                                        

Theorem 4.10  Let  be an irreducible, recurrent Markov chain with state{X0, X1, ...}
space Z and stationary state probabilities . If g is any bounded function onπi, i ∈ Z

,  thenZ

                                                                                    limn→∞
1
n Σ

j=0

n
g(Xj) = Σ

i∈Z
πi g(i) .
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For example, if  is the profit which accrues from the Markov chain by mak-ci = g(i)
ing a transition to state i, then

Σ i∈Z πi ci

is the mean profit resulting from a state change of the Markov chain. Thus, theorem
4.10 is the analogue to the renewal reward theorem (3.170) for compound stochastic
processes. In particular, let

g(i) = 1 for i = k
0 for i ≠ k .

If, as generally assumed in this chapter, changes of state of the Markov chain occur
after unit time intervals  then the limit,

limn→∞
1
n Σj=0

n g(Xj)

is equal to the mean percentage of time the system is in state k. By theorem 4.10, this
percentage coincides with . This property of the stationary state distribution illus-πk
trates once more that it refers to an equilibrium state of the Markov chain. A proof of
theorem 4.10 under weaker assumptions can be found in [81].

Example 4.16  A system can be in one of the three states 1, 2, and 3: In state 1 it
operates most efficiently. In state 2 it is still working but its efficiency is lower than
in state 1. State 3 is the down state, the system is no longer operating and has to be
maintained. State changes can only occur after a fixed time unit of length 1. Transi-
tions into the same state are allowed. If  denotes the state of the system at time n,Xn
then  is assumed to be a Markov chain with transition matrix{X0, X1, ...}

                                         1     2     3                            

P =
1
2
3

⎛

⎝
⎜
⎜
⎜

0.8 0.1 0.1
0 0.6 0.4

0.8 0 0.2

⎞

⎠
⎟
⎟
⎟

.

Note that from state 3 the system most likely makes a transition to state 1, but it may
also stay in state 3 for one or more time units (for example, if a maintenance action
has not been successful). The corresponding stationary state probabilities satisfy the
system of linear equations

  π1 = 0.8 π1 + 0.8 π3
             π2 = 0.1 π1 + 0.6 π2

π3 = 0.1 π1 + 0.4 π2 + 0.2 π3

Only two of these equations are linearly independent. Together with the normalizing
constraint

π1 + π2 + π3 = 1 ,
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the unique solution is

                                                           (4.26)π1 = 4
6 , π2 = π3 = 1

6.

The profits the system makes per unit time in states 1 and 2 are

g(1) = $ 1000, g(2) = $ 600,

whereas, when in state 3, the system generates a loss of
g(3) = − $100

per unit time. According to theorem 4.10, after an infinite (sufficiently long) running
time, the mean profit per unit time is

                     [$ per unit time].Σi=1
3 πi g(i) = 1000 ⋅ 4

6 + 600 ⋅ 1
6 − 100 ⋅ 1

6 = 250

Now, let Y be the random time in which the system is in the profitable states 1 and 2.
According to the structure of the transition matrix, such a time period must begin
with state 1. Further, let Z be the random time in which the system is in the unprofit-
able state 3. The mean values  and  are to be determined. The random vec-E(Y) E(Z)
tor  characterizes the typical cycle of an alternating renewal process. Therefore,(Y, Z)
by (3.163), the ratio

E(Y) /[E(Y) + E(Z)]

is equal to the mean percentage of time the system is in states 1 or 2. As pointed out
after theorem 4.10, this percentage must be equal to :π1 + π2

                                                           (4.27)E(Y)
E(Y) + E(Z) = π1 + π2.

Since the mean time between transitions into state 3 is equal to  the ratioE(Y) + E(Z),

1/[ E(Y) + E(Z)]

is equal to the rate of transitions to state 3. On the other hand, this rate is
π1 p13 + π2 p23.

Hence,

                                                    (4.28)1
E(Y) + E(Z) = π1 p13 + π2 p23.

From (4.27) and (4.28),

E(Y) =
π1 + π2

π1 p13 + π2 p23
,

  E(Z) =
π3

π1 p13 + π2 p23
.

Substituting the numerical values  gives(4.26)

                                                          E(Y) = 6.25 and E(Z) = 1.25.
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4.4  BIRTH- AND DEATH PROCESSES

In some of the examples considered so far only direct transitions to 'neighbouring'
states were possible. More exactly, if starting in state i and not staying there, only
transitions to states  or  could be made in one step.  In these cases,  the posi-i − 1 i + 1
tive one-step transition probabilities have structure (Figure 4.2)
                              (4.29)pi i+1 = pi , pi i−1 = qi , pi i = ri with pi + qi + ri = 1.

A discrete Markov chain with state space  and transition prob-Z = {0, 1, ..., n}, n ≤ ∞,
abilities (4.29) is called a birth- and death process. (The state space implies that

.)  The random walk considered in example  is a special birth- and deathq0 = 0 4.9
process with

pi = p for i = 0, 1, ...
, qi = q and ri = 0 for i = 1, 2, ...

q0 = 0, r0 = q = 1 − p

The unbounded random walk in example 4.7 also makes direct transitions only to
neighbouring states, but its state space is Z = {0, ±1, ±2, ...}.

Example 4.17 (random walk with absorbing barriers)  A random walk with absorb-
ing barriers 0 and s can be modeled by a birth- and death process. In addition to

 its transition probabilities satisfy conditions(4.29),

                                  (4.30)r0 = rs = 1 , pi > 0 and qi > 0 for i = 1, 2, ..., s − 1.

Let  be the probability that the random walk arrives at state 0 when starting fromp(k)
state  (Since s is absorbing, the Markov chain cannot have been ink; k = 1, 2, ..., s − 1.
this state before arriving at 0.) In view of the total probability rule,

 p(k) = pk p(k + 1) + qk p(k − 1) + rk p(k) ,

or, replacing  with rk rk = 1 − pk − qk ,

p(k) − p(k + 1) =
qk
pk

[p(k − 1) − p(k)] ; k = 1, 2, ..., s − 1.

Repeated application  this difference equation yieldsof

                (4.31)p( j) − p( j + 1) = Qj [p(0) − p(1)] ; j = 0, 1, ..., s − 1,
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where  andp(0) = 1, p(s) = 0

Qj =
qj qj−1. .. q1
pj pj−1 . .. p1

; j = 1, 2, ..., s − 1 ; Q0 = 1.

Summing the equations (4.31) from  yieldsj = k to j = s − 1

p(k) = Σj=k
s−1 [p(j) − p(j + 1)] = [p(0) − p(1)] Σj=k

s−1 Qj .

In particular, for k = 0,

1 = [p(0) − p(1)] Σj=0
s−1 Qj .

By combining the last two equations,

                                     (4.32)p(k) =
Σj=k

s−1 Qj

Σj=0
s−1 Qj

; k = 0, 1, ..., s − 1 ; p(s) = 0 .

Besides the interpretation of this birth- and death process as a random walk with ab-
sorbing barriers, the following application may be more interesting: Two gamblers
begin a game with stakes of  and respectively; k, s integers. After each$ k $ (s − k),
move a gambler either wins or loses  or the gambler's stake remains constant.$ 1
These possibilities are governed by transition probabilities satisfying (4.29) and
(4.30). The game is finished if a gambler has won the entire stake of the other one or,
equivalently, if one gambler has lost her/his entire stake. Hence this birth- and death
process is also called gambler's  ruin problem.                                                          

To ensure that a birth- and death process is irreducible, assumptions (4.29)  have to
be supplemented by

               (4.33)pi > 0 for i = 0, 1, ... and qi > 0 for i = 1, 2, ...

Theorem 4.11  Under the additional assumptions (4.33) on its transition probabili-
ties, a birth- and death process is recurrent if and only if

                                     (4.34)Σ
j=1

∞ qj qj−1. .. q1
pj pj−1 . .. p1

= ∞ .

Proof  It is sufficient to show that state 0 is recurrent. This can be established by
using the result (4.32) of example 4.17  since,

lims→∞ p(k) = fk0 ; k = 1, 2, ... ,

where the first-passage time probabilities  are given by (4.16). If state 0 is recur-fk0
rent, then  from the irreducibility of the Markov chain,

f00 = 1 and fk0 = 1.

However,  if and only if (4.34) is valid.fk0 = 1
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Conversely, let (4.34) be true. Then, by the total probability rule,
f00 = p00 + p01 f10 = r0 + p0 ⋅ 1 = 1 .

This result completes the proof of the theorem.                                                          

The notation birth- and death process results from the application of these processes
to describing the development in time of biological populations. In this context,  isXn
the number of individuals of a population at time n assuming that the population
does not increase or decrease by more than one individual per unit time. Correspond-
ingly, the  are called birth- and the  death probabilities.pi qi
Discrete-time birth- and death processes may serve as approximations to continuous-
time birth- and death processes, which are dealt with in section 5.6.

4.5   EXERCISES

4.1) A Markov chain  has state space  and transition matrix{X0, X1, ...} Z = {0, 1, 2}

P =
⎛

⎝
⎜
⎜
⎜

0.5 0 0.5
0.4 0.2 0.4
0 0.4 0.6

⎞

⎠
⎟
⎟
⎟

.

(1) Determine   and  P⎛⎝X2 = 2 X1 = 0, X0 = 1) P(X2 = 2, X1 = 0 X0 = 1⎞⎠
(2) Determine  and, for P⎛⎝X2 = 2, X1 = 0 X0 = 0) n > 1,

 P(Xn+1 = 2, Xn = 0 Xn−1 = 0⎞⎠
(3) Assuming the initial distribution

P(X0 = 0) = 0.4; P(X0 = 1) = P(X0 = 2) = 0.3,

determine P(X1 = 2) and P(X1 = 1, X2 = 2).

4.2) A Markov chain  has state space  and transition ma-{X0, X1, ...} Z = {0, 1, 2}
trix

P =
⎛

⎝
⎜
⎜
⎜

0.2 0.3 0.5
0.8 0.2 0
0.6 0 0.4

⎞

⎠
⎟
⎟
⎟

.

(1) Determine the matrix of the 2-step transition probabilities P(2).
(2) Given the initial distribution

P(X0 = i) = 1/3 ; i = 0, 1, 2 ;
determine the probabilities

P(X2 = 0) and P(X0 = 0, X1 = 1, X2 = 2).
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4.3) A Markov chain  has state space  and transition matrix{X0, X1, ...} Z = {0, 1, 2}

P =
⎛

⎝
⎜
⎜
⎜

0 0.4 0.6
0.8 0 0.2
0.5 0.5 0

⎞

⎠
⎟
⎟
⎟

.

(1) Given the initial distribution
P(X0 = 0) = P(X0 = 1) = 0.4 and P(X0 = 2) = 0.2,

determine .P(X3 = 2)
(2) Draw the corresponding transition graph.
(3) Determine the stationary distribution.

4.4) Let  be a sequence of independent, identically distributed binary{Y0, Y1, ...}
random variables with

P(Yi = 0) = P(Yi = 1) = 1/2; i = 0, 1, ...
Define a sequence of random variables  by{X1, X2, ...}

Xn = 1
2 (Yn − Yn−1) ; n = 1, 2, ...

Check whether the random sequence  has the Markov property.{X1, X2, ...}

4.5) A Markov chain  has state space  and transition ma-{X0, X1, ...} Z = {0, 1, 2, 3}
trix

P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0.1 0.2 0.4 0.3
0.2 0.3 0.1 0.4
0.4 0.1 0.3 0.2
0.3 0.4 0.2 0.1

⎞

⎠

⎟
⎟

⎟

⎟
⎟

.

(1) Draw the corresponding transition graph.
(2) Determine the stationary distribution of this Markov chain.

4.6) Let  be an irreducible Markov chain with state space{X0, X1, ...}
Z = {1, 2, ..., n}, n < ∞,

and with the doubly stochastic transition matrix  i.e.P = ((pij)),

Σ
j∈Z

pi j = 1 for all i ∈ Z and Σ
i∈Z

pi j = 1 for all j ∈ Z.

(1) Prove that the stationary distribution of  is given by{X0, X1, ...}

π j = 1
n , j ∈ Z .

(2) Can  be a transient Markov chain?{X0, X1, ...}
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4.7) A source emits symbols 0 and 1 for transmission to a sink. Random noises
 successively and independently affect the transmission process of a sym-S1, S2, ...

bol in the following way: if a '0'  ('1') is to be transmitted, then  distorts it to a '1'Si
('0')  with probability p (q);   Let  or  denote whether thei = 1, 2, ... X0 = 0 X0 = 1
source has emitted a '0' or a '1' for transmission. Further, let  denoteXi = 0 or Xi = 1
whether the attack of noise  implies the transmission of a '0' or a '1';  TheSi i = 1, 2, ...
random sequence  is an irreducible Markov chain with state space{X0, X1, ...}

 and transition matrixZ = {0, 1}

P =
⎛
⎝
⎜

1 − p p
q 1 − q

⎞
⎠
⎟ .

(1) Verify: On condition  the m-step transition matrix is given by0 < p + q ≤ 1,

P(m) = 1
p + q

⎛
⎝
⎜

q p
q p

⎞
⎠
⎟ +

(1 − p − q)m

p + q
⎛
⎝
⎜

p −p
−q q

⎞
⎠
⎟ .

(2) Let  The transmission of the symbols 0 and 1 is affected by the ran-p = q = 0.1.
dom noises  S1, S2, ..., S5.
Determine the probability that a '0' emitted by the source is actually received.

4.8) Weather is classified as (predominantly) sunny (S) and (predominantly) cloudy
(C), where C includes rain. For the town of Musi, a fairly reliable prediction of
tomorrow's weather can only be made on the basis of today's and yesterday's
weather. Let (C,S) indicate that the weather yesterday was cloudy and today's
weather is sunny and so on. Based on historical observations it is known that, given
the constellation (S,S) today, the weather tomorrow will be sunny with probability
0.8 and cloudy with probability 0.2; given (S,C) today, the weather tomorrow will be
sunny with probability 0.4 and cloudy with probability 0.6; given (C,S) today, the
weather tomorrow will be sunny with probability 0.6 and cloudy with probability
0.4; given (C,C) today, the weather tomorrow will be cloudy with probability 0.8 and
sunny with probability 0.2.
(1) Illustrate graphically the transitions between the states

 and 1 = (S,S), 2 = (S,C), 3 = (C,S), 4 = (C,C).
(2) Determine the matrix of the transition probabilities of the corresponding discrete-
time Markov chain and its stationary state distribution.

4.9)* An area (e.g. a stiffy disc) is partitioned into n segments , and aS1, S2, ..., Sn
collection of n objects  (e.g. pieces of information) are stored in theseO1, O2, ..., On
segments so that each segment contains exactly one object. At time points t = 1, 2, ...
one of the objects is needed. Since its location is assumed to be unknown, it has to be
searched for. This is done in the following way: The segments are checked in increas-
ing order of their indices. When the desired object O is found at segment , then OSk
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will be moved to segment  and the objects originally located at willS1 S1, S2, ..., Sk−1
be moved in this order to S2, S3, ..., Sk.
Let  be the probability that at a time point t object  is needed;  It ispi Oi i = 1, 2, ..., n.
assumed that these probabilities do not depend on t.
(1) Describe the successive location of object  by a homogeneous discrete-timeO1
Markov chain, i.e. determine the transition probabilities 

pi j = P(O1 at segment Sj at time t + 1 O1 at segment Si at time t ).

(2) What is the stationary distribution of the location of   given that O1

  and  p1 = α p2 = p3 = . .. = pn = 1−α
n−1 ?

4.10) A supplier of toner cartridges of a certain brand checks his stock every Mon-
day. If the stock is less than or equal to s cartridges, he orders an amount of S - s
cartridges, which will be available the following Monday,  The weekly0 ≤ s < S.
demands of cartridges  are independent and identically distributed according toD

pi = P(D = i); i = 0, 1, ...

Let  be the number of cartridges on stock on the n th Sunday (no business overXn
weekends) given that the supplier starts his business on a Monday.
(1) Is  a Markov chain?{X1, X2, ...}
(2) If yes, obtain the matrix of the transition probabilities. 

4.11) A Markov chain has state space  and transition matrixZ = {0, 1, 2, 3, 4}

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0.5 0.1 0.4 0 0
0.8 0.2 0 0 0
0 1 0 0 0
0 0 0 0.9 0.1
0 0 0 1 0

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

(1) Determine the minimal closed sets.
(2) Check, whether inessential states exist.

4.12) A Markov chain has state space  and transition matrixZ = {0, 1, 2, 3}

P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0 0 1 0
1 0 0 0

0.4 0.6 0 0
0.1 0.4 0.2 0.3

⎞

⎠

⎟
⎟

⎟

⎟
⎟

.

Determine the classes of essential and inessential states.
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4.13) A Markov chain has state space   and transition matrixZ = {0, 1, 2, 3, 4}

 P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0 0.2 0.8 0 0
0 0 0 0.9 0.1
0 0 0 0.1 0.9
1 0 0 0 0
1 0 0 0 0

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

(1) Draw the transition graph.
(2) Verify that this Markov chain is irreducible with period 3.
(3) Determine the stationary distribution.

4.14) A Markov chain has state space  and transition matrixZ = {0, 1, 2, 3, 4}

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0 1 0 0 0
1 0 0 0 0

0.2 0.2 0.2 0.4 0
0.2 0.8 0 0 0
0.4 0.1 0.1 0 0.4

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

(1) Find the essential and inessential states.
(2) Find the recurrent and transient states.

4.15) Determine the stationary distribution of the random walk considered in exam-
ple 4.8 on condition pi = p, 0 < p < 1.

4.16) Let the transition probabilities of a birth- and death process be given by

pi = 1
1 + [i/(i + 1)]2 and qi = 1 − pi ; i = 1, 2, ... ; p0 = 1 .

Show that the process is transient.

4.17) Let i and  j be two different states with  Show that both i and  j arefi j = fj i = 1.
recurrent.

4.18) The respective transition probabilities of two irreducible Markov chains (1)
and (2) with common state space areZ = {0, 1, ...}

(1)   pi i+1 = 1
i + 2

, pi 0 = i + 1
i + 2

; i = 0, 1, ...;

(2)    pi i+1 = i + 1
i + 2

, pi 0 = 1
i + 2

; i = 0, 1, ...

Check whether these Markov chains are transient, null recurrent or positive recur-
rent.
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4.19) Let  be the random number of time periods a discrete-time Markov chainNi
stays in state i (sojourn time of the Markov chain in state i).
Determine  and E(Ni) Var(Ni).

4.20) A haulier operates a fleet of trucks. His contract with an insurance company
covers his whole fleet and has the following structure ('bonus malus system' in car
insurance): The haulier has to pay his premium at the beginning of each year. There
are 3 premium levels:  If no claim had been madeλ1, λ2 and λ3 with λ3 < λ2 < λ1.
in the previous year and the premium level was  then the premium level in theλi,
current year is  or  if  If a claim had been made in the previous year,λi+1 λ3 λi = λ3.
the premium level in the current year is . The haulier will claim only then if theλ1
total damage a year exceeds an amount of  given the premium level  in that year;ci λi

 In case of a claim, the insurance company will cover the full amounti = 1, 2, 3.
minus a profitincreasing  amount of  The total damages a year areai, 0 ≤ ai < ci.
independent random variables, identically distributed as M.
Given a vector of claim limits  determine the haulier's long-run mean(c1, c2, c3),
loss cost a year.
Hint  Introduce the Markov chain , where  if the premium level at{X1, X2, ...} Xn = i
the beginning of year n is  and make use of theorem 4.10.λi
(Loss cost = premium plus total damage not refunded by the insurance company.)
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CHAPTER 5

Continuous-Time Markov Chains

5.1  BASIC CONCEPTS AND EXAMPLES  

This chapter deals with Markov processes which have parameter set  andT = [0, ∞)
state space  or subsets of it. According to the terminology introduc-Z = {0, ±1, ±2, ...}
ed in section 2.3, for having a discrete parameter space, this class of Markov proces-
ses are called Markov chains.

Definition 5.1  A stochastic process  with parameter set T and discrete{X(t), t ≥ 0}
state space Z is called a continuous-time Markov chain or a Markov chain in contin-
uous time if, for any  and arbitrary sequencesn ≥ 1

{t0, t1, ..., tn+1} with t0 < t1 < . .. < tn+1 and {i0, i1, ... , in+1}, ik ∈ Z,

the following relationship holds:

                  (5.1)P(X(tn+1) = in+1 X(tn) = in, ... , X(t1) = i1, X(t0) = i0)

                                        = P(X(tn+1) = in+1 X(tn) = in).

The intuitive interpretation of the Markov property (5.1) is the same as for discrete-
time Markov chains:

     The future development of a continuous-time Markov chain depends only on        
     its present state and not on its evolution in the past.

The conditional probabilities
pi j(s, t) = P(X(t) = j X(s) = i) ; s < t; i, j ∈ Z ;

are  the  transition  probabilities  of  the  Markov  chain. A Markov chain is said to be
homogeneous if for all  and  the transition probabilities  de-s, t ∈ T i, j ∈ Z pi j(s, t)
pend only on the difference t − s :

pi j(s, t) = pi j(0, t − s).

In this case the transition probabilities depend only on one variable:
pi j(t) = pi j(0, t).

Note  This chapter only considers homogeneous Markov chains. Hence no confusion
can arise if only Markov chains is referred to.

The transition probabilities are comprised in the matrix of transition probabilities P
(simply: transition matrix):
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 P(t) = (( pi j(t))); i, j ∈ Z.

Besides the trivial property , transition probabilities are generally assumedpi j (t) ≥ 0
to satisfy the conditions

                                                         (5.2)Σ
j∈Z

pi j(t) = 1; t ≥ 0, i ∈ Z.

Comment  It is theoretically possible that, for some i ∈ Z,

                                     (5.3)Σ
j∈Z

pi j(t) < 1; t > 0, i ∈ Z .

In this case, unboundedly many transitions between the states occur in any finite time
interval  with positive probability[0, t)

1 − Σ
j∈Z

pi j(t).

This situation approximately applies to nuclear chain reactions and population explo-
sions of certain species of insects (e.g. locusts)  In the sequel it is assumed that.

                                               (5.4)lim
t→ +0

pi i (t) = 1.

By (5.2), this assumption is equivalent to
                                                  (5.5)pi j (0) = lim

t→ +0
pi j(t) = δi j ; i, j ∈ Z .

The Kronecker symbol  is defined by (4.4). δi j

Analogously to (4.5)  the Chapman-Kolmogorov equations are,

                                                         (5.6)pi j(t + τ) = Σ
k∈Z

pi k(t) pk j(τ)

for  any   By making use of the total probability rule, thet ≥ 0, τ ≥ 0, and i, j ∈ Z.
homogeneity and the Markov property  (5.6) is proved as follows:,

pi j(t + τ) = P(X(t + τ) = j X(0) = i) = P(X(t + τ) = j, X(0) = i)
P(X(0) = i)

= Σ
k∈Z

P(X(t + τ) = j, X(t) = k, X(0) = i)
P(X(0) = i)

  = Σ
k∈Z

P(X(t + τ) = j X(t) = k, X(0) = i) P(X(t) = k, X(0) = i)
P(X(0) = i)

= Σ
k∈Z

P(X(τ + t) = j X(t) = k) P(X(t) = k X(0) = i) P( X(0) = i)
P(X(0) = i)

= Σ
k∈Z

P(X(τ) = j X(0) = k) P(X(t) = k X(0) = i)

= Σ
k∈Z

pi k(t) pk j(τ).
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Absolute and Stationary Distributions  Let  be the probabilitypi(t) = P(X(t) = i)
that the Markov chain is in state i at time t.  is called absolute state probabilitypi(t)
(of the Markov chain) at time t. Hence,  is said to be the absolute (one-{ pi(t), i ∈ Z}
dimensional) probability distribution of the Markov chain at time t. In particular,

 is called an initial ( probability) distribution of the Markov chain. By{pi(0); i ∈ Z}
the total probability rule, given an initial distribution, the absolute probability distri-
bution of the Markov chain at time  ist

                                                    (5.7)pj(t) = Σ
i∈Z

pi(0) pi j(t), j ∈ Z .

For determining the multidimensional distribution of the Markov chain at time points
 with , only its absolute probability distributiont0, t1, ..., tn 0 ≤ t0 < t1 < . .. < tn < ∞

at time  and its transition probabilities need to be known. This can be proved by re-t0
peated application of the formula of the conditional probability (1.6) and by making
use of homogeneity of the Markov chain:

P(X(t0) = i0, X(t1) = i1, ..., X(tn) = in)

                                (5.8)= pi0 (t0) pi0i1 (t1 − t0) pi1i2 (t2 − t1) . .. pin−1in (tn − tn−1) .

Definition 5.2  An initial distribution  is said to be stationary if{πi = pi(0), i ∈ Z}

                                                    (5.9)πi = pi(t) for all t ≥ 0 and i ∈ Z .
                                                                                                                              

Thus, if at time  the initial state is determined by a stationary initial distribution,t = 0
then the absolute state probabilities  do not depend on t and are equal to .pj(t) πj
Consequently, the stationary initial probabilities  are the absolute state probabil-πj
ities  for all  and . Moreover, it follows from (5.8) that in this case allpj(t) j ∈ Z t ≥ 0

-dimensional distributions of the Markov chain, namelyn

           (5.10){P(X(t1 + h) = i1, X(t2 + h) = i2, ..., X(tn + h) = in}, ij ∈ Z

do not depend on h, i.e. if the process starts with a stationary initial distribution, then
the Markov chain is strictly stationary. (This result verifies the more general state-
ment of theorem 2.1.) Moreover, it is justified to call  a stationary (prob-{πi, i ∈ Z}
ability) distribution of the Markov chain.

Example 5.1  A homogeneous Poisson process  with intensity  is a ho-{N(t), t ≥ 0} λ
mogeneous Markov chain with state space  and transition probabilitiesZ = {0, 1, ...}

pi j(t) = (λt) j−i

( j − i)! e−λ t ; i ≤ j .

The sample paths of the process  are nondecreasing step-functions. Its{N(t), t ≥ 0}
trend function is linearly increasing:

m(t) = E(N(t)) = λ t.
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Thus, a stationary initial distribution cannot exist. (However, according to the corol-
lary following definition 3.1 in section 3.1, the homogeneous Poisson process is a
stationary point process )                                                                                            .

Example 5.2  At time , exactly n systems start operating. Their lifetimes are in-t = 0
dependent, identically distributed exponential random variables with parameter . Ifλ
X(t) denotes the number of systems still operating at time t, then  is a{X(t), t ≥ 0}
Markov chain with state space  transition probabilitiesZ = {0, 1, ..., n},

pi j(t) = ⎛
⎝

i
i−j

⎞
⎠ (1 − e−λ t ) i−j e−λ t j , n ≥ i ≥ j ≥ 0 .

and initial distribution  The structure of these transition probabilitiesP(X(0) = n) = 1.
is based on the memoryless property of the exponential distribution (example 1.14).
Of course, this Markov chain cannot be stationary                                                     .

Example 5.3  Let   be the state space andZ = {0, 1)

P(t) =
⎛

⎝
⎜⎜⎜

1
t+1

t
t+1

t
t+1

1
t+1

⎞

⎠
⎟⎟⎟

the transition matrix of a stochastic process . It is to check whether this{X(t), t ≥ 0}
process is a Markov chain  Assuming the initial distribution.

p0(0) = P(X(0) = 0) = 1

and applying formula (5.7) yields the absolute probability of state 0 at time :t = 3

p0(3) = p0(0) p00(3) = 1/4 .

On the other hand, applying (5.6)  with  and  yields the (wrong) resultt = 2 τ = 1

p0(3) = p00(2) p00(1) + p01(2) p10(1) = 1/2 .

Therefore, Chapman-Kolmogorov's equations (5.6) are not valid so that {X(t), t ≥ 0}
cannot be a Markov chain.                                                                                          

Classification of States  The classification concepts already introduced for discrete-
time Markov chains can analogously be defined for continuous-time Markov chains.
In what follows, some concepts are defined, but not discussed in detail.
A state set  is called closed ifC ⊆ Z

 for all , pij(t) = 0 t > 0 i ∈ C and j ∉ C.

If, in particular, {i} is a closed set, then i is called an absorbing state. The state  j is
accessible from i if there exists a t with  If i and  j are accessible from eachpij(t) > 0.
other, then they are said to communicate. Thus, equivalence classes, essential and
inessential states as well as irreducible and reducible Markov chains can be defined
as in section 4.2 for discrete Markov chains.
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State  is recurrent (transient) if i

∫0
∞ pii(t) dt = ∞ ⎛

⎝∫0
∞ pii(t) dt < ∞⎞

⎠ .

A recurrent state i is positive recurrent if the mean value of its recurrence time (time
between two successive occurences of state i) is finite. Since it can easily be shown
that  implies  for all  introducing the concept of a periodpi j(t0) > 0 pi j(t) > 0 t > t0,
analogously to section 4.3.3 makes no sense.

5.2   TRANSITION PROBABILITIES AND RATES

This section discusses some structural properties of continuous-time Markov chains
which are fundamental to mathematically modeling real systems.

Theorem 5.1  On condition (5.4), the transition probabilities  are differentiablepi j(t)
in  for all [0, ∞) i, j ∈ Z.

Proof  For any , the Chapman-Kolmogorov equations (5.6) yieldh > 0

pij(t + h) − pij(t) = Σ
k∈Z

pik(h) pkj(t) − pij(t)

= −(1 − pii(h)) pij(t) + Σ
k∈Z/ , k≠i

pik(h) pkj(t) .

Thus,
−(1 − pii(h)) ≤ −(1 − pii(h)) pij(t) ≤ pij(t + h) − pij(t)

≤ Σ
k∈Z/
k≠i

pik(h) pkj(t) ≤ Σ
k∈Z/
k≠i

pik(h)

= 1 − pii(h) .
Hence,

pij(t + h) − pij(t) ≤ 1 − pii(h) .

The uniform continuity of the transition probabilities and, therefore, their differentia-
bility for all  is now a consequence of assumption (5.4).                                     t ≥ 0

Transition Rates  The following limits play an important role in all future deriva-
tions. For any , leti, j ∈ Z

                                                              (5.11)qi = lim
h→0

1 − pii(h)
h ,

                                     (5.12)qij = lim
h→0

pij(h)
h , i ≠ j .
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These limits exist, since, by (5.5),
 and pii(0) = 1 pij(0) = 0 for i ≠ j

so that, by theorem 5.1,

                                                        (5.13)pii(0) =
d pii(t)

dt t=0
= −qi ,

                                                    (5.14)pij(0) =
d pij(t)

dt t=0
= qij , i ≠ j .

For , relationships (5.13) and (5.14) are equivalent toh → 0

                                                             (5.15)pii(h) = 1 − qi h + o(h)

                                    (5.16)pi j(h) = qi j h + o(h) , i ≠ j ,

respectively. The parameters  and  are the transition rates of the Markov chain.qi qi j
More exactly,  is the unconditional transition rate of leaving state i for any otherqi
state, and   is the conditional transition rate of making a transition from state i toqij
state  j. According to (5.2),

                                                          (5.17)Σ
{ j, j≠i}

qij = qi , i ∈ Z .

Kolmogorov's Differential Equations In what follows, systems of differential
equations for the transition probabilities and the absolute state probabilities of a
Markov chain are derived. For this purpose, the system of Chapman-Kolmogorov
equations is written in the form

pi j(t + h) = Σ
k∈Z

pi k(h) pk j(t) .

 follows thatIt

pi j(t + h) − pi j(t)
h = Σ

k≠i

pi k(h)
h pk j(t) −

1 − pi i(h)
h pij(t) .

By (5.13) and (5.14), letting  yields Kolmogorov's backward equations for theh → 0
transition probabilities:

                                             (5.18)pij(t) = Σ
k≠i

qik pkj(t) − qi pij(t), t ≥ 0 .

Analogously, starting with
,pi j(t + h) = Σ

k∈Z
pi k(t) pk j(h)

yields Kolmogorov's  forward equations for the transition probabilities:

                                              (5.19)pij(t) = Σ
k≠j

pi k(t) qk j − qj pi j(t), t ≥ 0 .
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Let  be any initial distribution. Multiplying Kolmogorov's forward{ pi(0), i ∈ Z}
equations (5.19) by  and summing with respect to i yieldspi(0)

Σ
i∈Z

pi(0) pij(t) = Σ
i∈Z

pi(0) Σ
k≠j

pi k(t) qk j − Σ
i∈Z

pi(0) qj pi j(t)

= Σ
k≠j

qk j Σ
i∈Z

pi(0) pi k(t) − qj Σ
i∈Z

pi(0) pi j(t) .

Thus, in view of (5.7), the absolute state probabilities satisfy the system of linear
differential equations

                                         (5.20)pj (t) = Σ
k≠j

qk j pk(t) − qj pj(t) , t ≥ 0 , j ∈ Z .

In future  the absolute state probabilities are assumed to satisfy,

                                                                  (5.21)Σ
i∈Z

pi(t) = 1 .

This normalizing condition is always fulfilled if Z is finite.

Note  If the initial distribution has structure
pi(0) = 1, pj(0) = 0 for j ≠ i,

then the absolute state probabilities are equal to the transition probabilities
pj(t) = pi j(t), j ∈ Z.

Transition Times and Transition Rates  It is only possible to exactly model real
systems by continuous-time Markov chains if the lengths of the time periods between
changes of states are exponentially distributed, since in this case the 'memoryless
property' of the exponential distribution (example 1.14) implies the Markov property.
If the times between transitions have known exponential distributions, then it is no
problem to determine the transition rates. For instance, if the sojourn time of a
Markov chain in state 0 has an exponential distribution with parameter , then,λ0
according to (5.11)  the unconditional rate of leaving this state is given by,

q0 = lim
h→0

1 − p00(h)
h = lim

h→0
1 − e−λ0 h

h

= lim
h→0

λ0 h + o(h)
h = λ0 + lim

h→0
o(h)

h .

Hence,
                                                                      (5.22)q0 = λ0 .

Now let the sojourn time of a Markov chain in state  have structure0
Y0 = min (Y01, Y02),

where   and    are  independent  exponential  random  variables  with  respectiveY01 Y02
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parameters  and  If , the Markov chain makes a transition to state 1λ1 λ2. Y01 < Y02
and if  to state 2. Thus, by (5.12), the conditional transition rate from stateY01 > Y02
0 to state 1 is,

q01 = lim
h→0

p01(h)
h = lim

h→0
(1 − e−λ1h) e−λ2h + o(h)

h

 = lim
h→0

λ1h (1 − λ2h)
h + lim

h→0
o(h)

h

= lim
h→0

(λ1 − λ1λ2h) = λ1.

Hence, since the roles of  can be interchanged,Y01 and Y02

                                              (5.23)q01 = λ1, q02 = λ2, q0 = λ1 + λ2 .

The results (5.22) and (5.23) will be generalized in section 5.4.

Transition Graphs  Establishing the Kolmogorov equations can be facilitated by
transition graphs. These graphs are constructed analogously to the transition graphs
for discrete-time Markov chains: The nodes of a transition graph represent the states
of the Markov chain. A (directed) edge from node i to node j exists if and only if

 The edges are weighted by their corresponding transition rates. Thus, twoqi j > 0.
sets of states (possibly empty ones) can be assigned to each node i: firstly edges with
initial node i and secondly edges with end node i, that is, edges which leave node i
and edges which end in node i. The unconditional transition rate  equals the sum ofqi
the weights of all those edges leaving node i. If there is an edge ending in state i and
no edge leaving state i, then i is an absorbing state.

Example 5.4 (system with renewal)  The lifetime L of a system has an exponential
distribution with parameter . After a failure the system is replaced by an equivalentλ
new one. A replacement takes a random time Z, which is exponentially distributed
with parameter . All life- and replacement times are assumed to be independent.μ
Thus, the operation of the system can be described by an alternating renewal process
(section 3.3.6) with 'typical renewal cycle' . Consider the Markov chain(L, Z)

 defined by{X(t), t ≥ 0}

X(t) = 1 if the system is operating
0 if the system is being replaced

.

Its state space is   The absolute state probabilityZ = {0, 1}.

p1(t) = P(X(t) = 1)

of this Markov chain is the point availability of the system. In this simple example,
only state changes from 0 to 1 and from 1 to 0 are possible. Hence, by (5.22),

q0 = q01 = μ and q1 = q10 = λ.
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The corresponding Kolmogorov differential equations  are(5.20)
p0(t) = −μ p0(t) + λ p1(t),

p1(t) = +μ p0(t) − λ p1(t).

These two equations are linearly dependent. (The sums of the left hand sides and the
right hand sides are equal to 0.) Replacing  in the second equation by p0(t) 1 − p1(t)
yields a first-order nonhomogeneous differential equation with constant coefficients
for :p1(t)

p1(t) + (λ + μ)p1(t) = μ .

Given the initial condition , the solution isp1(0) = 1

p1(t) =
μ

λ + μ + λ
λ + μ e−(λ+μ)t , t ≥ 0 .

The corresponding stationary availability is

π1 = lim
t→∞

p1(t) =
μ

λ + μ .

In example 3.17, the same results have been obtained by applying the Laplace trans-
form. (There the notation  had been used.)                       L = Y, λ = λ1 and μ = λ0

Example 5.5 (two-unit redundant system, standby redundancy)  A system consists
of two identical units. The system is available if and only if at least one of its units is
available. If both units are available, then one of them is in standby redundancy (cold
redundancy), that is, in this state it does not age and cannot fail. After the failure of a
unit, the other one (if available) is immediately switched from the redundancy state
to the operating state and the replacement of the failed unit begins. The replaced unit
becomes the standby unit if the other unit is still operating. Otherwise it immediately
resumes its work. The lifetimes and replacement times of the units are independent
random variables, identically distributed as L and Z, respectively. L and Z are assum-
ed to be exponentially distributed with respective parameters  and . Let  denoteλ μ Ls
the system lifetime, i.e. the random time to a system failure. A system failure occurs,
when a unit fails whilst the other unit is being replaced. A Markov chain

 with state space  is introduced in the following way:{X(t), t ≥ 0} Z = {0, 1, 2}
 if i units are unavailable at time t. Let  be the unconditional sojourn timeX(t) = i Yi

of the system in state i and  be the conditional sojourn time of the system in state iYi j
given  that  the  system  makes  a  transition from state i into state j. From state 0, the
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system can only make a transition to state 1. Hence, . According toY0 = Y01 = L
(5.22), the corresponding transition rate is given by

.q0 = q01 = λ

If  the  system  makes a transition from state 1 to state 2, then its conditional sojourn
time in state 1 is , whereas in case of a transition to state 0, it stays a timeY12 = L

 in state 1. The unconditional sojourn time of the system in state 1 isY10 = Z
.Y1 = min (L, Z)

Hence, according to (5.23), the corresponding transition rates are
q12 = λ, q10 = μ and q1 = λ + μ.

When the system returns from state 1 to state 0, then it again spends time L in state 0,
since the operating unit is  'as good as new' in view of the memoryless property of
the exponential distribution.
a) Survival probability  In this case, only the time to entering state 2  (system failure)
is of interest. Hence, state 2 must be considered absorbing (Figure 5.2) so that

q20 = q21 = 0.

The survival probability of the system has the structure
Fs(t) = P(Ls > t) = p0(t) + p1(t) .

The corresponding system of differential equations (5.20) is

p0(t) = −λ p0(t) + μ p1(t),

                                 (5.24)p1(t) = +λ p0(t) − (λ + μ) p1(t),

p2(t) = +λ p1(t).

This system of differential equations will be solved on condition that both units are
available at time  Combining the first two differential equations in (5.24) yieldst = 0.
a homogeneous differential equation of the second order with constant coefficients
for :p0(t)

p0 (t) + (2λ + μ) p0(t) + λ2 p0(t) = 0 .

The corresponding characteristic equation is

x2 + (2λ + μ) x + λ2 = 0 .
Its solutions are
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x1,2 = −⎛⎝λ +
μ
2
⎞
⎠ ± λμ + μ2/4 .

Hence, since  for p0(0) = 1, t ≥ 0,

p0(t) = a sinh c
2 t with c = 4 λ μ + μ2 .

Since  the first differential equation in (5.24) yields  andp1(0) = 0, a = 2λ/c

p1(t) = e−2 λ+μ
2 t ⎛

⎝
μ
c sinh c

2 t + cosh c
2 t⎞⎠ , t ≥ 0 .

Thus, the survival probability of the system is

Fs(t) = e−2λ+μ
2 ⎡

⎣
⎢cosh c

2 t +
2 λ + μ

c sinh c
2 t⎤
⎦
⎥ , t ≥ 0 .

(For a definition of the hyperbolic functions  sinh  and  cosh,  see section 3.2.1.) The
mean value of the system lifetime  is most easily obtained from formula (1.12):Ls

                                           (5.25)E(Ls ) = 2
λ +

μ
λ2 .

For the sake of comparison, in case of no replacement , the system lifetime(μ = 0)
 has an Erlang distribution with parameters 2 and :Ls λ

Fs(t) = (1 + λ t) e−λ t, E(Ls) = 2/λ .

b) Availability  If the replacement of failed units is continued after system failures,
then the point availability

A(t) = p0(t) + p1(t)
of the system is of particular interest. In this case, the transition rate  from state 2q21
to state 1 is positive.  However,   depends  on  the number   or   ofq21 r = 1 r = 2
mechanics  which  are  in  charge of the replacement of failed units.  Assuming that a
mechanic cannot replace two failed units at the same time, then (Figure 5.3)

q21 = q2 = r μ.

For  the sojourn time of the system in state 2 is given by r = 2, Y2 = min(Z1, Z2),
where  and  are independent and identically as Z distributed. Analogously, theZ1 Z2
sojourn time in state 1 is given by Y1 = min(L, Z).
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Hence, the transition rates  have the same values as under a). The cor-q10 and q12
responding system of differential equations (5.20) becomes, when replacing the last
differential equation by the normalizing condition (5.21),

p0(t) = −λ p0(t) + μ p1(t),

p1(t) = +λ p0(t) − (λ + μ) p1(t) + r μ p2(t) ,

1 = p0(t) + p1(t) + p2(t).

The solution is left as an exercise to the reader.                                                          

Example 5.6 (two-unit system, parallel redundancy)  Now assume that both units of
the system operate at the same time when they are available. All other assumptions
and the notation of the previous example are retained. In particular, the system is
available if and only if at least one unit is available. In view of the initial condition

 the system spendsp0(0) = 1,

Y0 = min (L1, L2)

time units in state 0.  has an exponential distribution with parameter  and fromY0 2λ
state 0 only a transition to state 1 is possible. Therefore,  andY0 = Y01

q0 = q01 = 2 λ.

When the system is in state 1, then it behaves as in example 5.5:
q10 = μ, q12 = λ , q1 = λ + μ.

a) Survival probability  As in the previous example, state 2 has to be thought of as
absorbing:  (Figure 5.4). Hence, from (5.20) and (5.21),q20 = q21 = 0

p0(t) = −2λ p0(t) + μ p1(t),

p1(t) = +2λ p0(t) − (λ + μ) p1(t),

1 = p0(t) + p1(t) + p2(t).

Combining the first two differential equations yields a homogeneous differential
equation of the second order with constant coefficients for p0(t) :

p0 (t) + (3λ + μ) p0(t) + 2 λ2p0(t) = 0 .
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The solution is

p0(t) = e
−⎛⎝

3 λ+μ
2

⎞
⎠ t ⎡
⎣⎢
cosh c

2 t +
μ − λ

c sinh c
2 t⎤
⎦⎥

where

c = λ2 + 6 λ μ + μ2 .

Furthermore,

p1(t) = 4 λ
c e

−⎛⎝
3 λ+μ

2
⎞
⎠ t

sinh c
2 t .

The survival probability of the system is

Fs(t) = P(Ls > t) = p0(t) + p1(t)
Hence,

                               (5.26)Fs(t) = e
−⎛⎝

3 λ+μ
2

⎞
⎠ t ⎡
⎣
⎢cosh c

2 t +
3 λ + μ

c sinh c
2 t⎤
⎦
⎥ , t ≥ 0 .

The mean system lifetime is

E(Ls) = 3
2 λ +

μ
2 λ2 .

For the sake of comparison, in the case without replacement ),(μ = 0)

F(t) = 2 e−λ t − e−2 λ t , E(Ls) = 3
2 λ .

b) Availability  If r (  or )  mechanics replace failed units, thenr = 1 r = 2
.q2 = q21 = r μ

The other transition rates are the same as those under a) (Figure 5.5 b). The absolute
state probabilities satisfy the system  differential equationsof

p0(t) = −2 λ p0(t) + μ p1(t),

p1(t) = +2 λ p0(t) − (λ + μ) p1(t) + r p2(t),

1 = p0(t) + p1(t) + p2(t).

Solving this system of linear differential equations is left to the reader.                    
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5.3  STATIONARY STATE PROBABILITIES

If  is a stationary distribution of the Markov chain  then this{πj, j ∈ Z} {X(t), t ≥ 0},
special absolute distribution must satisfy Kolmogorov's equations (5.20). Since the

are constant, all the left-hand sides of these equations are equal to 0. Therefore, theπj
system of linear differential equations (5.20)  simplifies to a system of linear algeb-
raic equations in the unknowns :πj

                                                 (5.27)0 = Σ
k∈Z, k≠j

qk j πk − qj πj, j ∈ Z .

This system of equations is frequently written  the formin

                                                   (5.28)qj πj = Σ
k∈Z, k≠j

qk j πk , j ∈ Z .

This form clearly illustrates  that the stationary state probabilities refer to an equilib-
rium state of the Markov chain:

     The mean intensity per unit time of leaving state  j, which is , is equal to         qj πj
     the mean intensity per unit time of arriving in state j.

According to assumption (5.21),  only  those  solutions  of (5.27)  which{πj, j ∈ Z}
satisfy the normalizing condition are of interest:

                                                                     (5.29)Σ
j∈Z

πj = 1.

It is now assumed that the Markov chain is irreducible and positive recurrent. (Recall
that an irreducible Markov chain with finite state space Z is always positive recur-
rent.) Then it can be shown that a unique stationary distribution  exists{πj, j ∈ Z}
which satisfies (5.27) and (5.29)  Moreover, in this case the limits.

pj = lim
t→∞

pi j(t)

exist and are independent of i. Hence, for any initial distribution, there exist the
 of the absolute state probabilities  and they are equal to :limits lim

t→∞
pj(t) pj

                                                          (5.30)pj = lim
t→∞

pj(t), j ∈ Z .

Furthermore, for all ,j ∈ Z
lim

t→∞
pj (t) = 0.

Otherwise,  would unboundedly increase as , contradictory to pj(t) t → ∞ pj(t) ≤ 1.
Hence, when passing to the limit as  in (5.20) and (5.21), the limits (5.30) aret → ∞
seen to satisfy the system of equations (5.27) and (5.29). Since this system has a

 solution, the limits  and the stationary probabilities  must coincide:unique pj πj
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pj = πj , j ∈ Z .

For a detailed discussion of the relationship between the solvability of (5.27) and the
existence of a stationary distribution, see Feller [27].

Continuation of example 5.5 (two-unit system, standby redundancy)  Since the sys-
tem is available if at least one unit is available, its stationary availability is

A = π0 + π1.
Substituting the transition rates from Figure 5.3 into (5.27) and (5.29), the  areπj
seen to satisfy the following system of algebraic equations:

−λ π0 + μ π1 = 0,
+λ π0 − (λ + μ) π1 + r π2 = 0,
   π0 + π1 + π2 = 1.

Case r = 1

π0 =
μ2

(λ + μ)2 − λ μ
, π1 =

λ μ
(λ + μ)2 − λ μ

, π2 = λ2

(λ + μ)2 − λ μ
,

A = π0 + π1 =
μ2 + λ μ

(λ + μ)2 − λ μ
.

Case r = 2

π0 =
2 μ2

(λ + μ)2 + μ2 , π1 =
2 λ μ

(λ + μ)2 + μ2 , π2 = λ2

(λ + μ)2 + μ2 ,

A = π0 + π1 =
2 μ2 + 2 λ μ

(λ + μ)2 + μ2 .

Continuation of example 5.6 (two-unit system, parallel redundancy)  Given the
transition rates in Figure 5.5, the  are solutions ofπj

−2 λ π0 + μ π1 = 0,
+2 λ π0 − (λ + μ) π1 + r μ π2 = 0,

   π0 + π1 + π2 = 1.
Case r = 1                                                                                                                       

        π0 =
μ2

(λ + μ)2 + λ2 , π1 =
2 λ μ

(λ + μ)2 + λ2 , π2 = 2 λ2

(λ + μ)2 + λ2 ,

A = π0 + π1 =
μ2 + 2 λ μ

(λ + μ)2 + λ2 .
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Case r = 2 

π0 =
μ2

(λ + μ)2 , π1 =
2 λ μ

(λ + μ)2 , π2 =
μ2

(λ + μ)2 ,

A = π0 + π1 = 1 − ⎛
⎝

λ
λ + μ

⎞
⎠

2
.

Figure 5.6 shows a) the mean lifetimes and b) the stationary availabilities of the two-
unit system for  as functions of  As anticipated, standby redundancyr = 1 ρ = λ/μ.
yields better results if switching a unit from a standby redundancy state to the operat-
ing state is absolutely reliable. With parallel redundancy, this switching problem
does not exist since an available spare unit is also operating.                                     

Example 5.7  A system has two different failure types: type 1  and  type 2.  After a
type i-failure the system is said to be in failure state i;  The time  to a typei = 1, 2. Li
i-failure  is assumed to have an exponential distribution with parameter  and theλi
random variables and  are assumed to be independent. Thus, if at time  aL1 L2 t = 0
new system starts working, the time to its first failure is  After aY0 = min (L1, L2).
type 1-failure, the system is switched from failure state 1 into failure state 2. The

 required for this is exponentially distributed with parameter . After enteringtime ν
failure state 2, the renewal of the system begins. A renewed system immediately
starts working. The renewal time is exponentially distributed with parameter µ. This
process continues to infinity. All life- and renewal times as well as switching times
are assumed to be independent. This model is, for example, of importance in traffic
safety engineering: When the red signal in a traffic light fails (type 1-failure), then
the whole traffic light is switched off (type 2-failure). That is, a dangerous failure
state is removed by inducing a blocking failure state.
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Consider the following system states:

      0     system is operating
      1     type 1-failure state
      2     type 2-failure state

If  denotes  the state of the system at time t, then  is a homogeneousX(t) {X(t), t ≥ 0}
Markov chain with state space  Its transition rates are (Figure 5.7)Z = {0, 1, 2}.

q01 = λ1, q02 = λ2, q0 = λ1 + λ2, q12 = q1 = v, q20 = q2 = μ .

Hence  the stationary state probabilities satisfy the system of algebraic equations,
−(λ1 + λ2) π0 + μ π2 = 0,

 λ1π0 − ν π1 = 0,
π0 + π1 + π2 = 1.

The solution is

π0 =
μ ν

(λ1 + λ2) ν + (λ1 + ν) μ ,

π1 =
λ1μ

(λ1 + λ2) ν + (λ1 + ν) μ ,

                                        π2 =
(λ1 + λ2) ν

(λ1 + λ2) ν + (λ1 + ν) μ .

5.4   SOJOURN TIMES IN PROCESS STATES

So far the fact has been used that independent, exponentially distributed times bet-
ween changes of system states  allow  for  modeling  system  behaviour  by  homoge-
neous  Markov  chains.  Conversely,  it  can  be  shown  that  for  any    the  sojourni ∈ Z
time  of a homogeneous Markov chain  in state i also has an exponen-Yi {X(t), t ≥ 0}
tial distribution: By properties (5.8) and (5.15) of a homogeneous Markov chain,
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P(Yi > t X(0) = i) = P(X(s) = i, 0 < s ≤ t X(0) = i)

= limn→∞
P⎛⎝X

⎛
⎝

k
n t⎞⎠ = i; k = 1, 2, ..., n X(0) = i)

= limn→∞
⎡
⎣pii

⎛
⎝

1
n t⎞⎠

⎤
⎦

n

= limn→∞
⎡
⎣1 − qi

t
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

n
.

It follows that
                             (5.31)P(Yi > t X(0) = i) = e−qi t , t ≥ 0,

since e can be represented by the limit

                                         (5.32)e = limx→∞
⎛
⎝1 + 1

x
⎞
⎠

x
.

Thus,  has an exponential distribution with parameter Yi qi.

Given   is the state to which the Markov chain makes aX(0) = i, X(Yi) = X(Yi + 0)
transition on leaving state i. Let  denote the greatest integer m satisfying them(nt)
inequality  or, equivalently,m/n ≤ t

nt − 1 < m(nt) ≤ nt.
By making use of the geometric series, the joint probability distribution of the ran-
dom vector   can be obtained as follows:(Yi, X(Yi)), i ≠ j,

P(X(Yi) = j, Yi > t X(0) = i)

= P(X(Yi) = j, X(s) = i for 0 < s ≤ t X(0) = i)

= limn→∞ Σ
m=m(nt)

∞
P⎛⎝

⎛
⎝X

⎛
⎝

m+1
n

⎞
⎠ = j, Yi ∈ ⎡

⎣
m
n , m+1

n
⎞
⎠ X(0) = i⎞⎠

= limn→∞ Σ
m=m(nt)

∞
P⎛⎝

⎛
⎝X

⎛
⎝

m+1
n

⎞
⎠ = j, X⎛⎝

k
n
⎞
⎠ = i for 1 ≤ k ≤ m X(0) = i⎞⎠

= limn→∞ Σ
m=m(nt)

∞ ⎡
⎣qi j

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦
⎡
⎣1 − qi

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

m

= limn→∞

⎡
⎣qi j

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

qi
1
n + o⎛⎝

1
n
⎞
⎠

⎡
⎣1 − qi

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

m(n t)
.

Hence, by (5.32),

           (5.33)P(X(Yi) = j, Yi > t X(0) = i) =
qi j
qi

e−qi t ; i ≠ j ; i, j ∈ Z .

Passing to the marginal distribution of  (i.e. summing the equations (5.33) withYi
respect to  verifies (5.31). Two other important conclusions are:j ∈ Z)
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1) Letting in (5.33)  yields the one-step transition probability from state i intot = 0
state  j: 

                    (5.34)pi j = P(X(Yi + 0) = j X(0) = i) =
qi j
qi

, j ∈ Z .

2) The state following state i is independent of   (and, of course, independent of theYi
history of the Markov chain before arriving at state i).

Knowledge of the transition probabilities  suggests to observe a continuous-timepij
Markov chain  only at those discrete time points at which state changes{X(t), t ≥ 0}
take place. Let  be the state of the Markov chain immediately after the n th changeXn
of state and Then  is a discrete-time homogeneous MarkovX0 = X(0). {X0, X1, ...}
chain with transition probabilities given by (5.34):

            (5.35)pij = P(Xn = j Xn−1 = i) =
qi j
qi

, i, j ∈ Z .; n = 1, 2, ...

In this sense, the discrete-time Markov chain  is embedded in the con-{X0, X1, ...}
tinuous-time Markov chain  Embedded Markov chains can also be{X(t), t ≥ 0}.
found in non-Markov processes. In these cases, they may facilitate the investigation
of non-Markov processes. Actually, discrete-time Markov chains, which are embed-
ded in arbitrary continuous-time stochastic processes, are frequently an efficient (if
not the only) tool for analyzing these processes. Examples for the application of the
method of embedded Markov chains to analyzing queueing systems are given in sec-
tions 5.7.3.2 and 5.7.3.3. Section 5.8 deals with semi-Markov chains, the framework
of which is an embedded Markov chain.

5.5  CONSTRUCTION OF MARKOV SYSTEMS

In a Markov system, state changes are controlled by a Markov process. Markov sys-
tems, in which the underlying Markov process is a homogeneous, continuous-time
Markov chain with state space Z, are frequently special cases of the following basic
model: The sojourn time of the system in state  is given byi

Yi = min (Yi1, Yi 2, ..., Yi ni
),

where the  are independent, exponentially distributed random variables with param-Yi j
eters  A transition from state i to state  j is made if andλi j ; j = 1, 2, ..., ni; i, j ∈ Z.
only if  If  as usual denotes the state of the system at time t, then, by theYi = Yi j. X(t)
memoryless property of the exponential distribution,  is a homogene-{X(t), t ≥ 0}
ous Markov chain with transition rates

qi j = lim
h→0

pij(h)
h = λi j , qi = Σj=1

ni λi j .
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This representation of  results from (5.12) and (5.17). It reflects the fact that  asqi Yi
the minimum of independent, exponentially distributed random variables  alsoYi j
has an exponential distribution, the parameter of which is obtained by summing the
parameters of the .Yi j

Example 5.8 (repairman problem) n machines with lifetimes  startL1, L2, ..., Ln
operating at time  The  are assumed to be independent, exponential randomt = 0. Li
variables with parameter . Failed machines are repaired. A repaired machine is 'asλ
good as new'.  There is one mechanic  who  can only handle one failed machine at a
time. Thus, when there are failed machines,  have to wait for repair. Thek ≥ 1 k − 1
repair times are assumed to be mutually independent and identically distributed as an
exponential random variable Z with parameter µ. Life- and repair times are independ-
ent. Immediately after completion of its repair, a machine resumes its work.
Let  denote the number of machines which are in the failed state at time t. ThenX(t)

 is a Markov chain with state space   The system stays in{X(t), t ≥ 0} Z = {0, 1, ..., n}.
state 0 for a random time

Y0 = min (L1, L2, ... , Ln)
and then it makes a transition to state 1. The corresponding transition rate is

 q0 = q01 = n λ .
The system stays in state 1 for a random time 

Y1 = min (L1, L2, ... , Ln−1, Z ).

From state 1 it makes a transition to state 2 if  for , and aY1 = Lk k ∈ {1, 2, ..., n − 1}
transition to state 0 if . Hence,Y1 = Z

q10 = μ, q12 = (n − 1)λ and q1 = (n − 1)λ + μ.

In general (Figure 5.8),
qj−1, j = (n − j + 1) λ ; j = 1, 2, ..., n,

qj+1, j = μ ; j = 0, 1, ..., n − 1 ,

qi j = 0 ; i − j ≥ 2,

qj = (n − j)λ + μ ; j = 1, 2, ..., n,

q0 = nλ .
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The corresponding system of equations  is(5.28)

μπ1 = nλπ0
(n − j + 1)λπj−1 + μπj+1 = ((n − j)λ + μ)πj ; j = 1, 2, ..., n − 1

 μπn = λπn−1
Beginning with the first equation, the stationary state probabilities are obtained by
successively solving for the :πi

πj = n!
(n − j)! ρ j π0 ; j = 0, 1, ..., n ;

where  From the normalizing condition (5.29),ρ = λ /μ.

                                            π0 =
⎡

⎣
⎢ Σ
i=0

n n!
(n − i)! ρi ⎤

⎦
⎥

−1
.

Erlang's Phase Method   Systems  with  Erlang  distributed  sojourn  times  in  their
states can be transformed into Markov systems by introducing dummy states. This is
due to the fact that a random variable, which is Erlang distributed with parameters n
and , can be represented as a sum of n independent exponential random variablesμ
with parameter  (example 1.23, section 1.7.2). Hence, if the time interval, which theμ
system stays in state i, is Erlang distributed with parameters  and , then this in-ni μi
terval is partitioned into  disjoint subintervals (phases), the lengths of which areni
independent, identically distributed exponential random variables with parameter .μi
By introducing the new states  to label these phases, the original non-j1, j2, ..., jni
Markov system becomes a Markov system. In what follows, instead of presenting a
general treatment of this approach, the application of Erlang's phase method is
demonstrated by an example.

Example 5.9 (two-unit system, parallel redundancy)  As in example 5.6, a two-unit
system with parallel redundancy is considered. The lifetimes of the units are identi-
cally distributed as an exponential random variable L with parameter . The replace-λ
ment times of the units are identically distributed as Z, where Z has an Erlang distri-
bution with parameters  and µ. There is only one mechanic in charge of then = 2
replacement of failed units. All other assumptions and model specifications are as in
example 5.6. The following system states are introduced:

0    both units are operating
1    one unit is operating,  the replacement of the other one is in phase 1
2    one unit is operating,  the replacement of the other one is in phase 2
3    no unit is operating,  the replacement of the one being maintained is in phase 1
4    no unit is operating,  the replacement of the one being maintained is in phase 2

The transition rates are (Figure 5.9):

5  CONTINUOUS-TIME MARKOV PROCESSES                                                259

© 2006 by Taylor & Francis Group, LLC



,q01 = 2λ, q0 = 2λ
q12 = μ, q13 = λ, q1 = λ + μ
q20 = μ, q23 = λ, q2 = λ + μ

q34 = μ, q3 = μ
q41 = μ, q4 = μ

Hence the stationary state probabilities satisfy the following system of equations:

μ π2 = 2λ π0
2λπ0 + μ π4 = (λ + μ) π1

μ π1 = (λ + μ) π2
λ π1 + λ π2 = μ π3

μ π3 = μ π4
1 = π0 + π1 + π2 + π3 + π4

Let  denote the stationary probability that i units are failed. Then, πi
∗

π0
∗ = π0, π1

∗ = π1 + π2, π2
∗ = π3 + π4 .

The probabilities  are the ones of interest. Letting they areπi
∗ ρ = E(Z)/E(L) = 2λ/μ ,

π0
∗ = ⎡

⎣1 + 2ρ + 3
2 ρ2 + 1

4 ρ3 ⎤
⎦

−1
,

π1
∗ = ⎡

⎣2ρ + 1
2 ρ2 ⎤

⎦
−1

π0
∗ , π2

∗ = ⎡
⎣ ρ2 + 1

4 ρ3 ⎤
⎦

−1
π0

∗ .

The stationary system availability is given by                                       A = π0
∗ + π1

∗.

Unfortunately, applying Erlang's phase method to structurally complicated systems
leads to rather complex Markov systems.
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5.6  BIRTH- AND DEATH PROCESSES

In this section, continuous-time Markov chains with property that only transitions to
'neighbouring' states are possible, are discussed in more detail. These processes,
called (continuous-time) birth- and death processes, have proved to be an important
tool for modeling queueing, reliability and inventory systems. In the economical
sciences, birth- and death processes are among other things used for describing the
development of the number of enterprises in a particular area and manpower fluctua-
tions. In physics, flows of radioactive, cosmic and other particles are modeled by
birth- and death processes. Their name, however, comes from applications in biolo-
gy, where they have been used to stochastically model the development in time of
the number of individuals in populations of organisms.  

5.6.1  Birth Processes

A continuous-time Markov chain with state space  is called a (pure)Z = {0, 1, ..., n}
birth process if, for all   only a transition from state i to  isi = 0, 1, ..., n − 1, i + 1
possible. State n is absorbing if  n < ∞.

Thus, the positive transition rates of a birth process are given by  In whatqi, i+1.
follows, they will be called birth rates and denoted as

λi = qi,i+1, i = 0, 1, ..., n − 1,

λn = 0 for n < ∞.

The sample paths of birth processes are nondecreasing step functions with jump
height 1. The homogeneous Poisson process with intensity  is the simplest exampleλ
of a birth process. In this case,  Given the initial distributionλi = λ , i = 0, 1, ...

pm(0) = P(X(0) = m) = 1

(i.e. in the beginning the 'population' consists of m individuals), the absolute state
probabilities  are equal to the transition probabilities . The  are iden-pj(t) pmj(t) pj(t)
tically equal to 0 for  and, according to (5.20), for  they satisfy the systemj < m j ≥ m
of linear differential equations

pm(t) = −λm pm(t),

                (5.36)pj (t) = +λj−1 pj−1(t) − λj pj(t) ; j = m + 1, m + 2, ...

pn(t) = +λn−1 pn−1(t) , n < ∞.

From the first differential equation,

                                      (5.37)pm(t) = e−λm t , t ≥ 0 .

For , the differential equations (5.36) are equivalent toj = m + 1, m + 2, ...
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eλ j t ⎛
⎝pj (t) + λj pj(t)⎞⎠ = λj−1eλ j t pj−1(t)

or
d
dt
⎛
⎝e

λ j tpj(t)⎞⎠ = λj−1eλ j t pj−1(t) .

By integration,

                            (5.38)pj(t) = λj−1e−λ j t ∫0
t eλ j xpj−1(x) dx .

Formulas (5.37) and (5.38) allow the successive calculation of the probabilities pj(t)
for  For instance, on conditions  and j = m + 1, m + 2, ... p0(0) = 1 λ0 ≠ λ1,

p1(t) = λ0 e−λ1t ∫0
t eλ1x e−λ0 x dx

= λ0 e−λ1t ∫0
t e−(λ0−λ1)xdx

=
λ0

λ0 − λ1
⎛
⎝e

−λ1 t − e−λ0 t ⎞
⎠ , t ≥ 0 .

If all the birth rates are different from each other, then this result and (5.38) yields by
induction:

,pj(t) = Σ
i=0

j
Ci j λi e−λi t , j = 0, 1, ...

Ci j = 1
λj

Π
k=0, k≠i

j λk
λk − λi

, 0 ≤ i ≤ j , C00 = 1
λ0

.

Linear Birth Process  A birth process is called a linear birth process or a Yule-Furry
 process if its birth rates are given by

λi = i λ ; i = 0, 1, 2, ...

Since state 0 is absorbing, an initial distribution should not concentrate probability 1
on state 0. Linear birth processes occur, for instance, if in the interval  each[t, t + h]
member of a population (bacterium, physical particle) independently of each other
splits with probability  as .λh + o(h) h → 0

Assuming  the system of differential equations  (5.36) becomesp1 = P(X(0) = 1) = 1,

                    (5.39)pj (t) = −λ [ j pj(t) − ( j − 1) pj−1(t)] ; j = 1, 2, ...

with
                              (5.40)p1(0) = 1 , pj(0) = 0 ; j = 2, 3, ...

The solution of (5.39) under the initial distribution (5.40) is

pi(t) = e−λ t(1 − e−λ t) i−1 ; i = 1, 2, ...
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Thus, X(t) has a geometric distribution with parameter   Hence, the trendp = e−λt.
function of the linear birth process is

m(t) = eλ t , t ≥ 0 .

If Z is finite, then there always exists a solution of   which satisfies(5.36)

                                                                   (5.41)Σ
i∈Z

pi(t) = 1.

In case of an infinite state space , the following theorem gives a neces-Z = {0, 1, ...}
sary and sufficient condition for the existence of a solution of (5.36) with property
(5.41). Without loss of generality, the theorem is proved on condition (5.40).

Theorem 5.2 (Feller-Lundberg)  A solution  of the system of dif-{p0(t), p1(t), ... }
ferential equations (5.36) satisfies condition (5.41) if and only if the series

                                                                          (5.42)Σ
i=0

∞ 1
λi

diverges.

Proof   Let
sk(t) = p0(t) + p1(t) + . .. + pk(t) .

Summing the middle equation of (5.36) from  to k yieldsj = 1

sk(t) = −λk pk(t) .

By integration, taking into account ,sk(0) = 1

                                    (5.43)1 − sk(t) = λk ∫0
t pk(x) dx .

Since  is monotonically increasing as , the following limit exists:sk(t) k → ∞

r(t) = lim
k→∞

(1 − sk(t)).

From (5.43),
λk ∫0

t pk(x) dx ≥ r(t) .

Dividing by  and summing the arising inequalities from 0 to k,λk

∫0
t sk(x) dx ≥ r(t)⎛

⎝⎜
1

λ0
+ 1

λ1
+ . .. + 1

λk

⎞
⎠⎟

.

Since  for all ,sk(t) ≤ 1 t ≥ 0

t ≥ r(t)⎛
⎝⎜

1
λ0

+ 1
λ1

+ . .. + 1
λk

⎞
⎠⎟

.

If the series (5.42) diverges, then this inequality implies that  for all  Butr(t) = 0 t > 0.
this result is equivalent to (5.41).
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Conversely, from (5.43),
λk ∫0

t pk(x) dx ≤ 1

so that

∫0
t sk(x) dx ≤ 1

λ0
+ 1

λ1
+ . .. + 1

λk
.

By passing to the limit as k → ∞,

∫0
t (1 − r(t)) dt ≤ Σ

i=0

∞ 1
λi

.

If , the left-hand side of this inequality is equal to t. Since t can be arbitrarilyr(t) ≡ 0
large, the series (5.42) must diverge. This result completes the proof.                       

According to this theorem, it is theoretically possible that within a finite interval
 the population grows beyond all finite bounds. The probability of such an ex-[0, t]

plosive growth is
1 − Σi=0

∞ pi(t).

This probability is positive if the birth rates grow so fast that the series (5.42) con-
verges. For example, an explosive growth would occur if

λi = i2 λ ; i = 1, 2, ...
since

Σ
i=1

∞ 1
λi

= 1
λ Σ

i=1

∞ 1
i2

= π2
6λ < ∞ .

It is remarkable that an explosive growth occurs in an arbitrarily small time interval,
since the convergence of the series (5.42)  does not depend on t.  

5.6.2  Death Processes

A continuous-time Markov chain with state space   is called a (pure)Z = {0, 1, ...}
death process if, for all  only transitions from state i to  are possible.i = 1, 2, ... i − 1
State 0 is absorbing.

Thus, the positive transition rates of pure death processes are given by  qi,i−1, i ≥ 1.
In what follows, they will be called death rates and denoted as

μ0 = 0, μi = qi,i−1; i = 1, 2, ...

The sample paths of such processes are non-increasing step functions. For pure death
processes, on condition

pn(0) = P(X(0) = n) = 1,

the system of differential equations (5.20) becomes
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pn(t) = −μn pn(t)

                  (5.44)pj (t) = −μj pj(t) + μj+1 pj+1(t) ; j = 0, 1, ..., n − 1.

The solution of the first differential equation is

pn(t) = e−μn t , t ≥ 0 .

Integrating  yields(5.44)

             (5.45)pj(t) = μj+1 e−μj t ∫0
t eμj x pj+1(x) dx ; j = n − 1, ... , 1, 0.

Starting with  the probabilitiespn(t),
pj(t), j = n − 1, n − 2, ..., 0,

can be recursively determined from (5.45). For instance, assuming ,μn ≠ μn−1

pn−1(t) = μn e−μn−1 t ∫0
t e−(μn −μn−1) xdx

=
μn

μn − μn−1
⎛
⎝e−μn−1 t − e−μn t ⎞

⎠ .

More generally, if all the death rates are different from each other  then,

                            (5.46)pj(t) = Σ
i=j

n
Dij μi e−μi t , 0 ≤ j ≤ n ,

where

Dij = 1
μj Π

k=j
k≠i

n μk
μk − μi

, j ≤ i ≤ n , Dnn = 1
μn .

Linear Death Process  A death process  is called a linear death process{X(t), t ≥ 0}
if it has death rates

μi = i λ ; i = 0, 1, ...
Under the initial distribution

pn(0) = P(X(0) = n) = 1
the process stays in state n an exponentially with parameter  distributed time:nλ

pn(t) = e−n λ t , t ≥ 0 .

Starting with , one obtains inductively from (5.45) or simply from (5.46):pn(t)

pi(t) = ⎛
⎝

n
i
⎞
⎠ e−i λ t (1 − e−λ t )n−i ; i = 0, 1, ..., n .

Hence, X(t) has a binomial distribution with parameters n and  so that thep = e−λ t

trend function of a linear death process is

m(t) = n e−λ t , t ≥ 0 .
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Example 5.10  A system consisting of n subsystems starts operating at time .t = 0
The lifetimes of the subsystems are independent, exponentially with parameter  dis-λ
tributed random variables. If X(t) denotes the number of subsystems still working at
time t, then  is a linear death process with death rates{X(t), t ≥ 0}

                                                μi = i λ ; i = 0, 1, ...

5.6.3 Birth- and Death Processes

5.6.3.1 Time-Dependent State Probabilities
A continuous-time Markov chain  with state space{X(t), t ≥ 0}

Z = {0, 1, ..., n}, n ≤ ∞,

is called a birth- and death process if from any state i only a transition to  ori − 1
 is possible, provided that  and  respectively.i + 1 i − 1 ∈ Z i + 1 ∈ Z,

Therefore  the transition rates of a birth- and death process have property,
qi, j = 0 for i − j > 1.

The transition rates  and  are called birth rates and death rates,λi = qi,i+1 μi = qi,i−1
respectively. According to the restrictions given by the state space,  for λn = 0 n < ∞
and  (Figure 5.10). Hence, a birth process (death process) is a birth- and deathμ0 = 0
process the death rates (birth rates) of which are equal to 0. If a birth- and death
process describes the number of individuals in a population of organisms, then, when
arriving in state 0, the population is extinguished. Thus, without the possibility of
immigration, state 0 is absorbing (λ0 = 0).

According to (5.20), the absolute state probabilities  of apj(t) = P(X(t) = j), j ∈ Z,
birth- and death process satisfy the system of linear differential equations

p0(t) = −λ0 p0(t) + μ1 p1(t),

      (5.47)pj (t) = +λj−1 pj−1(t) − (λj + μj) pj(t) + μj+1 pj+1(t) , j = 1, 2, ...,

pn(t) = +λn−1 pn−1(t) − μn pn(t) , n < ∞.

0 1 i  

Figure 5.10  Transition graph of the birth- and death process
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In the following two examples, the state probabilities  of two impor-(p0(t), p1(t), ...}
tant birth- and death processes are determined via their respective -transformsz

M(t, z) = Σi=0
∞ pi(t) zi

under initial conditions of type
pn(0) = P(X(0) = n) = 1.

In terms of the -transform, this condition is equivalent toz
M(0, z) ≡ zn, n = 0, 1, ...

Furthermore, partial derivatives of the z-transforms will be needed:

                (5.48)∂M(t, z)
∂t = Σ

i=0

∞
pi (t) zi and ∂M(t, z)

∂z = Σ
i=1

∞
i pi(t) zi−1.

Partial differential equations for  will be established and solved by applyingM(t, z)
the characteristic method.

Example 5.11 (linear birth- and death process)   is called a linear birth-{X(t), t ≥ 0}
and death process if it has transition rates

λi = i λ , μi = i μ , i = 0, 1, ...
In what follows, this process is analyzed on condition that

p1(0) = P(X(0) = 1) = 1.
Assuming  would make no sense since state 0 is absorbing. The system ofp0(0) = 1
differential equations (5.20) becomes

p0(t) = μ p1(t),

           (5.49)pj (t) = (j − 1)λ pj−1(t) − j (λ + μ) pj(t) + (j + 1)μ pj+1(t) ; j = 1, 2, ...

Multiplying the j th differential equation by  and summing from  tak-z j j = 0 to j = ∞,
ing into account (5.48), yields the following linear homogeneous partial differential
equation in M(t, z):

                                              (5.50)∂M(t, z)
∂t − (z − 1)(λz − μ) ∂M(t, z)

∂z = 0 .

The corresponding (ordinary) characteristic differential equation is a Riccati differ-
ential equation with constant coefficients:

                       (5.51)dz
dt = −(z − 1)(λz − μ) = −λ z2 + (λ + μ) z − μ .

a)    By separation of variables, (5.51) can be written in the formλ ≠ μ
dz

(z − 1)(λz − μ) = −dt .
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Integration on both sides of this relationship yields

− 1
λ − μ ln ⎛⎝

λz − μ
z − 1

⎞
⎠ = −t + C .

The general solution  of the characteristic differential equation in implicitz = z(t)
form is, therefore, given by

c = (λ − μ) t − ln ⎛⎝
λ z − μ
z − 1

⎞
⎠ ,

where c is an arbitrary constant. Thus, the general solution  of (5.50) hasM(t, z)
structure

M(t, z) = f ⎛⎝(λ − μ)t − ln ⎛⎝
λ z − μ
z − 1

⎞
⎠
⎞
⎠ ,

where  f  can be any function with a continuous derivative.  f  can be determined by
making use of the initial condition  or, equivalently,  Sincep1(0) = 1 M(0, z) = z.

M(0, z) = f ⎛⎝ln
⎛
⎝

z − 1
λ z − μ

⎞
⎠
⎞
⎠ = z ,

 f  must have structure

f (x) =
μex − 1
λex − 1

.

Thus,  isM(t, z)

M(t, z) =
μ exp (λ − μ)t − ln ⎛⎝

λz−μ
z−1

⎞
⎠ − 1

λ exp (λ − μ)t − ln ⎛⎝
λz−μ
z−1

⎞
⎠ − 1

.

After simplification,  becomesM(t, z)

M(t, z) =
μ ⎡⎣1 − e(λ−μ)t ⎤⎦ − ⎡⎣λ − μe(λ−μ)t ⎤⎦ z
⎡⎣μ − λe(λ−μ)t ⎤⎦ − λ ⎡⎣1 − μe(λ−μ)t ⎤⎦ z

.

This representation of  allows its expansion as a power series in z. The coeffi-M(t, z)
cient of   is the desired absolute state probability . Letting   yieldsz j pj(t) ρ = λ/μ

p0(t) = 1 − e(λ−μ)t

1 − ρe(λ−μ)t ,

pj(t) = (1 − ρ)ρ j−1 ⎡⎣1 − e(λ−μ)t ⎤⎦
j−1

⎡⎣1 − ρ e(λ−μ)t ⎤⎦
j+1 e(λ−μ)t , j = 1, 2, ...

Since state 0 is absorbing,  is the probability that the population is extinguish-p0(t)
ed at time t. Moreover,
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lim
t→∞

p0(t) =
⎧

⎩
⎨
⎪
⎪

1 for λ < μ
μ
λ for λ > μ

.

Thus, if , the population will survive to infinity with positive probability . Ifλ > μ μ/λ
, the population sooner or later will disappear with probability 1. In the latterλ < μ

case, the distribution function of the lifetime  of the population isL

P(L ≤ t) = p0(t) = 1 − e(λ−μ)t

1 − ρe(λ−μ)t , t ≥ 0 .

Hence, the population will survive interval  with probability[0, t]

P(L > t) = 1 − p0(t).

From this, applying (1.17),

E(L) = 1
μ − λ ln ⎛⎝2 − λ

μ
⎞
⎠ .

The trend function  is principally given bym(t) = E(X(t))

m(t) = Σj=0
∞ j pj(t) .

By (1.23),   can also be obtained from the z-transform:m(t)

m(t) = ∂M(t, z)
∂z z=1

.

If only the trend function of the process is of interest, then here as in many other ca-
ses knowledge of the z-transform or the absolute state distribution is not necessary,
since m(t) can be determined from the respective system of differential equations
(5.47). In this example, multiplying the  differential equation of (5.49) by j andj th
summing from  to  yields the following first-order differential equation:j = 0 ∞

                                          (5.52)m (t) = (λ − μ)m(t).

Taking into account the initial condition , its solution isp1(0) = 1

m(t) = e(λ−μ)t .

By multiplying the j-th differential equation of (5.47) by  and summing from j2 j = 0
to , a second order differential equation in  is obtained. Its solution is∞ Var(X(t))

Var(X(t)) =
λ + μ
λ − μ

⎡⎣1 − e−(λ−μ) t ⎤⎦ e2(λ−μ)t .

Of course, since  is known, Var(X(t)) can be obtained from (1.23), too.M(t, z)

If the linear birth- and death process starts in states  no principal addition-s = 2, 3, ...,
al problems arise up to the determination of M(t,z). But it will be more complicated
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to expand M(t,z) as a power series in z. The corresponding trend function, however,
is easily obtained as solution of (5.52) with the initial condition :ps(0) = 1

m(t) = s e(λ−μ)t , t ≥ 0 .

b)   In this case, the characteristic differential equation (5.51) simplifies toλ = μ
dz

λ (z − 1)2 = − dt .

Integration yields

c = λ t − 1
z − 1 ,

where  is an arbitrary constant. Therefore, M(t, z) has structurec

M(t, z) = f ⎛⎝λ t − 1
z−1

⎞
⎠ ,

where f  is a continuously differentiable function. Since ,  f  satisfiesp1(0) = 1

f ⎛⎝−
1

z − 1
⎞
⎠ = z .

Hence, the desired function  f  is given by

f (x) = 1 − 1
x , x ≠ 0.

The corresponding z-transform is

M(t, z) = λ t + (1 − λ t) z
1 + λ t − λ t z .

Expanding  as a power series in  yields the absolute state probabilities:M(t, z) z

p0(t) = λ t
1 + λ t , pj(t) = (λ t) j−1

(1 + λ t) j+1 ; j = 1, 2, ..., t ≥ 0.

An equivalent form of the absolute state probabilities is

p0(t) = λ t
1 + λ t , pj(t) = ⎡⎣1 − p0(t)⎤⎦

2 ⎡⎣p0(t)⎤⎦
j−1 ; j = 1, 2, ..., t ≥ 0.

Mean value and variance of X(t) are
E(X(t)) = 1, Var(X(t)) = 2 λ t .

This example shows that the analysis of apparently simple birth- and death processes
requires some effort.                                                                                                   

Example 5.12  Consider a birth- and death process with transition rates
λ i = λ , μi = i μ; i = 0, 1, ...

and initial distribution and .p0(0) = P(X(0) = 0) = 1
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The corresponding system of linear differential equations (5.47) is

p0(t) = μ p1(t) − λ p0(t),

         (5.53)pj (t) = λ pj−1(t) − (λ + μ j) pj(t) + (j + 1)μ pj+1(t) ; j = 1, 2, ...

Multiplying the  equation by  and summing from  yields a homoge-j th z j j = 0 to ∞
neous linear partial differential equation for the moment generating function:

                       (5.54)∂M(t, z)
∂t + μ(z − 1) ∂M(t, z)

∂z = λ(z − 1) M(t, z) .

The corresponding system of characteristic differential equations is

   dz
dt = μ (z − 1) , dM(t, z)

dt = λ(z − 1) M(t, z) .

After separation of variables and subsequent integration, the first differential equa-
tion yields

c1 = ln (z − 1) − μ t

with an arbitrary constant . By combining both differential equations and lettingc1
ρ = λ/μ,

dM(t, z)
M(t, z) = ρ dz .

Integration yields
c2 = ln M(t, z) − ρ z ,

where  is an arbitrary constant. As a solution of (5.54), M(t, z) satisfiesc2

c2 = f (c1)

with an arbitrary continuous function  f, i.e.  satisfiesM(t, z)

ln M(t, z) − ρ z = f (ln(z − 1) − μt) .
Therefore,

M(t, z) = exp { f (ln(z − 1) − μt) + ρ z} .

Since condition  is equivalent to   f  is implicitely given byp0(0) = 1 M(0, z) ≡ 1,

f (ln(z − 1)) = − ρ z .

Hence  the explicit representation of  f  is,

f (x) = −ρ (ex + 1) .

Thus, 

M(t, z) = exp − ρ ⎛
⎝e

ln(z−1)−μ t + 1⎞⎠ + ρ z .

Equivalently,
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M(t, z) = e− ρ(1−e−μ t) ⋅ e+ρ(1−e−μ t) z .

Now it is easy to expand M(t, z) as a power series in z. The coefficients of  arez j

                  (5.55)pj(t) =
⎛
⎝ρ (1 − e−μ t )⎞⎠

j

j! e− ρ(1−e−μ t) ; j = 0, 1, ...

This is a Poisson distribution with intensity function . Therefore, thisρ (1 − e−μ t )
birth- and death process has trend function

m(t) = ρ (1 − e−μ t ).

For  the absolute state probabilities  converge to the stationary state prob-t → ∞ pj(t)
abilities:

πj = lim
t→∞

pj(t) =
ρ j

j! e− ρ ; j = 0, 1, ...

If the process starts in a state  the absolute state probability distribution is nots > 0,
Poisson. In this case this distribution has a rather complicated structure, which will
not be presented here. Instead, the system of linear differential equations (5.53) can
be used to establish ordinary differential equations for the trend function m(t) and the
variance of . Given the initial distribution ,  their respectiveX(t) ps(0) = 1 s = 1, 2, ...,
solutions are

m(t) = ρ (1 − e−μ t ) + s e−μ t ,

Var (X(t)) = (1 − e−μ t )⎛⎝ρ + s e−μ t ⎞
⎠ .

The birth- and death process considered in this example is of some importance in
queueing theory (section 5.7).                                                                                      

Example 5.13 ( birth- and death process with immigration)  For positive parame-
ters ,  and  let transition rates be given byλ μ ν,

λi = i λ + ν, μi = i μ ; i = 0, 1, ...

If this model is used to describe the development in time of a population, then each
individual will produce a new individual in  with probability  or[t, t + Δt] λ Δt + o(Δt)
leave the population in this interval with probability . Moreover, due toμ Δt + o(Δt)
immigration from outside, the population will increase by one individual in  [t, t + Δt]
with probability  Thus, if the probability that the population willν t + o(Δt). X(t) = i,
increase or decrease by one individual in the interval  is[t, t + Δt]

  or  (i λ + ν) Δt + o(Δt) i μ Δ t + o(Δt),

respectively. These probabilities do not depend on t and refer to  As in theΔt → 0.
previous example, state 0 is not absorbing. The differential equations (5.47) become
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p0(t) = μ p1(t) − ν p0(t) ,

pj (t) = (λ(j − 1) + ν) pj−1(t) + μ (j + 1) pj+1(t) − (λ j + ν + μ j) pj(t) .

Analogously to the previous examples, the z-transformation  of the probabilityM(t, z)
distribution  is seen to satisfy the partial differential equation{p0(t), p1(t), ...}

                                       (5.56)∂M(t, z)
∂t = (λ z − μ)(z − 1) ∂M(t, z)

∂z + ν(z − 1) M(t, z) .

The system of the characteristic differential equations belonging to (5.56) is
dz
dt = −(λ z − μ)(z − 1) ,

dM(t, z)
dt = ν(z − 1) M(t, z) .

From this, with the initial condition  or, equivalently,  the solu-p0(0) = 1 M(0, z) ≡ 1,
tion is obtained analogously to the previous example

M(t, z) =
⎧

⎩
⎨

λ − μ
λz + λ(1 − z) e(λ−μ) t − μ

⎫

⎭
⎬

ν/λ
for λ ≠ μ ,

M(t, z) = (1 + λt)ν/λ 1 − λ t z
1 + λ t

−ν/λ
for λ = μ .

Generally it is not possible to expand  as a power series in z. But the absoluteM(t, z)
state probabilities  can be obtained by differentiation of :pi(t) M(t, z)

pi(t) = ∂iM(t, z)
∂zi

z=0
for i = 1, 2, ...

The trend function

m(t) = E(X(t)) = ∂M(t, z)
∂z z=1

of this birth- and death process is

                         (5.57)m(t) = ν
λ − μ

⎡⎣e(λ−μ) t − 1⎤⎦ for λ ≠ μ ,

m(t) = ν t for λ = μ .

If  the limit as  of the z-transform exists:λ < μ, t → ∞

lim
t→∞

M(t, z) = ⎛
⎝1 − λ

μ
⎞
⎠

ν/λ⎛
⎝1 − λ

μ z
⎞
⎠

−ν/λ
.

For  the trend function (5.57) tends to a positive limit as λ < μ, t → ∞ :

                                      lim
t→∞

m(t) = ν
μ − λ for λ < μ .
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5.6.3.2  Stationary State Probabilities
By (5.27), in case of their existence the stationary distribution  of a birth-{π0, π1, ...}
and death process satisfies the following system of linear algebraic equations

λ0π0 − μ1π1 = 0

                                     (5.58)λj−1πj−1 − (λj + μj)πj + μj+1πj+1 = 0 , j = 1, 2, ...

λn−1πn−1 − μnπn = 0 , n < ∞ .

This system is equivalent to the following one:
μ1π1 = λ0π0

                    (5.59)μj+1πj+1 + λj−1πj−1 = (λj + μj)πj ; j = 1, 2, ...

μnπn = λn−1πn−1 , n < ∞.

Provided its existence, it is possible to obtain the general solution of (5.58)  Let:
hj = −λjπj + μj+1πj+1 ; j = 0, 1, ...

Then the system (5.58) simplifies to
h0 = 0 ,

hj − hj−1 = 0 , j = 1, 2, ...

hn−1 = 0, n < ∞ .

Starting with  one successively obtainsj = 0,

                                    (5.60)πj = Π
i=1

j λi−1
μi

π0 ; j = 1, 2, ..., n.

1) If , then the stationary state probabilities satisfy the normalizing conditionn < ∞

Σi=0
n πi = 1.

Solving for  yieldsπ0

                                     (5.61)π0 =
⎡

⎣
⎢⎢⎢1 + Σ

j=1

n
Π
i=1

j λi−1
μi

⎤

⎦
⎥⎥⎥

−1
.

2) If  then equation (5.61) shows that the convergence of the seriesn = ∞,

                                               (5.62)Σ
j=1

∞
Π
i=1

j λi−1
μi

is necessary for the existence of a stationary distribution. A sufficient condition for
the convergence of this series is the existence of a positive integer  such thatN

                                   (5.63)
λi−1
μi

≤ α < 1 for all i > N .
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Intuitively, this condition is not surprising: If the birth rates are greater than the cor-
responding death rates, the process will drift to infinity with probability 1. But this
exludes the existence of a stationary distribution of the process. For a proof of the
following theorem see Karlin and Taylor [45].

Theorem 5.3  The convergence of the series (5.62) and the divergence of the series

                                                 (5.64)Σ
j=1

∞
Π
i=1

j μi
λi

is sufficient for the existence of a stationary state distribution. The divergence of
(5.64) is, moreover, sufficient for the existence of such a time-dependent solution

 of (5.47) which satisfies the normalizing condition (5.21).              {p0(t), p1(t). ... }

Example 5.14 (repairman problem)  The repairman problem introduced in example
5.8 is considered once more. However, it is now assumed that there are r mechanics
for repairing failed n machines,  A failed machine can be attended only by1 ≤ r ≤ n.
one mechanic. (For a modification of this assumption see example 5.14.) All the
other assumptions as well as the notation are as in example 5.8. 

Let X(t) denote the number of failed machines at time t. Then  is a birth-{X(t), t ≥ 0}
and death process with state space  Its transition rates areZ = {0, 1, ..., n}.

λj = (n − j)λ , 0 ≤ j ≤ n,

μj =
j μ , 0 ≤ j ≤ r
r μ , r < j ≤ n

(Figure 5.11). Note that in this example the terminology 'birth- and death rates' does
not reflect the technological situation. If the service rate  is introduced, for-ρ = λ/μ
mulas (5.57) and (5.58) yield the stationary state probabilities

                        (5.65)πj =

⎧

⎩

⎨
⎪

⎪

⎛
⎝

n
j
⎞
⎠ ρ j π0 ; 1 ≤ j ≤ r

n!
r j−r r! (n−j )!

ρ j π0 ; r ≤ j ≤ n
,

        π0 =
⎡

⎣
⎢⎢⎢ Σ
j=0

r ⎛
⎝

n
j
⎞
⎠ ρ j + Σ

j=r+1

n n!
r j−r r! (n−j )!

ρ j ⎤

⎦
⎥⎥⎥

−1
.

5  CONTINUOUS-TIME MARKOV PROCESSES                                                275

0 1 r  

Figure 5.11  Transition graph of the general repairman problem

n
nλ (n − 1)λ (n − r + 1)λ (n − r)λ λ

. ..

. ..
μ 2μ rμ rμ rμ

. ..

. ..

© 2006 by Taylor & Francis Group, LLC



Table 5.1  Stationary state probabilities for example 5.14

      Policy 1:  n=10,  r = 2      Policy 2:    n=5, r = 1
           j πj,1           j πj,2
           0
            1
           2
           3
           4
           5
           6
           7
           8
           9
         10 

       0.0341
       0.1022
       0.1379
       0.1655
       0.1737
       0.1564
       0.1173
       0.0704
       0.0316
       0.0095
       0.0014

         0
         1
         2
         3
         4
         5

      0.1450
      0.2175
      0.2611
      0.2350
      0.1410
      0.0004

A practical application of the stationary state probabilities (5.65) is illustrated by a
numerical example: Let  The efficiencies of the followingn = 10, ρ = 0.3, and r = 2.
two maintenance policies will be compared:
1) Both mechanics are in charge of the repair of any of the 10 machines.
2) The mechanics are assigned 5 machines each for the repair of which they alone
are responsible.
Let  be the random number of failed machines and  the random number ofXn,r Zn,r
mechanics which are busy with repairing failed machines, dependent on the number
n of machines and the number r of available mechanics  From table 5.1, for policy 1,.

E(X10,2) = Σj=1
10 j πj,1 = 3.902

E(Z10,2) = 1 ⋅ π1,1 + 2 Σj=2
10 πj,1 = 1.8296 .

For policy 2,

E(X5,1) = Σj=1
5 j πj,2 = 2.011

E(Z5,1) = 1 ⋅ π1,2 + Σj=2
5 πj,2 = 0.855.

Hence, when applying policy 2, the average number of failed machines out of 10 and
the average number of busy mechanics out of 2 are

2 E(X5,1) = 4.022 and 2 E(Z5,1) = 1.710.

Thus, on the one hand, the mean number of failed machines under policy 1 is smaller
than under policy 2, and, on the other hand, the mechanics are less busy under policy
2 than under policy 1. Hence, policy 1 should be preferred if there are no other rel-
evant performance criteria.                                                                                          
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Example 5.15  The repairman problem of example 5.14 is modified in the following
way: The available maintenance capacity of r units (which need not necessarily be
human) is always fully used for repairing failed machines. Thus, if only one machine
has failed, then all r units are busy with repairing this machine. If several machines
are down, the full maintenance capacity of r units is uniformly distributed to the fail-
ed machines. This adaptation is repeated after each failure of a machine and after
each completion of a repair. In this case, no machines have to wait for repair.
If  j machines have failed, then the repair rate of each failed machine is

r μ / j .
Therefore, the death rates of the corresponding birth- and death process are constant,
i.e. they do not depend on the system state:

μ j = j ⋅ r
j μ = rμ ; j = 1, 2, ...

The birth rates are the same as in example 5.14:

λ j = (n − j)λ; j = 0, 1, ...

Thus, the stationary state probabilities are according to (5.60) and (5.61):

π0 =
⎡

⎣
⎢⎢⎢ Σ
j=1

n n!
(n − j)!

⎛
⎝

λ
r μ

⎞
⎠

j ⎤

⎦
⎥⎥⎥

−1
,

πj = n!
(n − j)!

⎛
⎝

λ
r μ

⎞
⎠

j
π0 ; j = 1, 2 , ...

Comparing this result with the stationary state probabilities (5.65), it is apparent that
in case  the uniform distribution of the repair capacity to the failed machines hasr = 1
no influence on the stationary state probabilities. This fact is not surprising, since in
this case the available maintenance capacity of one unit (if required) is always fully
used.                                                                                                                            

Many of the results presented so far in section 5.6  are due to Kendall [47]. 

5.6.3.3  Nonhomogeneous Birth- and Death Processes
Up till now, chapter 5 has been restricted to homogeneous Markov chains. They are
characterized by transition rates which do not depend on time.

Nonhomogeneous Birth Processes 1) Nonhomogeneous Poisson process  The most
simple representative of a nonhomogeneous birth process is the nonhomogeneous
Poisson process (section 3.2.2). Its birth rates are

λi(t) = λ(t); i = 0, 1, ...
Thus, the process makes a transition from state i at time t to state  in i + 1 [t, t + Δt]
with probability λ(t) Δt + o(Δt) .
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2) Mixed Poisson process   If certain conditions are fulfilled, mixed Poisson processes
(section 3.2.3) belong to the class of nonhomogeneous birth processes.
Lundberg [56] proved that a birth process is a mixed Poisson process if and only if
its birth rates  have propertiesλi(t)

λi+1(t) = λi(t) −
d ln λi(t)

dt ; i = 0, 1, ...

Equivalently, a pure birth process  with transition rates  and with ab-{X(t), t ≥ 0} λi(t)
solute state distribution

{pi(t) = P(X(t) = i); i = 0, 1, ...}

is a mixed Poisson process if and only if

pi(t) = t
i λi−1(t) pi−1(t) ; i = 1, 2, ...

(see also Grandel [35]).

Nonhomogeneous Linear Birth- and Death Process  In generalizing the birth- and
death process of example 5.11, now a birth- and death process  is consi-{X(t), t ≥ 0}
dered which has transition rates

λi(t) = λ(t) i , μi(t) = μ(t) i ; i = 0, 1, ...
and initial distribution

p1(0) = P(X(0) = 1) = 1.
Thus,  can be interpreted as the transition rate from state 1 into state 2 at time t,λ(t)
and  is the transition rate from state 1 into the absorbing state 0 at time t. Ac-μ(t)
cording to (5.47), the absolute state probabilities  satisfypj(t)

p0(t) = μ(t) p1(t),

pj (t) = (j − 1)λ(t) pj−1(t) − j (λ(t) + μ(t)) pj(t) + (j + 1)μ(t) pj+1(t) ; j = 1, 2, ...

Hence, the corresponding z-transform  of M(t, z)

{pi(t) = P(X(t) = i); i = 0, 1, ...}

is given by the partial differential equation (5.50) with time-dependent  and λ μ :

                        (5.66)∂M(t, z)
∂t − (z − 1) [λ(t) z − μ(t)] ∂M(t, z)

∂z = 0 .

The corresponding characteristic differential equation is a differential equation of
Riccati type with time-dependent coefficients (compare with (5.51)):

dz
dt = −λ(t) z2 + [λ(t) + μ(t)] z − μ .

A property of this differential equation is that there exist functions
ϕi(x); i = 1, 2, 3, 4
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so that its general solution  can be implicitely written in the formz = z(t)

c =
z ϕ1(t) − ϕ2(t)
ϕ3(t) − z ϕ4(t) .

Hence, for all differentiable functions , the general solution of (5.66) has theg(⋅)
form

M(t, z) = g⎛
⎝⎜

z ϕ1(t) − ϕ2(t)
ϕ3(t) − z ϕ4(t)

⎞
⎠⎟

.

From this and the initial condition  it follows that there exist two func-M(0, z) = z
tions  and  so thata(t) b(t)

                               (5.67)M(t, z) = a(t) + [1 − a(t) − b(t)] z
1 − b(t) z .

By expanding  as a powers series in ,M(t, z) z

p0(t) = a(t),

                     (5.68)pi(t) = [1 − a(t)][1 − b(t)][ b(t)]i−1; i = 1, 2, ...

Inserting (5.67) in (5.66) and comparing the coefficients of z yields a system of differ-
ential equations for  and a(t) b(t) :

(a b − ab ) + b = λ (1 − a) (1 − b)
a = μ (1 − a) (1 − b) .

The transformations  and  simplify this system toA = 1 − a B = 1 − b

                                          (5.69)B = (μ − λ) B − μ B2

                                                 (5.70)A = −μ A B .

The first differential equation is of Bernoulli type  Substituting in (5.69).

y (t) = 1/B(t)
gives a linear differential equation in y:

                                            (5.71)y + (μ − λ) y = μ .
Since

a(0) = b(0) = 0,

 y satisfies  Hence the solution of (5.71) isy (0) = 1.

 y(t) = e−ω(t) ⎡
⎣∫0

t eω(x)μ(x) dx + 1⎤⎦,

where

ω(t) = ∫0
t [μ(x) − λ(x)] dx .

5  CONTINUOUS-TIME MARKOV PROCESSES                                                279

© 2006 by Taylor & Francis Group, LLC



From (5.70) and (5.71),
A
A = − μ B = −

μ
y = −

y
y − ω .

Therefore, the desired functions  and b area

a(t) = 1 − 1
y(t) e−ω(t)

b(t) = 1 − 1
y(t) , t ≥ 0.

With  known, the one-dimensional probability distribution (5.68) of thea(t) and b(t)
nonhomogeneous birth- and death process  is completely characterized.{X(t), t ≥ 0}
In particular, the probability that the process is in the absorbing state 0 at time  ist

p0(t) =
∫0
t eω(x)μ(x) dx

∫0
t eω(x)μ(x) dx + 1

.

Hence, the process  will reach state 0 with probability 1 if the integral{X(t), t ≥ 0}

                                            (5.72)∫0
t eω(x)μ(x) dx.

diverges as t → ∞.
Let L denote the first passage time of the process with regard to state 0  i.e.,

L = inf
t

{t, X(t) = 0}.

Since state 0 is absorbing, it is justified to call L the lifetime of the process. On con-
dition that the integral (5.72) diverges as ,  L has distribution functiont → ∞

FL(t) = P(L ≤ t) = p0(t) , t ≥ 0.

Mean value and variance of  areX(t)

                                         (5.73)E(X(t)) = e−ω(t),

                       (5.74)Var(X(t)) = e−2ω(t)∫0
t eω(x)[λ(x) + μ(x)] dx .

If the process  starts at  i.e. it has the initial distribution{X(t), t ≥ 0} s = 2, 3, ...

ps(0) = P(X(0) = s) = 1 for an s = 2, 3, ...

then the corresponding -transform isz

M(t, z) = ⎛
⎝

a(t) + [1 − a(t) − b(t)] z
1 − b(t) z

⎞
⎠

s
.

In this case, mean value and variance of  are obtained by multiplying (5.73) andX(t)
(5.74), respectively, by s.
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5.7    APPLICATIONS TO QUEUEING MODELS

5.7.1  Basic Concepts  

One of the most important applications of continuous-time Markov chains is stochas-
tic modeling of service facilities. The basic situation is the following: Customers
arrive at a service system (queueing system) according to a random point process. If
all servers are busy, an arriving customer either waits for service or leaves the system
without having been served. Otherwise, an available server takes care of the custom-
er. After random service times customers leave the system. The arriving customers
constitute the input (input flow, traffic, flow of demands) and the leaving customers
the output (output flow) of the queueing system. A queueing system is called a loss
system  if  it  has  no  waiting  capacity for customers  which do  not  find  an  available
server on arriving at the system. These customers leave the system immediately after
arrival and are said to be lost. A waiting system has unlimited waiting capacity for
those customers who do not immediately find an available server and are willing to
wait any length of time for service. A waiting-loss system has only limited waiting
capacity for customers. An arriving customer is lost if it finds all servers busy and the
waiting capacity fully occupied. A multi-server queueing system has  servers. As > 1
single-server queueing system has only one server. Of course, 'customers' or 'servers'
need not be persons.

Supermarkets are simple examples of queueing systems. Their customers are served
at checkout counters. Filling stations also can be thought of as queueing systems
with petrol pumps being the servers. Even a car park has the typical features of a
waiting system. In this case, the parking lots are the 'servers' and the 'service times'
are generated by the customers themselves. An anti-aircraft battery is a queueing sys-
tem in the sense that it 'serves' the enemy aircraft. During recent years the stochastic
modeling of communication systems, in particular computer networks, has stimulated
the application of standard queueing models and the creation of new, more sophistic-
ated ones. But the investigation of queueing systems goes back to the Danish
engineer A. K. Erlang in the early 1900s, when he was in charge of designing tele-
phone exchanges to meet criteria such as 'what is the mean waiting time of a customer
before being connected' or 'how many lines (servers) are necessary to guarantee that
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with a given probability a customer can immediately be connected' ? The repairman
problem considered in example 5.14 also fits into the framework of a queueing sys-
tem. The failed machines constitute the input and the mechanics are the servers. This
example is distinguished by a particular feature: each demand (customer) is produced
by one of a finite number n of different sources 'inside the system', namely by one of
the n machines. Classes of queueing systems having this particular feature are called
closed queueing systems.
The global objective of queueing theory is to provide theoretical tools for the design
and the quantitative analysis of service systems. Designers of service systems need to
make sure that the required service can be reliably delivered at minimal expense.
Managers of service systems do not want to 'employ' more servers than necessary for
meeting given performance criteria. Important criteria are:
1) The probability that an arriving customer finds an available server.
2) The mean waiting time of a customer for service.

It is common practice to characterize the structure of standard queueing systems by
Kendall's notation A /B /s /m. In this code, A characterizes the input and B the
ser-vice, s is the number of servers, and waiting capacity is available for m
customers. Using this notation, standard classes of queueing systems are:

(Markov): Customers arrive in accordance with a homogeneous PoissonA = M
process (Poisson input).

 (general independent): Customers arrive in accordance with an ordinaryA = GI
renewal process (recurrent input).

 (deterministic): The distances between the arrivals of neighbouring customersA = D
are constant (deterministic input).

 (Markov) The service times are independent, identically distributedB = M
exponential random variables.

 (general) The service times are independent, identically distributed randomB = G
variables with arbitrary probability distribution.

For instance,  is a loss system with Poisson input, one server, andM/M/1/0
exponential service times.  is a waiting system with recurrent input,GI/M/3/∞
exponential service times, and 3 servers. For queueing systems with an infinite
number of servers, no waiting capacity is necessary. Hence their code is A/B/∞.

In waiting systems and waiting-loss systems there are several ways of choosing wait-
ing customers for service. These possibilities are called service disciplines (queueing
disciplines). The most important ones are:
1) FCFS (first come-first served)  Waiting customers are served in accordance with
their order of arrival. This discipline is also called FIFO (first in-first out), although
'first in' does not necessarily imply 'first out'.
2) LCFS (last come-first served)  The customer which arrived last is served first. This
discipline is also called LIFO (last in-first out).
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3) SIRO (service in random order)  A server, when having finished with a customer,
randomly picks one of the waiting customers for service.

There is a close relationship between service disciplines and priority (queueing) sys-
tems: In a priority system arriving customers have different priorities of being served.
A customer with higher priority is served before a customer with lower priority, but
no interruption of service takes place (head of the line priority discipline). When a
customer with absolute priority arrives and finds all servers busy, then the service of
a customer with lower priority has to be interrupted (preemptive priority discipline).

System Parameter  The intensity of the input flow (mean number of arriving custom-
ers per unit time) is denoted as  and referred to as arrival rate or arrival intensity.λ
The service times of all servers are assumed to be independent and identically
distributed. The service intensity or service rate of the servers is denoted as  Thus,μ.
if Y denotes the random times between the arrival of two neighbouring customers
and Z the random service time of a customer, then

 and E(Y) = 1/λ E(Z) = 1/μ.
The traffic intensity of a queueing system is defined as the ratio

ρ = λ/μ ,
and the degree of server utilisation is where S is the random number ofη = E(S) /s ,
busy servers in the steady state. Thus, in the steady state, the coefficient  can beη
interpreted as the proportion of time a server is busy. Note that here and in what
follows in the steady state refers to stationarity. More precisely, a (queueing) system
is in the steady state if the underlying stochastic process  is stationary. In{X(t), t ≥ 0}
what follows, if not stated otherwise, X(t) denotes the total number of customers at a
service station (either wait- ing or being served) at time t. If X is the corresponding
number in the steady state and  the stationary probability of state j, thenπj

πj = lim
t→∞

pj(t) = lim
t→∞

P(X(t) = j) = P(X = j)

with j = 0, 1, ..., s + m; s, m ≤ ∞.

5.7.2 Loss Systems

5.7.2.1 M/M/ - System∞
Strictly speaking, this system is neither a loss nor a waiting system. In this model,

 is a homogeneous birth-and death process with state space {X(t), t ≥ 0} Z = {0, 1, ...}
and transition rates (example 5.12)

λi = λ ; μi = i μ ; i = 0, 1, ...

The corresponding time-dependent state probabilities  of this queueing systempj(t)
are given by (5.55). The stationary state probabilities are obtained by passing to the
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limit as  in these  or by inserting the transition rates  and t → ∞ pj(t) λi = λ μi = i μ
with  into (5.60) and (5.61):n = ∞

                                     (5.75)πj =
ρ j

j ! e−ρ ; j = 0, 1, ...

This is a Poisson distribution with parameter . Hence, in the steady state the meanρ
number of busy servers is equal to the traffic intensity of the system: E(X) = ρ .

5.7.2.2 M/M/s/0 - System
In this case,  is a birth- and death process with  and {X(t), t ≥ 0} Z = {0, 1, ..., s}

λi = λ ; i = 0, 1, ... , s − 1,
λi = 0 for i ≥ s ,

μi = iμ; i = 0, 1, ... , s .

Inserting these transition rates into the stationary state probabilities (5.60) and (5.61)
with  yieldsn = s

               (5.76)π0 =
⎡

⎣
⎢ Σ
i=0

s 1
i !

ρ i ⎤

⎦
⎥

−1
; πj = 1

j ! ρ j π0 ; j = 0, 1, ... , s .

The probability  is called vacant probability. The loss probability, i.e. the proba-π0
bility that an arriving customer does not find an idle server, and, hence, leaves the
system immediately, is

                                             (5.77)πs =
1
s ! ρs

Σ
i=0

s 1
i ! ρ i

.

This is the famous Erlang loss formula. The following recursive formula for the loss
probability as a function of s can easily be verified:

π0 = 1 for s = 0; 1
πs = s

ρ
1

πs−1
+ 1 ; s = 1, 2, ...

The mean number of busy servers is

E(X) = Σ
i=1

s
i πi = Σ

i=1

s
i ρi

i ! π0 = ρ Σ
i=0

s−1 ρi

i ! π0 .

By comparing to (5.77), 
E(X) = ρ(1 − πs) .

Hence, the degree of server utilization is

η =
ρ
s (1 − πs) .
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Single-Server Loss System  In case  vacant and loss probability ares = 1,

                                (5.78)π0 = 1
1 + ρ and π1 =

ρ
1 + ρ .

Since ρ = E(Z)/E(Y),

π0 = E(Y)
E(Y) + E(Z) and π1 = E(Z)

E(Y) + E(Z) .

Hence,  ( ) is formally equal to the stationary availability (nonavailability) of aπ0 π1
system with mean lifetime E(Y) and mean renewal time E(Z) the operation of which
is governed by an alternating renewal process (section 3.3.6, formula (3.123)).

Example 5.16  A 'classical' application of loss models of type M/M/s/0 is a telephone
exchange. Assume that the input (calls of subscribers wishing to be connected) has
intensity [min ]. Thus, the mean time between successive calls isλ = 2 −1

[min].E(Y) = 1/λ = 0.5
On average, each subscriber occupies a line for [min].E(Z) = 1/μ = 3
1) What is the loss probability in case of  lines? The corresponding traffics = 7
intensity is  Thus, the loss probability equalsρ = λ /μ = 6 .

π7 =
1
7! 67

1 + 6 + 62

2! + 63
3! + 64

4! + 65

5! + 66

6! + 67

7!

= 0.185 .

Hence, the mean number of occupied lines is
E(X) = ρ(1 − π7) = 6 (1 − 0.185) = 4.89

and the degree of server (line) utilization is
η = η(7) = 4.89/7 = 0.698.

2) What is the minimal number of lines which have to be provided in order to make
sure that at least 95% of the desired connections can be made? The respective loss
probabilities for and  ares = 9 s = 10

π9 = 0.075 and π10 = 0.043 .
Hence, the minimal number of lines required is

.smin = 10

However, in this case the degree of server utilization is smaller than with  lines:s = 7

                                                 η = η(10) = 0.574.

It is interesting and practically important that the stationary state probabilities of the
queueing system M/G/s/0 also have the structure (5.76). That is, if the respective
traffic intensities  of the systems M/M/s/0 and M/G/s/0 are equal, then their station-ρ
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ary state probabilities coincide: for both systems they are given by (5.76). A
corresponding result holds for the queueing systems  and . (CompareM/M/∞ M/G/∞
the stationary state probabilities (5.75) with the stationary state probabilities (3.37)
deriv- ed in example 3.5 for the -system.) Queueing systems having thisM/G/∞
property are said to be insensitive with respect to the probability distribution of the
service  An analogous property can be defined with regard to the input. In viewtimes.
of (5.78),  the - system is insensitive both with  regard  to  arrival and serviceM/M/1/0
time distributions ( full insensitivity). A comprehensive treatment of the insensitivity
of queueing systems and other stochastic models is given in [33].

5.7.2.3 Engset's Loss System
Assume that n sources generate n independent Poisson inputs with common intensity

 which are served by s servers, . The service times are independent, exponen-λ s ≤ n
tially distributed random variables with parameter µ. As long as a customer from a
particular source is being served, this source cannot produce another customer (Com-
pare to the repairman problem, example 5.14:  during the repair of a machine, this
machine cannot produce another demand for repair.) A customer which does not find
an available server is lost. Let  denote the number of customers being served atX(t)
time t. Then  is a birth- and death process with state space{X(t), t ≥ 0}

Z = {0, 1, ..., s}.

In case  only  sources are active, that is they are able to generate custom-X(t) = j, n − j
ers. Therefore, the transition rates of this birth- and death process are

λj = (n − j)λ ; j = 0, 1, 2, ... , s − 1;

μj = j μ ; j = 1, 2, ... , s .
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Inserting these transition rates into (5.60) and (5.61) with  yields the stationaryn = s
state distribution for Engset's loss system:

πj =
⎛
⎝

n
j
⎞
⎠ ρ j

Σ
i=0

s ⎛
⎝

n
i
⎞
⎠ ρi

; j = 0, 1, ... , s .

In particular,  and the loss probability  areπ0 πs

π0 = 1

Σ
i=0

s ⎛
⎝

n
i
⎞
⎠ ρi

, πs =
⎛
⎝

n
s
⎞
⎠ ρs

Σ
i=0

s ⎛
⎝

n
i
⎞
⎠ ρi

.

Engset's loss system is, just as the repairman problem considered in example 5.14, a
closed queueing system.                                                                                                

5.7.3 Waiting Systems

5.7.3.1 M/M/s/  - System∞
The Markov chain  which models this system is defined as follows: If{X(t), t ≥ 0}

 with   then  j servers are busy at time t. If  with  then sX(t) = j 0 ≤ j ≤ s, X(t) = j s > j,
servers are busy and  customers are waiting for service. In either case, X(t) is thej − s
total number of customers in the queueing system at time t.  is a birth-{X(t), t ≥ 0}
and death process with state space  and transition ratesZ = {0, 1, ...}

λj = λ ; j = 0, 1, ...,

                      (5.79)μj = j μ for j = 0, 1, ... , s ; μj = s μ for j > s .

In what follows it is assumed that
ρ = λ/μ < s.

If  then the arrival intensity  of customers is greater than the maximum serviceρ > s, λ
rate  of the system so that, at least in the long-run, the system cannot cope with theμs
input and the length of the waiting queue will tend to infinity as  Hence, not → ∞.
equilibrium state between arriving and leaving customers is possible. On the other
hand, the condition   is necessary and sufficient for the existence of a stationaryρ < s
state distribution, since in this case the corresponding series (5.62) converges and
condition (5.63) is fulfilled  Inserting the transition rates (5.79) into (5.60) yields.

πj =
ρ j

j ! π0 for j = 0, 1, ... , s − 1

                                  (5.80)πj =
ρ j

s ! s j−s π0 for j ≥ s .
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The normalizing condition and the geometric series yields the vacant probability :π0

π0 =
⎡

⎣
⎢ Σ

i=0

s−1 1
i! ρi +

ρs

(s − 1)! (s − ρ)
⎤

⎦
⎥

−1
.

The probability  that an arriving customer finds all servers busy isπw

πw = Σi=s
∞ πi .

 is called waiting probability, since it is the probability that an arriving customerπw
must wait for service. Making again use of the geometrical series yields a simple
formula for :πw

                                               (5.81)πw = πs
1 − ρ/s .

In what follows, all derivations refer to the system in the steady state.
If S denotes the random number of busy servers, then its mean value is

                                       (5.82)E(S) = Σi=0
s−1 i πi + s πw.

From this,
                                                 (5.83)E(S) = ρ .

(The details of the derivation of (5.83)  are  left  as  an  exercise  to  the  reader.)  Also
without proof: Formula (5.83) holds for any -system. Hence the degree ofGI/G/s/∞
server utilization in the -system is . By making use of (5.83), theM/M/s/∞ η = ρ/s
mean value of the total number  of customers in the system is seen to beX

                          (5.84)E(X) = Σi=1
∞ i πi = ρ

⎡

⎣
⎢⎢⎢1 + s

(s − ρ)2 πs
⎤

⎦
⎥⎥⎥.

Let L denote the random number of customers waiting for service (queue length).
Then the mean queue length is

E(L) = Σi=s
∞ (i − s) πi = Σi=s

∞ i πi − s πw.

Combining this formula with (5.82)-(5.84) yields

                                         (5.85)E(L) =
ρ s

(s − ρ)2 πs .

Waiting Time Distribution Let W be the random time a customer has to wait for
service if the service discipline FCFS is in effect. By the total probability rule,

                         (5.86)P(W > t) = Σi=s
∞ P(W > t X = i) πi .

If a customer enters the system when it is in state , then all servers are busyX = i ≥ s
so that the current output is a Poisson process with intensity . The random eventsμ

 occurs if within t time units after the arrival of a customer the service of at”W > t ”
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most  customers has been finished. Therefore, the probability that the service ofi − s
precisely k customers, , will be finished in this interval of length t is0 ≤ k ≤ i − s

(s μ t)k

k!
e−s μ t .

Hence,                            P(W > t X = i) = e−s μ t Σ
k=0

i−s (s μ t)k

k!

and, by (5.86),

P(W > t) = e−s μ t Σ
i=s

∞
πi Σ

k=0

i−s (s μ t)k

k!
= π0e−s μ t Σ

i=s

∞ ρi

s!si−s Σ
k=0

i−s (s μ t)k

k!
.

By performing the index transformation  changing the order of summationj = i − s,
according to formula (1.25), and making use of both the power series of  and theex

geometrical series yields

P(W > t) = π0
ρs

s! e−s μ t Σ
j=0

∞ ⎛
⎝

ρ
s
⎞
⎠

j
Σ

k=0

j (s μ t)k

k!

= πs e−s μ t Σ
k=0

∞ (s μ t)k

k! Σ
j=k

∞ ⎛
⎝

ρ
s
⎞
⎠

j

= πs e−s μ t Σ
k=0

∞ (λt)k

k! Σ
i=0

∞ ⎛
⎝

ρ
s
⎞
⎠

i
= πs e−s μ t eλt 1

1 − ρ/s .

Hence, the distribution function of  isW

FW(t) = 1 − s
s − ρ πs e−μ(s−ρ)t , t ≥ 0 .

Note that  is the waiting probability (5.81):P(W > 0)

πw = P(W > 0) = 1 − FW(0) = s
s − ρ πs.

The mean waiting time of a customer is

                           (5.87)E(W) = ∫0
∞ P(W > t) dt = s

μ (s − ρ)2 πs .

A comparison of (5.85) and (5.87) yields Little's formula or Little's law:

                                              (5.88)E(L) = λ E(W) .

Little's formula can be motivated as follows: The mean value of the sum of the wait-
ing times arising in an interval of length  is  On the other hand, the sameτ τ E(L) .
mean value is given by  since the mean number of customers arriving in anλτ E(W),
interval of length  is  Hence,τ λτ.

τ E(L) = λτ E(W),
which is Little's formula.
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With  given by (5.84), an equivalent representation of Little's formula isE(X )
                                             (5.89)E(X ) = λ E(T) ,

where T is the total sojourn time of a customer in the system, i.e. waiting plus service
time:  Hence, the mean value of T isT = W + Z.

E(T) = E(W) + 1/μ .

Little's formula holds for any -system. For a proof of this proposition andGI/G/s/∞
other 'Little type formulas' see Franken et al. [29].

5.7.3.2  M/G/1/  - System∞
In this single-server system, the service time Z is assumed to have an arbitrary
probability density  and a finite mean   Hence, the correspondingg(t) E(Z) = 1/μ.
stochastic process  describing the development in time of the number of{X(t), t ≥ 0}
customers in the system need no longer be a homogeneous Markov chain as in the
previous queuing models. However, there exists an embedded homogeneous
discrete-time Markov chain, which can be used to analyze this system (see section
5.4).
The system starts operating at time  Customers arrive according to a homoge-t = 0.
neous Poisson process with positive intensity  Let A be the random number of cus-λ.
tomers, which arrive whilst a customer is being served, and

{ai = P(A = i); i = 0, 1, ...}
be  its  probability distribution. To determine the , note that the conditional proba-ai
bility that during a service time of length  exactly i new customers arrive isZ = t

(λ t)i

i !
e−λt.

Hence,

ai = ∫
0

∞ (λ t)i

i !
e−λtg(t) dt , i = 0, 1, ...

This and the power series representation of  yield the z-transform  of A:ex MA(z)

MA(z) = Σi=0
∞ ai zi = ∫0

∞ e−(λ−λz) t g(t) dt .

Consequently, if  denotes the Laplace transform of , theng(⋅) g(t)

                                          (5.90)MA(z) = g(λ − λz) .

By (1.23), letting as usual  the mean value of A isρ = λ/μ ,

                       (5.91)E(A) =
dMA(z)

dz z=1 = −λ
dg(r)

dr r=0
= ρ.
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Embedded  Markov  chain  Let  be the random time point at which the n th custom-Tn
er leaves the system. If  denotes the number of customers in the system immedi-Xn
ately after  then  is a homogeneous, discrete-time Markov chain withTn, {X1, X2, ...}
state space  and one-step transition probabilitiesZ = {0, 1, ...}

   (5.92)pi j = P(Xn+1 = j Xn = i) =

⎧

⎩

⎨
⎪

⎪

aj if i = 0 and j = 0, 1, 2, ...
aj−i+1 if i − 1 ≤ j and i = 1, 2, ...
0 otherwise

for all  This Markov chain is embedded in  sincen = 0, 1, ...; X0 = 0. {X(t), t ≥ 0}
Xn = X(Tn + 0); n = 0, 1, ...

The discrete-time Markov chain  is irreducible and aperiodic. Hence, on{X0, X1, ...}
condition  it has a stationary state distribution  which can beρ = λ/μ < 1 {π0, π1, ...}
obtained by solving the corresponding system of algebraic equations (4.9): Inserting
the transition probabilities  given by (5.92) into (4.9) givespi j

π0 = a0(π0 + π1) ,

                         (5.93)πj = π0 aj + Σi=1
j+1

πi aj−i+1; j = 1, 2, ...

Let  be the z-transform of the state X of the system in the steady state:MX(z)

MX(z) = Σj=0
∞ πj z j .

Then, multiplying (5.93) by  and summing up from  to  yieldsz j j = 0 ∞

MX(z) = π0Σj=0
∞ a j z j + Σj=0

∞ z j Σi=1
j+1

πiaj−i+1

= π0 MA(z) + MA(z) Σi=1
∞ πi zi−1aj−i+1

= π0 MA(z) + MA(z)
MX(z) − π0

z .

Solving this equation for  yieldsMX(z)

                          (5.94)MX(z) = π0 MA(z) 1 − z
MA(z) − z , z < 1.

To determine , note thatπ0
MA(1) = MX(z) = 1

and

lim
z↑1

MA(z) − z
1 − z = lim

z↑1

⎛
⎝⎜
1 +

MA(z) − 1
1 − z

⎞
⎠⎟

= 1 −
dMA(z)

dz z=1 = 1 − ρ .
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Therefore, by letting   in (5.94),z ↑ 1
                                               (5.95)π0 = 1 − ρ.

Combining (5.90), (5.94) and (5.95) yields the Formula of  Pollaczek-Khinchin :

                         (5.96)MX(z) = (1 − ρ) 1 − z
1 − z

g(λ − λz)
, z < 1 .

According to its derivation, this formula gives the z-transform of the stationary
distribution of the random number X of customers in the system immediately after
the completion of a customer's service. However, in view of the homogeneous
Poisson input, it is even the stationary probability distribution of the 'original'
Markov chain  itself. Thus, X is the random number of customers at the{X(t), t ≥ 0}
system in its steady state. Its probability distribution  exists and is a{π0, π1, ...}
solution of (5.93). Hence, numerical parameters as mean value and variance of the
number of customers in the system in the steady state can be determined by (5.96)
via (1.23). For instance, the mean number of customers in the system is

                 (5.97)E(X) =
dMX(z)

dz z=1 = ρ + λ2[E(Z))2 + Var(Z)]
2 (1 − ρ) .

Sojourn time  Let T be the time a customer spends in the system (sojourn time) if the
FCFS-queueing discipline is in effect. Then T has structure

T = W + Z,
where W is the time a customer has to wait for service (waiting time). Let  andFT(t)

 be the respective distribution functions of T and W and  and  theFW(t) fT (t) fW (t)
corresponding densities with Laplace transforms  and . Since W and ZfT (r) fW (r)
are independent,

                                        (5.98)f T(r) = fW (r) g(r) .

The number of customers in the system after the departure of a served one is equal to
the number of customers which arrived during the sojourn time of this customer.
Hence, analogously to the structure of the , the probabilities  are given byai πi

πi = ∫
0

∞ (λ t)i

i !
e−λ t fT (t) dt ; i = 0, 1, ...

The corresponding z-transform  of X or, equivalently, the z-transform of theMX(z)
stationary distribution  is  (compare to the derivation of (5.90)){π0, π1, ...}

MX(z) = f T (λ − λ z) .
Thus, by (5.98),

MX(z) = fW (λ − λz) g(λ − λz) .
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This formula and (5.96) yields the Laplace transform of  fW(r) :

fW (r) = (1 − ρ) r
λ g(r) + r − λ

.

By (1.19) and (1.28),  and  can be determined from E(W) Var(W) fW (s) :

                                  (5.99)E(W) = λ [(E(Z))2 + Var(Z)]
2 (1 − ρ) ,

Var(W) = λ2 [(E(Z))2 + Var(Z)]2

4 (1 − ρ)2 + λ E(Z3)
3 (1 − ρ) .

The random number of busy servers  has the stationary distributionS
P(S = 0) = π0 = 1 − ρ, P(S = 1) = 1 − π0 = ρ .

Thus,
E(S) = ρ.

The queue length is  Hence, by (5.97),L = X − S.

                                 (5.100)E(L) = λ2[E(Z))2 + Var(Z)]
2 (1 − ρ) .

Comparing (5.97) and (5.100) verifies Little's formula (5.88):
E(L) = λ E(W) .

5.7.3.3 GI/M/1/  - System∞
In this single-server system, the interarrival times are given by an ordinary renewal
process  where the  are identically distributed as Y with probability{Y1, Y2, ...}, Yi
density  and finite mean value  The service times are identicallyfY (t) E(Y) = 1/λ.
exponential distributed with parameter . A customer leaves the system immediatelyμ
after completion of its service. If an arriving customer finds the server busy, it joins
the queue. The stochastic process  describing the development of the{X(t), t ≥ 0}
number of customers in the system in time, need not be a homogeneous Markov
chain. However, as in the previous section, an embedded homogeneous discrete-time
Markov chain can be identified: The  customer arrives at timen th

Tn = Σi=1
n Yi; n = 1, 2, ...

Let  denote the number of customers in the station immediately before arrival ofXn
the  customer (being served or waiting). Then,  The(n + 1) th 0 ≤ Xn ≤ n; n = 0, 1, ...
discrete-time stochastic process  is a Markov chain with parameter space{X0, X1, ...}

 and state space  Given that the system starts operating atT = {0, 1, ...} Z = {0, 1, ...}.
time  the initial distribution of this discrete-time Markov chain ist = 0,

P(X0 = 0) = 1 .
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For obtaining the transition probabilities of  let  be the number of cus-{X0, X1, ...}, Dn
tomers leaving the station in the interval  of length  Then,[Tn, Tn+1) Yn+1.

Xn = Xn−1 − Dn + 1 with 0 ≤ Dn ≤ Xn ; n = 1, 2, ...,

By theorem 3.2, on condition  the random variable  has a PoissonYn+1 = t Dn
distribution with parameter  if the server is busy throughout the intervalμ t

Hence, for  and [Tn, Tn+1). i ≥ 0 1 ≤ j ≤ i + 1,

P(Xn = j Xn−1 = i, Yn+1 = t⎞⎠ =
(μ t)i+1−j

(i + 1 − j)! e−μt; n = 1, 2, ...

Consequently  the one-step transition probabilities,

pi j = P(Xn = j Xn−1 = i); i, j ∈ Z; n = 1, 2, ...

of the Markov chain  are{X0, X1, ...}

pi j = ∫
0

∞ (μ t)i+1−j

(i + 1 − j)! e−μt fY(t) dt ; 1 ≤ j ≤ i + 1.

The normalizing condition yields pi 0 :

pi0 = 1 − Σj=1
i+1 pi j.

The transition probabilities  do not depend on n so that  is a homoge-pi j {X0, X1, ...}
neous Markov chain. It is embedded in the original state process  since{X(t), t ≥ 0}

Xn = X(Tn+1 − 0) ; n = 0, 1, ...

Based on the embedded Markov chain  a detailed analysis of the queue-{X0, X1, ...},
ing system GI/M/1/  can be carried out analogously to the one of system M/G/1/ .∞ ∞

5.7.4    Waiting-Loss Systems

5.7.4.1  M/M/s/m - System
This system has s servers and waiting capacity for m customers,  A customerm ≥ 1.
which at arrival finds no idle server and the waiting capacity occupied is lost, that is
it leaves the system immediately after arrival. The number of customers X(t) in the
system at time t generates a birth- and death process  with state space{X(t), t ≥ 0}

 and transition ratesZ = {0, 1, ..., s + m}

λj = λ, 0 ≤ j ≤ s + m − 1,

μj =
⎧

⎩
⎨

j μ for 1 ≤ j ≤ s
s μ for s < j ≤ s + m

.
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According to (5.60) and (5.61), the stationary state probabilities are

πj =
⎧

⎩

⎨
⎪

⎪

1
j ! ρ j π0 for 1 ≤ j ≤ s − 1

1
s! s j−s ρ j π0 for s ≤ j ≤ s + m

,

π0 =
⎡

⎣
⎢⎢⎢ Σ

j=0

s−1 1
j! ρ j + Σ

j=s

s+m 1
s! s j−s ρ j ⎤

⎦
⎥⎥⎥

−1
.

The second series in  can be summed up to obtainπ0

 π0 =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎪
⎪

⎡

⎣
⎢⎢⎢ Σ

j=0

s−1 1
j! ρ j + 1

s! ρ s 1−(ρ /s)m+1

1−ρ /s
⎤

⎦
⎥⎥⎥

−1
for ρ ≠ s

⎡

⎣
⎢⎢⎢ Σ

j=0

s−1 1
j! ρ j + (m + 1) ss

s!
⎤

⎦
⎥⎥⎥

−1
for ρ = s

.

The vacant probability  is the probability that there is no customer in the systemπ0
and  is the loss probability, i.e. the probability that an arriving customer is lostπs+m
(rejected). The respective probabilities  and  that an arriving customer finds aπf πw
free (idle) server or waits for service are

πf = Σi=0
s−1 πi , πw = Σi=s

s+m−1 πi .

Analogously to the loss system M/M/s/0, the mean number of busy servers is
E(S) = ρ (1 − πs+m) .

Thus, the degree of server  utilisation is
η = ρ (1 − πs+m) /s .

In the following example, the probabilities  and  which refer to a queueingπ0 πs+m
system with s servers and waiting capacity for m customers are denoted as π0(s, m)
and  respectively.πs+m(s, m),

Example 5.17  A filling station has  petrol pumps and waiting capacity for s = 8 m = 6
cars. On average, 1.2 cars arrive at the filling station per minute. The mean time a car
occupies a petrol pump is 5 minutes. It is assumed that the filling station behaves like
an M/M/s/m-queueing system. Since  and  the traffic intensity is λ = 1.2 μ = 0.2, ρ = 6.
The corresponding loss probability  isπ16 = π16(6, 10)

π14(8, 6) = 1
8! 86 614 π0(8, 6) = 0.0167 .
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with

π0(8, 6) =
⎡

⎣
⎢⎢⎢ Σ
j=0

7 1
j! 6 j + 1

8! 68 1 − (6 /8)7

1 − 6 /8
⎤

⎦
⎥⎥⎥

−1
= 0.00225.

Consequently, the average number of occupied petrol pumps  is
E(S) = 6 ⋅ (1 − 0.0167) = 5.9.

After having obtained these figures, the owner of the filling station considers 2 out of
the 8 petrol pumps superfluous and has them pulled down. It is assumed that this
change does not influence the input flow so that cars continue to arrive with traffic
intensity of . The corresponding loss probability  becomesρ = 6 π12 = π12(6, 6)

π12(6, 6) = 66
6! π0(6, 6) = 0.1023 .

Thus, about 10% of all arriving cars leave the station without having filled up. To
counter this drop, the owner provides waiting capacity for another 4 cars so that

. The corresponding loss probability  ism = 10 π16 = π16(6, 10)

π16(6, 10) = 66
6! π0(6, 10) = 0.0726.

Formula

 π6+m(6, m) = 66
6!

⎡

⎣
⎢⎢⎢ Σ
j=0

5 1
j! 6 j + (m + 1) 66

6!
⎤

⎦
⎥⎥⎥

−1

yields that additional waiting capacity for 51 cars has to be provided to equalize the
loss caused by reducing the number of pumps from 8 to 6.                                        

5.7.4.2 M/M/s/ -System with Impatient Customers∞
Even if there is waiting capacity for arbitrarily many customers, some customers
might leave the system without having been served. This happens when customers
can only spend a finite time, their patience time, in the queue. If the service of a
customer does not begin before its patience time expires, the customer leaves system.
For example, if somebody, whose long-distance train will depart in 10 minutes, has
to wait 15 minutes to buy a ticket, then this person will leave the counter without a
ticket. Real time monitoring and control systems have memories for data to be pro-
cessed. But these data 'wait' only as long as they are up to date. Bounded waiting
times are also typical for packed switching systems, for instance in computer-aided
booking systems. Generally one expects that 'intelligent' customers adapt their beha-
viour to the actual state of the queueing system. Of the many available models deal-
ing with such situations, the following one is considered in some detail: Customers
arriving at an M/M/s/ -system have independent, exponentially with parameter ∞ ν
distributed patience times. If X(t) as usual denotes the number of customers in the
system at time t, then  is a birth- and death process with transition rates{X(t), t ≥ 0}
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λj = λ ; j = 0, 1, ...,

μj =
j μ for j = 1, 2, ... , s
s μ + (j − s)ν for j = s, s + 1, ...

.

If , then , whereas the birth rate remains constant. Hence the sufficientj → ∞ μj → ∞
condition for the existence of a stationary distribution stated in theorem 5.3 (section
5.6.3.2) is fulfilled. Once the queue length exceeds a certain level, the number of cus-
tomers leaving the system is on average greater than the number of arriving custom-
ers per unit time. That is, the system is self-regulating, aiming at reaching the equili-
brium state. Now formulas (5.60) and (5.61) yield the corresponding stationary state
probabilities:

πj =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

1
j ! ρ j π0 for j = 1, 2, ... , s

ρ s

s!
λj−s

Π
i=1

j−s
(s μ + i ν)

π0 for j = s + 1, .s + 2, ...

π0 =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

Σ
j=0

s 1
j ! ρ j + ρ s

s! Σ
j=s+1

∞ λj−s

Π
i=1

j−s
(s μ + i ν)

⎤

⎦

⎥
⎥

⎥

⎥
⎥

−1

.

Let L denote the random length of the queue in the steady state. Then,

E(L) = Σj=s+1
∞ ( j − s) πj .

Inserting the  yields after some algebraπj

E(L) = πs Σ
j=1

∞
j λ j ⎡

⎣
⎢⎢⎢Πi=1

j
(s μ + i ν)

⎤

⎦
⎥⎥⎥

−1
.

In this model, the loss probability   is not strictly associated with the number of cus-πv
tomers in the system. It is the probability that a customer leaves the system without
having been served, because its patience time has expired. Therefore,  is the1 − πv
probability that a customer leaves the system after having been served. By applying
the total probability rule with the exhaustive and mutually exclusive set of events

 one obtains{”X = j ”; j = s, s + 1, ...}

E(L) = λ
ν πv .

Thus, the mean queue length is directly proportional to the loss probability. (Com-
pare to Little's formula (5.88).)
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Variable Arrival Intensity  Finite waiting capacities and patience times imply that
in the end only a 'thinned flow' of potential customers will be served. Thus, it seems
to be appropriate to investigate queueing systems whose arrival (input) intensities
depend on the state of the system. However, those customers which actually enter the
system do not leave it without service. Since the tendency of customers to leave the
system immediately after arrival increases with the number of customers in the sys-
tem, the birth rates should decrease for  as  j tends to infinity. For example,  thej ≥ s
following birth rates have this property:

λj =
⎧

⎩
⎨
⎪
⎪

λ for j = 0, 1, ... , s − 1
s

j+α λ for j = s, s + 1, ... , α ≥ 0.

5.7.5 Special Single-Server Queueing Systems

5.7.5.1 System with Priorities
A single-server queueing system with waiting capacity for  customer is subjectm = 1
to two independent Poisson inputs 1 and 2 with respective intensities  and  Theλ1 λ2.
corresponding customers are called type 1 and type 2-customers. Type 1-customers
have absolute (preemptive) priority, i.e. when a type 1 and a type 2-customer are in
the system, the type 1-customer is being served. Thus, the service of a type 2-custom-
er is interrupted as soon as a type 1-customer arrives. The displaced customer will
occupy the waiting facility if it is empty. Otherwise it leaves the system. A waiting
type 2-customer also has to leave the system when a type 1-customer arrives, since
the newcomer will occupy the waiting facility. (Such a situation can only happen
when a type 1-customer is being served.) An arriving type 1-customer is lost only
when both server and waiting facility are occupied by other type 1-customers. Thus,
if only the number of type 1-customers in the system is of interest, then this priority
queueing system becomes the waiting-loss-system M/M/s/1 with  since types = 1,
2-customers have no impact on the service of type 1-customers at all.
The service times of type 1- and type 2- customers are assumed to have exponential
distributions with respective parameters  and . The state space of the system isμ1 μ2
represented in the form

Z = {(i, j); i, j = 0, 1, 2},

where i denotes the number of type 1-customers and  j the number of type 2-custom-
ers in the system. Note that if X(t) denotes the system state at time t, the stochastic
process can be treated as a one-dimensional Markov chain, since scalars{X(t), t ≥ 0}
can be assigned to the six possible system states, which are given as two-component
vectors. However,  is not a birth- and death process. Figure 5.14 shows{X(t), t ≥ 0}
the transition graph of this Markov chain.

According to (5.28), the stationary state probabilities satisfy the system of equations
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(λ1 + λ2) π(0,0) = μ1π(1,0) + μ2π(0,1)

(λ1 + λ2 + μ1) π(1,0) = λ1π(0,0) + μ1π(2,0)

(λ1 + λ2 + μ2) π(0,1) = λ2π(0,0) + μ1π(1,1) + μ2 π(0,2)

(λ1 + μ1) π(1,1) = λ2π(1,0) + λ1π(0,1) + λ1 π(0,2)

μ1 π(2,0) = λ1π(1,0) + λ1π(1,1)

(λ1 + μ2) π(0,2) = λ2π(0,1)

π(0,0) + π(1,0) + π(0,1) + π(1,1) + π(2,0) + π(0,2) = 1

m = 0  Since there is no waiting capacity, each customer, notwithstanding its type, is
lost if the server is busy with a type 1-customer. In addition, a type 2-customer is lost
if, while being served, a type 1-customer arrives. The state space is

Z = {(0, 0), (0, 1), (1, 0)}.

Figure 5.15 shows the transition rates. The corresponding system (4.9) for the station-
ary state probabilities is

(λ1 + λ2) π(0,0) = μ1π(1,0) + μ2 π(0,1)

μ1 π(1,0) = λ1π(0,0) + λ1π(0,1)
1 = π(0,0) + π(1,0) + π(0,1)

The solution is

π(0,0) =
μ1(λ1 + μ2)

(λ1 + μ1)(λ1 + λ2 + μ2) ,

     π(0,1) =
λ2 μ1

(λ1 + μ1)(λ1 + λ2 + μ2) , π(1,0) =
λ1

λ1 + μ1
.

 is the loss probability for type 1-customers. It is simply the probability that theπ(1,0)
service time of type 1-customers is greater than their interarrival time. On condition
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that at the arrival time of a type 2-customer the server is idle, this customer is lost if
and only if during its service a type 1-customer arrives. The conditional probability
of this event is

∫0
∞ e−μ2 t λ1 e−λ1t dt = λ1∫0

∞ e−(λ1+μ2 ) tdt =
λ1

λ1+μ2
.

Therefore, the (total) loss probability for type 2-customers is

πl =
λ1

λ1+μ2
π(0,0) + π(0,1) + π(1,0).

Example 5.18  Let  Then the stationary stateλ1 = 0.1, λ2 = 0.2, and μ1 = μ2 = 0.2.
probabilities are

π(0,0) = 0.2105, π(0,1) = 0.3073, π(1,0) = 0.0085,

π(1,1) = 0.1765, π(0,2) = 0.2048, π(2,0) = 0.0924 .

In case , with the same numerical values for the transition rates,m = 0
π(0,0) = 0.4000 , π(1,0) = 0.3333 , π(0,1) = 0.2667 .

The loss probability for type 2-customers is                                          πl = 0.7333 .

5.7.5.2 M/M/1/m - System with Unreliable Server
If the implications of server failures on the system performance are not negligible,
server failures have to be taken into account when building up a mathematical model.
In what follows, the principal approach is illustrated by a single-server queuing
system with waiting capacity for m customers, Poisson input, and independent, iden-
tically distributed exponential service times with parameter µ. The lifetime of the
server is assumed to have an exponential distribution with parameter , both in itsα
busy phase and in its idle phase, and the subsequent renewal time of the server is
assumed to be exponentially distributed with parameter . It is further assumed thatβ
the sequence of life and renewal times of the server can be described by an alternat-
ing renewal process. When the server fails, all customers leave the system, i.e., the
custom- er being served and the waiting customers if there are any are lost. Custom-
ers arriving during a renewal phase of the server are rejected, i.e. they are lost, too.
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The stochastic process  describing the behaviour of the system is charac-{X(t), t ≥ 0}
terized as follows:

X(t) =
⎧

⎩
⎨

j if there are j customers in the system at time t ; j = 0, 1, ... , m + 1
m + 2 if the server is being renewed at time t

.

Its transition rates are (Figure 5.16):
qj,j+1 = λ; j = 0, 1, ... , m

                             (5.101)qj, j−1 = μ; j = 1, 2, ... , m + 1

qj,m+2 = α; j = 0, 1, ... m + 1

qm+2,0 = β

According to (5.28), the stationary state probabilities satisfy the system of equations

(α + λ) π0 = μ π1 + β πm+2

                                       (5.102)(α + λ + μ) πj = λ πj−1 + μ πj+1 ; j = 1, 2, ... , m

(α + μ) πm+1 = λ πm

β πm+2 = α π0 + α π1 + . .. + α πm+1

The last equation is equivalent to
β πm+2 = α (1 − πm+2) .

Hence,
πm+2 = α

α + β .

Now, starting with the first equation in (5.102), the stationary state probabilities of
the system  can be successively determined. The probability  is asπ1, π2, ... , πm+1 π0
usual obtained from the normalizing condition

                                                                (5.103)Σi=0
m+2 πi = 1 .
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For the corresponding loss system , the stationary state probabilities are(m = 0)

   π0 =
β (α + μ)

(α + β)(α + λ + μ) , π1 =
β λ

(α + β)(α + λ + μ) ,

π2 = α
α + β .

Modification of the Model  It makes sense to assume that the server can only fail
when it is busy. In this case,

qj,m+2 = α for j = 1, 2, ... , m + 1 .

The other transition rates given by (5.101) remain valid. Thus, the corresponding
transition graph is again given by Figure 5.16 with the arrow from node 0 to node 

 deleted. The stationary state probabilities satisfy the system of equationsm + 2

 λ π0 = μ π1 + β πm+2
                  (5.104)(α + λ + μ) πj = λ πj−1 + μ πj+1 ; j = 1, 2, ... , m

(α + μ) πm+1 = λ πm
βπm+2 = απ1 + απ2 + . .. + απm+1

The last equation is equivalent to
βπm+2 = α(1 − π0 − πm+2) .

It follows
πm+2 = α

α + β (1 − π0) .

Starting with the first equation in (5.104), the solution  can beπ0, π1, π2, ... , πm+1
obtained as above. In case  the stationary state probabilities arem = 0

π0 =
β(α + μ)

β(α + μ) + λ(α + β) ,

π1 =
λ β

β(α + μ) + λ(α + β) ,

π2 = α λ
β(α + μ) + λ(α + β) .

Comment  It is interesting that this queueing system with unreliable server can be in-
terpreted as a queueing system with priorities and absolutely reliable server. To see
this, a failure of the server has to be declared as the arrival of a 'customer' with abso-
lute priority. The service provided to this 'customer' consists in the renewal of the
server. Such a 'customer' pushes away any other customer from the server, in this
model even from the waiting facility. Hence it is not surprising that the theory of
queueing systems with priorities also provides solutions for more complicated queu-
ing systems with unreliable servers than the one considered in this section.
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5.7.6  Networks of Queueing Systems

5.7.6.1 Introduction
Customers frequently need several kinds of service so that, after leaving one service
station, they have to visit one or more other service stations in a fixed or random
order. Each of these service stations is assumed to behave like the basic queueing
sys- tem sketched in Figure 5.12. A set of queueing systems together with rules of
their interactions is called a network of queueing systems or a queueing network.
Typical examples are technological processes for manufacturing (semi-) finished
products. In such a case the order of service by different queueing systems is usually
fixed. Queuing systems are frequently subject to several inputs, i.e. customers with
different service requirements have to be attended. In this case they may visit the ser-
vice stations in different orders. Examples of such situations are computer- and com-
munication networks. Depending on whether and how data are to be provided, pro-
cessed, or transmitted, the terminals (service stations) will be used in differen orders.
If technical systems have to be repaired, then, depending on the nature and the extent
of the damage, service of different production departments in a workshop is needed.
Transport and loading systems also fit into the scheme of queueing networks.
Using a concept from graph theory, the service stations of a queueing network are
called nodes. In an open queueing network customers arrive from 'outside' at the sys-
tem (external input). Each node may have its own external input. Once in the system,
customers visit other nodes in a deterministic or random order before leaving the net-
work. Thus, in an open network, each node may have to serve external and internal
customers, where internal customers are the ones which arrive from other nodes. In
closed queueing networks there are no external inputs into the nodes and the total
number of customers in the network is constant. Consequently, no customer departs
from the network. Queueing networks can be represented by directed graphs. The
directed edges between the nodes symbolize the possible transitions of customers
from one node to another. The nodes in the network are denoted by  Node i1, 2, ..., n.
is assumed to have  servers; si 1 ≤ si ≤ ∞.

5.7.6.2 Open Queueing Networks
A mathematically exact analysis of queueing systems becomes extremely difficult or
even impossible when dropping the assumptions of Poisson input and/or exponen-
tially distributed service times. Hence, this section is restricted to a rather simple
class of queueing networks, the Jackson queueing networks. They are characterized
by four properties:
1)  Each node has an unbounded waiting capacity.
2) The service times of all servers at node i are independent, identically distributed
exponential random variables with parameter (intensity)  They are also independ-μi.
ent of the service times at other nodes. 
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3) External customers arrive at node i in accordance with a homogeneous Poisson
process with intensity . All external inputs are independent of each other and of allλi
service times.
4) When the service of a customer at node i has been finished, the customer makes a
transition to node j with probability  or leaves the network with probability .pi j ai

The transition or routing matrix  is independent of the current state of theP = ((pi j))
network and of its past. Let I be the identity matrix. The matrix  is assumed toI − P
be nonsingular so that the inverse matrix   exists.(I − P)−1

According to the definition of the  and ai pi j,

                                                             (5.105)ai + Σj=1
n pi j = 1 .

In a Jackson queueing network, each node is principally subjected to both external
and internal input. Let  be the total input (arrival) intensity at node j. In the steadyαj
state,  must be equal to the total output intensity from node j. The portion of inter-αj
nal input intensity to node j, which is due to customers from node i, is . Thus,αi pi j

Σi=1
n αi pi j

is the total internal input intensity to node . Consequently, in the steady state,j

                                             (5.106)αj = λj + Σi=1
n αi pi j ; j = 1, 2, ... , n .

By introducing vectors the  the relation-α = (α1, α2, ... , αn) and λ = (λ1, λ2, ... , λn),
ship (5.106) can be written as

α(I − P) = λ .

Since  is assumed to be nonsingular, the vector of the total input intensities α isI − P

                                          (5.107)α = λ (I − P)−1 .

Even under the assumptions stated, the total inputs at the nodes and the outputs from
the nodes are generally nonhomogeneous Poisson processes.
Let  be the random number of customers at node i at time t. Its realizations areXi(t)
denoted as  The random state of the network at time t is characterizedxi; xi = 0, 1, ...
by the vector

X(t) = (X1(t), X2(t), ... , Xn(t))

with realizations  The set of all these vectors x forms the statex = (x1, x2, ... , xn).
space of the Markov chain  Using set-theory notation, the state space is{X(t), t ≥ 0}.
denoted as  i.e. Z is the set of all those n-dimensional vectors theZ = {0, 1, ...}n,
components of which assume nonnegative integers. Since Z is countably infinite, this
at first glance n-dimensional Markov chain becomes one-dimensional by arranging
the states as a sequence.
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To determine the transition rates of  the n-dimensional vector  is in-{X(t), t ≥ 0}, ei
troduced. Its i th component is a 1 and the other components are zeros:

                                   (5.108)ei = (0, 0, ... , 0, 1, 0, ... , 0) .
     1 2 . .. i . .. n

Thus,  is the ith row of the identity matrix I. Since the components of any stateei
vector x are nonnegative integers, each x can be represented as a linear combination
of all or some of the . In particular,   is the vector whiche1, e2, ... , en x + ei (x − ei)
arises from x by increasing (decreasing) the ith component by 1. Starting from state
x, the Markov chain  can make  the following one-step transitions:{X(t), t ≥ 0}
1) When a customer arrives at node i, the Markov chain makes a transition to state

.x + ei
2) When a service at node i is finished, , and the served customer leaves thexi > 0
network, the Markov chain makes a transition to state  .x − ei
3) When a service at node i with  is finished and the served customer leavesxi > 0
node i for node  j, the Markov chain makes a transition to state .x − ei + ej
Therefore, starting from state , the transition rates arex = (x1, x2, ..., xn)

qx,x+ei = λi

qx,x−ei = min(xi, si) μi ai
qx,x−ei+ej = min(xi, si) μi pi j , i ≠ j

In view of (5.105),
Σ

j, j≠i
pi j = 1 − pii − ai .

Hence, the rate of leaving state  isx

qx = Σi=1
n λi + Σi=1

n μi (1 − pii) min(xi, si).

According to (5.28), the stationary state probabilities
πx = lim

t→∞
P(X(t) = x), x ∈ Z,

provided they exist, satisfy the system of equations

qx πx = Σi=1
n λi πx−ei + Σi=1

n ai μi min(xi + 1, si) πx+ei

                 (5.109)+Σj=1
n Σi=1

i≠j

n ai μi min(xi + 1, si) pi j πx+ei−ej .

In order to be able to present the solution of this system in a convenient form, recall
that the stationary state probabilities of the waiting system  with parame-M/M/si/∞
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ters   and  denoting the intensity of the Poisson input, the service in-αi, μi ρi = αi/μi
tensities of all servers, and the traffic intensity of the system, respectively, are given
by (see formula (5.80)), 

ϕi( j) =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

1
j ! ρi

j ϕi(0) for j = 1, 2 , ... , si − 1

1

si! si
j−si

ρi
j ϕi(0) for j = si, si + 1, ...

, ρi < si,

ϕi(0) =
⎡

⎣
⎢⎢⎢ Σ

j=0

si−1
1
j ! ρi

j +
ρi

si

(si−1)! (si−ρi)

⎤

⎦
⎥⎥⎥

−1

, ρi < si.

(In the context queueing networks, the notation  for the stationary state probabil-ϕi(⋅)
ities is common practice.) The stationary state probabilities of the queueing network
are simply obtained by multiplying the corresponding state probabilities of the queu-
ing systems M/M/si/∞; i = 1, 2, ...n :

     If the vector of the total input intensities  given by (5.73)        α = (α1, α2, ... , αn)
     satisfies the conditions

αi < siμi; i = 1, 2, ..., n ;

     then the stationary probability of state  isx = (x1, x2, ... , xn)

                                 (5.110)πx = Πi=1
n ϕi(xi) , x ∈ Z .

Thus, the stationary state distribution of a Jackson queueing system is given in prod-
uct form. This implies that each node of the network behaves like an -sys-M/M/si/∞
tem. However, the nodes need not be a queueing system of this type because the
process  is usually not a birth- and death process. In particular, the total{Xi(t), t ≥ 0}
input into a node need not be a homogeneous Poisson process. But the product form
(5.110) of the stationary state probabilities proves that the queue lengths at the nodes
in the steady state are independent random variables. There is a vast amount of litera-
ture dealing with assumptions under which the stationary distribution of a queueing
network has the product form (see, for instance, van Dijk [84]).
To verify that the stationary state distribution indeed has the product form (5.110),
one has to substitute (5.110) into the system of equations (5.109). Using (5.105) and
(5.106), one obtains an identity after some tedious algebra.

Example 5.19  The simplest Jackson queueing network arises if  The onlyn = 1.
difference from the queueing system  is that now a positve proportion ofM/M/s/∞
customers who have departed from the network after having been served will return
and require further service. This leads to a queueing system with feedback.
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For instance, when servers have done a bad job, then the affected customers will
soon return to exercise possible guarantee claims. Formally, these customers remain
in the network. Roughly speaking, a single-node Jackson queueing network is a mix-
ture between an open and a closed waiting system (Figure 5.17).  A customer leaves
the system with probability a or reenters the system with probability  Ifp11 = 1 − a.
there is an idle server, then, clearly, the service of a customer starts immediately.
From (5.105) and (5.106), the total input rate  into the system satisfiesα

α = λ + α(1 − a) .
(The index 1 is deleted from all system parameters.) Thus,

α = λ/a .

Hence there exists a stationary distribution if

  or, equivalently,  if  λ/a < sμ ρ < a s

with  In this case the stationary state probabilities areρ = λ/μ.

πj =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

1
j !
⎛
⎝

ρ
a
⎞
⎠

j
π0 for j = 1, 2, ... , s − 1

1
s ! s j−s

⎛
⎝

ρ
a
⎞
⎠

j
π0 for j = s, s + 1, ...

,

where

π0 =
⎡

⎣

⎢
⎢

⎢
Σ
j=1

s−1 1
j !
⎛
⎝

ρ
a
⎞
⎠

j
+

⎛
⎝

ρ
a
⎞
⎠

s

(s − 1)! ⎛⎝s − ρ
a
⎞
⎠

⎤

⎦

⎥
⎥

⎥

−1

.

This is the stationary state distribution of the queueing system  (withoutM/M/s/∞
feedback), the input of which has intensity                                                          λ /a.
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Example 5.20  In technological processes, the sequence of service is usually fixed.
For example,  a  'customer'  may be a car being manufactured on an assembly line.
Therefore, queueing systems switched in series, called sequential queueing networks
or tandem queueing networks, are of considerable practical interest: External custom-
ers arrive only at node 1 (arrival intensity: ). They subsequently visit in this orderλ1
the nodes 1, 2, ..., n  and then leave the network (Figure 5.18).

The corresponding parameters are
λi = 0; i = 2, 3, ... , n

pi ,i+1 = 1; i = 1, 2, ... , n − 1

a1 = a2 = . .. = an−1 = 0 , an = 1

According to (5.106), the (total) input intensities of all nodes in the steady state must
be the same:

λ1 = α1 = α2 = . .. = αn.

Hence, for single-server nodes (  a stationary state distributionsi = 1; i = 1, 2, ..., n),
exists if

ρi = λ1/μi < 1 ; i = 1, 2, ... , n
or, equivalently, if

λ1 < min(μ1, μ2, ... , μn).

Thus, it is the slowest server which determines the efficiency of a sequential net-
work. The stationary probability of state  isx = (x1, x2, ..., xn)

πx = Π
i=1

n
ρi

xi (1 − ρi) ; x ∈ Z .

Of course, the sequential network can be generalized by taking feedback into ac-
count. This is left as an exercise to the reader.                                                            

Example 5.21  Defective robots arrive at the admission's department of a mainte-
nance workshop in accordance with a homogeneous Poisson process with intensity

 In the admissions department (denoted as (1)) a first failure diagnosisλ = 0.2 [h−1].
is done. Depending on the result, the robots will have to visit other departments of
the workshop. These are departments for checking and repairing the mechanics (2),
electronics (3), and software (4) of the robots, respectively. The failure diagnosis in
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the admissions department results in 60% of the arriving robots being sent to depart-
ment (2) and 20% each to the departments (3) and (4). After having being maintained
in department (2), 60% of the robots leave the workshop, 30% are sent to department
(3), and 10% to department (4). After having being served by department (3), 70% of
the robots leave the workshop, 20% are sent to department (2), and 10% are sent to
department (4). After elimination of possible software failures all robots leave the
workshop.  Naturally,  a robot can be sent several times to one and the same depart-
ment.
The following transition probabilities result from the transfer of robots between the
departments:

p12 = 0.6 , p13 = 0.2 , p14 = 0.2 , p23 = 0.3,
p24 = 0.1 , p32 = 0.2 , p34 = 0.1 .
a1 = 0 , a2 = 0.6 , a3 = 0.7 , a4 = 1.

The service intensities are assumed to be
μ1 = 1, μ2 = 0.45, μ3 = 0.4, μ4 = 0.1 [h−1] .

The graph plotted in Figure 5.19 illustrates the possible transitions between the
departments. The edges of the graph are weighted by the corresponding transition
probabilities. The system of equations (5.106) in the total input intensities is

                                 α1 = 0.2
 α2 = 0.6 α1 + 0.2 α3
               α3 = 0.2 α1 + 0.3 α2
 α4 = 0.2 α1 + 0.1 α2 + 0.1 α3

The solution is (after rounding)
α1 = 0.20, α2 = 0.135, α3 = 0.08, α4 = 0.06 .
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The corresponding traffic intensities  areρi = αi / μi

 ρ1 = 0.2, ρ2 = 0.3, ρ3 = 0.2, ρ4 = 0.6 .

From (5.110), the stationary probability of state  for single-serverx = (x1, x2, x3, x4)
nodes is

πx = Πi=1
4 ρxi (1 − ρi)

or
πx = 0.1792 (0.2)x1 (0.3)x2 (0.2)x3 (0.6)x4 ; x ∈ Z = {0, 1, ... }4 .

In particular, the stationary probability that there is no robot in the workshop is

πx0 = 0.1792,

where  Let  denote the random number of robots at node i in thex0 = (0, 0, 0, 0). Xi
steady state. Then the probability that, in the steady state, there is at least one robot
in the admissions department, is

P(X1 > 0) = 0.8 Σi=1
∞ (0.2)i = 0.2 .

Analogously,

P(X2 > 0) = 0.3, P(X3 > 0) = 0.2, and P(X4 > 0) = 0.6.

Thus, when there is a delay in servicing defective robots, the cause is most probably
department (4) in view of the comparatively high amount of time necessary for find-
ing and removing software failures.                                                                           

5.7.6.3 Closed Queueing Networks
Analogously to the closed queueing system, customers cannot enter a closed queue-
ing network 'from outside'. Customers  which have been served at a node  do not leave
the network, but move to another node for further service. Hence, the number of cus-
tomers in a closed queueing network is a constant N. Practical examples for closed
queueing networks are multiprogrammed computer and communication systems.
When the service of a customer at node i is finished, then the customer moves with
probability  to node  j for further service. Since the customers do not leave thepi j
network,

                                               (5.111)Σj=1
n pi j = 1 ; i = 1, 2, ... , n ,

where as usual n is the number of nodes. Provided the discrete Markov chain given
by transition matrix  and state space  is irreducible, it has aP = ((pi j)) Z = (1, 2, ..., n}
stationary state distribution  which according to (4.9) is the unique{π1, π2, ... , πn}
solution of the system of equations
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                             (5.112)πj = Σi=1
n pi j πi ; j = 1, 2, ... , n,

1 = Σi=1
n πi .

Let  be the random number of customers at node i at time t andXi(t)
X(t) = (X1(t), X2(t), ... , Xn(t)) .

The state space of the Markov chain  is{X(t), t ≥ 0}

      (5.113)Z = x = (x1, x2, ... , xn) with Σi=1
n xi = N and 0 ≤ xi ≤ N ,

where the  are nonnegative integers. The number of elements (states) in Z isxi

⎛
⎝

n + N − 1
N

⎞
⎠ .

Let   be the service intensity of all servers at node i  if there are  custom-μi = μi (xi) xi
ers at this node, . Then  has the positive transition ratesμi(0) = 0 {X(t), t ≥ 0}

qx, x−ei+ej = μi(xi) pi j ; xi ≥ 1, i ≠ j ,

q x−ei+ej, x = μj(xj + 1) pj i ; i ≠ j , x − ei + ej ∈ Z ,

where the  are given by (5.108). From (5.111), the rate of leaving state  isei x

qx = Σi=1
n μi(xi)(1 − pii) .

Hence, according to (5.28), the stationary distribution  of the Markov{πx , x ∈ Z}
chain  satisfies{X(t), t ≥ 0}

          (5.114)Σ
i=1

n
μi(xi)(1 − pii) πx = Σ

i,j=1,i≠j

n
μj(xj + 1) pj i π x−ei+ej ,

where . In these equations, all  with x = (x1, x2, ... , xn) ∈ Z πx−ei+ej x − ei + ej ∉ Z
are 0. Let  andϕi(0) = 1

ϕi(j) = Π
k=1

j ⎛
⎝⎜

πi
μi(k)

⎞
⎠⎟

; i = 1, 2, ... , n ; j = 1, 2, ... , N .

Then the stationary probability of state  isx = (x1, x2, ... , xn) ∈ Z

                   (5.115)πx = h Π
i=1

n
ϕi(xi) , h =

⎡

⎣
⎢⎢⎢ Σ
y∈Z

Π
i=1

n
ϕi(yi)

⎤

⎦
⎥⎥⎥

−1

with  By substituting (5.115) into (5.114) one readily verifies thaty = (y1, y2, ... , yn) .
 is indeed a stationary distribution of the Markov chain {πx, x ∈ Z} {X(t), t ≥ 0}.
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Example 5.22  A closed sequential queueing network has a single server at each of
its n nodes. There is only  customer in the system. When this customer is beingN = 1
served at a certain node, the other nodes are empty. Hence, with vectors  as defin-ei
ed by (5.108), the state space of the corresponding Markov chain  is{X(t), t ≥ 0}

 The transition probabilities areZ = {e1, e2, ... , en}.
pi, i+1 = 1; i = 1, 2, ... , n − 1; pn,1 = 1.

The corresponding solution of (5.114) is a uniform distribution:
π1 = π2 = . .. = πn = 1/n .

Let  be the service rate at node i. Then μi = μi(1)

ϕi(0) = 1 and ϕi(1) = 1
nμi

; i = 1, 2, ... , n ;

h = n ⎡⎣Σi=1
n 1

μi
⎤
⎦

−1
.

Hence, the stationary state probabilities  (5.115) areare

πei =
1/μi

Σi=1
n 1

μi

; i = 1, 2, ... , n .

In particular, if   then the states have a uniform distribution:μi = μ ; i = 1, 2, ... , n,
πei = 1/n ; i = 1, 2, ... , n .

If there are  customers in the system and the  do not depend on , then theN ≥ 1 μi xi
stationary state probabilities are

πx =
⎛
⎝1/μ1

⎞
⎠

⎛
⎝1/μ2

⎞
⎠ . .. (1/μn)xn

Σ
y∈Z

Π
i=1

n ⎛
⎝

1
μi
⎞
⎠

yi

where  Given  the states have again ax = (x1, x2, ... , xn) ∈ Z. μi = μ; i = 1, 2, ... , n;
uniform distribution:

                                          πx = 1
⎛
⎝

n + N − 1
N

⎞
⎠

, x ∈ Z .
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Example 5.23  A computer system consists of two central processors 2 and 3, a disc
drive 1, and a printer 4. A new program starts in the central processor 2. When this
processor has finished its computing job, the computing phase continues in central
processor 3 with probability  or the program goes to the disc drive with probabilityα

 From the disc drive the program goes to central processor 3 with probability 1.1 − α.
From central processor 3 it goes to the central processor 2 with probability  or toβ
the printer with probability  Here it terminates or goes back to central proces-1 − β.
sor 2. When a program terminates, then another program (from outside) immediately
joins the queue of central processor 2 so that there is always a fixed number of pro-
grams in the system. Hence, a program formally goes from the printer to the central
processor 2 with probability 1. If N denotes the constant number of programs in the
system,  this  situation  represents  a  simple case of multiprogramming with N as the
level of multiprogramming. The state space Z of this system and the matrix P of the
transition probabilities arepij

Z = y = (y1, y2, y3, y4); yi = 0, 1, ... , N; y1 + y2 + y3 + y4 = N

and

P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0 0 1 0
1 − α 0 α 0

0 β 0 1 − β
0 1 0 0

⎞

⎠

⎟
⎟

⎟

⎟
⎟

(Figure 5.21). The corresponding solution of  (5.114) is

π1 = 1 − α
4 − α − β , π2 = π3 = 1

4 − α − β , π4 =
1 − β

4 − α − β .

Let the service intensities of the nodes  be independent of theμ1, μ2, μ3 and μ4
number of programs at the nodes. Then,

ϕi(xi) = ⎛
⎝

πi
μi

⎞
⎠

xi , i = 1, 2, ..., n .
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Hence, the stationary probability of state  withx = (x1, x2, x3, x4)

x1 + x2 + x3+x4 = N

is given by

πx = h
(4 − α − β)N

⎛
⎝

1 − α
μ1

⎞
⎠

x1 ⎛
⎝

1
μ2

⎞
⎠

x2 ⎛
⎝

1
μ3

⎞
⎠

x3 ⎛
⎝

1 − β
μ4

⎞
⎠

x4

with

                          h =
(4 − α − β)N

Σ
y∈Z

⎛
⎝

1−α
μ1

⎞
⎠

y1 ⎛
⎝

1
μ2

⎞
⎠

y2 ⎛
⎝

1
μ3

⎞
⎠

y3 ⎛
⎝

1−β
μ4

⎞
⎠

y4
.

Application-oriented treatments of queueing networks are, for instance, Gelenbe and
Pujolle [32], Walrand [86].

5.8  SEMI-MARKOV CHAINS

Transitions between the states of a continuous-time homogeneous Markov chain are
controlled by its transition probabilities. According to section 5.4, the sojourn time in
a state has an exponential distribution and depends on the current state, but not on
the history of the process. Since  in  most  applications  the sojourn times in system
states are non-exponential random variables, an obvious generalization is to allow ar-
bitrarily distributed sojourn times whilst retaining the transition mechanism between
the states. This approach leads to the semi-Markov chains.
A semi-Markov chain with state space

Z = {0, 1, ...}
evolves in the following way: Transitions between the states are governed by a dis-
crete-time homogeneous Markov chain  with state space Z and matrix of{X0, X1, ...}
transition probabilities

P = (( pi j)).

If the process starts at time  in state ,  then the subsequent state  is determin-t = 0 i0 i1
ed according to the transition matrix P, while the process stays in state  a randomi0
time  After that the state  following state  is determined. The process staysYi0i1 . i2 i1
in state  a random  time   and  so  on.  The  random  variables   are  the  con-i1 Yi1i2 Yi j
ditional  sojourn times of the process in state i given that the process makes a transi-
tion from i to j. They are assumed to be independent. Hence, immediately after enter-
ing a state at a time t, the further evolvement of a semi-Markov chain depends only
on its state at this time point, but not on the evolvement of the process before t. The
sample paths of a semi-Markov chain are piecewise constant functions which, by con-
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vention, are continuous on the right. In contrast to homogeneous continuous-time
Markov chains, for predicting the development of a semi-Markov chain from a time
point t it is not only necessary to know its state , but also the 'age' of i at time t.i ∈ Z
Let   denote the sequence of time points at which the semi-Markov chainT0, T1, ...
makes a transition from one state to another (or to the same state)  Then.

,                                    (5.116)Xn = X(Tn) ; n = 0, 1, ...

where   is the initial state  Hence, the transition probabi-X0 = X(0) ( Xn = X(Tn + 0)).
lities can be written in the following form:

pi j = P(X(Tn+1) = j X(Tn) = i) ; n = 0, 1, ...

In view of (5.116), the discrete-time stochastic process  is embedded in{X0, X1, ... }
the (continuous-time) semi-Markov chain  (see section 5.4).{X(t), t ≥ 0}
As already pointed out, the future development of a semi-Markov chain from a  jump
point  is independent of the entire history of the process before  LetTn Tn.

Fi j(t) = P(Yi j ≤ t) ; i, j ∈ Z ;

denote the distribution function of the conditional sojourn time  of a semi-Mar-Yi j
kov chain in state i if the subsequent state is  j. By the total probability rule, the un-
conditional sojourn time  of the chain in state i isYi

                     (5.117)Fi(t) = P(Yi ≤ t) = Σj∈Z pi j Fi j(t), i ∈ Z .

Special cases  1) An alternating renewal process is a semi-Markov chain with state
space  and transition probabilitiesZ = {0, 1}

.p00 = p11 = 0 and p01 = p10 = 1
The states 0 and 1 indicate that the system is under renewal or operating, respective-
ly. In this case,  and  are in this order the distribution functions of theF01(⋅) F10(⋅)
renewal time and the system lifetime.

2) A homogeneous Markov chain in continuous time with state space  isZ = {0, 1, ...}
a semi-Markov chain with the same state space and transition probabilities (5.34):

pi j =
qi j
qi

, i ≠ j,

where  are the conditional transition rates (unconditional transition rates) ofqi j (qi)
the Markov chain. By (5.31), the distribution function of the unconditional sojourn
time in state i is

Fi(t) = 1 − e−qit, t ≥ 0.

In what follows, semi-Markov processes are considered under the following three
assumptions:
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1) The embedded homogeneous Markov chain  has a unique stationary{X0, X1, ...}
state distribution  By (4.9), this distribution is a solution of {π0, π1, ....}.

                             (5.118)πj = Σ
i∈Z

pi j πi , Σ
i∈Z

πi = 1.

As pointed out in section 4.3, a unique stationary state distribution exists if the Mar-
kov chain  is aperiodic, irreducible and positive recurrent.{X0, X1, ...}

2) The distribution functions  are nonarithmetic. (As defined in sec-Fi(t) = P(Yi ≤ t)
tion 3.3.3, a distribution function  is called arithmetic if there is a constant a withF(t)
property that all points of increase of  have structure  Other-F(t) t = a n ; n = 0, 1, ...
wise, the distribution function is nonarithmetic.)
3) The mean sojourn times of the process in all states are finite:

μi = E(Yi) = ∫0
∞[1 − Fi(t)] dt < ∞, i ∈ Z .

Note   denotes no longer an intensity, but a mean sojourn time.μi

In what follows, a transition of the semi-Markov chain into state k is called a k-tran-
sition. Let  be the random number of k-transitions occuring in  andNk(t) [0, t]

.Hk(t) = E(Nk(t))
Then, for any ,t > 0

                   (5.119)lim
t→∞

[Hk(t + τ) − Hk(t)] =
τ πk

Σ
i∈Z

πi μi
, k ∈ Z .

This relationship implies that after a sufficiently long time period the number of k-
transitions in a given time interval no longer depends on the position of this interval,
but only on its length. Strictly speaking, the right-hand side of (5.119) gives the
mean number of k-transitions in an interval of length  once the process hasτ reached
its stationary regime, or, in other words, if it is in the steady state. The following
formulas and the analysis of examples is based on (5.119), but the definition and
properties of stationary semi-Markov chains will not be discussed in detail.
From (5.119), when the process is in the steady state, the mean number of k-transi-
tions per unit time is

Uk =
πk

Σ
i∈Z

πi μi
.

Hence the portion of time the chain is in state  isk

                                                               (5.120)Ak =
πk μk
Σ

i∈Z
πi μi

.

Consequently, in the long run, the fraction of time the chain is in a set of states ,Z0
 isZ0 ⊆ Z,
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                                                            (5.121)AZ0 =
Σ

k∈Z0
πk μk

Σ
i∈Z

πi μi
.

In other words, is the probability that a visitor, who arrives at a random timeAZ0
from 'outside', finds the semi-Markov chain in a state belonging to . Z0
Let  denote the cost which is caused by a k-transition of the system. Then theck
mean total (transition) cost per unit time is

                                           (5.122)C =
Σ

k∈Z
πk ck

Σ
i∈Z

πi μi
.

Note that the formulas (5.119) to (5.122) depend only on the unconditional sojourn
times of a semi-Markov chain in its states. This property facilitates their application.

Example 5.24 (age renewal policy)  The system is renewed upon failure by an emer-
gency renewal or at age  by a preventive renewal, whichever occurs firstτ .

To determine the stationary system availability, system states have to be introduced:
0      operating                                                                                                                 
1      emergency renewal                                                                                                 
2      preventive renewal

Let L be the random system lifetime,  its distribution function, andF(t) = P(L ≤ t)
F(t) = 1 − F(t) = P(L > t)

its survival probability. Then the positive transition probabilities between the states
are (Figure 5.22)

p01 = F(τ), p02 = F(τ), p10 = p20 = 1 .

Let  and  be the random times for emergency renewals and preventive renewals,Ze Zp
respectively  Then the conditional sojourn times of the system in the states are.

Y01 = L, Y02 = τ, Y10 = Ze , Y20 = Zp .

The unconditional sojourn times are

Y0 = min (L, τ), Y1 = Ze , Y2 = Zp .
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The system behaviour can be described by a semi-Markov chain  with{X(t), t ≥ 0}
state space  and the transition probabilities and sojourn times given. TheZ = {0, 1, 2}
corresponding equations (5.118) in the stationary probabilities of the embedded Mar-
kov chain are

π0 = π1 + π2
                π1 = F(τ) π0

1 = π0 + π1 + π2
The solution is

π0 = 1/ 2 , π1 = F(τ) / 2 ,  π2 = F(τ) / 2.
The mean sojourn times are

μ0 = ∫0
τ F(t) dt , μ1 = de, μ2 = dp .

According to (5.120), the stationary availability  of the system isA0 = A(τ)

A(τ) =
μ0π0

μ0π0 + μ1π1 + μ2π2
or

                          (5.123)A(τ) =
∫0
τ F(t) dt

∫0
τ F(t) dt + de F(τ) + d p F(τ)

.

It is important that this result does not depend on the probability distributions of the
renewal times  and , but only on their mean values (see also example 3.21).Ze Zp

If the renewal times are negligibly small, but the mean costs  and  for emergen-ce cp
cy and preventive renewals are relevant, then, from (5.122), the mean renewal cost
per unit time in the steady state is

K(τ) =
ceπ1 + cpπ2

μ0π0
=

ceF(τ) + cpF(τ)

∫0
τ F(t) dt

.

Analogously to the corresponding renewal times,  can be thought of asce and cp
mean values of arbitrarily distributed renewal costs.
If  is the failure rate of the system, a cost-optimal renewal interval satisfiesλ(t) τ = τ∗

the necessary condition
λ(τ) ∫0

τ F(t) dt − F(τ) = c
1 − c

with  A unique solution  exists if  and  strictly increases toc = cp/ce. τ = τ∗ c < 1 λ(t)
infinity. Since  has the same functional structure asK(τ)

1/A(τ) − 1,

maximizing  and minimizing  leads to the same equation type for determin-A(τ) K(τ)
ing the corresponding optimal renewal intervals.                                                       
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Example 5.25 A series system consists of n subsystems . The lifetimese1, e2, ... , en
of the subsystems  are independent exponential random variables withL1, L2, ... , Ln
parameters  Letλ1, λ2, ... , λn.

                    Gi(t) = P(Li ≤ t) = 1 − e−λit, gi(t) = λi e−λi t, t ≥ 0; i = 1, 2, ... , n.

When a subsystem fails, the system interrupts its work. As soon as the renewal of the
failed subsystem is finished, the system continues operating. Let  be the averageμi
renewal time of subsystem  As long as a subsystem is being renewed, the otherei.
subsystems cannot fail, i.e. during such a time period they are in the cold-standby
mode. The following system states are introduced:

  if the system is operating,X(t) = 0
   if  is under renewal, X(t) = i ei i = 1, 2, ..., n.

Then  is a semi-Markov chain with state space  The con-{X(t), t ≥ 0} Z = {0, 1, ..., n}.
ditional sojourn times in state 0 of this semi-Markov chain are

,  Y0 i = Li i = 1, 2, ..., n,
and its unconditional sojourn time in state 0 is

Y0 = min{L1, L2, ... , Ln}.
Thus,  has distribution functionY0

F0(t) = 1 − G1(t) ⋅ G2(t). .. Gn(t) .

Letting  impliesλ = λ1 + λ2 + . .. + λn

F0(t) = 1 − e−λ t, t ≥ 0,

μ0 = E(Y0) = 1/λ .

The system makes a transition from state 0 into state  with probabilityi

p0i = P(Y0 = Li)

= ∫0
∞ G1(x) ⋅ G2(x). .. G i−1(x) ⋅ G i+1(x). .. Gn(x) gi(x) dx

= ∫0
∞ e−(λ1+λ2+. .. +λi−1+λi+1+. .. +λn) x λi e−λi x dx

= ∫0
∞ e−λx λi dx .

Hence,

p0i =
λi
λ , pi 0 = 1; i = 1, 2, ... , n .

Thus  the system of equations (5.118) becomes,

π0 = π1 + π2 + . .. + πn ,

πi =
λi
λ π0 ; i = 1, 2, ... , n .
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In view of   the solution isπ1 + π2 + . .. + πn = 1 − π0,

π0 = 1
2 ; πi =

λi
2 λ ; i = 1, 2, ... , n .

With these ingredients  formula (5.20) yields the stationary system availability,

                                              A0 = 1
1 + Σi=1

n λi μi
.

Example 5.26  Consider the loss system  on condition that the server is sub-M/G/1/0
jected to failures: Customers arrive according to a homogeneous Poisson process
with rate  Hence, their interarrival times are identically distributed as an exponen-λ.
tial random variable Y with parameter  The server has random lifetime  whenλ. L0
being idle, and random lifetime  when being busy.  is exponential with parame-L1 L0
ter  and  is exponential with parameter  The service time Z has distributionλ0 L1 λ1.
function  with density  When at the time point of server failure a customer isB(t) b(t).
being served, then this customer is lost, i.e. it has to leave the system. All occurring
random variables are assumed to be independent (section 5.7.5.2). To describe the
behaviour of this system by a semi-Markov chain, three states are introduced:
State 0    The server is idle, but available.
State 1    The server is busy.
State 2    The server is under repair (not available).

To determine the steady state probabilities of the states 0, 1 and 2, the transition prob-
abilities  are needed: pi j

p00 = p11 = p22 = p21 = 0, p20 = 1

p01 = P( L0 > Y) = ∫0
∞ e−λ0 tλ e−λ tdt = λ

λ+λ0

p02 = 1 − p01 = P(L0 ≤ Y) =
λ0

λ+λ0

p10 = P(L1 > Z) = ∫0
∞ e−λ1t b(t) dt

p12 = 1 − p10 = P(L1 ≤ Z) = ∫0
∞[1 − e−λ1t ]b(t) dt .

With these transition probabilities, the stationary state probabilities of the embedded
Markov chain  can be obtained from (5.118){X0, X1, ...} :

      π0 =
λ + λ0

2(λ + λ0) + λ p12
, π1 = λ

2(λ + λ0) + λ p12
, π2 =

λ0 + λ p12
2(λ + λ0) + λ p12

.

The sojourn times in state 0, 1 and 2 are:

Y0 = min (L0, Y), Y1 = min (L1, Z), Y2 = Z .
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Hence, the mean sojourn times are

μ0 = 1
λ + λ0

, μ1 = ∫0
∞(1 − B(t)) e−λ 1tdt , μ2 = E(Z) .

With these parameters, the stationary state probabilities of the semi-Markov process
are given by (5.120).                                                                                                   

The time-dependent behaviour of semi-Markov chains is discussed, for instance, in
Kulkarni [52].

5.9  EXERCISES

5.1) Let   be the state space andZ = {0, 1}

P(t) =
⎛
⎝
⎜

e−t 1 − e−t

1 − e−t e−t
⎞
⎠
⎟

the transition matrix of a continuous-time stochastic process  Check{X(t), t ≥ 0}.
whether  is a homogeneous Markov chain.{X(t), t ≥ 0}

5.2) A  system  fails  after a random lifetime L.  Then  it  waits  a  random  time  W  for
renewal. A renewal takes another random time Z. The random variables L, W and Z
have exponential distributions with parameters ,  and , respectively. On comple-λ ν μ
tion of a renewal, the system immediately resumes its work. This process continues
indefinitely. All life, waiting, and renewal times are assumed to be independent. Let
the system be in states 0, 1 and 2 when it is operating, waiting or being renewed.. 
(1) Draw the transition graph of the corresponding Markov chain {X(t), t ≥ 0}.
(2) Determine the point and the stationary availability of the system on condition

P(X(0) = 0) = 1.

5.3)  Consider a 1-out-of-2-system, i.e. the system is operating when at least one of
its two subsystems is operating. When a subsystem fails, the other one continues to
work. On its failure, the joint renewal of both subsystems begins. On its completion,
both subsystems resume their work at the same time. The lifetimes of the subsystems
are identically exponential with parameter  The joint renewal time is exponentialλ.
with parameter µ. All life and renewal times are independent of each other. Let X(t)
be the number of subsystems operating at time .t

(1) Draw the transition graph of the corresponding Markov chain .{X(t), t ≥ 0}

(2) Given  determine the time-dependent state probabilitiesP(X(0) = 2) = 1,

pi(t) = P(X(t) = i); i = 0, 1, 2 .

(3) Determine the stationary state distribution.
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Hint  Consider separately the cases

(λ + μ + ν)2(=)(<)(>) 4(λμ + λν + μν).

5.4) A launderette has 10 washing machines which are in constant use. The times
between two successive failures of a washing machine have an exponential distribu-
tion with mean value 100 hours. There are two mechanics who repair failed ma-
chines.  A  defective  machine  is  repaired  by  only  one  mechanic.  During  this  time,
the second mechanic is busy repairing another failed machine, if there is any, or this
mechanic is idle. All repair times have an exponential distribution with mean value 4
hours. All random variables involved are independent. Consider the steady state.
1) What is the average percentage of operating machines?
2) What is the average percentage of idle mechanics?

5.5) Consider the two-unit system with standby redundancy discussed in example 5.5
a) on condition that the lifetimes of the units are exponential with respective parame-
ters  and The other model assumptions listed in example 5.5 remain valid.λ1 λ2.
Describe the behaviour of the system by a Markov chain and draw the transition
graph.

5.6) Consider the two-unit system with parallel redundancy discussed in example 5.6
on condition that the lifetimes of the units are exponential with parameters  andλ1

 respectively. The other model assumptions listed in example 5.6 remain valid.λ2,
Describe the behaviour of the system by a Markov chain and draw the transition
graph.

5.7)  The system considered in example 5.7 is generalized as follows: If the system
makes a direct transition from state 0 to the blocking state 2, then the subsequent re-
newal time is exponential with parameter  If the system makes a transition fromμ0.
state 1 to state 2, then the subsequent renewal time is exponential with parameter .μ1
(1) Describe the behaviour of the system by a Markov chain and draw the transition
graph.
(2) What is the stationary probability that the system is blocked?

5.8) Consider a two-unit system with standby redundancy and one mechanic. All re-
pair times of failed units have an Erlang distribution with parameters  and n = 2 μ .
Apart from this, the other model assumptions listed in example 5.5 remain valid.
(1) Describe the behaviour of the system by a Markov chain and draw the transition
graph.
(2) Determine the stationary state probabilities of the system.
(3) Sketch the stationary availability of the system as a function of

  ρ = λ/μ.

322                                                                                   STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



5.9) When being in states 0, 1, and 2 a (pure) birth process  with state{X(t), t ≥ 0}
space  has birth ratesZ = {0, 1, 2, ...}

 ,  λ0 = 2, λ1 = 3 λ2 = 1.

Given determine the time-dependent state probabilitiesX(0) = 0,

 for the states pi(t) = P(X(t) = i) i = 0, 1, 2.

5.10) Consider a linear birth process with birth rates
λj = j λ, j = 0, 1, ...,

and state space Z = {0, 1, 2, ...}.
(1) Given  determine the distribution function of the random time point X(0) = 1, T3
at which the process enters state 3.
(2) Given  determine the mean value of the random time point  at whichX(0) = 1, Tn
the process enters state n, n > 1.

5.11) The number of physical particles of a particular type in a closed container
evolves as follows:  There is one particle at time  Its  splits into  two particles  oft = 0.
the same type after an exponential random time Y  with parameter  (its lifetime).λ
These two particles behave in the same way as the original one, i.e. after random
times, which are identically distributed as Y, they split into 2 particles each, and so
on. All lifetimes of the particles are assumed to be independent. Let  denote theX(t)
number of particles in the container at time t.
Determine the absolute state probabilities

pj(t) = P(X(t) = j) ; j = 1, 2, ...

of the stochastic process {X(t), t ≥ 0}.

5.12) A death process with state space   has death ratesZ = {0, 1, 2, ...}
μ0 = 0, μ1 = 2, and μ2 = μ3 = 1.

Given , determine  for X(0) = 3 pj(t) = P(X(t) = j) j = 0, 1, 2, 3.

5.13) A linear death process  has death rates{X(t), t ≥ 0}

 μj = j μ ; j = 0, 1, ...

(1) Given  determine the distribution function of the time to entering state 0X(0) = 2,
('lifetime' of the process).
(2) Given  determine the mean value of the time at which the processX(0) = n, n > 1,
enters state 0.

5.14)  At time  there are an infinite number of molecules of type a  and 2n mole-t = 0
cules of type b in a two-component gas mixture. After an exponential random time
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with parameter µ any molecule of type b combines, independently of the others, with
a molecule of type a to form a molecule ab.
(1) What is the probability that at time t there are still  j free molecules of type b in
the container?
(2) What is the mean time till there are left only n free molecules of type b in the
container?

5.15) At time  a cable consists of 5 identical, intact wires. The cable is subject tot = 0
a constant load of 100 kp such that in the beginning each wire bears a load of 20 kp.
Given a load of w kp per wire, the time to breakage of a wire (its lifetime) is expo-
nential with mean value

1000
w [weeks].

When one or more wires are broken, the load of 100 kp is uniformly distributed over
the remaining intact ones. For any fixed number of wires, their lifetimes are assumed
to be independent and identically distributed.
(1) What is the probability that all wires are broken at time t = 50 [weeks] ?
(2) What is the mean time until the cable breaks completely?

5.16)* Let  be a death process with  and  positive death rates{X(t), t ≥ 0} X(0) = n
μ1, μ2, ... , μn.

Prove: If Y is an exponential random variable with parameter  and independent ofλ
the death process, then

P(X(Y) = 0) = Π
i=1

n μi
μi + λ .

5.17) Let a birth- and death process have state space  and transitionZ = {0, 1, ..., n}
rates

 and   λj = (n − j) λ μj = j μ ; j = 0, 1, ..., n.

Determine its stationary state probabilities.

5.18) Check whether or under what restrictions a birth- and death process with tran-
sition rates

λj =
j + 1
j + 2 λ and μj = μ ; j = 0, 1, ... ,

has a stationary state distribution.

5.19) A birth- and death process has transition rates
λj = (j + 1)λ and μj = j2μ; j = 0, 1, ...; 0 < λ < μ .

Confirm that this process has a stationary state distribution and determine it.
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5.20) A computer is connected to three terminals (for example, measuring devices).
It can simultaneously evaluate data records from only two terminals. When the com-
puter is processing two data records and in the meantime another data record has
been produced, then this new data record has to wait in a buffer when the buffer is
empty. Otherwise the new data record is lost. (The buffer can store only one data rec-
ord.) The data records are processed according to the FCFS-queueing discipline. The
terminals produce data records independently according to a homogeneous Poisson
process with intensity  The processing times of data records from all terminals areλ.
independent  (even  if  the  computer  is  busy  with  two  data  records  at  the  same time)
 and have an exponential distribution with parameter µ. They are assumed to be in-
dependent of the input. Let  be the number of data records in computer and buf-X(t)
fer at time t.
(1) Verify that  is a birth- and death process, determine its transition rates{X(t), t ≥ 0}
and draw the transition graph.
(2) Determine the stationary loss probability, i.e. the probability that, in the steady
state, a data record is lost.

5.21) Under otherwise the same assumptions as in exercise 5.20, it is assumed that a
data record which has been waiting in the buffer a random patience time, will be de-
leted as being no longer up to date. The patience times of all data records are

 to be independent, exponential random variables with parameter . Theyassumed ν
are also independent of all arrival and processing times of the data records.
Determine the stationary loss probability.

5.22) Under otherwise the same assumptions as in exercise 5.21, it is assumed that a
data record will be deleted when its total sojourn time in the buffer and computer ex-
ceeds a random time Z, where Z has an exponential distribution with parameter α.
Thus, the interruption of a current service of a data record is possible.
Determine the stationary loss probability.

5.23) A small filling station in a rural area provides diesel for agricultural machines.
It has one diesel pump and waiting capacity for 5 machines. On average, 8 machines
per hour arrive for diesel. An arriving machine immediately leaves the station with-
out fuel if pump and all waiting places are occupied. The mean time a machine oc-
cupies the pump is 5 minutes. It is assumed that the station behaves like an M/M/s/m-
queueing system.
(1) Determine the stationary loss probability.
(2) Determine the stationary probability that an arriving machine waits for diesel.

5.24) Consider a two-server loss system. Customers arrive according to a homogene-
ous Poisson process with intensity  A customer is always served by server 1 whenλ.
this server is idle, i.e. an arriving customer goes only then to server 2, when server 1
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is busy. The service times of both servers are idd exponential random variables with
parameter  Let  be the number of customers in the system at time t.μ. X(t)
Determine the stationary state probabilities of the stochastic process {X(t), t ≥ 0}.

5.25) A 2-server loss system is subject to a homogeneous Poisson input with inten-
sity  The situation considered in the previous exercise is generalized as follows: Ifλ.
both servers are idle, a customer goes to server 1 with probability p and to server 2
with probability . Otherwise, a customer goes to the idle server (if there is any).1 − p
The service times of the servers 1 and 2 are independent, exponential random varia-
bles with parameters  and  respectively. All arrival and service times are inde-μ1 μ2,
pendent.
Describe the behaviour of the system by a suitable homogeneous Markov chain and
draw the transition graph.

5.26) A single-server waiting system is subject to a homogeneous Poisson input with
intensity

λ = 30[h−1].

If there are not more than 3 customers in the system, the service times have an expo-
nential distribution with mean [min]. If there are more than 3 customers in1/μ = 2
the system, the service times are exponential with mean  [min]. All arrival1/μ = 1
and service times are independent.
(1) Show that there exists a stationary state distribution and determine it.
(2) Determine the mean length of the waiting queue in the steady state.

5.27) Taxis and customers arrive at a taxi rank in accordance with two independent
homogeneous Poisson  processes with intensities  an hour and  an hour,λ1 = 4 λ2 = 3
respectively. Potential customers who find two waiting customers do not wait for
service, but leave the rank immediately. (Groups of customers who will use the same
taxi are considered to be one customer.) On the other hand, arriving taxis who find
two taxis waiting leave the rank as well.
What is the average number of customers waiting at the rank?

5.28) A transport company has 4 trucks of the same type. There are 2 maintenance
teams for repairing the trucks after a failure. Each team can repair only one truck at a
time and each failed truck is handled by only one team. The times between failures
of a truck (lifetime) is exponential with parameter  The repair times are exponen-λ.
tial with parameter  All life and repair times are assumed to be independent. Letμ.

ρ = λ/μ = 0.2.

What is the most efficient way of organizing the work: 1) to make both maintenance
teams responsible for the maintenance of all 4 trucks so that any team which is free
can repair any failed truck, or 2) to assign 2 definite trucks to each team?
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5.29) Ferry boats and customers arrive at a ferry station in accordance with two inde-
pendent homogeneous Poisson processes with intensities  and , respectively. Ifλ μ
there are k customers at the ferry station, when a boat arrives, then it departs with

 passengers (n is the capacity of each boat). If  then the remainingmin(k, n) k > n,
 customers wait for the next boat. The sojourn times of the boats at the stationk − n

are assumed to be negligibly small.
Model the situation by a suitable homogeneous Markov chain  and draw{X(t), t ≥ 0}
the transition graph.

5.30) The life cycle of an organism is controlled by shocks (e.g. virus attacks, acci-
dents) in the following way: A healthy organism has an exponential lifetime L with
parameter  If a shock occurs, the organism falls sick and, when being in this state,λh.
its (residual) lifetime  is exponential with parameterS

λs, λs > λh.

However, a sick organism may recover and return to the healthy state. This occurs in
an exponential time R with parameter  If during a period of sickness another shockμ.
occurs,  the  organism  cannot  recover  and will die a random time D after the occur-
rence of the second shock.  is assumed to be exponential with parameterD

λd, λd > λs.

The random variables L, S, R, and D are assumed to be independent.
(1) Describe the evolvement in time of the states the organism may be in by a Mar-
kov chain.
(2) Determine the mean lifetime of the organism.

5.31) Customers arrive at a waiting system of type  with intensity  AsM/M/1/∞ λ.
long as there are less than n customers in the system, the server remains idle. As soon
as the n th customer arrives, the server resumes its work and stops working only then,
when all customers (including newcomers) have been served. After that the server
again waits until the waiting queue has reached length n and so on. Let  be the1/μ
mean service time of a customer and X(t) be the number of customers in the system
at time t.
(1) Draw the transition graph of the Markov chain {X(t), t ≥ 0}.
(2) Given that , compute the stationary state probabilities. (Make sure that theyn = 2
exist.)

5.32) At time  a computer system consists of n operating computers. As soon ast = 0
a computer fails, it is separated from the system by an automatic switching device
with probability  If a failed computer is not separated from the system (this1 − p.
happens with probability p), then the entire system fails. The lifetimes of the comput-
ers are independent and have an exponential distribution with parameter  Thus, thisλ.
distribution does not depend on the system state. Provided the switching device has
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operated properly when required, the system is available as long as there is at least
one computer available. Let X(t) be the number of computers which are available at
time t. By convention, if, due to the switching device, the entire system has failed in
[0, t), then X(t) = 0.

(1) Draw the transition graph of the Markov chain {X(t), t ≥ 0}.
(2) Given  determine the mean lifetime  of the system.n = 2, E(Xs)

5.33) A waiting-loss system of type  is subject to two independent PoissonM/M/1/2
inputs 1 and 2 with respective intensities  and  (type 1- and type 2-customers).λ1 λ2
An arriving type 1-customer who finds the server busy and the waiting places occu-
pied displaces a possible type 2-customer from its waiting place (such a type
2-customer is lost), but ongoing service of a type 2-customer is not interrupted.
When a type 1-customer and a type 2-customer are waiting, then the type 1-customer
will always be served first, regardless of the order of their arrivals. The service times
of type 1- and type 2-customers are independent and have exponential distributions
with respective parameters  and .μ1 μ2
Describe the behaviour of the system by a homogeneous Markov chain, determine
the transition rates, and draw the transition graph.

5.34) A queueing network consists of two servers 1 and 2 in series. Server 1 is sub-
ject to a homogeneous Poisson input with intensity  an hour. A customer is lostλ = 5
if server 1 is busy. From server 1 a customer goes to server 2 for further service. If
server 2 is busy, the customer is lost. The service times of servers 1 and 2 are expo-
nential with respective mean values

minutes  and   minutes.1/μ1 = 6 1/μ2 = 12

All arrival and service times are independent.
What percentage of customers (with respect to the total input at server 1) is served by
both servers?

5.35) A queueing network consists of three nodes (queueing systems) 1, 2 and 3,
each of type  The external inputs into the nodes have respective intensitiesM/M/1/∞.

λ1 = 4, λ2 = 8, and λ3 = 12

customers an hour. The respective mean service times at the nodes are 4, 2 and 1
[min]. After having been served by node 1, a customer goes to nodes 2 or 3 with
equal probabilities 0.4 or leaves the system with probability 0.2. From node  2, a cus-
tomer goes to node 3 with probability 0.9 or leaves the system with probability 0.1.
From node  3, a customer goes to node 1 with probability 0.2 or leaves the system
with probability 0.8. The external inputs and the service times are independent. 
(1) Check whether this queueing network is a Jackson network.
(2) Determine the stationary state probabilities of the network.
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5.36) A closed queueing network consists of 3 nodes. Each one has 2 servers. There
are 2 customers in the network. After having been served at a node, a customer goes
to one of the others with equal probability. All service times are independent random
variables and have an exponential distribution with parameter µ.
What is the stationary probability to find both customers at the same node?

5.37) Depending on demand, a conveyor belt operates at 3 different speed levels 1, 2,
and 3. A transition from level i to level  j is made with probability  withpi j

p12 = 0.8 , p13 = 0.2 ,
p21 = p23 = 0.5 ,

p31 = 0.4 , p32 = 0.6 .
The respective mean times the conveyor belt operates at levels 1, 2, or 3 between
transitions are

μ1 = 45 , μ2 = 30 , and μ3 = 12 [hours].

Determine the stationary percentages of time in which the conveyor belt operates at
levels 1, 2, and 3 by modeling the situation as a semi-Markov chain.

5.38) The mean lifetime of a system is 620 hours. There are two failure types: Repair-
ing the system after a type 1-failure requires 20 hours on average and after a type
2-failure 40 hours on average. 20%  of  all  failures  are  type 2- failures. There  is  no
dependence between the system lifetime and the subsequent failure type. Upon each
repair the system is 'as good as new'. The repaired system immediately resumes its
work. This process is continued indefinitely. All life and repair times are independ-
ent.
(1) Describe the situation by a semi-Markov chain with 3 states and draw the transi-
tion graph of the underlying discrete-time Markov chain.
(2) Determine the stationary state probabilities of the system.

5.39) A system has two different failure types: type 1 and type 2. After a type i-
failure the system is said to be in failure state  The time  to a type i-i ; i = 1, 2. Li
failure has an exponential distribution with parameter

λi ; i = 1, 2.
Thus, if at time  a new system starts working, the time to its first failure ist = 0

Y0 = min (L1, L2).

The random variables  and  are assumed to be independent. After a type 1-fai-L1 L2
lure, the system is switched from failure state 1 into failure state 2. The respective
mean sojourn times of the system in states 1 and 2 are  and  When in state 2,μ1 μ2.
the system is being renewed. Thus,  is the mean switching time and  the meanμ1 μ2
renewal time. A renewed system immediately starts working, i.e. the system makes a
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transition from state 2 to state 0 with probability 1. This process continues to infinity.
(For motivation, see example 5.7).
(1) Describe the system behaviour by a semi-Markov chain and draw the transition
graph of the embedded discrete-time Markov chain.
(2) Determine the stationary probabilities of the system in the states 0, 1, and 2.

5.40) Under otherwise the same model assumptions as in example 5.26, determine
the stationary probabilities of the states 0, 1, and 2 introduced there on condition that
the service time B is a constant μ; i.e. determine the stationary state probabilities of
the loss system  with unreliable server.M/D/1/0
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CHAPTER 6

Martingales

6.1     DISCRETE-TIME MARTINGALES

6.1.1  Definition and Examples  

Martingales are important tools for solving prestigious problems in probability
theory and its applications. Such problems occur in areas like random walks, point
processes, mathematical statistics, actuarial risk analysis, and mathematics of finance.
Heuristically, martingales are stochastic models for 'fair games' in a wider sense, i.e.
games in which each 'participant' has the same chance to win and to lose. In particu-
lar, martingale is the French word for that fair game in which a gambler doubles his
bet on every loss until he wins. Martingales were introduced as a special class of sto-
chastic processes by J. Ville und  P. Levy. However, it was J. L. Doob (1953) who
began with their systematic investigation and who recognized their large theoretical
and practical potential. Martingales as stochastic processes are defined for discrete
and continuous parameter spaces T. Analogously to Markov processes, the terminol-
ogy discrete-time martingale and continuous-time martingale is adopted. The defini-
tion of a martingale relies heavily on the concept of the conditional mean value of a
random variable given values of other random variables or, more generally, on the
concept of the (random) conditional mean value of a random variable given other
random variables (section 1.6).

Definition 6.1  A stochastic process in discrete time  with state space Z ,{ X0, X1, ...}
which satisfies  is called a (discrete-time) martingale ifE( Xn ) < ∞ , n = 0, 1, 2, ...,
for all vectors  with  and (x0, x1, ..., xn) xi ∈ Z n = 0, 1, ...

                        (6.1)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) = xn.

Under the same assumptions,  is a (discrete-time) supermartingale if{ X0, X1, ...}
                       (6.2)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) ≤ xn,

and a (discrete-time) submartingale if

                       (6.3)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) ≥ xn .
     z

If, for instance, the  are continuous random variables, then, in view of (1.75),Xn
multiplying both sides of the (in-) equalities (6.1) to (6.3) by the joint density of the
random vector  and integrating over its range yields:(X0, X1, ..., Xn)
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Martingale: E(Xn+1) = E(Xn); n = 0, 1, ...

Supermartingale: E(Xn+1) ≤ E(Xn); n = 0, 1, ...

Submartingale:  E(Xn+1) ≥ E(Xn); n = 0, 1, ...

Thus, the trend function of a martingale is constant:

                                 (6.4)m = E(Xn) = E(X0) ; n = 0, 1, ...

However, despite this property, a martingale need not be a stationary process. The
trend function of a supermartingale (submartingale) is nonincreasing (nondecreas-
ing). Conditions (6.1) to (6.3) are obviously equivalent to

                      (6.5)E(Xn+1 − Xn Xn = xn, ..., X1 = x1, X0 = x0) = 0
                      (6.6)E(Xn+1 − Xn Xn = xn, ..., X1 = x1, X0 = x0) ≤ 0
                      (6.7)E(Xn+1 − Xn Xn = xn, ..., X1 = x1, X0 = x0) ≥ 0

In particular, a stochastic process  with finite absolute first moments{ X0, X1, ...}
 is a martingale if and only if it satisfies condition (6.5).E( Xn ), n = 0, 1, ...

If  is a martingale and  is interpreted as the random fortune of a{ X0, X1, ...} Xn
gambler at time n, then, on condition  the conditional mean fortune of theXn = xn ,
gambler at time  is also  , and this is independent on the development in timen + 1 xn
of the fortune of the gambler before  ( fair game).n

Note  In what follows, for notational convenience, martingales are sometimes denoted
as { X1, X2, ...}.

Example 6.1 (sum martingale)  Let  be a sequence of independent ran-{Y0, Y1, ...}
dom variables with  for  Then the sequence  defin-E(Yi) = 0 n = 1, 2, ... { X0, X1, ...}
ed by

Xn = Y0 + Y1 + . .. + Yn; n = 0, 1, ...

is a martingale. The proof is easily established:

E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= E(Xn + Yn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= xn + E(Yn+1)
= xn .

The sum martingale  can be interpreted as a random walk on the real{ X0, X1, ...}
axis:  is the position of a particles after its nth jump or its position at time n.Xn

The constant trend function  of this martingale ism = E(Xn), n = 0, 1, ...

                                                       �m = E(Y0) .
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Example 6.2 (product martingale)  Let  be a sequence of independent,{Y0, Y1, ...}
positive random variables with   for  andE(Y0) < ∞, μ = E(Yi) < ∞ i = 1, 2, ...,

Xn = Y0 Y1. .. Yn.
Then, for n = 1, 2, ...

  E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0
⎞
⎠

  = E(Xn Yn+1 Xn = xn, ..., X1 = x1, X0 = x0
⎞
⎠

  = xn E(Yn+1 Xn = xn, ..., X1 = x1, X0 = x0
⎞
⎠

= xn E(Yn+1) = xn μ .

Thus,  is a supermartingale for  and a submartingale for {X0, X1, ...} μ ≤ 1 μ ≥ 1.
For  the random sequence  is a martingale with constant trendμ = 1, {X0, X1, ...}
function:

m = E(Xn) = E(Y0); n = 0, 1, ...

This martingale seems to be a realistic model for describing the development in time
of share prices or derivates from these, since, from historical experience, the share
price at a time point in future is usually proportional to the present share price level.
With this interpretation,  is the relative change in the share price over the inter-Yn − 1
val   with regard to :[n, n + 1] Xn

Xn+1 − Xn
Xn

= Yn − 1; n = 0, 1, ...

Important special cases are:

1) Discrete Black-Scholes Model:

                        (6.8)Yi = eUi with Ui = N(μ, σ2), i = 1, 2, ...

2) Binomial model:

Yi =
⎧

⎩
⎨

r with probability α
1/r with probability 1 − α

; i = 1, 2, ...; r > 0, r ≠ 1.

In this case, with a random integer N, , the share price at time n has structureN ≤ n

Xn = Y0 r N ; n = 0, 1, 2, ...

If , then  so that under this condition  is a martin-α = 1/(r + 1) E(Yi) = 1 {X0, X1, ...}
gale.                                                                                                                             �

Specifications of the product martingale are the exponential martingale and the like-
lihood ratios, which are  considered in the following examples.
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Example 6.3  (exponential martingale)  Let  be a sequence of independ-{Z1, Z2, ...}
ent, identically as Z distributed random variables and  be a real number withθ

m(θ) = E(eθ Z) < ∞.

With  given,  a sequence of random variables  is defined byY0 {Y0, Y1, ...}

Yn = Y0 + Z1 + . .. + Zn; n = 1, 2, ...

Then the sequence of random variables  given by{X0, X1, ...}

X0 = eθ Y0

and

                   (6.9)Xn = 1
(m(θ))n eθYn = eθY0 Π

i=1

n ⎛
⎝⎜

eθZi
m(θ)

⎞
⎠⎟

; n = 1, 2, ...

is a martingale. The proof is easily established, since,  in view of the independence of
the Zi,

E(Xn+1 Xn = xn, Xn−1 = xn−1, ..., X0 = x0)

= xn E
⎛
⎝⎜

eθZn+1
m(θ)

⎞
⎠⎟

= xn E⎛
⎝⎜

eθZ
m(θ)

⎞
⎠⎟

= xn
m(θ)
m(θ)

= xn .

In particular, if  is a binary random variable with probability distributionZ

Z =
⎧

⎩
⎨

1 with probability p
−1 with probability 1 − p

,

then  can be interpreted as a random walk, which starts at , and pro-{Y0, Y1, ...} Y0
ceeds with steps of size 1 to the right or to the left, each with probability p and ,1 − p
respectively,  In this case,0 < p < 1.

m(θ) = E(eθZ) = p eθ + (1 − p) e−θ.

Specifically, if
                                           (6.10)θ = ln [(1 − p) /p] ,

then   so that the exponential martingale has structurem(θ) = 1

Xn = ⎛
⎝

1 − p
p

⎞
⎠

Yn

and trend function

                            �m = E(Xn) = E
⎛

⎝
⎜
⎛
⎝

1 − p
p

⎞
⎠

Y0 ⎞

⎠
⎟ ; n = 0, 1, ...
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Example 6.4 (likelihood ratios)  Suppose the null hypothesis has to be tested that
the random variables  are independent and identically distributed with prob-Y0, Y1, ...
ability density  via the hypothesis that these variables are independent and identi-ϕ
cally distributed with density .ψ

On condition  the ratio{y, ϕ (y) > 0} = {y, ψ(y) > 0},

r(y) =
⎧

⎩
⎨

ϕ (y) /ψ(y), ψ(y) > 0
0, ψ(y) = 0

is introduced. Then, if  is the true density, the random sequence  withψ {X0, X1, ...}

Xn = r(Y0) r(Y1). .. r(Yn)

is a martingale. In view of example 6.2, it is sufficient to show that the factors r(Yi)
have mean value 1: For  being a probability density,ϕ

E(r(Yi)) = ∫
{y, ψ(y)>0}

ϕ (y)
ψ(y) ψ(y) dy

                                                      �= ∫
{y, ψ(y)>0}

ϕ(y) dy = 1 .

Example 6.5 (branching process)  Consider a population with the property that each
individual of any generation gives birth to a random number of 'children'. These
numbers are independent  and have mean value   Let  be the total number ofμ. Xn
children produced by the  generation. Since each of those children will have onn th
average  children of its ownμ ,

                   (6.11)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) = μ xn .

Hence,  is a martingale if  a supermartingale if  and a sub-{X0, X1, ...} μ = 1, μ ≤ 1,
martingale if  Moreover, for any positive , the sequence  withμ ≥ 1. μ {Z0, Z1, ...}

Zn = Xn
μn

is a martingale. This is proved as follows:

E(Zn+1 Zn = zn, ..., Z1 = z1, Z0 = z0
⎞
⎠

= E
⎛
⎝⎜

Xn+1
μn+1

Xn
μn = xn

μn , ...,
X1
μ1 =

x1
μ1 ,

X0
μ0 =

x0
μ0

⎞
⎠⎟

= 1
μn+1 E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0

⎞
⎠

                                           �= 1
μn+1 μ xn = xn

μn = zn .
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6.1.2   Doob-Martingales

In this section, the concept of a (super-, sub-) martingale  as introduced{X0, X1, ...}
in definition 6.1 is generalized by conditioning with regard to another sequence of
random variables  which is usually related to  The follow-{Y0, Y1, ...}, {X0, X1, ...}.
ing definition refers to the characterization of (super-, sub-) martingales by proper-
ties (6.5) to (6.7).

Definition 6.2  Let  and  be two discrete-time stochastic pro-{X0, X1, ...} {Y0, Y1, ...}
cesses. If

 for all E( Xn ) < ∞ n = 0, 1, ...,

 then the random sequence  is a martingale with regard to  or{X0, X1, ...} {Y0, Y1, ...}
a Doob-type martingale if for all - dimensional vectors  with (n + 1) (y0, y1, ..., yn) yi
elements of the state space of  and for any ,{Y0, Y1, ...}, n = 0, 1, ...

                    (6.12)E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0) = 0.

Under otherwise the same assumptions,  is a supermartingale with re-{X0, X1, ...}
gard to  if{Y0, Y1, ...}

E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0) ≤ 0 ,

and a submartingale with regard to  if{Y0, Y1, ...}

                           zE(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0) ≥ 0.

In what follows, under rather strong additional conditions, a criterion is derived,
which ensures that a Doob-type martingale is a martingale in the sense of definition
6.1. This requires the introduction of a new concept.

Definition 6.3  Let  be a discrete-time Markov chain (not necessarily ho-{Y0, Y1, ...}
mogeneous) with state space  and transition probabilitiesZ = {. .. , −1, 0, +1, . .. }

pn(y, z) = P(Yn+1 = z Yn = y) ; y, z ∈ Z; n = 0, 1, ...

A function  is said to be concordant with  if ith(y, n); y ∈ Z; n = 0, 1, ... {Y0, Y1, ...}
satisfies for all y ∈ Z

                                (6.13)h(y, n) = Σ
z∈Z

pn(y, z) h( z, n + 1) .

           z

Theorem 6.1  Let  be a discrete-time Markov chain with state space{Y0, Y1, ...}

Z = {. .. , −1, 0, +1, . .. }.

Then, for any function  which is concordant with h(y, n) {Y0, Y1, ...},
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a) the sequence of random variables  generated by{X0, X1, ...}

                                     (6.14)Xn = h(Yn, n) ; n = 0, 1, ...

is a martingale with regard to  and{Y0, Y1, ...},

b) the sequence  is a martingale.{X0, X1, ...}

Proof  a) By the Markov property and the concordance of h with {Y0, Y1, ...},

E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0
⎞
⎠

= E(Xn+1 Yn = yn, ..., Y1 = y1, Y0 = y0
⎞
⎠ − E(Xn Yn = yn, ..., Y1 = y1, Y0 = y0

= E(h(Yn+1, n + 1) Yn = yn) − E(h(Yn, n) Yn = yn)

= Σ
z∈Z

pn(yn, z) h(z, n + 1) − h(yn, n)

= h(yn, n) − h(yn, n) = 0.

This result shows that  is a martingale with regard to {X0, X1, ...} {Y0, Y1, ...}.

b) Let, for given , the random event A be defined as the 'martingale con-x0, x1, ..., xn
dition'

A = {Xn = xn, ...., X1 = x1, X0 = x0}.

Since the  are fully determined by the random variables , there exists a set YXn Yn
of vectors  with property that the occurrence of any of the mutual-y = (yn, ..., y1, y0)
ly disjoint random events

Ay = Yn = yn, ..., Y1 = y1, Y0 = y0 , y ∈ Y,

implies the occurrence of event A:
A =

y∈Y
Ay .

Now the martingale property of  is easily established:{X0, X1, ...}

E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= E(Xn+1 A) = Σ
y∈Y

E⎛⎝Xn+1 Ay
⎞
⎠

P(Ay )

P(A)

= h(yn, n) Σ
y∈Y

P(Ay )

P(A)

= h(yn, n)

= xn .

Hence,  is a martingale according to definition 6.1.                                �{X0, X1, ...}
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Example 6.6  (variance martingale )  Let  be a sequence of independent,{Z1, Z2, ...}
integer-valued random variables with probability distributions

qi
(n) = P(Zn = i), i ∈ Z = {. .. , −1, 0, +1, . .. },

and numerical parameters

E(Zi) = 0 and E(Zi
2) = σi

2; i = 1, 2, ...

With an integer-valued constant , a discrete-time Markov chain  withz0 {Y0, Y1, ...}
state space   is introduced as follows:Z = {. .. , −1, 0, +1, . .. }

Yn = z0 + Z1 + . .. + Zn .
Then,

 for   and   E(Yn) = z0 n = 0, 1, ... Var(Yn) = Σi=1
n σi

2 for n = 1, 2, ...

The function

                                        (6.15)h(y, n) = y2 − Σi=1
n σi

2

is concordant with . To verify this, let  be the transition probabil-{Y0, Y1, ...} pn(y, z)
ities of  at time n. These transition probabilities are fully determined by{Y0, Y1, ...}
the probability distribution of Zn+1 :

pn(y, z) = P(Yn+1 = z Yn = y) = P(Zn+1 = z − y) = qz−y
(n+1); y, z ∈ Z .

Therefore,

Σ
z∈Z

pn(y, z) h(z, n + 1) = Σ
z∈Z

qz−y
(n+1)h(z, n + 1)

= Σ
z∈Z

qz−y
(n+1) ⎛

⎝z
2 − Σi=1

n+1 σi
2 ⎞
⎠

= Σ
z∈Z

qz−y
(n+1) ⎡

⎣(z − y + y)2 − Σi=1
n+1 σi

2 ⎤
⎦

= Σ
z∈Z

qz−y
(n+1)( z − y)2 + 2 y Σ

z∈Z
qz−y

(n+1)(z − y) + Σ
z∈Z

qz−y
(n+1)y2 − Σi=1

n+1 σi
2

= σn+1
2 + 2y ⋅ 0 + 1 ⋅ y2 − Σi=1

n+1 σi
2

 = y2 − Σi=1
n σi

2 = h(y, n).

Hence, the function  is concordant with  Thus, by theorem 6.1,h(y, n) {Y0, Y1, ...}.
the random sequence  with  generated by{X0, X1, ...} Xn

                                           (6.16)Xn = Yn
2 − Var(Yn)

is a martingale.                                                                                                            �
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Example 6.7  Let  be the random price of a share at time i and  be the randomYi Si
amount of share an investor holds in the interval

[i, i + 1); i = 0, 1, ..., Si ≥ 0.
Thus, at time  the total value of the investor's shares is  and in thet = 0 X0 = Y0 S0
interval  the investor makes a 'profit' of[i, i + 1)

Si (Yi+1 − Yi).
Hence, his total profit up to time  ist = n

                        (6.17)Xn = Σi=0
n−1 Si (Yi+1 − Yi) ; n = 1, 2, ...

It makes sense to assume that the investor's choice, what amount of share to hold in
 does not depend on the profit made in this and later intervals, but only on[n, n + 1)

the profits made in the previous intervals. Hence,  is assumed to be fully determin-Sn
ed by the  Under this assumption, the sequence  is a su-Y0, Y1, ..., Yn. {X1, X2, ...}
permartingale with regard to if  is a supermartingale. This is{Y0, Y1, ...} {Y0, Y1, ...}
proved as follows:

E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0)

= E(Sn(Yn+1 − Yn) Yn = yn, ..., Y1 = y1, Y0 = y0)

= Sn E(Yn+1 − Yn Yn = yn, ..., Y1 = y1, Y0 = y0) ≤ 0 .

The last line of this derivation makes use of the assumptions that on condition
' 'Yn = yn, ..., Y1 = y1, Y0 = y0

the share amount  is constant and that  is a supermartingale. Hence,Sn {Y0, Y1, ...}
no matter how well-considered the investor fixes the amount of share to be held in an
interval, in the long-run he cannot expect to make positive profit if the share price
develops unfavourably. (A supermartingale has a decreasing trend function.)          �

Example 6.8  The structure of  given by (6.17) includes as a special case the netXn
profit development when applying the 'doubling strategy': A gambler bets $ 1 on the
first game. If he wins, he makes a net profit of $ 1. But if he loses, he suffers a loss of
$ -1 and will bet $ 2 on the next play. If he wins, he will get $ 4 and, hence, will have
made a net profit of $ 1. But if he loses he will bet $ 4 on the next game and so on.
The following table shows the net profit development of the gambler if he loses 5
times in a row and then wins:

play 1 2 3 4 5 6
result             loss        loss        loss        loss        loss        win
bet 1 2 4 8           16          32
winnings            -1           -3            -7         -15          -31          +1

If the gambler loses the first  games and wins the N th game, thenN − 1
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Si = 2i−1; i = 1, 2, ..., N,
Yi+1 − Yi = −1 ; i = 0, 1, ..., N − 2,

YN − YN−1 = 1.

Hence, when assuming a win occurs with probability p and a loss with probability
 the  have structure1 − p, Y1, Y2, ...

                                  (6.18)Yi = Z1 + Z2 + . .. + Zi , Y0 = 0,

where the  are independent, identically as Z distributed binary random var-Z1, Z2, ...
iables:

     Z =
⎧

⎩
⎨

1 with probability p
−1 with probability 1 − p.

With the  given by (6.18), the net winnings of the gambler at time n,  areYi 1 ≤ n ≤ N,
given by (6.17). Now, on condition that after every win the game starts anew and the

 are adjusted accordingly, (6.17) describes the net winning development of theSi
gambler for all  Note, if the gambler loses at time , his total winningsn = 1, 2, ... N + 1
become 0. Since N is random, the  in (6.17) are random as well. In case the gamb-Si
ler makes up his mind to stop playing the doubling strategy at a fixed time point n,
then, as shown in the previous example, he cannot expect to have made positive net
winnings if  is a supermartingale. (Obviously,  is a supermar-{Y1, Y2, ...} {Y1, Y2, ...}
tingale if ) Hence, the gambler should not stop playing the doubling strat-p ≤ 1/2.
egy  at  any  time  point,  but at a winning time  point.  (If  then p > 0, P(N < ∞) = 1.)
However, to be able to maintain the doubling strategy in this way, the gambler must
have an unlimited amount of initial capital, since each bet size  has a2i ; i = 1, 2, ...;
positive probability to occur and the casino must allow arbitrarily large bets. Since
these prerequisites are not realistic, on average no money can be made by pursuing
the doubling strategy when betting on a supermartingale.                                          �

6.1.3   Martingale Stopping Theorem and Applications

As pointed out in the beginning of this chapter, martingales are suitable stochastic
models for fair games, i.e. the chances to win or to lose are equal. If one bets on a
martingale, is it, nevertheless, possible to make money by finishing the game at the
'right time' ? The decision, when to finish a game can, of course, only be made on the
past development of the martingale and not on its future. Hence, a proper time for
finishing a game seems to be a stopping time N for  where  is the{X0, X1, ...}, Xn
gambler's net profit after the n th game. According to definition 1.2, a stopping time
for  is a positive, integer-valued random variable N with property that the{X0, X1, ...}
occurrence of the random event ' ' is fully determined by the random variablesN = n

 and, hence, does not depend on the  However, theX0, X1, ..., Xn Xn+1, Xn+2, ...
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martingale stopping theorem (also called optional stopping theorem or optional sam-
pling theorem) excludes the possibility of winning in the long-run if finishing the

 is controlled by a stopping time (see also examples 6.7 and 6.8).game

Theorem 6.2 (martingale stopping theorem for discrete-time Markov chains)  Let
N be a stopping time for the martingale  Then{X0, X1, ...}.

                                             E(XN) = E(X0) (6.19)

if at least one of the following three conditions is fulfilled:
1) N is finite and there exists a finite constant  withC1

 for all Xmin(N,n) ≤ C1 n = 0, 1, ...

2) The stopping time N is bounded, i.e. there exists a finite constant  so that, withC2
probability 1,

N ≤ C2.

3)  is finite and there exists a finite constant  so thatE(N) C3

|                     �E ( Xn+1 − Xn X1, X2, ..., Xn) < C3 ; n = 0, 1, ...

Hint  When comparing formulas (6.4) and (6.19), note that in (6.19) N is a random
variable.

Example 6.9  (Wald's identity)  Theorem 6.2 implies Wald's identity (1.125) on con-
dition that N with  is a stopping time for a sequence of independent, identi-E(N) < ∞
cally as Y with  distributed random variables  To see this, letE(Y) < ∞ Y1, Y2, ...

Xn = Σi=1
n (Yi − E(Y)) ; n = 1, 2, ...

By example 6.1, the sequence  is a martingale. Hence, theorem 6.2 is ap-{X1, X2, ...}
plicable (condition 3):

E(XN) = E(X1) = 0 .
On the other hand,

E(XN) = E⎛⎝Σi=1
N (Yi − E(Y))⎞⎠

= E⎛⎝Σi=1
N Yi − N E(Y)⎞⎠

= E⎛⎝Σi=1
N Yi

⎞
⎠ − E(N) E(Y) .

This proves Wald's identity:

                                     (6.20)E⎛⎝Σi=1
N Yi

⎞
⎠ = E(N) E(Y) .

�
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Example 6.10 ( fair game)  Let  be a sequence of independent, identical-{Z1, Z2, ...}
ly as Z distributed random variables:

Z =
⎧

⎩
⎨

1 with probability P(Z = 1) = 1/2
−1 with probability P(Z = −1) = 1/2

.

Since  the sequence  defined byE(Zi) = 0, {Y1, Y2, ...}
Yn = Z1 + Z2 + . .. + Zn; n = 1, 2, ...

is a martingale (example 6.1).  is interpreted as the cumulative net profit of aYn
gambler after the n th play if he bets one dollar on each play. The gambler finishes
the game as soon he has won  or lost  Thus, the game will be finished at time$ a $ b.

                             (6.21)N = min {n; Yn = a oder Yn = −b}.

Obviously, N is a stopping time for the martingale  Since E(N) is finite,{Y1, Y2, ...}.
by theorem 6.2 (condition 3),

0 = E(Y1) = E(YN) = a P(YN = a) + (−b) P(YN = −b) .

Combining this relationship with
P(YN = a) + P(YN = −b) = 1,

yields the desired probabilities

P(YN = a) = b
a + b , P(YN = −b) = a

a + b .

For determining the mean duration  of such a game, the 'variance martingale'E(N)
 with{X1, X2, ...}

Xn = Yn
2 − Var(Yn) = Yn

2 − n

is used (example 6.6). By theorem 6.2,

0 = E(X1) = E(XN) = E(YN
2) − E(N) = 0.

Therefore,

E(N) = E(YN
2) = a2P(YN = a) + b2P(YN = −b) .

Thus, the mean duration of this fair game is

                                     �E(N) = a2 b
a + b + b2 a

a + b = a b.

Example 6.11 (unfair game)  Under otherwise the same assumptions as in the pre-
vious example, let

                     (6.22)Zi =
⎧

⎩
⎨

1 with probability p
−1 with probability 1 − p

, p ≠ 1/2.

Thus, the win and loss probabilities on a play are different.
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The mean value of   isZi
E(Zi) = 2p − 1 .

Let the martingale  be defined as in example 6.9:{X1, X2, ...}

Xn = Σi=1
n (Zi − E(Zi)); n = 1, 2, ...

By introducing , the random variable  can be written inYn = Z1 + Z2 + . .. + Zn Xn
the form

Xn = Yn − (2p − 1) n .

If this martingale is stopped at time  given by (6.21), theorem 6.2 yieldsN

                             (6.23)0 = E(XN) = E(YN) − (2p − 1) E(N) ,
or, equivalently,

0 = a P(YN = a) + (−b) P(YN = −b) − (2p − 1) E(N) .

For establishing another equation in the three unknowns
 , and P(YN = a), P(YN = −b) E(N),

the exponential martingale (example 6.3) is used. Let  be given byθ

θ = ln [(1 − p)/p] .
Then,

E⎛⎝eθZi ⎞⎠ = p eθ + (1 − p) e−θ = 1.

Hence, the sequence  with{U1, U2, ...}

Un = Π
i=1

n
eθZi = eθ Σi=1

n Zi = eθYn ; n = 1, 2, ...

is a martingale. Now, by applying theorem 6.2,

           (6.24)1 = E(U1) = E(UN) = eθ a P(YN = a) + e−θ bP(YN = −b) .

Equations (6.23) and (6.24) together with  yield the 'hit-P(YN = a) + P(YN = −b) = 1
ting' probabilities

   P(YN = a) =
1 − ⎛

⎝
p

1−p
⎞
⎠

b

⎛
⎝

1−p
p
⎞
⎠

a
− ⎛
⎝

p
1−p

⎞
⎠

b , P(YN = −b) =
⎛
⎝

1−p
p
⎞
⎠

a
− 1

⎛
⎝

1−p
p
⎞
⎠

a
− ⎛
⎝

p
1−p

⎞
⎠

b

and the mean duration of a game

                                   �E(N) =
a P(YN = a) − b P(YN = −b)

2p − 1 .
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6.1.4  Inequalities for Discrete-Time Martingales

In what follows, some important limit properties and inequalities for discrete-time
martingales  are listed.{X0, X1, ...}

1)  Let  for  Then there exists a random variable  withE( Xn ) < C < ∞ n = 0, 1, ... X∞
property that the random sequence  converges both with probability oneX0, X1, ...
and in mean towards  (see section 1.9.1 for convergence criteria)X∞ :

P( limn→∞ Xn = X∞) = 1, limn→∞ E( Xn − X∞ ) = 0.

2) Let  Then there exists a random variable  with property that thesup
n

E(Xn
2) < ∞. X∞

random sequence  converges in mean square towards :X0, X1, ... X∞

limn→∞
E((Xn − X∞)2) = 0.

3) (Azuma's inequality)  Let  If there exist nonneg-μ = E(Xi); i = 1, 2, ... and X0 = μ .
ative numbers  and  withαi βi

−αi ≤ Xi+1 − Xi ≤ βi ; i = 0, 1, ...;

then, for for all  and n = 1, 2, ... ε > 0,

P(Xn − μ ≥ +ε) ≤ exp ⎧
⎩
⎨−2ε2 Σi=1

n ⎛
⎝αi + βi

⎞
⎠

2 ⎫
⎭
⎬,

P(Xn − μ ≤ −ε) ≤ exp ⎧
⎩
⎨−2ε2 Σi=1

n ⎛
⎝αi + βi

⎞
⎠

2 ⎫
⎭
⎬.

Hence, if the increments  of the martingale  only vary withinXi+1 − Xi {X1, X2, ...}
given finite intervals, then bounds for useful probabilities can be given.

4)  (Doob's inequalities)  For all  as well as for every  and , as-n = 1, 2, ..., α ≥ 1 λ > 0
suming the existence of the occurring mean values,

P
⎛
⎝
⎜ max

i=0,1,...,n
Xi ≥ λ

⎞
⎠
⎟ ≤ E( Xn α )

λα .

Moreover, for all ,α > 1

E( Xn α) ≤ E
⎛
⎝
⎜ max

i=0,1,...,n
Xi

α ⎞
⎠
⎟ ≤ ⎛

⎝
α

α − 1
⎞
⎠

α
E( Xn α) .

In particular, for square-mean integrable martingales (α = 2)

E⎛⎝Xn
2 ⎞
⎠ ≤ E

⎛
⎝
⎜ max

i=0,1,...,n
Xi

2 ⎞
⎠
⎟ ≤ 4 E⎛⎝Xn

2 ⎞
⎠ .
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6.2   CONTINUOUS-TIME MARTINGALES

This section summarizes some results on continuous-time martingales. For simplicity
and with regard to applications to Brownian motion processes in the subsequent
chapter, their parameter space is restricted to  The following definition ofT = [0, ∞).
continuous-time martingales is based on the concept of the conditional mean value of
a random variable given one or more other random variables (section 1.6.3).

Definition 6.4  A stochastic process  with  for all  is{X(t), t ≥ 0} E( X(t) ) < ∞ t ≥ 0
called a martingale if for all integers  for every sequence withn = 0, 1, ..., t0, t1, ..., tn

 as well as for any  with , with probability 1,0 ≤ t0 < t1 < . .. < tn t t > tn

                         (6.25)E(X(t) X(tn), . .. , X(t1), X(t0)) = X(tn).
 z

Thus, to predict the mean value of a martingale at a time t, only the last observation
point before t is relevant. The development of the process before  contains no ad-tn
ditional information with respect to its mean value at time  Hence, regard-t, t > tn.
less how large the difference  is, on average no increase/decrease of the processt − tn

 can be expected in . The characteristic property (6.25) of a martin-{X(t), t ≥ 0} [tn, t]
gale under the assumptions made is frequently written in the form

                               (6.26)E(X(t) X(y), y ≤ s) = X(s), s < t.

 is a supermartingale (submartingale) if in (6.26) the sign '  ' is replac-{X(t), t ≥ 0} =
ed with '  '  ('  '). If Z is the state space of  then, as a consequence of≤ ≥ {X(t), t ≥ 0},
(6.25), a continuous-time martingale  has property{X(t), t ≥ 0}

E(X(t) X(tn) = xn, ..., X(t1) = x1, X(t0) = x0) = xn

for all  with , and this property, under otherwise the same as-(x0, x1, ..., xn) xi ∈ Z
sumptions as in definition 6.4, can be used to define continuous-time martingales
analogously to discrete-time martingales. The trend function of a continuous-time
martingale is constant:

m(t) = E(X(t)) ≡ m(0).

Definition 6.5 (stopping time)  A random variable L is a stopping time with regard to
an (arbitrary) stochastic process  if for all  the occurrence of the{X(t), t ≥ 0} s > 0
random event ' ' is fully determined by the evolvement of this process to timeL ≤ s
point s. Therefore, the occurrence of the random event ' ' is independent of allL ≤ s

 with  .                                                                                                             zX(t) t > s

Let  denote the indicator function for the occurrence of the event ' '.IL>t L > t

IL>t = 1 if L > t occurs,
0 otherwise

.
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Theorem 6.3 (martingale stopping theorem)  If  is a continuous-time{X(t), t ≥ 0}
martingale and  a stopping time for this martingale, thenL

                                         (6.27)E(X(L)) = E(X(0))

if at least one of the following two conditions is fulfilled:
1) L is bounded. 
2)                                    �P(L < ∞) = 1, E( X(L) ) < ∞, and lim

t→∞
E( X(t) IL>t) = 0.

The interpretation of this theorem is the same as in case of the martingale stopping
theorem for discrete-time martingales. For proofs of theorems 6.2 and 6.3 see, for in-
stance, Kannan [43] and Rolski et al. [67].

Example 6.12  As an application of theorem 6.3, a proof of Lundberg's inequality
(3.161) in actuarial risk analysis is given: Let  be the risk process under{R(t), t ≥ 0}
the assumptions of section 3.4.2, i.e. where x is the initial capitalR(t) = x + κt − C(t),
of an insurance company,  the premium rate and  the compound claimκ {C(t), t ≥ 0}
size process defined by

C(t) = Σi=0
N(t)

Mi , M0 = 0,

where  is a homogeneous Poisson process with parameter  The{N(t), t ≥ 0} λ = 1/μ.
claim sizes  are assumed to be independent and identically as M distribut-M1, M2, ...
ed random variables with finite mean  and distribution function and densityE(M)

B(t) = P(M ≤ t), b(t) = dB(t)/dt, t ≥ 0.
Let

Y(t) = e−r R(t) and h(r) = E(er M) = ∫0
∞ er xb(t)dt

for any positive r with property
                                                  (6.28)h(r) < ∞ .

Then

E(Y(t)) = e−r (x+κ t) E⎛⎝e+r C(t) ⎞
⎠

= e−r (x+κ t) Σ
i=0

∞
E(e+r C(t) N(t) = n) P(N(t) = n)

= e−r (x+κ t) Σ
i=0

∞
[h(r)]n (λ t)n

n! e−λt = e−r(x+κt) eλ t [h(r)−1] .

Let

X(t) = Y(t)
E(Y(t)) = er C(t)−λ t [h(r)−1].

Since  has independent increments, the process  has inde-{C(t), t ≥ 0} {X(t), t ≥ 0}
pendent increments, too. Hence, for  since  for all s < t, E(X(t)) = 1 t ≥ 0,
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E(X(t) X(y), y ≤ s) = E(X(s) + X(t) − X(s) X(y), y ≤ s)

= X(s) + E(X(t) − X(s) X(y), y ≤ s)

= X(s) + E(X(t) − X(s)) = X(s) + 1 − 1 = X(s) .

Thus,  is a martingale. Now, let{X(t), t ≥ 0}

                                        (6.29)L = inf
t

{t, R(t) < 0}.

Obviously, L is a stopping time for the martingale  Therefore, for any{X(t), t ≥ 0}.
finite z > 0,

L ∧ z = min (L, z)

is a bounded stopping time for  (exercise 6.11). Hence, theorem 6.3 is{X(t), t ≥ 0}
applicable with the stopping time :L ∧ z

E(X(0)) = 1 = E(X(L ∧ z))

= E(X(L ∧ z L < z) P(L < z) + E(X(L ∧ z L ≥ z)) P(L ≥ z)

≥ E(X(L ∧ z L < z) P(L < z)

= E(X(L L < z) P(L < z)

= E(er C(L)−λ L [h(r)−1] L < z) P(L < z) .

By (6.29),  Thus, from the first and the last line of this derivationx + κ L < C(L) . ,

1 > E(er (x+κL) − λ L (h(r)−1) L < z) P(L < z) ,

or, equivalently,
                       (6.30)1 > er xE(e[r κ − λ (h(r) −1)] L L < z) P(L < z) .

If the parameter  is chosen in such away thatr

                                        (6.31)r κ − λ [h(r) − 1] = 0 ,

then the inequality (6.30) simplifies to

P(L < z) < e−r x.

Since this inequality holds for all finite   it follows thatz > 0,

                                            (6.32)P(L < ∞) ≤ e−r x.

By (3.143), the probability  is nothing but the ruin probability . On theP(L < ∞) p(x)
other hand, in view of  equation (6.31) is equivalent to equation (3.202),λ = 1/μ,
which defines the Lundberg coefficient  To verify this by partial integration ofr.

E(er M) = ∫0
∞ er xb(t)dt,
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note that condition (6.28) implies

lim
t→∞

er t B(t) = 0.

Thus, (6.32) is indeed the Lundberg inequality (3.161) for the ruin probability.       �

Finally, some limit properties and inequalities for continuous-time martingales
the samples paths of which are continuous from the right, are listed.{X(t), t ≥ 0},

They are quite analogous to the corresponding ones for discrete-time martingales.
The existence of all occurring mean values is assumed.

1) If  then there exists a random variable  with property thatsup
t

E( Xt ) < ∞ , X∞

 converges both with probability one and in mean towards  as :X(t) X∞ t → ∞

P( lim
t→∞

Xt = X∞) = 1, lim
t→∞

E( Xt − X∞ ) = 0.

2) If  then there exists a random variable  with property that  sup
t

E(Xt
2) < ∞, X∞ X(t)

converges in square mean towards  as X∞ t → ∞ :

lim
t→∞

E((Xt − X∞)2) = 0.

3) Let . Then, for any ,[a, b] ⊆ [0, ∞) λ > 0

,λ P( sup
t∈[a,b]

X(t) ≥ λ) ≤ E(X(a)) + E(max{(0, −X(b)})

.λ P( inf
t∈[a,b]

X(t) ≤ −λ) ≤ E( X(b) )

4)  (Doob's inequalities)  Let . Then, for every  and ,[a, b] ⊆ [0, ∞) λ > 0 α ≥ 1

λα P( sup
t∈[a,b]

X(t) ≥ λ) ≤ E( X(b) α).

For α > 1,

E( X(b) α) ≤ E([ sup
t∈[a,b]

X(t)]α) ≤ ⎛
⎝

α
α − 1

⎞
⎠

α
E( X(b) α) .

In particular, for α = 2,

E(X(b)2) ≤ E([ sup
t∈[a,b]

X(t)]2) ≤ 4 E(X(b)2) .

For proofs and a more prestigious treatment of martingales see, for instance, Rolski
et al. [67] and Williams [88].
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6.3  EXERCISES

6.1) Let  be a sequence of independent random variables, which are identi-Y0, Y1, ...
cally distributed as  Is the discrete-time stochastic process  gener-N(0, 1). {X0, X1, ...}
ated by the sums   a martingale?Xn = Σi=0

n Yi
2 ; n = 0, 1, ...

6.2) Let  be a sequence of independent random variables with finite meanY0, Y1, ...
values  Is the discrete-time stochastic process  generated by theE(Yi). {X0, X1, ...}
sums  a martingale.Xn = Σi=0

n (Yi − E(Yi))

6.3) Let a discrete-time stochastic process  be defined by{X0, X1, ...}
Xn = Y0 ⋅ Y1 ⋅ . .. ⋅ Yn ,

where the random variables  are independent and have a uniform distribution overYi
the interval  Under which condition is  (1) a martingale, (2) a sub-[0, T]. {X0, X1, ...}
martingale, (3) a supermartingale?

6.4) Let  be the discrete Black-Scholes model defined by {X0, X1, ...}
Xn = Y0 ⋅ Y1 ⋅ . .. ⋅ Yn ,

where  is an arbitrary positive random variable with finite mean, and  withY0 Yi = eZi

independent  Under which condition is  a mar-Zi = N(μ, σ2); i = 1, 2, ... {X0, X1, ...}
tingale?

6.5) Starting at value 0, the profit of an investor increases per week by one unit with
probability p,  or decreases per week by one unit with probability  Thep > 1/2, 1 − p.
weekly increments of the investor's profit are assumed to be independent.
Let N be the random number of weeks until the investor's profit reaches for the first
time a given positive integer n. By means of Wald's equation, determine E(N ).

6.6) Let  be a sequence of independent, identically as Z distributed ran-Z1, Z2, ..., Zn
dom variables with

Z =
1 with probability p
0 with probability 1 − p , 0 < p < 1,

 and  where, for any real y,Yn = Z1 + Z2 + . .. + Zn Xn = h(Yn); n = 1, 2, ...;

h(y) = [(1 − p) /p]y.

Prove that  is a martingale with regard to {X1, X2, ...} {Y1, Y2, ...}.

6.7) Starting at value 0, the fortune of an investor increases per week by $ 200 with
probability 3/8, remains constant with probability 3/8 and decreases by $ 200 with
probability 2/8. The weekly increments of the investor's fortune are assumed to be
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independent. The investor stops the 'game' as soon as he has made a total fortune of
 or a loss of $ 1000, whichever occurs first.$ 2000

By using suitable martingales and applying the optional stopping theorem, determine
(1) the probability  that the investor finishes the 'game' with a profit of $ 2000,p2000
(2) the probability  that the investor finishes the 'game' with a loss of $ 1000,p−1000
(3) the mean duration  of the 'game'.E(N )

6.8) Let  be uniformly distributed over  be uniformly distributed overX0 [0, T], X1
 and, generally,  be uniformly distributed over  [0, X0], Xi+1 [0, Xi], i = 0, 1, ...

(1) Prove that the sequence  is a supermartingale.{X0, X1, ...}

(2) Show that E(Xk) = T
2k+1 ; k = 0, 1, ...

6.9) Let  be a homogeneous discrete-time Markov chain with state space{X1, X2, ...}
 and transition probabilitiesZ = {0, 1, ..., n}

pi j = P(Xk+1 = j Xk = i) = ⎛
⎝

n
j
⎞
⎠
⎛
⎝

i
n
⎞
⎠

j ⎛
⎝

n − i
n

⎞
⎠

n−j
; i, j ∈ Z .

Show that  is a martingale. (In genetics, this martingale is known as the{X1, X2, ...}
Wright-Fisher model without mutation.)

6.10) Prove that every stochastic process  with a constant trend function{X(t), t ∈ T}
and independent increments which satisfies   is a martingale.E( X(t) ) < ∞, t ∈ T,

6.11) Let L be a stopping time for a stochastic process  in discrete or{X(t), t ∈ T}
continuous time and z a positive constant. Verify that  is a stoppingL ∧ z = min(L, z)
time for {X(t), t ∈ T}.

6.12)* The ruin problem described in section 3.4.1 is modified in the following way:
The risk reserve process  is only observed at the end of each year. The{R(t), t ≥ 0}
total capital of the insurance company at the end of year n is

R(n) = x + κ n − Σi=0
n Mi ; n = 1, 2, ...,

where x is the initial capital,  is the constant premium income per year, and  isκ Mi
the total claim size the insurance company has to cover in year i,  The ran-M0 = 0.
dom variables  are assumed to be independent and identically distributedM1, M2, ...
as  with  Let p(x) be the ruin probability of the company,M = N(μ, σ2) κ > μ > 3σ.
i.e. the probability that there is an n with property :R(n) < 0

p(x) = P(there is an n = 1, 2, ... so that R(n) < 0).
Show that

p(x) ≤ e−2(κ−μ) x/ σ2
, x ≥ 0.
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CHAPTER 7

Brownian Motion

7.1  INTRODUCTION

Tiny organic and inorganic particles when immersed in fluids move randomly along
zigzag paths. In 1828, the English botanist Robert Brown published a paper, in which
he summarized his observations on this motion and tried to find its physical explana-
tion. (Originally, he was only interested in the behaviour of pollen in liquids in order
to investigate the fructification process of phanerogams.) However, at that time
Brown could only speculate on the causes of this phenomenon and was at an early
stage of his research even convinced that he had found an elementary form of life
which is common to all particles. Other early explanations refer to attraction and
repulsion forces between particles, unstable conditions in the fluids in which they are
suspended, capillary actions and so on. Although the ceaseless, seemingly chaotic
zigzag movement of microscopically small particles in fluids had already been detect-
ed before Brown, it is generally called Brownian motion.
The first approaches to mathematically modeling the Brownian motion were made by
L. Bachelier (1900) and A. Einstein (1905). Both found the normal distribution to be
an appropriate model for describing the Brownian motion and gave a physical expla-
nation of the observed phenomenon: The chaotic movement of sufficiently small par-
ticles in fluids and in gases is due to the huge number of impacts with the surround-
ing molecules, even in small time intervals. (Assuming average physical conditions,
there are about  collisions per second between a particle and the surrounding1021

molecules in a fluid.) More precisely, Einstein showed that water molecules could
momentarily form a compact conglomerate which has sufficient energy to move a
particle, when banging into it. (Note that the tiny particles are 'giants' compared with
a molecule.) These bunches of molecules would hit the 'giant' particles from random
directions at random times, causing its apparently irregular zigzag motion. Einstein
managed to experimentially verify his theoretical findings by just a ruler and a stop-
watch. As a 'byproduct', his theory of the Brownian motion and its experimental con-
firmation yielded another argument for the existence of atoms. Strangely, Einstein
was obviously not aware of the considerable efforts, which had been made before
him, to understand the phenomenon 'Brownian motion'. N. Wiener (1918), better
known as the creator of the science of cybernetics, was the first to present a  general
mathematical treatment of the Brownian motion. He defined and analysed a stochas-
tic process, which has served up till now as a stochastic model of Brownian motion.
In what follows, this process is called Brownian motion process or, if no misunder-
standings are possible, simply Brownian motion. Frequently, this process is also re-
ferred to as the Wiener process. Nowadays the enormous importance of the Brown-
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ian motion process is above all due to the fact that it is one of the most powerful
tools in theory and applications of stochastic modeling, whose role can be compared
with that of the normal distribution in probability theory. The Brownian motion pro-
cess is an essential ingredient in stochastic calculus, plays a crucial role in mathema-
tics of finance, is basic for defining one of the most important classes of Markov
processes, the diffusion processes, and for solving large sample estimation problems
in mathematical statistics. Brownian  motion has fruitful applications in disciplines as
time  series  analysis,  operations  research,  communication  theory  (modeling signals
and noise), and reliability theory (wear modeling, maintenance cost rate modeling).
This chapter only deals with the one-dimensional Brownian motion.

Definition 7.1 (Brownian motion) A continuous-time stochastic process {B(t), t ≥ 0}
with state space  is called (one-dimensional) Brownian motion processZ = (−∞, + ∞)
or simply  Brownian motion if it has the following properties:
1) .B(0) = 0
2)  has homogeneous and independent increments.{B(t), t ≥ 0}
3)  has a normal distribution withB(t)

                             zE(B(t)) = 0 and Var (B(t)) = σ2t, t > 0 .

Note that condition 1, namely , is only a normalization and as an assumptionB(0) = 0
not really necessary. Actually, in what follows situations will arise in which a Brown-
ian motion is required to start at  In such a case, the process retains prop-B(0) = u ≠ 0.
erty 2, but in property 3 assumption  has to be replaced with E(B(t)) = 0 E(B(t)) = u.
The process  with  is called a shifted Brownian motion.{Bu(t), t ≥ 0} Bu(t) = u + B(t)
In view of properties 2 and 3, the increment  has a normal distributionB(t) − B(s)
with mean value 0 and variance  σ2 t − s :

                          (7.1)B(t) − B(s) = N(0, σ2 t − s ) , s, t ≥ 0 .

In applications of the Brownian motion to finance, the parameter  is called volatil-σ
ity. Note that

                                             (7.2)σ2 = Var (B(1)) .
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Standard Brownian Motion  If  then  is called a standard Brown-σ = 1, {B(t), t ≥ 0}
ian motion and will be denoted as  For any Brownian motion with para-{S(t), t ≥ 0}.
meter σ,

                                                 (7.3)B(t) = σ S(t) .

Laplace Transform  Since  the Laplace transform of  is (seeB(t) = N(0, σ2t), B(t)
example 1.12, section 1.3.2)

                                      (7.4)E⎛⎝e
−α B(t) ⎞

⎠ = e+1
2α2σ2t.

7.2  PROPERTIES OF THE BROWNIAN MOTION

The first problem which has to be addressed is whether there exists a stochastic pro-
cess having properties 1 to 3. An affirmative answer was already given by N. Wiener
in 1923. In what follows, a constructive proof of the existence of the Brownian
motion is given. This is done by showing that Brownian motion can be represented
as the limit of a discrete-time random walk, where the size of the steps tends to 0 and
the number of steps per unit time is speeded up.

Brownian Motion and Random Walk  With respect to the physical background of
the Brownian motion, it is not surprising that there is a close relationship between
Brownian motion and the random walk of a particle along the real axis. Modifying
the random walk described in example 4.1, it is now assumed that after every  timeΔt
units the particle jumps  length units to the right or to the left, each with probabili-Δx
ty 1/2. Thus, if X(t) is the position of the particle at time t and X(0) = 0,

                                (7.5)X(t) = (X1 + X2 + . .. + X[t/Δt]) Δx ,

where

Xi = +1 if the i th jump goes to the right
−1 if the i th jump goes to the left

and  denotes the greatest integer less than or equal to  The random varia-[t /Δt] t /Δt.
bles  are independent of each other and have probability distributionXi

  with  P(Xi = 1) = P(Xi = −1) = 1/2 E(Xi) = 0, Var(Xi) = 1.

Formula (1.105) applied to (7.5) yields

E(X(t)) = 0 , Var(X(t)) = (Δx)2 [t/Δt].

With a positive constant , let  Then, taking the limit as  in (7.5),σ Δx = σ Δt . Δt → 0
a stochastic process in continuous time  arises which has trend and var-{X(t), t ≥ 0}
iance function

E(X(t)) = 0, Var(X(t)) = σ2t .
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Due to its construction,  has independent and homogeneous increments.{X(t), t ≥ 0}
Moreover, by the central limit theorem, X(t) has a normal distribution for all t > 0.
Therefore, the stochastic process of the 'infinitesimal random walk'  is a{X(t), t ≥ 0}
Brownian motion.

Even after Norbert Wiener, many amazing properties of the Brownian motion have
been detected. Some of them will be considered in this chapter. The following theo-
rem summarizes key properties of the Brownian motion.

Theorem 7.1  A Brownian motion  has the following properties:{B(t), t ≥ 0}

a)  is mean-square continuous.{B(t), t ≥ 0}

b)  is a martingale.{B(t), t ≥ 0}
c)  is a Markov process.{B(t), t ≥ 0}

d)  is a Gaussian process.{B(t), t ≥ 0}

Proof  a)  From (7.1),
                      (7.6)E((B(t) − B(s))2) = Var(B(t) − B(s)) = σ2 t − s .

Hence,

lim
h→ 0

E⎛⎝[B(t + h) − B(t)]2 ⎞
⎠ = lim

h→ 0
σ2 h = 0 .

Thus, the limit exists with regard to the convergence in mean-square (section 1.9.1).

b) Since a Brownian motion  has independent increments, for {B(t), t ≥ 0} s < t,

E(B(t) B(y), y ≤ s)) = E(B(s) + B(t) − B(s) B(y), y ≤ s))

= B(s) + E(B(t) − B(s) B(y), y ≤ s))

= B(s) + E(B(t) − B(s))

 = B(s) + 0 − 0 = B(s) .

Therefore,  is a martingale.{B(t), t ≥ 0}

c) Any stochastic process with independent increments is a Markov process.

d) Let  be any sequence of real numbers with Itt1, t2, ..., tn 0 < t1 < t2 < . .. < tn < ∞.
has to be shown that for all  the random vectorn = 1, 2, ...

(B(t1), B(t2), ... , B(tn))

has an n-dimensional normal distribution. This is an immediate consequence of theo-
rem 1.2 (section 1.6.3), since each  can be represented as a sum of independent,B(ti)
normally distributed random variables (increments) in the following way:

         �B(ti) = B(t1) + (B(t2) − B(t1)) + . .. + (B(ti) − B(ti−1)); i = 2, 3, ... , n.
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Theorem 7.2  Let  be the standardized Brownian motion. Then, for any{S(t), t ≥ 0}
constant  the stochastic processes  defined as follows are martin-α ≠ 0, {Y(t), t ≥ 0}
gales:

a) (exponential martingale),Y(t) = eα S(t)−α2t /2

b) (variance martingale).Y(t) = S2(t) − t

Proof  a) For s < t,

E(eα S(t)−α2t /2 S(y), y ≤ s) = E(eα[S(s)+ S(t)−S(s)]−α2t /2 S(y), y ≤ s)

= eα S(s)−α2t /2E(eα [ S(t)−S(s)] S(y), y ≤ s)

= eα S(s)−α2t /2 E⎛⎝e
α [ S(t)−S(s)] ⎞

⎠ .

From (7.4) with σ = 1,

E⎛⎝e
α [S(t)−S(s)] ⎞

⎠ = e+1
2α2(t−s) .

Hence,

                         (7.7)E(eα S(t)−α2t/2 S(y), y ≤ s) = eα S(s)−α2s/2 .

b) For  since  and  are independent and  for all s < t, S(s) S(t) − S(s) E(S(x)) = 0 x ≥ 0,

E(S2(t) − t S(y), y ≤ s) = E([S(s) + S(t) − S(s)]2 − t S(y), y ≤ s)

= S2(s) + E{2 S(s) [S(t) − S(s)] + [S(t) − S(s)]2 − t S(y), y ≤ s}

= S2(s) + 0 + E{[S(t) − S(s)]2} − t

= S2(s) + (t − s) − t

= S2(s) − s ,

which proves the assertion.                                                   �

There is an obvious analogy between the exponential and the variance martingale
defined in theorem 7.2 and corresponding discrete-time martingales considered in
examples 6.3 and 6.6.
The relationship (7.7) can be used to generate further martingales: Differentiating
(7.7) with regard to  once and twice, respectively, and letting  'proves' onceα α = 0,
more that  and  are martingales. The same procedure,{S(t), t ≥ 0} {S2(t) − t, t ≥ 0}
when differentiating (7.7) three and four times  generates the martingales,

  and  {S3(t) − 3 t S(t), t ≥ 0} {S4(t) − 6 t S2(t) + 3 t2, t ≥ 0}.

This algorithm produces martingales when differentiating  times.k = 2, 3, ...
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Properties of the Sample Paths  Since a Brownian motion is mean-square continu-
ous, it is not surprising that its sample paths  are continuous functions in t.b = b(t)
More exactly, the probability that a sample path of a Brownian motion is continuous
is equal to 1. Or, equivalently, 'almost all sample paths of a Brownian motion are
continuous.' In view of this, it may surprise that the sample paths of a Brownian
motion are nowhere differentiable. This is here not proved either, but it is made
plausible by using (7.6): For any sample path  and any sufficiently small, butb = b(t)
positive  the differenceΔt,

Δb = b(t + Δt) − b(t)

is approximately equal to  Therefore,σ Δt .

Δb
Δt = b(t + Δt) − b(t)

Δt ≈
σ Δt

Δt = σ
Δt

.

Hence, for the difference quotient  is likely to tend to infinity for anyΔt → 0, Δb/Δt
nonnegative t. Thus, it can be anticipated that the sample paths of a Brownian motion
are nowhere differentiable. (For proofs, see e.g. Kannan [43].)
The variation of a sample path (as well as of any real function)  in an inter-b = b(t)
val   with  is defined as the limit[0, s] s > 0

                                  (7.8)limn→∞ Σ
k=1

2n
b⎛⎝

k s
2n

⎞
⎠ − b⎛⎝

(k−1) s
2n

⎞
⎠ .

A consequence of the non-differentiability of the sample paths is that this limit, no
matter how small s is, cannot be finite. Hence, any sample path of a Brownian mo-
tion is of unbounded variation. This property in its turn implies that the 'length' of a
sample path over the finite interval , and, hence, over any finite interval , is[0, s] [s, t]
infinite. What geometric structure is such a sample path supposed to have? The most
intuitive explanation is that the sample paths of any Brownian motion are strongly
dentate (in the sense of the structure of leaves), but this structure must continue to
the infinitesimal. This explanation corresponds to the physical interpretation of the
Brownian motion. The numerous and rapid bombardments of particles in liquids or
gases by the surrounding molecules cannot lead to a smooth sample path. Unfortuna-
tely, the unbounded variation of the sample paths implies that particles move with an
infinitely large velocity when dispersed in liquids or gases. Hence, the Brownian mo-
tion process cannot be a mathematically exact model for describing the movement of
particles in these media. But it is definitely a good approximation. (For modeling the
velocity of particles in liquids or gases the Ornstein-Uhlenbeck process has been
developed, see section 7.5.2.) However, as pointed out in the introduction, nowadays
the enormous theoretical and practical importance of the Brownian motion within the
theory of stochastic processes and their applications goes far beyond its being a
mathematical model for describing the movement of microscopically small particles
in liquids or gases.
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7.3  MULTIDIMENSIONAL AND CONDITIONAL DISTRIBUTIONS

Let  be a Brownian motion and  the density of  From{B(t), t ≥ 0} ft(x) B(t), t > 0.
property 3 of definition 7.1,

                                (7.9)ft(x) = 1
2πt σ

e
− x2

2 σ2 t , t > 0 .

Since the Brownian motion is a Gaussian process, its multidimensional distributions
are multidimensional normal distributions. To determine the parameters of this distri-
bution, next the joint density  of  will be derived.fs,t (x1, x2) (B(s), B(t))
Because of the independence of the increments of the Brownian motion and in view
of  having probability density  for small   and  ,B(t) − B(s) ft−s (x), Δx1 Δx2

fs,t (x1, x2) Δx1Δx2 = P(x1 ≤ B(s) ≤ x1 + Δx1, x2 ≤ B(t) ≤ x2 + Δx2)

= P(x1 ≤ B(s) ≤ x1 + Δx1, x2 − x1 ≤ B(t) − B(s) ≤ x2 − x1 + Δx2 − Δx1)

= fs(x1) ft(x2 − x1) Δx1Δx2 .

Hence,
                              (7.10)fs,t (x1, x2) = fs(x1) ft−s(x2 − x1) .

(This derivation can easily be made rigorously.) Substituting (7.9) into (7.10) yields
after some simple algebra

 (7.11)fs,t (x1, x2) = 1
2πσ2 s (t − s)

exp
⎧

⎩
⎨− 1

2σ2s (t − s)
⎛
⎝t x1

2 − 2s x1x2 + s x2
2 ⎞
⎠
⎫

⎭
⎬ .

Comparing this density with the density of the bivariate normal distribution (1.66)
shows that  has a joint normal distribution with correlation coefficient{B(s), B(t)}

ρ = + s /t , 0 < s < t .

Therefore, if   the covariance function of the Brownian motion is0 < s < t,

C(s, t) = Cov (B(s), B(t)) = σ2 s.

Since the roles of  and t can be changed,s

                                         (7.12)C(s, t) = σ2 min (s, t).

However, in view of the independence of the increments of the Brownian motion, it
is easier to directly determine the covariance function of :  For {B(t), t ≥ 0} 0 < s ≤ t ,

C(s, t) = Cov (B(s), B(t)) = Cov (B(s), B(s) + B(t) − B(s))

= Cov (B(s), B(s)) + Cov (B(s), B(t) − B(s))

= Cov (B(s), B(s)).
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Hence,
C(s, t) = Var (B(s)) = σ2s, 0 < s ≤ t .

Let  . According to (1.59), the conditional density of B(s) given  is0 < s < t B(t) = b

                                  (7.13)fB(s)(x B(t) = b) =
fs,t (x, b)

ft (b)
.

Substituting (7.9) and (7.11) into (7.13) yields

     (7.14)fX(s)(x B(t) = b) = 1
2π s

t (t − s) σ
exp

⎧

⎩
⎨
⎪
⎪

− 1
2σ2 s

t (t − s)
⎛
⎝x − s

t b⎞⎠
2⎫

⎭
⎬
⎪
⎪

.

This is the density of a normally distributed random variable with parameters 

            (7.15)E(B(s) B(t) = b) = s
t b , Var(B(s) B(t) = b) = σ2 s

t (t − s) .

Obviously, the conditional variance assumes its maximum at s = t /2.

Let  be the n-dimensional density of the random vectorft1,t2,...,tn (x1, x2, ... , xn)

  with   (B(t1), B(t2), ... , B(tn)) 0 < t1 < t2 < . .. < tn < ∞.

From (7.10), by induction,

ft1,t2,...,tn (x1, x2, ... , xn) = ft1 (x1) ft2−t1 (x2 − x1). .. ftn−tn−1 (xn − xn−1) .

With  given by (7.9), the n-dimensional joint density becomesft(x)

                                     (7.16)ft1,t2,...,tn (x1, x2, ... , xn)

=

exp
⎧

⎩
⎨
⎪
⎪

− 1
2 σ2

⎡

⎣
⎢⎢⎢

x1
2

t1
+

(x2−x1)2

t2−t1
+ . .. +

(xn−xn−1)2

tn−tn−1

⎤

⎦
⎥⎥⎥

⎫

⎭
⎬
⎪
⎪

(2π)n/2 σn t1(t2 − t1). .. (tn − tn−1)
.

Transforming this density analogously to the two-dimensional case shows that (7.16)
has the form (1.89). This proves once more that the Brownian motion is a Gaussian
process.
The Brownian motion, as any Gaussian process, is completely determined by its
trend and covariance function. Actually, since the trend function of a Brownian
motion is identically zero, the Brownian motion is completely characterized by its
covariance function. In other words, given  there is exactly one Brownian motionσ2,
process with covariance function

C(s, t) = σ2min (s, t).
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Example 7.1 (Brownian bridge) The Brownian bridge  is a stochas-{B(t), t ∈ [0, 1]}
tic process, which is given by the Brownian motion in the time interval  on con-[0, 1]
dition that B(1) = 0 :

B(t) = B(t), 0 ≤ t ≤ 1; B(1) = 0.

Letting in (7.14)  and  yields the probability density of b = 0 t = 1 B(t) :

fB(t)(x) = 1
2π t (1 − t) σ

exp
⎧

⎩
⎨− x2

2σ2 t (1 − t)

⎫

⎭
⎬ , 0 < t < 1 .

Mean value and variance of  areB(t)

E(B(t)) = 0, Var (B(t)) = σ2 t (1 − t), 0 ≤ t ≤ 1.

The two-dimensional probability density of   can be obtained from(B(s), B(t))

ft1,t2 (x1, x2) =
ft1,t2,t3 (x1, x2, 0)

ft3 (0)

with .  Hence, for  t1 = s, t2 = t and t3 = 1 0 < s < t < 1,

f(B(s),B(t)) (x1, x2) =
exp − 1

2 σ2
⎡
⎣⎢

t
s (t − s) x1

2 − 2
t − s x1x2 + 1−s

(t − s)(1−t) x2
2 ⎤
⎦⎥

2πσ2 s (t − s)(1 − t)
.

A comparison with (1.66) shows that correlation and covariance function of the
Brownian bridge are

ρ(s, t) = s (1 − t)
t (1 − s) , C(s, t) = σ2 s (1 − t), 0 < s < t ≤ 1.

The Brownian bridge is a Gaussian process whose trend function is identically 0.
Hence, it is uniquely determined by its covariance function.                                     �

7.4   FIRST PASSAGE TIMES

By definition, the Brownian motion  starts at  The random time{B(t), t ≥ 0} B(0) = 0.
point  at which the process  reaches a given level x for the first timeL(x) {B(t), t ≥ 0}
is called the  first passage time or the  first hitting time of  with respect to{B(t), t ≥ 0}
level x. Since the sample paths of the Brownian motion are continuous functions,

  is uniquely characterized by  and can, therefore, be defined asL(x) B(L(x)) = x

L(x) = min
t

{t, B(t) = x}, x ∈ (−∞, +∞).
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Next the probability distribution of  is derived on condition : ApplicationL(x) x > 0
 the the total probability rule yieldsof

                       (7.17)P(B(t) ≥ x) = P(B(t) ≥ x L(x) ≤ t) P(L(x) ≤ t)

+ P(B(t) ≥ x L(x) > t) P(L(x) > t).

The second term on the right hand side of this formula vanishes, since, by definition
of the first passage time,

P(B(t) ≥ x L(x) > t) = 0

for all  For symmetry reasons and in view of t > 0. B(L(x)) = x,

                                     (7.18)P(B(t) ≥ x L(x) ≤ t) = 1
2 .

This situation is illustrated in Figure 7.2: Two sample paths of the Brownian motion,
which coincide up to reaching level x and which after  are mirror symmetricL(x)
with respect to the straight line  have the same chance of occurring. (Theb(t) ≡ x,
probability of this event is, nevertheless, zero.) This heuristic argument is known as
the reflection principle. Thus, from (7.9), (7.17) and (7.18),

FL(x)(t) = P(L(x) ≤ t) = 2 P(B(t) ≥ x) = 2
2 π t σ

∫
x

∞
e

− u2

2 σ2 t du .

For symmetry reasons, the probability distributions of L(x) and  are identicalL(−x)
for any x. Therefore,

FL(x)(t) = 2
2 π t σ

∫
x

∞
e

− u2

2 σ2 t du , t > 0 .
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The probability distribution determined by this distribution function is a special case
of the inverse Gaussian distribution (section 1.2.3.2). Its relationship to the normal
distribution (Gaussian distribution) becomes visible after substituting  inu2 = σ2t y2

the integral of the distribution function of L(x):

FL(x)(t) = 2
2 π

∫
x

σ t

∞
e−y2/2 dy , t > 0.

Hence, the distribution function of the first passage time  can be written asL(x)

                                              (7.19)FL(x)(t) = 2
⎡

⎣
⎢1 − Φ

⎛

⎝
⎜

x
σ t

⎞

⎠
⎟
⎤

⎦
⎥ , t > 0 ,

where as usual  is the distribution function the standard normal distribution. Dif-Φ(⋅)
ferentiation with respect to t yields the probability density of L(x) :

                                          (7.20)fL(x)(t) = x
2π σ t3/2 exp

⎧

⎩
⎨− x2

2 σ2 t
⎫

⎭
⎬, t > 0.

The parameters  and  do not exist, i.e. they are infinite.E(L(x)) Var(L(x))

Maximum  Let  be the maximal value of the Brownian motion in :M(t) [0, t]

                                                       (7.21)M(t) = max {B(s), 0 ≤ s ≤ t}.

In view of (7.19), the probability distribution of  is obtained as follows:M(t)

1 − FM(t)(x) = P(M(t) ≥ x) = P(L(x) ≤ t).

Hence, by (7.19), distribution function and probability density of M(t) are for t > 0,

                            (7.22)FM(t)(x) = 2 Φ
⎛

⎝
⎜ x

σ t
⎞

⎠
⎟ − 1 , x ≥ 0,

                          (7.23)fM(t)(x) = 2
2π t σ

e−x2/(2 σ2t), x ≥ 0.

As a consequence from (7.22): For all finite ,x

                                       (7.24)lim
t→∞

P(M(t) < x) = 0 .

Example 7.2 A sensor for measuring high temperatures gives an unbiased indication
of the true temperature during its operating time. At the start, the measurement is ab-
solutely correct. In the course of time, its accuracy deteriorates, but on average no
systematic errors occur. Let B(t) be the random deviation of the temperature indicat-
ed by the sensor at time t from the true temperature. Historical observations justify
the assumption that  is a Brownian motion with parameter{B(t), t ≥ 0}
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σ = Var(X(1)) = 0.1 ⎛
⎝ in ⎡⎣

oC/ 24 h ⎤⎦
⎞
⎠ .

What is the probability that within a year (365 days)  exceeds the critical levelB(t)
, i.e. the sensor indicates at least once in a year  degrees less than thex = −5 oC 5 oC

true temperature? The desired probability is

FL(5)(365) = P(L(−5) < 365) = P(L(5) < 365)

= 2
⎡

⎣
⎢1 − Φ

⎛
⎝
⎜ 5

0.1 365

⎞
⎠
⎟
⎤

⎦
⎥ = 2 [1 − Φ(2.617)] = 0.009 .

If the accuracy of the sensor is allowed to exceed the critical value of  with-5 oC
probability 0.05 during its operating time, then the sensor has to be exchanged by a
new one after a time  given byτ0.05

P(L(−5) ≤ τ0.05) = 0.05 .

According to (7.19),  satisfies equationτ0.05

2
⎡

⎣
⎢⎢⎢1 − Φ

⎛

⎝
⎜ 5

0.1 τ0.05

⎞

⎠
⎟
⎤

⎦
⎥⎥⎥ = 0.05

or, equivalently,
5

0.1 τ0.05
= Φ−1(0.975) = 1.96 .

Thus,  .                                                                                           �τ0.05 = 651 [days]

The following example presents another, more prestigious application of the proba-
bility distribution of .M(t)

Example 7.3  Let  be the probability that the Brownian motion p(1, d] {B(t), t ≥ 0}
crosses the t-axis at least once in the interval  To determine  note(1, d], 1 < d. p(1, d]
that for symmetry reasons and in view of (7.22), for any b > 0,

P(B(t) = 0 for a t with 1 < t ≤ d B(1) = b)

= P(B(t) = 0 for a t with 1 < t ≤ d B(1) = −b)

= P(B(t) ≤ −b for a t with 0 < t ≤ d − 1)

= P(B(t) ≥ b for a t with 0 < t ≤ d − 1)

= P(M(d − 1) ≥ b)

                             (7.25)= 2
2π (d − 1) σ

∫
b

∞
e

− u2

2 σ2(d−1) du ,
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where  is the maximum of the Brownian motion in the interval M(d − 1) [0, d − 1].
Since b is a value the random variable  can assume, the mean value of the ran-B(1)
dom probability

P(B(t) = 0 for a t with 1 < t ≤ d B(1))

is the desired probability . Taking into account negative values of  by thep(1, d] B(1)
factor , (7.25) and (7.9) yield2

p(1, d] = 2 ∫0
∞ P(B(t) = 0 for a t with 1 < t ≤ d B(1) = b) fB(1)(b) db

= 2
π d − 1 σ2 ∫0

∞
∫
b

∞
e

− u2

2 σ2(d−1) du e
− b2

2 σ2 db .

By substituting
u = x σ d − 1 and y = b /σ

in the inner and outer integral, respectively,

p(1, d] = 2
π ∫

0

∞
∫
y

d−1

∞
e− x2+y2

2 dx dy .

The integration can be simplified by transition to polar coordinates  Then the(r, ϕ).
domain of the - integration has to be transformed as follows:(x, y)

⎧

⎩
⎨0 < y < ∞, y

d−1
< x < ∞

⎫

⎭
⎬ →

⎧

⎩
⎨0 < r < ∞, arctan 1

d−1
< ϕ < π

2
⎫

⎭
⎬.

Since

∫0
∞ r e−r2/2 dr = 1,

the desired probability becomes

p(1,d] = 2
π ∫

0

∞
∫

arctan 1
d−1

π/2
e−r2/2 r dϕ dr

= 2
π
⎡

⎣
⎢⎢⎢

π
2 − arctan 1

d − 1

⎤

⎦
⎥⎥⎥ ∫0

∞
r e−r2/2 dr

= 1 − 2
π arctan 1

d − 1

= 2
π arccos 1

d
.
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By introducing the time unit ,  i.e. replacing d with  this formulac 0 < c < d, d /c,
yields the probability  that the Brownian motion crosses the t-axis at least oncep(c, d]
in the interval (c, d] :

p(c, d] = 2
π arccos c

d .

Hence, the probability that the Brownian motion does not cross the x-axis in  is(c, d]

                                    (7.26)1 − p(c, d] = 2
π arcsin c

d .

Now, let
τ = max

t
{t, t ≤ d, B(t) = 0},

i.e.  is the largest time point less than or equal to d with property  Then theτ B(τ) = 0.
random event ' ' with  occurs if and only if there is no time point t in τ ≤ c c < d (c, d]
satisfying  Hence, as a corollary from (7.26), for B(t) = 0. 0 < c < d,

                                         �P(τ ≤ c) = 2
π arcsin c

d .

The next example considers a first passage time problem with regard to the Brown-
ian motion leaving an interval.

Example 7.4 Let  be the random time at which  for the first timeL(a, b) {B(t), t ≥ 0}
hits either value a or value b :

L(a, b) = min
t

{t, B(t) = a or B(t) = b}; b < 0 < a .

Then the probability  that  assumes value a  before value b ispa,b {B(t), t ≥ 0}

pa,b = P(L(a) < L(b)) = P(L(a, b) = L(a))

(Figure 7.3) or
pa,b = P(B(L(a, b)) = a) .

To determine , note that  is a stopping time for  In view ofpa,b L(a, b) {B(t), t ≥ 0}.
formula (7.24),  is finite. Hence, theorem 6.3 is applicable and yieldsE( L(a, b))

0 = E(B(L(a, b))) = a pa,b + b (1 − pa,b) .

Therefore, the probability that the Brownian motion hits value  before value b isa

                                             (7.27)pa,b = b
a + b .

For determining the mean value of  the martingale  withL(a, b), {Y(t), t ≥ 0}

Y(t) = 1
σ2 B2(t) − t
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is used (theorem 7.2 b)  In this case, theorem 6.3 yields.

0 = E⎛⎝
1

σ2 B2( L(a, b))⎞⎠ − E( L(a, b)).

Hence,

E( L(a, b)) = E⎛⎝
1

σ2 B2( L(a, b))⎞⎠

= 1
σ2

⎡⎣pa,b a2 + (1 − pa,b) b2 ⎤⎦ .

Thus, by (7.27),

                                            (7.28)E(L) = 1
σ2 a b .

As an application of the situation considered in this example, assume that the total
profit which a speculator makes with a certain investment develops according to a
Brownian motion process , i.e. B(t) is the cumulative 'profit', the specu-{B(t), t ≥ 0}
lator has achieved at time t (possibly negative). If the speculator stops investing after
having achieved a profit of a or after having suffered a loss of b, then  is thepa,b
probability that he finishes with a profit of a. With reference to example 7.2: The
probability that the sensor reads  high before it reads  low is equal to8 oC 4oC

4/(8 + 4) = 1/3.

Or, if in the same example the tolerance region for  isB(t)

,[−5 oC, 5 oC]

then  on average leaves this region for the first time afterB(t)

  days.E(L) = 25/0.01 = 2500
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7.5  TRANSFORMATIONS OF THE BROWNIAN MOTION

7.5.1   Identical Transformations

Transforming the Brownian motion leads to stochastic processes  which are important
in their own right, both from the theoretical and practical point of view. Some trans-
formations again lead to the Brownian motion. Theorem 7.3 compiles three transfor-
mations of this type.

Theorem 7.3  If  is the standard Brownian motion, then each of the fol-{S(t), t ≥ 0}
lowing stochastic processes is also the standard Brownian motion:
(1) {X(t), t ≥ 0} with X(t) = c S(t /c2), c > 0,

(2) {Y(t), t ≥ 0} with Y(t) = S(t + h) − S(h), h > 0,

(3) {Z(t), t ≥ 0} with Z(t) = t S(1/t) for t > 0
0 for t = 0

.

Proof  The theorem is proved by verifying properties 1) to 3) in definition 7.1. Ob-
viously, the processes (1) to (3) start at the origin:  Since theX(0) = Y(0) = Z(0) = 0.
Brownian motion has independent, normally distributed increments, the processes
(1) to (3) have the same property. Their trend functions are identically zero. There-
fore, it remains to show that the increments of the processes  (1) to  (3)  are  homoge-
neous. In view of (7.1), it suffices to prove that the variances of the increments of the
processes (1) to (3) in any interval  with  are equal to  The following[s, t] s < t t − s.
derivations make use of  and (7.12).E(S2(t)) = t

(1)                                      Var(X(t) − X(s)) = E([X(t) − X(s)]2)

= E(X 2(t)) − 2Cov (X(s), X(t)) + E(X 2(s))

= c2 ⎡⎣E(S2(t /c2)) − 2Cov (S(s /c2), S2(t /c2)) + E(S 2(s /c2))⎤⎦

= c2 ⎡
⎣
⎢ t

c2 − 2 s
c2 + s

c2
⎤
⎦
⎥ = t − s .

(2)                               Var (Y(t) − Y(s)) = E([S(t + h) − S(s + h)]2)

= E(S2(t + h)) − 2 Cov (S(s + h) S(t + h)) + E(S2(s + h))

= (t + h) − 2(s + h) + (s + h) = t − s .

(3)                                Var(Z(t) − Z(s)) = E([t S(1/t) − s S(1/s)]2)

= t2E(S2(1/t)) − 2 s t Cov (S(1/s) S(1/t)) + s2E(S2(1/s))

= t2 ⋅ 1
t − 2 s t ⋅ 1

t + s2 ⋅ 1
s = t − s .

Thus, the theorem is proved.                                                                                        
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For any Brownian motion  with probability 1,{B(t), t ≥ 0},

                                                                  (7.29)lim
t→∞

1
t B(t) = 0.

(For a proof, see, for example, Lawler [54].) If t is replaced with , then taking the1/t
limit as  is equivalent to taking the limit as  Hence, with probability 1,t → ∞, t → 0.

                                             (7.30)lim
t→0

t B(1/t) = 0 .

A consequence of (7.29) is that any Brownian motion  crosses the t-axis{B(t), t ≥ 0}
with probability 1 at least once in the interval  and, therefore, even[s, ∞), s > 0,
countably infinite times. Since

{t B(1/t), t ≥ 0}

is also a Brownian motion, it must have the same property. Therefore, for any s > 0,
no matter how small s is, a Brownian motion  crosses the t-axis in  {B(t), t ≥ 0} (0, s]
countably infinite times with probability 1.

7.5.2  Reflected Brownian Motion

A stochastic process  defined by  is called a reflected Brown-{X(t), t ≥ 0} X(t) = B(t)
ian motion (reflected at the t-axis). Its trend and variance function are

m(t) = E(X(t)) = 2
2π t σ

∫
0

∞
x e

− x2

2σ2t dx = σ 2 t
π , t ≥ 0,

Var (X(t)) = E(X2(t)) − [E(X(t))]2 = σ2t − σ2 2t
π = (1 − 2/π) σ2t .

The reflected Brownian motion is a homogeneous Markov process with state space
. This can be seen as follows: ForZ = [0, ∞)

 0 ≤ t1 < t2 < . .. < tn < ∞, xi ∈ Z,
taking into account the Markov property of the Brownian motion and its symmetric
stochastic evolvement with regard to the t-axis,

P(X(t) ≤ y X(t1) = x1, X(t2) = x2, ..., X(tn) = xn ⎞⎠
= P(−y ≤ B(t) ≤ +y B(t1) = ±x1, B(t2) = ±x2, ..., B(tn) = ±xn ⎞⎠

= P(−y ≤ B(t) ≤ +y B(tn) = ±xn)

= P(−y ≤ B(t) ≤ +y B(tn) = xn) .

Hence, for  the transition probabilities0 ≤ s < t,
P(X(t) ≤ y X(s) = x)
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of the reflected Brownian motion are determined by the increment of the Brownian
motion in  if it starts at time s at state x. Because such an increment has an[s, t]

-distribution with , N(x, σ2τ) τ = t − s

P(X(t) ≤ y X(s) = x) = 1
2π τ σ

∫
−y

y
e

− (u−x)2

2σ2τ du.

Equivalently,

P(X(t) ≤ y X(s) = x) = Φ⎛
⎝

y−x
σ τ

⎞
⎠ − Φ⎛

⎝−
y+x

σ τ
⎞
⎠ ; x, y ≥ 0; τ = t − s.

Since the transition probabilities depend on s and t only via  the reflectedτ = t − s,
Brownian motion is a homogeneous Markov process.

7.5.3  Geometric Brownian Motion

A stochastic process  with{X(t), t ≥ 0}

                                                 (7.31)X(t) = eB(t)

is called geometric Brownian motion.
Unlike the Brownian motion, the sample paths of a geometric Brownian motion can-
not become negative. Therefore and for analytical convenience, the geometric Brown-
ian motion is a favourite tool in mathematics of finance for modeling share prices,
interest rates and so on.
According to (7.4), the Laplace transform of  isB(t)

                                 (7.32)B(α) = E(e−αB(t)) = e+1
2 α2σ2t.

Substituting in (7.32) the parameter  with an integer n yields all the moments ofα
:X(t)

                                (7.33)E(Xn(t)) = e+1
2 n2σ2t; n = 1, 2, ...

In particular, mean value and second moment of  areX(t)

                           (7.34)E(X(t)) = e+1
2 σ2t, E(X2(t)) = e+2σ2t.

From (7.34) and (1.19):

Var(X(t)) = et σ2
(et σ2

− 1) .

Although the trend function of the Brownian motion is constant, the trend function of
the geometric Brownian motion is increasing:

                                         (7.35)m(t) = e σ2t /2, t ≥ 0.
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7.5.4  Ornstein-Uhlenbeck Process

As mentioned before, if the Brownian motion process would be the absolutely cor-
rect model for describing the movements of particles in liquids or gases, the particles
had to move with an infinitely large velocity. To overcome this unrealistic situation,
Ornstein and Uhlenbeck developed a stochastic process for modeling the velocity of
tiny particles in liquids and gases.

Definition 7.2  Let  be a Brownian motion with parameter . Then the{B(t), t ≥ 0} σ
stochastic process  defined by{U(t), t ∈ (−∞, +∞)}

                                          (7.36)U(t) = e−αt B(e2 α t )

is said to be an Ornstein-Uhlenbeck process with parameters  and           σ α, α > 0.

The density of  is easily derived from (7.9):U(t)

fU(t)(x) = 1
2π σ

e−x2/(2 σ2) , − ∞ < x < ∞ .

Thus,  has a normal distribution with parametersU(t)

E(U(t)) = 0, Var(U(t)) = σ2 .

In particular, the trend function of the Ornstein-Uhlenbeck process is identically 0
and U(t) is standard normal if  is the standard Brownian motion.{B(t), t ≥ 0}
Since  is a Gaussian process, the Ornstein-Uhlenbeck process has the{B(t), t ≥ 0}

 property. (This is a corollary from theorem 1.2.) Hence, the multidimensionalsame
distributions of the Ornstein-Uhlenbeck process are multidimensional normal dis-
tributions. Moreover, there is a unique correspondence between the sample paths of
the Brownian motion and the sample paths of the corresponding Ornstein-Uhlenbeck
process. Thus, the Ornstein-Uhlenbeck process, like the Brownian motion, is a Mar-
kov process. Its covariance function is

                                                      (7.37)C(s, t) = σ2e− α(t − s), s ≤ t .

This is proved as follows: For , in view of (7.12),s ≤ t

C(s, t) = Cov (U(s), U(t)) = E(U(s)U(t))

= e−α(s+t )E(B(e2α s ) B(e2αt ))

= e−α(s+t )Cov (B(e2 αs ), B(e2 αt ))

= e−α(s + t) σ2e2 α s = σ2e− α(t − s).

Corollary  The Ornstein-Uhlenbeck process is weakly stationary. Therefore, as a
Gaussian process, it is also strongly stationary.
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The stationary Ornstein-Uhlenbeck process arises from the nonstationary Brownian
motion by time transformation and standardization. In contrast to the Brownian mo-
tion, the Ornstein-Uhlenbeck process has the following properties:
1) The increments of the Ornstein-Uhlenbeck process are not independent.
2) The Ornstein-Uhlenbeck process is mean-square differentiable.

7.5.5     Brownian Motion with Drift

7.5.5.1  Definitions and First Passage Times
Definition 7.3  A stochastic process  is called Brownian motion with drift{D(t), t ≥ 0}
if it has the following properties:
1) .D(0) = 0
2)  has homogeneous, independent increments.{D(t), t ≥ 0}
3) Every increment  has a normal distribution with mean value D(t) − D(s) μ (t − s)
and variance                                                                                                 σ2 t − s .

An equivalent definition of the Brownian motion with drift is:  is a{D(t), t ≥ 0}
Brownian motion with drift if and only if  has structureD(t)

                                             (7.38)D(t) = μ t + B(t),

where  is the Brownian motion. The constant µ is called drift parameter{B(t), t ≥ 0}
or simply drift. Thus, a Brownian motion with drift arises by superimposing a Brown-
ian motion on a deterministic function. This deterministic function is a straight line
and coincides with the trend function of the Brownian motion with drift:

m(t) = E(D(t)) = μ t .

If properties 2) and 3) are fulfilled, but the process starts at time  at level u,t = 0
 then the resulting stochastic process  is called a shifted Brown-u ≠ 0, {Du(t), t ≥ 0}

ian motion with drift.  has structure Du(t)
Du(t) = u + D(t) .

The one-dimensional density functions of the Brownian motion with drift are

               (7.39)fD(t)(x) = 1
2πt σ

e
− (x−μ t)2

2 σ2 t ; − ∞ < x < ∞, t > 0 .

Brownian motion processes with drift are, amongst other applications, used for mod-
eling wear parameters, maintenance cost rates, productivity criteria and capital incre-
ments over given time periods as well as for modeling physical noise. Generally
speaking, Brownian motion with drift can successfully be applied to modeling situa-
tions in which causally linear processes are permanently disturbed by random in-
fluences.
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Let L(x) be the first passage time of  with regard to level x. Then,{D(t), t ≥ 0}

L(x) = min
t

{t, D(t) = x}, x ∈ (−∞, +∞).

Since every Brownian motion with drift has independent increments and is a Gaus-
sian process, the following relationship between the probability densities of D(t) and
L(x) holds:

fL(x)(t) = x
t fD(t)(x) , x > 0, μ > 0 .

(For more general assumptions guaranteeing the validity of this formula, see Franz
[30].) Hence, the probability density of   isL(x)

                                     (7.40)fL(x)(t) = x
2π σ t3/2 exp

⎧

⎩
⎨−

(x − μ t)2

2 σ2 t

⎫

⎭
⎬, t > 0 .

(See Scheike [71] for a direct proof of this result.) For symmetry reasons, the proba-
bility density of the first passage time L(x) of a Brownian motion with drift starting
at u can be obtained from (7.40) by replacing there x with x − u.
The probability distribution given by the density (7.40) is the inverse Gaussian dis-
tribution with parameters µ,  and x (section 1.2.3.2). Contrary to the first passageσ2

time of the Brownian motion, now mean value and variance of  exist:L(x)

                             (7.41)E(L(x)) = x
μ , Var(L(x)) = x σ2

μ3 .

For , the density (7.40) simplifies to the first passage time density (7.20) of theμ = 0
Brownian motion. If  and  formula (7.40) yields the density of the corres-x < 0 μ < 0,
ponding first passage time L(x) by substituting  and  for x and , respectively.x μ μ
Let

FL(x)(t) = P(L(x) ≤ t) and FL(x)(t) = 1 − FL(x)(t) , t ≥ 0.
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Assuming  and  integration of (7.40) yieldsx > 0 μ > 0,

              (7.42)FL(x)(t) = Φ
⎛

⎝
⎜

x − μ t
t σ

⎞

⎠
⎟ − e−2 x μ Φ

⎛

⎝
⎜−

x + μ t
t σ

⎞

⎠
⎟ , t > 0 .

If the second term on the right-hand side of (7.42) is sufficiently small, then one
obtains an interesting result: The Birnbaum-Saunders distribution (3.179) as a limit
distribution of first passage times of compound renewal processes (theorem 3.20)
approximately coincides with the inverse Gaussian distribution.
After some tedious algebra, the Laplace transform of   is seen to befL(x)(t)

    (7.43)E⎛⎝e
−sL(x) ⎞

⎠ = ∫0
∞ e−s t fL(x)(t) dt = exp ⎧

⎩
⎨− x

σ2
⎛
⎝ 2 σ2s + μ2 − μ⎞⎠

⎫

⎭
⎬ .

Theorem 7.4  Let M be the absolute maximum of the Brownian motion with drift on
the positive semiaxis (0, ∞) :

M = max
t∈(0,∞)

D(t) .

Then,

                   (7.44)P(M > x) =
⎧

⎩
⎨
⎪
⎪

1 for x > 0 and μ > 0

e−2 μ x /σ2
for x > 0 and μ < 0

.

Proof In view of (7.24), it is sufficient to prove (7.44) for  The exponentialμ < 0.
martingale  with{Y(t), t ≥ 0}

Y(t) = eα S(t)−α2t/2

(theorem 7.2) is stopped at time  SinceL(x).
D(L(x)) = μ L(x) + σ S(L(x)) = x,

 can be represented asY(L(x))
Y(L(x)) = exp α

σ [x − μ L(x)] − α2L(x)/2 = exp α
σ x − ⎡

⎣
α μ
σ + α2/2⎤⎦ L(x) .

Hence,

E(Y(L(x))) = e
α
σ xE⎛⎝exp α μ

σ − α2/2 L(x) L(x) < ∞) P(L(x) < ∞)

 +e
α
σ xE⎛⎝exp α μ

σ − α2/2 L(x) L(x) = ∞) P(L(x) = ∞).

Assume  Then the second term disappears and theorem 6.3 yieldsα > 2 μ /σ.

1 = e
α
σ xE⎛

⎝⎜
exp

α μ
σ − α2/2 L(x) L(x) < ∞) P(L(x) < ∞).

Since  letting  yields the desired result.              P(M > x) = P(L(x) < ∞), α ↓ 2 μ /σ
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Corollary  The maximal value a Brownian motion with negative drift assumes on the
positive semiaxis  has an exponential distribution with parameter(0, +∞)

                                                  (7.45)λ = 2 μ
σ2 .

Example 7.5 (Leaving an interval )  Analogously to example 7.4, let  denoteL(a, b)
the first time point at which the Brownian motion with drift  hits either{D(t), t ≥ 0}
value a or value b,  andb < 0 < a, μ ≠ 0,

pa,b = P(L(a) < L(b)) = P(L(a, b) = a) .

Thus,  is the probability that  hits level a before level b. For estab-pa,b {D(t), t ≥ 0}
lishing an equation in ,  the exponential martingale in theorem 7.2 withpa,b

S(t) =
D(t) − μt

σ
is stopped at time . From theorem 6.3,L(a, b)

1 = E⎛
⎝⎜
exp⎧

⎩
⎨α

σ (D( L(a, b)) − μ L(a, b)) − α2 L(a,b)
2

⎫
⎭
⎬
⎞
⎠⎟

.

Equivalently,

1 = E⎛⎝exp α
σ (D( L(a, b)) − ⎡

⎣
⎢

α μ
σ + α2

2
⎤
⎦
⎥ L(a, b) ⎞

⎠ .

Let  Then,α = −2μ /σ.

1 = E⎛⎝e
α
σ (D(L(a,b)) ⎞

⎠ = pa,be−2μ a /σ2
+ (1 − pa,b) e−2μ b /σ2

.

Solving this equation for  yieldspa,b

                                  (7.46)pa,b = 1 − e−2μb/σ2

e−2μa/σ2
− e−2μb/σ2 .

If  and b tends to   in (7.46), then the probability  becomes ,μ < 0 −∞ pa,b P(L(a) < ∞)
which proves once more formula (7.44) with x = a.

Generally, for a shifted Brownian motion with drift {Du(t), t ≥ 0},

Du(t) = u + D(t), b < u < a, μ ≠ 0,

formula (7.46) yields the corresponding probability  by replacing a and b withpa,b
 and   respectively (u can be negative):a − u b − u,

                    pa,b = P(L(a) < L(b) Du(0)) = e−2μu/σ2
− e−2μb/σ2

e−2μa/σ2
− e−2μb/σ2 .
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Geometric Brownian Motion with Drift  Let  be a Brownian motion{D(t), t ≥ 0}
with drift. Then the stochastic process  with{X(t), t ≥ 0}

                                                 (7.47)X(t) = eD(t)

is called geometric Brownian motion with drift. If the drift  is 0, then  isμ {X(t), t ≥ 0}
simply the geometric Brownian motion as defined by (7.31).

The Laplace transform of  is obtained by multiplying (7.4) by D(t) e−t μ α :

                                  (7.48)E(e−α D(t)) = e− t μα + 1
2σ2t α2

.

Letting  and   yields the first two moments of :α = −1 α = −2 X(t)

                     (7.49)E(X(t)) = et (μ+σ2/2), E(X2(t)) = e2 t μ+2σ2t.

Therefore, by (1.19),

Var(X(t)) = et (2μ+σ2)(et σ2
− 1) .

Since the inequalities
  and  eD(t) ≥ x D(t) ≥ ln x

are equivalent, the first passage time results obtained for the Brownian motion with
drift can immediately be used for characterizing the first passage time behavior of
the geometric Brownian motion with drift with  instead of x, ln x x > 0.

7.5.5.2  Application to Option Pricing
In finance, Brownian motion and its transformations are used to model the evolve-
ment in time of prices of risky securities and combinations of them. The concept of a
risky security comprises all risky assets, e.g. shares and precious metals. An option is
a contract, which entitles (but not obliges) its holder (owner) to either buy or sell a
risky security at a fixed, predetermined price, called strike price or exercise price. A
call (put) option gives its holder the right to buy (to sell). An option has a finite or an
infinite expiration or maturity date. An American option can be exercised at any time
point to its expiration, a European option can only be exercised at the time point of
its expiration.
A basic problem in option trading is: What amount of money should a speculator pay
to the writer (seller) of an option at the time of signing the contract? Common sense
tells that the writer will fix the option price at a level which is somewhat higher than
the mean payoff (profit) the speculator will achieve by acquiring this option. Hence,
the following examples focus on determining the mean (expected) payoff of a holder.
For instance, if a European call option has the finite expiration date , a strike priceτ

 and the random price (value) of the underlying risky security at time  is xs τ X(τ),
then the holder will achieve a positive random payoff of  if  IfX(τ) − xs X(τ) > xs.

 then the owner will not exercise because this would make no financialX(τ) ≤ xs,
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sense. In case of a European put option, the owner will exercise at time  if τ X(τ) < xs
and make a random profit of  Thus, owners of European call or put optionsxs − X(τ).
will achieve the respective random payoffs (notation: z+ = max(z, 0))

 and  (X(τ) − xs)+ (xs − X(τ))+ .
Another basic aspect in finance is discounting. Due to interest and inflation rates, the
value which a certain amount of money has today, will not be the value which the
same amount of money has tomorrow. In financial calculations, in particular in
option pricing, this phenomenon is taken into account by a discount factor.
The following examples deal with option pricing under rather simplistic assump-
tions. For detailed and more general expositions, see, e.g. Bouchaud and Potters [12],
Shafer and Vovk [74].

Example 7.6  The price of a share at time t is given by a shifted Brownian motion
 with negative drift  and volatility :{X(t) = Dx0 (t), t ≥ 0} μ σ2 = Var(B(1))

                                                     (7.50)X(t) = x0 + D(t) = x0 + μt + B(t).
Thus,  is the initial price of the share:  Based on this share, a speculatorx0 x0 = X(0).
holds an American call option with strike price  The option has no finitexs, xs ≥ x0.
expiry date. Although the price of the share is on average decreasing, the speculator
hopes to profit from random share price fluctuations. He makes up his mind to exer-
cise the option at that time point, when the share price for the first time reaches value

 with . Thus, if the holder exercises, his payoff will be  (Figure 7.5). Byx x > xs x − xs
following this policy, the holder's mean payoff (gain) is

 G(x) = (x − xs) p(x) + 0 ⋅ (1 − p(x)) = (x − xs) p(x) ,

where p(x) is the probability that the share price will ever reach level  Equivalently,x.
 is the probability that the Brownian motion with drift  will everp(x) {D(t), t ≥ 0}
 level . Since the option has no finite expiration date, this probability isreach x − x0

given by (7.44) if there x is replaced with . Hence the holder's mean payoff isx − x0
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                                          (7.51)G(x) = (x − xs) e−λ (x−x0) with λ = 2 μ /σ2.

The condition  yields the optimal value of x: The holder will exercise asdG(x)/dx = 0
soon as the share price hits level

                                             (7.52)x∗ = xs + 1/λ .

The corresponding maximal mean payoff is

                                                           (7.53)G(x∗) = 1
λ eλ (xs−x0)+1 .

Discounted Payoff  Let the constant (risk free) discount rate  be positive. The dis-α
counted payoff from exercising the option at time t on condition that the share has at
time t price x with  is . Since under the policy considered the hol-x > xs e−αt(x − xs)
der exercises the option at the random time   first passage time ofLD(x − x0) (=

 with respect to level  his random discounted payoff is{D(t), t ≥ 0} x − x0),

.e−αLD(x−x0) (x − xs)

Hence, the holder's mean discounted payoff is

                                              (7.54)Gα(x) = (x − xs)∫0
∞ e−αt fLD(x−x0)(t) dt ,

where the density  is given by (7.40) with x replaced by  ThefLD(x−x0)(t) x − x0.
integral in (7.54) is equal to the Laplace transform of  with parameterfLD(x−x0)(t)

 Thus, from (7.43),s = α.

                                 (7.55)Gα(x) = (x − xs) exp ⎧
⎩
⎨−

x − x0
σ2

⎛
⎝ 2 σ2α + μ2 − μ⎞⎠

⎫

⎭
⎬ .

The functional structures of the mean undiscounted payoff and the mean discounted
payoff as given by (7.51) and (7.55), respectively, are identical. Hence the optimal
parameters with respect to  are again given by (7.52) and (7.53) with  replac-Gα(x) λ
ed by

                                                       (7.56)γ = 1
σ2

⎛
⎝ 2 σ2α + μ2 − μ⎞⎠ .

Note that minimizing  also makes sense for a positive drift parameter .       Gα(x) μ

Example 7.7  Since for a negative drift parameter  the sample paths of a stochasticμ
process  of structure (7.50) eventually become negative with probability{X(t), t ≥ 0}
one, the share price model (7.50) is only limitedly applicable, in particular in case of
finite expiration dates. In such a situation it seems to be more realistic to model the
share price development, apart from a constant factor, by a geometric Brownian
motion with drift:

X(t) = x0 e D(t), t ≥ 0.
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The other assumptions as well as the formulation of the problem and the notation in-
troduced in the previous example remain valid. In particular, the price of the share at
time  is again equal to .t = 0 x0
The random event ' ' with  is equivalent toX(t) ≥ x x > x0

D(t) ≥ ln(x/x0) .

Therefore, by (7.44), the probability that the share price will ever reach level  isx

 p(x) = e−λ ln(x/x0) = ⎛
⎝

x0
x
⎞
⎠

λ
.

If the holder exercises the option as soon as the share price is , his mean payoff isx

                                      (7.57)G(x) = (x − xs) ⎛⎝
x0
x
⎞
⎠

λ
.

The optimal level isx = x∗

                                              (7.58)x∗ = λ
λ − 1 xs .

To ensure that  an additional assumption has to be made:x∗ > xs > 0,

λ = 2 μ /σ2 > 1.

The corresponding maximal mean payoff is

                                                       (7.59)G(x∗) = ⎛
⎝

λ − 1
xs

⎞
⎠

λ−1 ⎛
⎝

x0
λ
⎞
⎠

λ
.

Discounted Payoff  The undiscounted payoff   is made when  hitsx − xs { D(t), t ≥ 0}
level  for the first time, i.e. at time  Using this and processingln(x/x0) LD (ln(x/x0)).
as in the previous example, the mean discounted payoff is seen to be

                                                          (7.60)Gα(x) = (x − xs)⎛⎝
x0
x
⎞
⎠

γ

with  given by (7.56). The functional forms of the mean undiscounted payoff (7.57)γ
and the mean discounted payoff (7.60) are identical. Hence, the corresponding opti-
mal values  and  are given by (7.58) and (7.59) if in these formulas  is re-x∗ Gα(x∗) λ
placed with . Note that condition  is equivalent toγ γ > 1

2(α − μ) > σ2.
As in the previous example, a positive drift parameter µ need not be excluded.        

Example 7.8 (Formula of Black-Scholes-Merton) A European call option is consid-
ered with strike price  and expiration date  The option is based on a risky secur-xs τ.
ity the price of which, apart from a constant factor , develops according to a geo-x0
metric Brownian motion with drift :{X(t), t ≥ 0}

X(t) = x0 eD(t), t ≥ 0.
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The holder will buy if . Given a constant discount factor , his random dis-X(τ) > xs α
counted payoff is

[e−α τ(X(τ) − xs)]+ = max [e−α τ(X(τ) − xs), 0] .

The holder's mean discounted profit is denoted as

                             (7.61)Gα(τ, μ, σ) = E([e−α τ(X(τ) − xs)]+).

In view of  D(τ) = N(μτ, σ2τ),

Gα(τ; μ, σ) = e−α τ ∫
ln(xs/x0)

∞
(x0ey − xs) 1

2πσ2τ
exp ⎧

⎩
⎨− 1

2τ
⎛
⎝

y − μτ
σ

⎞
⎠

2⎫
⎭
⎬dy

Substituting    and letting    yieldsu =
y − μτ
σ τ

c =
[ln(xs/x0) − μτ]

σ τ

Gα(τ; μ, σ) = x0 e(μ−α)τ 1
2π

∫
c

∞
eu σ τ e−u2/2du − xs e−ατ 1

2π
∫
c

∞
e−u2/2du .

By substituting in the first integral u = y + σ τ ,

 ∫
c

∞
eu σ τ e−u2/2du = e

1
2σ2τ

∫
c−σ τ

∞
e−y2/2dy .

Hence,

Gα(τ; μ, σ) = x0 e(μ−α+σ2/2)τ 1
2π

∫
c−σ τ

∞
e−y2/2dy − xs e−α τ 1

2π
∫
c

∞
e−u2/2du

= x0 e(μ−α+σ2/2)τ Φ(σ τ − c) − xs e−α τ(Φ(−c)).

At time t, the discounted price of the risky security is

Xα(t) = e−α tX(t) = x0 e−(α−μ) t+σ S(t),

where  is the standard Brownian motion. In view of theorem 7.2, the sto-{S(t), t ≥ 0}
chastic process  is a martingale (exponential martingale) if and only if{Xα(t), t ≥ 0}

α − μ = σ2/2.
Under this condition, the mean discounted payoff of the holder is given by the For-
mula of Black-Scholes-Merton

                      (7.62)G∼ α(τ, σ) = x0 Φ(σ τ − c) − xs e−α τ Φ(−c).

(Black and Scholes [10], Merton [61]). In this formula, the influence of the drift pa-
rameter  on the price development is eliminated by the assumption that the discount-μ
ed price of the risky security develops according to a martingale. The formula of
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Black-Scholes-Merton gives the fair price of the option. This is motivated by the fact
that a martingale has a constant trend function and that, on average, holder and writer
of this option will neither lose nor win. Of course, this statement is only theory, since
the price development of the underlying risky security will never strictly follow a
geometric Brownian motion with drift. Hence, other stochastic models have been
proposed for the price development of risky securities [12, 50, 64, 74].                      

7.5.5.3  Application to Maintenance
In examples 7.9 and 7.10, functionals of the Brownian motion will be used to model
the cumulative repair cost arising over a time period and to model the cumulative
repair cost rate. It is a formal disadvantage of this model assumption that cumulative
repair costs modeled in this way do not have nondecreasing sample paths. However,
the problem to be analyzed is not directly based on sample paths generated by the
process, but on its trend function and its mean first passage times. Both have 'reason-
able' properties with respect to the application considered. Moreover, the results
obtained are relevant for all those stochastic maintenance cost developments, where
the pair 'trend function and mean first passage time' approximately exhibit the same
behaviour as the corresponding pair resulting from the Brownian motion model.
In all examples, the following basic situation is considered: A system starts working
at time  The random repair cost accumulating over the time interval  is de-t = 0. [0, t]
noted as X(t). The sample paths of the stochastic process  are assumed to{X(t), t ≥ 0}
be continuous and its trend function to be progressively (fasterm(t) = E(X(t)), t ≥ 0,
than linear) increasing. The cost of each replacement is c, a replacement takes negli-
gibly small time, and after a replacement a system is 'as good as new'. With regard to
cost and length, all replacement cycles are independent of each other. In each case,
the optimal scheduling of replacements is based on the long-run total maintenance
cost per unit time, in what follows referred to as maintenance cost rate.
In this section, replacement policies based on limiting the cumulative repair cost X(t)
and the cumulative repair cost per unit time (in what follows called repair cost rate)

 are considered. These replacement policies need the same basic input asR(t) = X(t) /t
the already classic 'economic lifetime policy', which is introduced next for serving as
standard of comparison. The repair-replacement process continues to infinity.

Policy 1  The system is replaced by a new one after reaching its economic lifetime.

Let  be the maintenance cost rate if the system is always replaced after  timeK1(τ) τ
units. Then, by (3.79),

                                            (7.63)K1(τ) = m(τ) + c
τ .

That value of  minimizing  is called the economic lifetime of the underlyingτ K1(τ)
system and denoted as  If  exists, thenτ∗. τ∗

K1(τ∗) = m (τ∗) .
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Policy 2  The system is replaced by a new one as soon as the cumulative repair cost
 reaches a given positive level x.X(t)

When scheduling replacements according to this policy, a 'typical replacement cycle'
has random length  where  is the first passage time of  withLX(x), LX(x) {X(t), t ≥ 0}
regard to level  Under policy 2, the maintenance cost rate has structurex.

                                                               (7.64)K2(x) = x + c
E(LX(x)) .

Policy 3  The system is replaced by a new one as soon as the repair cost rate
R(t) = X(t) /t

reaches a given positive level r.

Under policy  the maintenance cost rate has structure3,

                                           (7.65)K3(r) = r + c
LR(r) ,

where  is the first passage time of the stochastic process  with re-LR(r) {R(t), t ≥ 0}
gard to level r. Formulas (7.65) and (7.64) follow from the strong law of the large
numbers (theorem 1.8).

Example 7.9  The cumulative repair cost  is assumed to have structureX(t)

                                                            (7.66)X(t) = x0 ⎡⎣e
D(t) − 1⎤⎦ ,

where  is a Brownian motion with positive drift  and variance parame-{D(t), t ≥ 0} μ
ter  Since for a level x with σ2. 0 < x0 < x0 ,

  if and only if  X(t) = x D(t) = ln ⎛⎝
x + x0

x0
⎞
⎠ ,

by (7.41), the mean value of  isLX(x)

E(LX(x)) = 1
μ ln ⎛⎝

x + x0
x0

⎞
⎠ .

Therefore, under policy 2,

K2(x) = x + c
ln ⎛⎝

x+x0
x0

⎞
⎠

μ .

A limit x being optimal with respect to  satisfies the condition :K2(x) dK2(x) /dx = 0

ln ⎛⎝
x + x0

x0
⎞
⎠ = x + c

x + x0
.

A unique solution  exists and the corresponding maintenance cost rate isx = x∗

K2(x∗) = (x∗ + x0) μ .
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Comparison to policy 1  Making use of (7.49) yields

m(t) = E(X(t)) = x0
⎛
⎝e

(μ+σ2/2) t − 1⎞⎠ , t ≥ 0.

Hence, the corresponding maintenance cost rate (7.63) is

                                (7.67)K1(τ) =
x0
⎡
⎣⎢
e(μ+σ2/2)τ − 1⎤

⎦⎥
+ c

τ .

There exists a unique  mimimizing  By introducing the notationτ = τ∗ K1(τ).

  for  K1(τ, σ), m(τ, σ) and τ∗(σ) K1(τ), m(τ), and τ∗,

 on condition  isK1(τ) σ = 0

K1(τ, 0) =
x0 [e μ τ − 1] + c

τ .

Since  for all , there holdsm(τ, σ) ≥ m(τ, 0) σ

  K1(τ, σ) ≥ K1(τ, 0).

One readily verifies that minimizing  with respect to  and min-K2(x) x = x0 (eμ τ − 1)
imizing  with respect to  are equivalent problems. Hence,K1(τ, 0) τ

K1(τ∗(σ), σ) ≥ K1(τ∗(0), 0) = K2(x∗) .

Therefore, applying the economic lifetime on condition that the cumulative repair
cost evolves deterministically according to function  is equivalent to applyingm(t, 0)
the optimal total repair cost limit  Thus, policy 2 equalizes the cost-increasing in-x∗.
fluence of random fluctuations of individual repair costs, which are ignored under
policy 1. As a consequence, under the assumptions stated,  applying  policy 2 leads
to a lower maintenance cost rate than applying the economic lifetime. Moreover, the
efficiency of policy 2 relative to policy 1 increases with increasing                      σ.

Example 7.10  Let the repair cost rate  be given byR(t) = X(t) /t

R(t) = r0 B4(t); r0 > 0, t ≥ 0 ,

where  is the Brownian motion with parameter  For {B(t), t ≥ 0} σ. r > r0,

  if and only if   R(t) = r B(t) = ±⎛⎝
r

r0
⎞
⎠

1/4
.

Hence, the mean value of the first passage time of the stochastic process {R(t), t ≥ 0}
with regard to level r is given by (7.28) with a = b = (r/r0)1/4 :

E(LR(r)) = 1
σ2

r
r0

.

Thus, when applying policy 3, the corresponding maintenance cost rate (7.65) is
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                                        (7.68)K3(r) = r +
c r0 σ2

r
.

The necessary condition  yields the optimal repair cost rate limit anddK3(r)/dr = 0
the corresponding maintenance cost rate:

               (7.69)r∗ = ⎛
⎝

1
4 c2r0σ4 ⎞

⎠
1/3

, K3(r∗) = 1.89 ⎛⎝c
2r0σ4 ⎞

⎠
1/3

.

Comparison to policy 1  Since  the trend function of the cumulativeB(t) = N(0, σ2t),
repair cost process  with  is{X(t), t ≥ 0} X(t) = r0 t B4(t)

m(t) = r0t E(B4(t)) = 3 r0σ4t3, t ≥ 0 .

The corresponding maintenance cost rate (7.63) is

                                        (7.70)K1(τ) = 3 r0 σ4τ2 + c
τ .

Minimizing (7.70) with regard to  givesτ

                   (7.71)τ∗ =
⎛

⎝
⎜ c

6 r0σ4

⎞

⎠
⎟

1/3
, K1(τ∗) = 2.73 ⎛⎝c

2r0σ4 ⎞
⎠ .

With  given by (7.69) and  given by (7.71), K3(r∗) K1(τ∗)

K3(r∗)
K1(τ∗)

= 0.69.

Hence, applying the optimal repair cost rate limit  instead of the economic lifetimer∗

 reduces the total maintenance cost on average by 31%.                                        τ∗

The  next  example  illustrates that optimizing  replacement  intervals  on  the  basis  of
limits on the cumulative repair cost (rate) does not need full information on the un-
derlying stochastic process  of the cumulative repair cost development if{X(t), t ≥ 0}
making use of the fact that this process actually has nondecreasing sample paths.

Example 7.11  It is assumed that the sample paths of the cumulative repair cost pro-
cess  are nondecreasing. Then,{X(t), t ≥ 0}

P(X(t) ≤ x) = P(LX(x) ≥ t).

Thus, if the one-dimensional probability distribution of  is given by{X(t), t ≥ 0}
Ft(x) = P(X(t) ≤ x) for all t ≥ 0,

trend function and mean first passage time with respect to level x of the cumulative
repair cost process  are{X(t), t ≥ 0}

m(t) = ∫0
∞ (1 − Ft(x)) dx ,
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E(LX(x)) = ∫0
∞ Ft(x) dt .

In what follows, policy 2 is applied on condition that  has a Rayleigh distribu-X(t)
tion with probability density

ft(x) = 2 x
λ2 t2 y exp

⎧

⎩
⎨−⎛⎝

x
λt y

⎞
⎠

2⎫

⎭
⎬; x ≥ 0, y > 1, λ > 0 .

Then,
E(LX(x)) = ∫0

∞ ∫0
x ft(u) du dt = ∫0

x ∫0
∞ ft(u) dt du .

Integration yields

 E(LX(x)) = ⎛
⎝

1
λ
⎞
⎠

1/y
Γ⎛⎝1 − 1

2 y
⎞
⎠ x1/y = k1x1/y.

Minimizing the corresponding long-run total maintenance cost rate (7.64) yields the
optimal limit and the corresponding maintenance cost rate x∗ K2(x∗) :

x∗ = c
y − 1 , K2(x∗) = y

k1

⎛
⎝

c
y − 1

⎞
⎠

(y−1)/y
.

Comparison to policy 1  The trend function of  is{X(t), t ≥ 0}

m(t) =
π
2 λ t y = k2t y, t ≥ 0.

Minimizing the corresponding maintenance cost rate (7.63) yields

τ∗ =
⎛
⎝⎜

c
k2 (y − 1)

⎞
⎠⎟

1/y
, K1(τ∗) = y k2

1/y ⎛
⎝

c
y − 1

⎞
⎠

(y−1)/y
.

For all  the inequality    is equivalent toy > 1, K2(x∗) < K1(τ∗)

                                                         (7.72)2
π

< U(x), 0.5 ≤ x < 1,

where

U(x) = [Γ(x)]
1

2(1−x) .

The function  is decreasing in  withU(x) [0.5 ≤ x < 1]

U(0.5) = π > 2/ π and lim
x→1

U(x) = eE/2 > 2/ π ,

where  is the Euler number. Hence, inequality (7.72) holds for all  soE ≈ 0.5772 y > 1
that, as in example 7.9, policy 2 is superior to policy 1. In particular, if 1.1 ≤ y ≤ 5,
then average cost savings between 25 and 9% are achieved by applying the optimal
cumulative repair cost limit  instead of the economic lifetime                           x∗ τ∗.
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The examples analyzed indicate that policies 2 and 3 belong to the most cost efficient
replacement policies. Moreover, in spite of the terminology applied, in practice  X(t)
will not only include pure repair costs, but also costs due to monitoring, servicing,
stockkeeping  as  well as personnel costs.  A  great  advantage  to  the 'repair cost limit
replacement policy' considered in section 3.2.6.4 is  that  knowledge on the lifetime
distribution of the system is not required. Hence, from the modeling point of view
and with regard to their applicability, policies 2 and 3 are superior to the 'repair cost
limit replacement policy'. Finally it should be mentioned that the maintenance cost
rate criterion can be readily replaced with a discounted cost criterion.

7.5.5.4  Point Estimation for the Brownian Motion with Drift  
The parameters of a probability distribution are generally estimated from samples

 from this distribution. But if a random variable X is the first passage time of ataken
Brownian motion process with drift, then X has an inverse Gaussian distribution and
the parameters of this distribution can also be estimated on the basis of samples
generated by scanning sample paths of the underlying process. Therefore, the maxi-
mum-likelihood estimators  and  for the parameters  and  of a Brownianμ σ2 μ σ2

motion with drift, which will be constructed in what follows, are also point estimates
of the parameters  and  of the corresponding inverse Gaussian distribution.μ σ2

Let  be a shifted Brownian motion with drift which starts at value{Du(t), t ≥ 0}

Du(0) = u
and let

di = di(t); i = 1, 2, ..., n

be n of its sample paths, which have been observed in n independent random experi-
ments. The sample path  is scanned at time pointsdi = di(t)

 with   and  ti1, ti2, ..., timi
0 < ti1 < ti2 < . .. < tmi mi ≥ 2, i = 1, 2, ..., n.

The outcomes are
dij = d(tij) ; j = 1, 2, ..., mi ; i = 1, 2, ..., n.

The total number m of observations is

m = Σi=1
m mi.

Further, let
Δdij = dij − di j−1; Δtij = tij − tij−1

with  If the initial value u is a constant, thenj = 2, 3, ..., mi; i = 1, 2, ..., n.

u = di(0); i = 1, 2, ..., n.
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In this case, the maximum-likelihood estimators of  and areμ σ2

μ =
Σi=1

n di mi
− n u

Σi=1
n ti mi

,

σ2 = 1
m
⎧

⎩
⎨
⎪
⎪

Σ
i =1

n (di 1 − μ ti 1 − u)2

ti 1
+ Σ

i =1

n
Σ

j =2

mi (Δdi j − μ Δti j)2

Δti j

⎫

⎭
⎬
⎪
⎪

.

Unfortunately, these estimators are biased. The structure of the estimator  confirmsμ
the intuitively obvious fact that for estimating µ only the initial value u and the last
tuples    of each sample path are relevant.(timi

, dimi
)

If u is random, then the maximum-likelihood estimator of its mean value is

                    (7.73)u =
Σi=1

n di 1 ti 1
−1 − n Σi=1

n di mi
⎛
⎝Σi=1

n ti mi
⎞
⎠

−1

Σi=1
n ti 1

−1 − n2 ⎛
⎝Σi=1

n ti mi
⎞
⎠

−1 .

The following maximum-likelihood estimators were derived on condition that u is a
random variable.

Special case n    In this case only one sample path is available for estimating. Let= 1
the time points at which the sample path is scanned and the corresponding outcomes
be  and ,  respectively. With the notationt1, t2, ..., tm d1, d2, ..., dm

Δdj = dj − dj−1, Δtj = tj − tj−1,

the bias-corrected maximum-likelihood estimators of  and  areμ σ2

μ = dm − u
tm ,

σ2 = 1
m − 2

⎧

⎩
⎨
⎪
⎪

(d1 − μ t1 − u)2

t1
+ Σ

j =2

m (Δdj − μ Δtj)2

Δtj

⎫

⎭
⎬
⎪
⎪

.

Special case m  In this case the estimation is based on n samplei = 1; i = 1, 2, ..., n
paths, but each sample path is only scanned at one time point. This requires to drop
the assumption  stated above. Hence,  The bias-corrected maximum-mi ≥ 2 m = n.
likelihood estimators of µ and  areσ2

                 (7.74)μ =
Σi=1

m di − m u

Σi=1
m ti

, σ2 = 1
m − 2 Σ

i =1

m (di − μ ti − u )2

ti
.
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Example 7.12  Pieper (1988) measured the mechanical wear of 35 identical items
(cylinder running bushes) used in diesel engines of ships over a time span of 11,355
hours, each at one time point. He assumed that the stochastic wear process develops
according to a Brownian motion with drift starting at :u

Du(t) = u + D(t), t ≥ 0.

The point estimates of u, µ and  obtained from (7.73) and (7.74) areσ2

u = 36.145 [μm], μ = 0.0029 [ μm/h], σ2 = 0.137 [μm2/h].

The point estimate of the wear at time can be written in the formt

                         (7.75)Du(t) = 36.145 + 0.0029 t + 0.137 S(t) ,

where  is the standard Brownian motion.{S(t), t ≥ 0}

Hint  If the model (7.75) is correct  then the test function,

T(t) = Du(t) − 0.0029 t − 36.145
0.137 t

has a standard normal distribution for all t (according to property 3 of definition 7.1).
In particular, this must hold for all measurement points  Hence, model (7.75) canti.
be supported or rejected by a chi-square goodness of fit test.

Let    be an upper critical wear level with property that a cylinder run-w = 1000 [μm]
ning bush will experience a drift failure when the wear reaches this level. Then the
lifetime of such a wear part is the first passage time  of the stochastic pro-LDu (w)
cess with regard to level  By (7.41), estimates for mean val-{Du(t), t ≥ 0} w = 1000.
ue, variance and standard deviation of the first passage time  areLDu = LDu (1000)

E(LDu ) ≈ 1000 − 36.145
0.0029 = 332, 364 [h] ,

Var(LDu ) ≈ (1000 − 36.145) ⋅ 0.137
(0.0029)3 = 5.41425 ⋅ 109 ⎡⎣h

2 ⎤⎦ ,

Var(LDu ) ≈ 73, 581 [h].

Let  be that time point at which a wear part must be preventively replaced int = τε
order to avoid drift failures with a given probability  With the survival functionε.
given by (7.42), a point estimate of  of  satisfiesτε τε

                                                (7.76)F(τε) = ε .
Since

e−2(w−u ) μ ≈ e−5.6,

386                                                                                   STOCHASTIC PROCESSES

© 2006 by Taylor & Francis Group, LLC



the second term in (7.42) can be neglected  Therefore, equation (7.76) becomes.

   or                      (7.77)Φ
⎛

⎝
⎜⎜⎜

w − u − μ τε

σ τε

⎞

⎠
⎟⎟⎟ = ε

w − u − μ τε

σ τε
= zε ,

where  is the percentile of the standard normal distribution. The relevant solu-zε ε−
tion of (7.77) is

  τε = w − u
μ

+ 1
2
⎛
⎝⎜

zε σ
μ

⎞
⎠⎟

2
− zε σ

μ
w − u

μ
+
⎛
⎝⎜

zε σ
2 μ

⎞
⎠⎟

2
.

In particular, if ,  then  so that  Thus, withε = 0.95 z0.95 = 1.65 τ0.95 = 231, 121 [h].
probability 0.95, the wear remains below the critical level of 1000 µm within an oper-
ating time of  231,121 hours .                                                                                      

The Brownian motion with drift was firstly investigated by Schrödinger [72] and
Smoluchowski [75]. Both found the first passage time distribution of this process.
Folks and Chhikara [18] give a survey of the theory and discuss numerous applica-
tions: distribution of the water level of dams, duration of strikes, length of employ-
ment times of people in a company, wind velocity, and cost caused by system break-
downs.  Moreover, they were the first to publish tables of the percentiles of the
inverse Gaussian distribution. As a distribution of first passage times, the inverse
Gaussian distribution naturally plays a significant role as a statistical model  for  life-
times of systems which are subject to drift failures, see Kahle and Lehmann [42].
Seshadri [73] presents an up to date and comprehensive treatment of the inverse
Gaussian distribution.

7.5.6     Integral Transformations

7.5.6.1  Integrated Brownian Motion
If  is  a Brownian motion, then its sample paths  are continuous.{B(t), t ≥ 0} b = b(t)
Hence, the integrals

 b(t) = ∫0
t b(y) dy .

exist for all sample paths  They are realizations of the random integral.

                                           (7.78)U(t) = ∫0
t B(y) dy .

The stochastic process  is called integrated Brownian motion. This pro-{U(t), t ≥ 0}
cess can be a suitable model for situations in which the observed sample paths seem
to be 'smoother' than those of the Brownian motion. Analogously to the definition of
the Riemann integral, for any n-dimensional vector  with(t1, t2, ..., tn)
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 and  0 = t0 < t1 < . .. < tn = t Δti = ti+1 − ti ; i = 0, 1, 2, ... , n − 1,

the random integral  is defined as the limitU(t)

                                        (7.79)U(t) = limn→∞
Δti→0

⎧

⎩
⎨ Σ

i=0

n−1
[B(ti + Δti) − B(ti)] Δti

⎫

⎭
⎬ .

(Note that passing to the limit refers here and in what follows to mean-square con-
vergence.) The random variable U(t), being the limit of a sum of independent, nor-
mally distributed random variables, is itself normally distributed. More generally, by
theorem 1.2, the integrated Brownian motion is a Gaussian process. Therefore, the
integrated Brownian motion is uniquely characterized by its trend and covariance
function. In view of

E⎛⎝∫0
t B(y) dy⎞⎠ = ∫0

t E(B(y)) dy = ∫0
t 0 dy ≡ 0 ,

the trend function of the integrated Brownian motion is 0:{U(t), t ≥ 0}

m(t) = E(U(t)) ≡ 0 .
Its covariance function of {U(t), t ≥ 0},

 C(s, t) = Cov(U(s), U(t)) = E(U(s)U(t)), s ≤ t,

is obtained as follows:

C(s, t) = E ∫0
s B(y) dy ∫0

t B(z) dz

= E ∫0
t ∫0

s B(y) B(z) dy dz

= ∫0
t ∫0

s E(B(y) B(z)) dy dz .

Since
E(B(y), B(z)) = Cov(B(y), B(z)) = σ2min (y, z) ,

it follows that

C(s, t) = σ2∫0
t ∫0

s min(y, z) dy dz

= σ2∫0
s ∫0

s min(y, z) dy dz + σ2∫s
t ∫0

s min(y, z) dy dz

= σ2∫0
s ⎡⎣∫0

z y dy + ∫z
s z dy⎤⎦ dz + σ2∫s

t ∫0
s y dy dz

= σ2 s3
3 + σ2 s2

2 (t − s) .

Thus,

C(s, t) = σ2
6 (3 t − s) s2 , s ≤ t .
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Letting  yieldss = t

Var(U(t)) = σ2
3 t3.

The structure of the covariance function implies that the integrated Brownian motion
is nonstationary. But it can be shown that for any τ  the process  with{V(t), t ≥ 0}

V(t) = U(t + τ) − U(t)
is stationary. (Recall that for a Gaussian process strong and weak stationarity are
equivalent.)

7.5.6.2  White Noise
Since the sample paths of a Brownian motion are nowhere differentiable with proba-
bility 1, a stochastic process of the form  with{X(t), t ≥ 0}

X(t) = dB(t)
dt = B (t) or dB(t) = X(t) dt

cannot be introduced by taking the limit in a difference quotient. However, a defini-
tion via an integral is possible. To establish an approach to this definition, let  beg(t)
any function with a continuous derivative  in the interval  and g (t) [a, b] t0, t1, ... , tn
any sequence of numbers satisfying

a = t0 < t1 < . .. < tn = b and Δti = ti+1 − ti ; i = 0, 1, 2, ... , n − 1.

Then the stochastic integral   is defined as the limit∫a
b g(t) dB(t)

        (7.80)∫
a

b
g(t) dB(t) = limn→∞

max
i=1,2,...,n

Δti→0

⎧

⎩
⎨ Σ

i=0

n−1
g(ti) [B(ti + Δti) − B(ti)]

⎫

⎭
⎬ .

The sum in (7.80)  can be written as follows:

Σ
i=0

n−1
g(ti) (B(ti + Δti) − B(ti))

= g(b) B(b) − g(a) B(a) − Σ
i=0

n−1
B(ti+1)

g(ti + Δti) − g(ti)
Δti

Δti.

Taking the limit on both sides as in (7.80) yields

                                   (7.81)∫a
b g(t) dB(t) = g(b) B(b) − g(a) B(a) − ∫a

b B(t) g (t) dt .

This explanation of the stochastic integral is usually preferred to (7.80). As a limit of
a sum of normally distributed random variables, the stochastic integral also has a
normal distribution. From (7.81),
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                                                         (7.82)E⎛⎝∫a
b g(t) dB(t)⎞⎠ = 0 .

By making use of
Var(B(t) − B(s)) = σ2 t − s ,

the variance of the following sum is seen to have a simple structure:

Var
⎛
⎝
⎜ Σ

i=0

n−1
g(ti) [B(ti + Δti) − B(ti)]

⎞
⎠
⎟

= Σ
i=0

n−1
g 2(ti) Var (B(ti + Δti) − B(ti))

= σ2 Σ
i=0

n−1
g 2(ti) Δti .

Passing in this equation to the limit as in (7.80) yields the variance of the stochastic
integral:

                            (7.83)Var⎛⎝∫a
b g(t) dB(t)⎞⎠ = σ2∫a

b g2(t) dt .

The relationship (7.81) motivates the following definition.

Definition 7.3 (White noise)  Let  be the Brownian motion. A stochastic{B(t), t ≥ 0}
process  is called white noise if it satisfies for any function  with a{X(t), t ≥ 0} g(t)
continuous derivative  in  the relationshipg (t) [a, b], a < b,

                                  (7.84)∫a
b g(t) X(t) dt = g(b) B(b) − g(a) B(a) − ∫a

b B(t) g (t)dt .

If B(t) had a first derivative, then  would satisfy (7.84) anyway. Thus,X(t) = dB(t)/dt
X(t) as introduced in definition 7.3 can be interpreted as a 'generalized derivative' of
B(t), because it exists although the differential quotient does not exist. However, this
interpretation of the white noise does not facilitate its intuitive understanding. To get
an idea of the nature of the white noise process  a heuristic argument is{X(t), t ≥ 0},
presented by 'deriving' the covariance function of : Assuming that the or-{X(t), t ≥ 0}
der of 'generalized differentiation' and integration can be exchanged, one obtains for
all s and t with s ≠ t,

C(s, t) = Cov(X(s), X(t)) = Cov⎛⎝
∂B(s)

∂s , ∂B(t)
∂t

⎞
⎠

= ∂
∂s

∂
∂t Cov(B(s), B(t))

= ∂
∂s

∂
∂t min(s, t) .
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Thus, if  thens < t,

C(s, t) = ∂
∂s

∂
∂t s = ∂

∂s 0 = 0 .

If  thens > t,

C(s, t) = ∂
∂s

∂
∂t t = ∂

∂s 1 = 0 .

Hence,
                                         (7.85)C(s, t) = 0 for s ≠ t .

Therefore, for  there is no correlation between X(s) and X(t), no matter hows ≠ t,
small the absolute difference  may be. Thus, white noise can be interpreted ass − t
the 'most random stochastic process', and this property explains its favourite role as a
process for modeling random noise, which is superimposed on a useful signal. How-
ever, in view of its key property (7.85), white noise cannot exist in the real world.
Nevertheless, the white noise process is of great importance for approximately mod-
eling various phenomena in electronics,  electrical engineering,  communication,  eco-
nometrics, time series analysis et alia. Its role can be compared with the concept of
the 'point mass' in mechanics, which also only exists in theory.
Intuitively, white noise can be thought of as a sequence of extremely sharp pulses,
which occur after extremely short time intervals, and which have independent, iden-
tically distributed amplitudes. The times in which the pulses rise and fall are so short
that they cannot be registered by measuring instruments. Moreover, the response

 of the measuring instruments are so large that during any response time a hugetimes
number of pulses occur which cannot be registered.
In practice, a weakly stationary stochastic process  can approximately be{X(t), t ≥ 0}
considered white noise if the covariance between  and  tends extremelyX(t) X(t + τ)
fast to 0 with increasing  For example, if  denotes the absolute value of theτ . X(t)
force which particles in a liquid are subjected to at time t (causing their Brownian
motion), then this force arises from the about  collisions per second between the1021

particles and the surrounding molecules. The process  is known to be{X(t), t ≥ 0}
weakly stationary with a covariance function of type

C(τ) = e−b τ ,
where

b ≥ 1019 sec−1.

Hence,  and  are practically uncorrelated if X(t) X(t + τ)

τ ≥ 10−18.

A similar fast drop of the covariance function  can  be  observed  if  des-{X(t), t ≥ 0}
cribes the electromotive force in a conductor, which is caused by the thermal move-
ment of electrons.
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7.6  EXERCISES

Note  In all exercises,  is the Brownian motion with {B(t), t ≥ 0} Var(B(1)) = σ2.

7.1) Verify that the probability density  of B(t),ft(x)

ft(x) = 1
2πt σ

e−x2/(2 σ2 t) , t > 0 ,

satisfies the thermal conduction equation

∂ ft(x)
∂t = c ∂2 ft(x)

∂ x2 .

7.2) Determine the conditional probability density of B(t) given B(s) = y, 0 ≤ s < t.

7.3)* Prove that the stochastic process  given by{B(t), 0 ≤ t ≤ 1}

 B(t) = B(t) − t B(1)
is the Brownian bridge.

7.4) Let  be the Brownian bridge. Prove that the stochastic process{B(t), 0 ≤ t ≤ 1}
 defined by{S(t), t ≥ 0}

S(t) = (t + 1) B⎛⎝
t

t+1
⎞
⎠

is the standard Brownian motion.

7.5) Determine the probability density of .B(s) + B(t)

7.6) Let  be any positive integer. Determine mean value and variance ofn

X(n) = B(1) + B(2) + . .. + B(n).

Hint  Make use of formula (1.100).

7.7) Prove that for any positve h the stochastic process  defined by{V(t), t ≥ 0}
V(t) = B(t + h) − B(t)

is weakly stationary.

7.8) Prove that the stochastic process  with  is a{X(t), t ≥ 0} X(t) = S3(t) − 3t S(t)
continuous-time martingale, i.e show that

E(X(t) X(y), y ≤ s) = X(s), s < t.

7.9) Prove that the increments of the Ornstein-Uhlenbeck process are not independ-
ent.
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7.10)* Starting from , a particle makes independent jumps of lengthx = 0

Δx = σ Δt
to the right or to the left every  time units. The respective probabilities of jumps toΔt
the right and to the left are

p = 1
2
⎛
⎝1 +

μ
σ Δt ⎞⎠ and 1 − p,

where, for ,σ > 0

Δt ≤ σ
μ .

Show that as  the position of the particle at time t is governed by a BrownianΔt → 0
motion with drift with parameters µ and .σ

7.11) Let  be a Brownian motion with drift with parameters  and {D(t), t ≥ 0} μ σ.
Determine

E⎛⎝∫0
t (D(s))2 ds⎞⎠ .

7.12) Show that for  and c > 0 d > 0

P(B(t) ≤ c t + d for all t ≥ 0) = 1 − e −2 c d /σ2
.

Hint  Make use of formula (7.29).

7.13)  (1) What is the mean value of the first passage time of the reflected Brownian
motion  with regard to a positive level x ?{ B(t) , t ≥ 0}

(2) Determine the distribution function of B(t) .

7.14) At time  a speculator acquires an American call option with infinite expira-t = 0
tion time and strike price  The price  of the underlying risky security at time txs. X(t)
is given by

X(t) = x0eB(t).

The speculator makes up his mind to exercise this option at that time point, when the
price of the risky security hits a level x with

x > xs ≥ x0
for the first time,.
1) What is the speculator's mean discounted payoff  under a constant discountGα(x)
rate ?α
2) What is the speculator's payoff  without discounting?G(x)

In both cases, cost of acquiring the option is not included in the speculator's payoff.
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7.15) The price  of a risky security at time t isX(t)

X(t) = x0 eμt+B(t)+a B(t) , t ≥ 0, 0 < a ≤ 1,

with a negative drift parameter µ. At time  a speculator acquires an Americant = 0
call option with strike price  on this risky security. The option has no finite expira-xs
tion date. The speculator makes up his mind to exercise this option at that time point,
when the price of the risky security hits a level x with  for the first time.x > xs ≥ x0
Otherwise, i.e. if the price of the risky security never reaches level x, the speculator
will never exercise.
Determine the level  at which the speculator should schedule to exercise thisx = x∗
option to achieve
1) maximal mean payoff without discounting and
2) maximal mean discounted payoff (constant discount rate ).α

7.16) The value of a share at time  ist

X(t) = x0 + D(t),

where  and  is a Brownian motion with positive drift parameter x0 > 0 {D(t), t ≥ 0} μ
and variance parameter  At time point  a speculator acquires an Americanσ2. t = 0
call option on this share with finite expiry date . Assume thatτ

x0 + μt > 3σ t , 0 ≤ t ≤ τ.

(1) Why does the assumption make sense?
(2) When should the speculator exercise to make maximal mean undiscounted profit?

7.17) At time  a speculator acquires a European call option with strike price t = 0, xs
and finite expiration time τ. Thus, the option can only be exercised at time τ at price

 independently of its market value at time τ. The price X(t) of the underlyingxs,
risky security at time t is

X(t) = x0 + D(t) ,

where  is the Brownian motion with positive drift parameter  and vola-{D(t), t ≥ 0} μ
tility  If  the speculator will exercise the option. Otherwise, he willσ2. X(τ) > xs ,
not. As in example 7.16  assume that,

x0 + μt > 3σ t , 0 ≤ t ≤ τ.

1) What will be the mean undiscounted payoff of the speculator (cost of acquiring
the option not included)?
2) Under otherwise the same assumptions, what is the investor's mean undiscounted
profit if

X(t) = x0 + B(t) and x0 = xs ?
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7.18) Let X(t) be the cumulative repair cost of a system arising in the interval (0, t]
(excluding replacement costs) and

R(t) = X(t) /t
the corresponding cumulative repair cost rate  Assume.

R(t) = r0 B2(t) , r0 > 0.

The system is replaced by an equivalent new one as soon as  reaches level R(t) r .

(1) Given a constant replacement cost c, determine a level  which is optimalr = r∗

with respect to the long-run total maintenance cost per unit time . (Make sureK(r)
that an optimal level exists.)r∗

(2) Compare  to the minimal long-run total maintenance cost per unit timeK(r∗)
 which arises by applying the corresponding economic lifetime K(τ∗) τ∗.

7.19)* Let  be the standard Brownian motion and{S(t), t ≥ 0}

X(t) = ∫0
t S(s) ds.

(1) Determine the covariance between S(t) and X(t).
(2) Verify that

E(X(t) S(t) = x) = t x
2 and Var(X(t) S(t) = x) = t3

12 .

Hint  Make use of the fact that the random vector   has a two-dimensional(S(t), X(t))
normal distribution.

7.20) Show that for any constant α

E(eα X(t)) = eα2t3/6,

where X(t) is defined as in exercise 7.19.

Hint  Make use of the moment generating function of the normal distribution.
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ANSWERS TO SELECTED EXERCISES

Chapter 1 
1.2) (2) Let 1 and 0 indicate that a person has gene g or not, respectively. Then the
sample space M consists of all the  vectors  with23 = 8 (z1, z2, z3)

zi =
⎧

⎩
⎨

1 if person i has gene g
0 otherwise

; i = 1, 2, 3.

A = {(0, 0, 0)}, B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, A ∩ B = ∅
  C = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

B ∪ C = M\A, (A ∪ B) ∩ C = A ∪ B
1.3)    0.6,   0.3,   0.8
1.4)    (1)  0.925,  0.89,  0.85.  0.965,  0.15   (2)  no
1.5)    0.59,  0.61,  0.52,  0.68,  0.852,  0.881,  0.179,  0.8205
1.6)    0.0902
1.7)    13
1.8)    (1) and (2):  don't check   (3)  check
1.9)    (1)  0.6475   (2)  0.9979
1.10)  (1)  0.023   (2)  0.2978
1.11)  (1)  2p2(1 + p + p3) − 5p4

1.12)  (1)  0.7800    (2)  0.9744
1.13)  (1)  Probability distribution of X:n = 132.
            (2)  0.8182,   0.5{ pi = P(X = xi) = ni/n ; i = 1, 2, ..., 10}.
1.15)  45.18,   5.3421
1.16)  15.22,   0.0151
1.17)  0.9535
1.18)  0.1329
1.19)  0.01185
1.20)  (1)  0.8701   (2)  0.0411
1.21)  0.191
1.22)  0.920
1.23)  0.4493
1.24)  (1)  c = 3/64   (2) c = 1/6  (3)  c = 1
1.25)  0.6931,   0.6931,   0.0513
1.26)  0.4
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1.27)  0.54
1.28)  (1)  3,  0.6   (2)  11/9,  23/81  (3)  1,  1
1.29)  (1)  a) 0.1009   b)  0.7364, (2) 0.9963.
1.30)  (1)  F(x) = (x − 2)3 ⎡⎣10 − 15(x − 2) + 6(x − 2)2 ⎤⎦, 2 ≤ x ≤ 3,

           (2) 0.0579   (3)  2.5
1.31)  5,  -1.56,  6.45,  such an x does not exist,  15.3
1.32)  (1)  0.0475   (2)  0.2975
1.33)  (1)  0.7725   (2)  6.68 %
1.34)  (1)  0.1524   (2)  125.6 hours

1.35)  f (p) =
1, 0 ≤ p ≤ 1
0, otherwise

1.36)    (Pareto distribution)G(x) = ∫0
∞ e−α/x λ e−λαdα = λx

1 + λx , x ≥ 0

1.37)  0.7165
1.38)  [0, ∞)

1.41)  (1) ,  (2) no{p0 = 0.2, p1 = 0.5, p2 = 0.3}, {q0 = 0.2, q1 = 0.6, q2 = 0.2}

          (3) E(X Y = 1) = 7/6, E(Y X = 0) = 1/2.

1.42)  (1)  no   (2)  f (z) = 2(1 − z), 0 ≤ z ≤ 1.

1.43)  (1)  yes  (2)  f (z) = 6 z (1 − z), 0 ≤ z ≤ 1.

1.44)  (1)    (2)  0.792E(Z) = 200, 000, Var(Z) = 12, 296

1.45)  (1)  0.032,  0.406   (2)  726 kg
1.46)  nmin = 43.

1.47)  0.293

1.49)  (1) MX (z) = p z
1−(1−p) z , (2) MZ(z) = ⎛

⎝
p z

1−(1−p) z
⎞
⎠

2
.

1.50)  p1 = p2 = . .. = pk.

1.51)  (1) yes,   (2)      f (z) =
⎧

⎩

⎨
⎪

⎪

z/T2, 0 ≤ z ≤ T
(2T − z)/T2, T < z ≤ 2T
0, otherwise

Simpson- or triangle- distribution.

1.52)   f (s) = λ2

λ2 − s2 e−μ s

1.53)  (1)     (2)  n0 = 11, 280 n0 = 2167.
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Chapter 2
2.1)  not stationary
2.2)  m(t) = μ t, Var(X(t)) = σ2t

2.3)  (1)    (2) weakly stationarym(t) ≡ 0, C(τ) = 1
2 E(A2) cos ωτ, ρ(τ) = cos ωτ .

2.5)  C(τ) = 1
2 Σi=1

n ai
2 cos ωτ , ρ(τ) = cos ωτ

2.6)  (2) C(s, t) = 1, n ≤ s, t ≤ (n + 1/2), n = 0, ±1, ...
0, elsewhere

, (3) no

2.7)  The trend function of the second order stochastic process  is iden-{Z(t), t ≥ 0}
tically 0 and its covariance function is CZ(τ) = C(τ) cos ωτ .
2.8)  Note that the one-dimensional distributions of  depend on t.{X(t), t ≥ 0}

2.9)  CU(s, t) = CV(s, t) = CX(s, t) + CY(s, t)

Chapter 3
3.1)    (1) 0.4422   (2) 0.4422
3.2)    Cov(N(s), N(t)) = Cov(N(s), N(s)) + Cov(N(s), N(t) − N(s))
3.3)    0.2739
3.4)    (1) 0.9084   (2)  min,  E(Y) = 1/4 Var(Y) = (1/4)2

3.5)    0.1341
3.6)    λ2/λ1

3.8)    C(τ) =
⎧

⎩
⎨
⎪
⎪

λ
2 (π − τ )cos τ + sin(π − τ ) 0 ≤ τ ≤ π

0, elsewhere

3.10)  E(K) = E(C) λ
α (1 − e−α t)

3.11)  (1) 64    (2) 0.89

3.13)  τ∗ = θ⎡
⎣⎢

cp
(β−1)cm

⎤
⎦⎥

1/β

3.14)  (1) P(NL(t) = n) = 1
t
⎡⎣1 − e−t Σk=0

n tk/k!⎤⎦; k = 0, 1, ...

          (2)  E(NL(t)) = t /2, Var(NL(t)) = t /2 + t2/12

          (3)  α = 3, β = 6

3.17)  (1)         (2) K(c) =

1
R(c) ∫0

c R(x)dx + cr − c

∫0
∞[F(t)]R(c)dt

. c∗ =
⎡

⎣
⎢1 − β−1

β+1
⎤

⎦
⎥ cr, β > 1
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3.18)  (1)    (2) n∗ = 86 n∗ = 88

3.19)  (1) H(t) = 1
4
⎛
⎝e

−2λt + 2λt − 1⎞⎠
3.22)  0.2642

3.25)  (2)  H(n) =
n + p
1 − p

3.26)  μ = π /2, μ2 = 1, σ2 = 1 − π/4

          (1) ,   (2) lim
t→∞ ∫0

t (t − x + 1)−2 dH(x) = 2
π

lim
t→∞

(H(t) − t/μ) = 2
π − 1

3.27)  1
μ ∫0

t F(x) dx

3.28)  (1) ,   P(A(t) > y − t B(t) = x) = F(t − x + y)
F(t − x)

          (2) P(A(t) ≤ y B(t) = x) = F(x + y) − F(x)
F(x)

3.30)  1
3(λx + 2) e−λx

3.31)  (1) 0.9841   (2) 0.9970

3.33)  (1) K(τ) =
ceF(τ) + cpF(τ)

∫0
τ F(t) dt

          (2)   λ(τ)∫0
τ F(t) dt − F(τ) = c/(1 − c) with 0 < c = cp/ce < 1 − 1

μ λ(∞)
          (3) τ∗ = z

1−c
⎡⎣ c(2 − c) − c⎤⎦ with 0 < c = cp/ce < 1

3.34)  (1)  K(τ) =
cp + ceH(τ)

τ

           (2) (1 + 3λτ) e−3λτ = 1 − 9c/2 with 0 < c = cp/ce < 2/9

3.35)  (1) 0.2163   (2) p(x) ≤ e
− x

13,600

3.36)  (1) 0.1315   (2) 0.1342
3.38)  (1) 860.5 [$/ h]   (2) 0≈

Chapter 4
4.1)  (1)  0.5,   0.2   (2)  0.25,  0.25   (3)  0.5,  0.072

4.2)  (1)     (2)  0.42,    0 P(2) =
⎛

⎝
⎜
⎜
⎜

0.58 0.12 0.3
0.32 0.28 0.4
0.36 0.18 0.46

⎞

⎠
⎟
⎟
⎟

4.3)  (1)  0.2864   (3)  π0 = 0.4, π1 = π2 = 0.3
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4.4)  yes
4.5) (2)  πi = 0.25; i = 0, 1, 2, 3
Note that P is a doubly stochastic matrix. See exercise 4.6.
4.6) (2) no

4.8) (2) P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0.8 0.2 0 0
0 0 0.4 0.6

0.6 0.4 0 0
0 0 0.2 0.8

⎞

⎠

⎟
⎟

⎟

⎟
⎟

, π1 = 3/8, π2 = π3 = 1/8, π4 = 3/8

4.11)  (1) minimal closed sets: {1, 2, 3},  {3, 4}  (2) There are no inessential states.
4.12)  essential: {0, 1, 2}, inessential: {3}

4.13)  (3)  π0 = 50/150, π1 = 10/150, π2 = 40/150, π3 = 13/150, π4 = 37/150

4.14)  (1) essential: {0, 1},  inessential: {2, 3, 4}                                                          
           (2) recurrent: {0, 1},  transient: {2, 3, 4}
4.15)  πi = p(1 − p)i; i = 0, 1, ...

4.18)  (1) positive recurrent  (2) transient

4.19)   E(Ni) =
pii

1−pii
, Var(Ni) =

pii
(1−pii)2

Hint   has a geometric distribution:Ni

P(Ni = n) = (1 − pii) pii
n−1; n = 1, 2, ...

Chapter 5
5.1)  no

5.3)  π0 = 2λ
2λ + 3μ , π1 =

2μ
2λ + 3μ , π2 =

μ
2λ + 3μ

5.4)  (1) 96%   (2) 81%
5.5)  state (i, j):  i, j  respective states of unit 1 and 2:  0  down,   1  operating

5.7) states: 0 system operating, 1 dangerous state, 2 system blocked, 3 system block-
ed  after dangerous failure
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π1 =
λ1
ν π0, π2 =

λ2
μ2

π0, π3 =
λ1
μ1

π0, π0 = 1

1+
λ1
ν +

λ1
μ1

+
λ2
μ2

P(system blocked) = π2 + π3

5.9)  p0(t) = e−2t, p1(t) = 2⎛⎝e
−2t − e−3t ⎞

⎠ , p2(t) = 3e−t(1 − e−t)2

5.10)  (1) (1 − e−λt)2 (2) 1
λ
⎛
⎝1 + 12 + . .. + 1

n−1
⎞
⎠

5.11)  pj(t) = e−λt(1 − e−λt) j−1; j = 1, 2, ...

5.14)  (1) ⎛
⎝

2n
j
⎞
⎠ e

−jμt(1 − e−μt)2n−j, (2) 1
μ
⎛
⎝

1
2n + 1

2n−1 + . .. + 1
n+1

⎞
⎠ , n ≥ 1

5.15)  (1)  0.56  (2)  50 weeks
(Hint:  is given by an Erlang distribu-p0(t) = P(cable completely broken at time t)
tion with parameters  and n = 5 λ = 0.1.)
5.17)  see example 5.14
5.18)  λ < μ
5.20)

(2)      πloss = π3 =
6.75ρ3

1 + 3ρ + 4.5ρ2 + 6.75ρ3 , ρ = λ/μ

5.21)  πloss = π3 =
13.5ρ3/(2 + ν/μ)

1 + 3ρ + 4.5ρ2 + 13.5ρ3/(2 + ν/μ)

5.23)  πloss = 0.0311, πwait = 0.6149

5.24)  state  i, j customers at server 1, 2;  (i, j) : i, j = 0, 1

π(1,0) = ρ π(0,0), π(1,1) = ρ2

2 π(0,0), π(0,1) = ρ2

2(ρ+1)π(0,0)
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5.26)  (1)     (2)  1.2273π0 = π1 = π2 = π3 = 1/4
5.28)  see example 5.14
5.32)  (1) 

(2) 1 − Fs(t) = P(Xs > t) = p1(t) + p2(t), E(Xs) = 1
λ [1.5 − p]

5.34)  66 2
3 %

5.37)  0.3153,  0.4144,   0.2703
5.38)  (2) states: 0 working,  1 repair after type 2 failure,  2 repair after type 1 failure

P(X = 0) = 360/372, P(X = 1) = 4/372, P(X = 2) = 8/372
5.39)  (1)  

(2)   (stationary availability)A0 = 1
1 + λ1μ1 + (λ1 + λ2)μ2

     A1 =
λ1μ1

1 + λ1μ1 + (λ1 + λ2)μ2
, A2 =

(λ1 + λ2)μ2
1 + λ1μ1 + (λ1 + λ2)μ2

5.40)  The stationary state probabilities of the embedded Markov chain are:

π0 =
λ + λ0

2λ0 + λ (3 − e−λ1μ )
, π1 = λ

2λ0 + λ (3 − e−λ1μ )
,

π2 =
λ0 + λ(1 − e−λ1μ)

2λ0 + λ (3 − e−λ1μ )
.

The mean sojourn times  and  are the same as in example 5.26, whereas  isμ0 μ2 μ1

μ1 = 1 − e−λ1μ

λ1
.
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Chapter 6
6.1)  no, since  (see example 6.1).E(Yi

2) > 0

6.2) Example 6.1 is applicable with  since  Xi = Yi − E(Yi) E(Xi) = 0.
6.3) (1)   (2)    (3) T = 2, T > 2, T < 2 .
6.4)  (condition  is necessary)σ2 = −2 μ μ < 0
6.5) E(N) = n

2p − 1
6.7) (1) ,   (2)    (3) p2000 = 0.8703 p−1000 = 0.1297, E(N) = 64.4 .
6.9) Note that the transition from i to j is governed by a binomial distribution with
parameters n and p = i /n .
6.10) See example 6.12 or proof of theorem 7.1 b)

Chapter 7

7.2)  ft(x B(s) = y) = 1
2π (t − s) σ

exp
⎛

⎝
⎜−

(x − y)2

2(t − s) σ2
⎞

⎠
⎟ , 0 ≤ s < t

7.5)  fB(s)+B(t)(x) = 1
2π(t + 3s) σ

exp
⎧

⎩
⎨− 12

x2

(t + 3s) σ2
⎫

⎭
⎬, − ∞ < x < +∞

7.6)  E(X(n)) = 0, Var (X(n)) = n (n + 1) (2n + 1)
6 σ2

7.11)  t2
6
⎛
⎝2μ2t + 3σ2 ⎞

⎠

7.13)  (1)  (see example 7.4)   (3) 1
σ2 x2 P( B(t) ≤ x) = 2Φ(x /σ t ) − 1

7.14)  1) Ga(x) = (x − xs) ⎛⎝
x0
xs

⎞
⎠

γ
with γ =

2 α
σ 2) G(x) = x − xs

7.15)  (1) Optimal level  given by formula (7.42) with x∗ λ =
2 μ

(1 + a)2σ2

          (2) Optimal level  given by formula (7.42) with  replaced byx∗ λ

γ = 1
(1 + a)2σ2

⎛
⎝ 2(1 + a)2σ2α + μ2 − μ⎞⎠

Hint  Note that  hits a positive level x with  at the same time point{X(t), t ≥ 0} x > x0
as the geometric Brownian motion with drift {x0eμt+(1+a)B(t), t ≥ 0}.
7.16)  at time τ

7.17) 1)  where    2) G = σ τ c Φ(c) + σ τ
2π e−1

2c2
, c =

x0+μ τ−xs
σ τ G = σ τ

2π
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