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Probability Theory

1.1 RANDOM EVENTS AND THEIR PROBABILITIES

Probability theory comprises mathematically based theories and methods for investi-
gating random phenomena. Formally, random phenomena occur in connection with
random experiments. A random experiment is characterized by two properties:

1. Repetitions of the experiment, even if carried out under identical conditions, gen-
erally have different outcomes.

2. The possible outcomes of the experiment are known.

Thus, the outcomes of a random experiment cannot be predicted with certainty. How-
ever, if random experiments are repeated sufficiently frequently under identical con-
ditions, stochastic or statistical regularities can be found. Examples of random exper-
iments are:

1) Counting the number of vehicles arriving at a filling station a day.

2) Counting the number of shooting stars during a fixed time interval. The possible
outcomes are, as in the previous random experiment, nonnegative integers.

3) Recording the daily maximum wind velocity at a fixed location.

4) Recording the lifespans of technical systems or organisms.

5) Recording the daily maximum fluctuation of share prices. The possible outcomes
are, as in the random experiments 3 and 4, nonnegative numbers.

6) The total profit sombody makes with his financial investments a year. This "profit'
can be negative, i.e. any real number can be the outcome.

As the examples show, in this context the term 'experiment' has a more abstract mean-
ing than in the customary sense.

Random Events A possible outcome a of a random experiment is called an elemen-
tary or a simple event. The set of all elementary events is called space of elementary
events or sample space. Here and in what follows, the sample space is denoted as M.
A sample space M is discrete if it is a finite or a countably infinite set.

A random event (briefly: evenf) A is a subset of M. An event 4 is said to have oc-
curred if the outcome a of the random experiment is an element of 4: a € 4.

Let 4 and B be two events. Then the set-theoretic operations intersection 'N' and
union 'U' can be interpreted in the following way:

AN B is the event that both 4 and B occur and AUB is the event that A or B (or
both) occur.
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2 STOCHASTIC PROCESSES

A\B B\4

Figure 1.1 Venn Diagram

If A < B (4 is a subset of B), then the occurrence of 4 implies the occurrence of B.

A\B is the set of all those elementary events which are elements of 4, but not of B.
Thus, A\B is the event that 4 occurs, but not B. Note that A\B = A\(4 N B).

The event A =M\4 is the complement of A. If A occurs, then A cannot occur and
vice versa.

Rules of de Morgan Let A|,A4,,...,An be a sequence of random events. Then
Uit 4i =Nz 4 Nz 4= Uiy 4. (1.D)

In particular, if n =2, 4| =4 and 4, = B, the rules of de Morgan simplify to
AUB=ANB, ANnB=AUB. (1.2)

The empty set & is the impossible event, since, for not containing an elementary
event, it can never occur. By definition, M contains all elementary events so that it
must always occur. Hence M is called the certain event. Two events A and B are cal-
led disjoint or (mutually) exclusive if their joint occurrence is impossible, i.e. if
ANB=@. In this case the occurrence of 4 implies that B does not occur and vice
versa. In particular, 4 and 4 are disjoint events (Figure 1.1).

Probability Let M be the set of all those random events 4 which can occur when
carrying out the random experiment, including M and &. Further, let P = P(4) be a
function on M with properties

) P©D)=0, PM)=1,

1) foranyeventd, 0<P(A4)<1,

III) for any sequence of disjoint (mutually exclusive) random events 41,4,,..., ie.
AimAj:Q fori#j,

P( Ui Al-) =X P4). (1.3)

The number P(A) is the probability of event A. P(4) characterizes the degree of cer-
tainty of the occurrence of 4. This interpretation of the probability is justified by the
following implications from properties I) to III).
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1 PROBABILITY THEORY 3

1) P(A) = 1-P(4).
2)If A < B, then P(B\A) = P(B) — P(A). In this case, P(4) < P(B).
For any events 4 and B, P(B\4) = P(B) — P(A N B).
3) If A and B are disjoint, i.e. A "B =, then
P(AUB)=P(A)+P(B).
4) For any events 4, B, and C,
P(AUB)=P(A)+P(B)—P(ANB), (1.4)
P(AUBUC)=PA)+PB)+P(C)—PANB)—PANC)—P(BNC)
+P(ANBN Q).

5) In generalizing implications 4), one obtains the Inclusion-Exclusion-Formula: For
any random events A4, Ay, ..., An,

P(A[UAQU--Udp) = Zho -1k P,
with
n
<0<+ <l
where the summation runs over all k-dimensional vectors
(1,00, 0ip) with 1 <i) <ip<--- <ip<n.
Note 1t is assumed that all those subsets of M which arise from applying operations

M,V and \ to any random events are also random events, i.e. elements of M.

The probabilities of random events are usually unknown. However, they can be esti-
mated by their relative frequencies. If in a series of # repetitions of one and the same
random experiment the event 4 has been observed m = m(A4) times, then the relative
frequency of A is given by

Generally, the relative frequency of 4 tends to P(4) as n increases:
dim_pn(4) = P(A4). (1.5)

Thus, the probability of 4 can be estimated with any required level of accuracy from
its relative frequency by sufficiently frequently repeating the random experiment (see
section 1.9.2).

Conditional Probability Two random events 4 and B can depend on each other in
the following sense: The occurrence of B will change the probability of the occur-
rence of 4 and vice versa. Hence, the additional piece of information 'B has occurred'
should be used to predict the occurrence of 4 more precisely. This is done by defin-
ing the conditional probability of 4 given B.
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4 STOCHASTIC PROCESSES

Let 4 and B be two events with P(B) > 0. Then the conditional probability of A given
B or, equivalently, the conditional probability of A on condition B is defined as
P(ANB)

P(B)
Hence, if 4 and B are arbitrary random events, this definition implies a product for-
mula for P(A N B) :

P(A|B) = (1.6)

P(ANB)=P(A|B) P(B).
{B1,By,...,Bn} is called an exhaustive set of random events if
Uit1 B;=M.

Let {B{,B,,...Bn} be an exhaustive and disjoint set of random events with proper-
ty P(B;)>0 foralli=1,2,... and P(4) > 0. Then the following formulas are true:

P4) = Z?:l P(A|B;) P(B;) 1.7)

P(AlB,-)P(Bi): P(A|B;) P(B;)
PA) S, P(4|B) P(B;)

P(B;|4) = i=1,2,..,n. (1.8)
Equation (1.7) is called total probability rule or formula of the total probability and
(1.8) is called Bayes' theorem or Formula of Bayes. For obvious reasons, the proba-
bilities P(B;) are called a priori-probabilities and the conditional probabilities
P(B,| A) are the a posteriori-probabilities.

Independence If the occurrence of B has no influence on the occurrence of A4, then
P(A|B) = P(A).

This motivates the definition of independent random events: Two random events 4
and B are called independent if

P(4 " B) = P(4) P(B). (1.9)

This is the product formula for independent events 4 and B. Obviously, (1.9) is also
valid for P(B)=0 or/and P(4)=0. Hence, defining independence of two random
events by (1.9) is preferred to defining independence via P(4|B) = P(A).
Note _that if A and B are independent random events, then the pairs 4 and 1_3, A and B,
and A4 and B are independent as well. That means, the independence of 4 and B im-
plies, for instance,

P(4A " B) = P(4) P(B).

The events A1, Ay, ..., An are completely independent or simply independent if for
any subset {4; Aiz’ e Aik} of the set {4,45,...,4n},

°

l.2)..
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1 PROBABILITY THEORY 5

Specifically, the independence of the 4; implies for k=7 a direct generalization of
formula (1.9):
PA1NAy - NAp)=PA)P(43)---P(4n). (1.10)

Example 1.1 In a set of traffic lights, the colour 'red' (as well as green and yellow) is
indicated by two bulbs which operate independently of each other. Colour 'red' is
clearly visible if at least one bulb is operating. What is the probability that in the time
interval [0, 200 Aours] colour 'red' is visible if it is known that a bulb survives this
interval with probability 0.95? To answer this question, let

A = "bulb 1 does not fail in [0, 200]', B = "bulb 2 does not fail in [0, 200]".
The event of interest is
C=A4UB = 'red light is clearly visible in [0, 200]'.
Since A4 and B are independent,
P(C)=P(AUB)=P(A)+P(B)—P(ANB)
= P(4) + P(B) — P(4) P(B) = 0.95 +0.95 — (0.95)% = 0.9975 .

Another possibility of solving this problem is to apply the rule of de Morgan (1.2):
P(C) = P(AUB) = P(A " B) = P(4) P(B)
=(1-0.95)(1-0.95)=0.0025.

Hence, P(C) =1 —P(C) = 0.9975. O
Example 1.2 1% of the population in a country are HIV-positive. A test procedure
for diagnosing whether a person is HIV-positive indicates with probability 0.98 that
the person is HIV-positive if it is HIV-positive, and with probability 0.96 that this

person is not HIV-positve if it is not HIV-positive. What is the probability that a test
person is HIV- positive if the test indicates that?

To solve the problem, random events 4 and B are introduced:
A = 'The test indicates that a person is HIV-positive.'
B ="A test person is HIV-positive.'
Then,
P(B)=0.01, P(B)=0.99
P(A|B)=0.98, P(A|B)=0.02,
P(AIB)=0.96, P(4|B)=0.04.

Since {B, B} is an exhaustive set of events with BN B =, the total probability rule
(1.7) is applicable to determining P(A4) :

P(A) = P(A|B) P(B) + P(A|B) P(B)
=0.98 - 0.01+0.04 - 0.99 = 0.0494 .
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6 STOCHASTIC PROCESSES

Bayes' theorem (1.8) yields the desired probability P(B|A):

P(A|B) P(B) _ 0.98 - 0.01
P(A) 0.0494

P(B|A) = =0.1984.

Although the initial parameters of the test look acceptable, this result is quite unsatis-
factory: In view of P(B|4)=0.8016, about 80% HIV-negative test persons will be
shocked to learn that the test procedure indicates they are HIV-positive. In such a sit-
uation the test has to be repeated several times.

The probability that a person is not HIV -positive if the test procedure indicates this is

P(AIB)P(B) _ 0.96 - 0.99 _
" 1- 00498 ~0.99979 .

This result is, of course, an excellent feature of the test. O

P(Bl4) =

1.2 RANDOM VARIABLES

1.2.1 Basic Concepts

All the outcomes of the random experiments 1 to 6 at page 1 are real numbers. But
when considering the random experiment 'tossing a die', the set of outcomes is 'head'
and 'tail'. With such outcomes, no quantitative analysis of the random experiment is
possible. Hence it makes sense to assign, for instance, number 1 to 'head' and number
0 to 'tail'. Or consider a problem in quality control. The possible outcomes when test-
ing a unit be 'faulty’ and 'operating'. The random experiment consists in checking the
quality of the units in a sample of size n. The simple events of this random exper-
iment are n-dimensional vectors with elements 'faulty' and 'operating'. Usually, one is
not primarily interested in these sequences, but in the total number of faulty units in a
sample. Thus, when the outcomes of a random experiment are not real numbers or if
the outcomes are not of immediate interest, then it makes sense to assign real num-
bers to the outcomes. This leads to the concept of a random variable:

Given a random experiment with sample space M, a random variable X is a real
function on M: X =X(a), a € M.

Thus, a random variable associates a number with each outcome of a random exper-
iment. The set of all possible values or realizations which X can assume is called the
range of X and is denoted as R = {X(a), a € M}. The range of a random variable is
not its most important characteristic, for, in assigning values to simple events, fre-
quently arbitrariness prevails. (When flipping a coin, a '-1' ("+1) may be assigned to
head (tail)). Different units of measurement are another source of arbitrariness. By
introducing a random variable X, one passes from the sample space M of a random
experiment to the range R of X, which is simply another sample space for otherwise
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1 PROBABILITY THEORY 7

the same random experiment. Thus, a random variable can be interpreted as the out-
come of a random experiment, the simple events of which are real numbers. The ad-
vantage of introducing random variables X is that they do not depend on the physical
nature of the underlying random experiment. All that needs to be known is the values
X can assume and the probabilistic law which controls their occurrence. This 'proba-
bilistic law' is called probability distribution of X and will be denoted as P y. For this
nonmeasure theoretic textbook, the following explanation is sufficient:

The probability distribution Py of a random variable X contains all the informa-
tion necessary for calculating the interval probabilities P(X € (a,b]), a < b.

A discrete random variable has a finite or a countably infinite range, i.e. the set of its
possible values can be written as a finite or an infinite sequence (examples 1 and 2).
Let X be a discrete random variable with range R = {xo, Xy, X7, } Further, let p;
be the probability of the random event that X assumes value x; :

p;=PX=x;), i=0,1,2,...

The set {pg, p1,P2,--} can be identified with the probability distribution Py of X,
since for any interval (a,b] the interval probabilities are given by
P(Xe (a,bl)=Pla<X<h)= X p;.

x;€(a,b]

Since X must assume one of its values, the probability distribution of any discrete
random variable satisfies the normalizing condition

TZopi=1.

On the other hand, any sequence of nonnegative numbers {pg, p1, pa, ...} satisfying
the normalizing condition can be considered the probability distribution of a discrete
random variable.

The range of a continuous random variable X is a finite or an infinite interval. In this
case, the probability distribution of X can be most simply characterized by its
(cumulative) distribution function:

F(x)=P(X<x), xe Ry. (1.11)

Thus, F(x) is the probability of the random event that X assumes a value which is
less than or equal to x. Any distribution function F(x) has properties

1) F(—e0)=0, F(+0)=1 2) F(x) is nondecreasing in x. (1.12)

On the other hand, every function F(x) which is continuous from the right and satis-
fies properties (1.12) is the distribution function of a certain random variable X
(Figure 1.2). For a < b, the interval probabilities are given by

P(X e (a,b]) = Pla<X<b)=Fb)-F(a). (1.13)
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8 STOCHASTIC PROCESSES

V.

For) 4
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Figure 1.2 Qualitative graph of the distribution function of a continuous random variable

The definition (1.11) of a distribution function applies to discrete random variables X
as well. Let {x(, x{, x5, ...} be the range of X with x; <x;,{ fori=0,1,... Then,

0 for x<xg
F(x)=P(X<x)= A . (114
Zl.:Opl- for x;<x<xpy, £=0,1,2,--

If the range of X is finite and x5 is the largest possible value of X, then (1.14) has to
be supplemented by F(x) =1 for x, < x. Thus, the distribution function F(x) of a dis-
crete random variable X is a piecewise constant function with jumps of size p; at
x =x;—0. Therefore (Figure 1.3),

pi=F@x;)—-F(x;-0);, i=0,1,2,..

Given {pg,pq,...}, the distribution function of X can be constructed and, vice versa,
given the distribution function of X, the probabilities p; = P(X=x;) can be obtained.
Hence, the probability distribution of any random variable X can be identified with
its distribution function.

A
F(x)
1
pPotpP1tp2+p3
pPotp1tp2
Potp
———»o
> X

xo xl 0 x2 X3

Figure 1.3 Qualitative graph of the distribution function of a discrete random variable
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1 PROBABILITY THEORY 9

1.2.2 Discrete Random Variables

1.2.2.1 Numerical Parameters

The probability distribution and the range of a random variable X contain all the in-
formation on X. However, to get quick information on essential features of a random
variable, it is desirable to condense as much as possible of this information to some
numerical parameters.

The mean value (mean, expected value) E(X) of X is defined as
EX)=ZZox;p;
given that
T |xilpi<oe
Thus, the mean value of a discrete random variable X is a 'weighted mean' of all its
possible values x;. The weights of the x; are their respective probabilities.

Another motivation of this definition (see section 1.9.2): The arithmetic mean of n
values of X, obtained from » independent repetitions of the underlying random ex-
periment, tends to E(X) as n tends to infinity.

If X is nonnegative with range {0, 1,2,...}, then its mean value can be written in the
form

EX) =32 PX2) =327 Z1; py.- (1.15)
If y = h(x) is a real function, then the mean value of the random variable ¥ = /(X) can
be obtained from the probability distribution of X:
EX)=ZZ h(x))p;. (1.16)
In particular, the mean value of

h(X) = (x — E(X))?

is called variance of X:

Var(X) = £iZo(xv; — EX)* p;.
Hence, Var(X) is the mean squared deviation of X from its mean value E(X) :

Var(X) = E(X~ EQ0)?).

Frequently a shorter notation is used:

w=EWX) and o2 = Var(X).
The standard deviation of X is defined as

o= [Var(X),

and the coefficient of variation of X is

V(X)=0/|u|.
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10 STOCHASTIC PROCESSES

Variance, standard deviation, and coefficient of variation are measures for the varia-
bility of X. The coefficient of variation is most informative in this regard for taking
into account not only the deviation of X from its mean value, but relates this devia-
tion to the average absolute size of the values of X.

The nth moment Wy of X is the mean value of X" :

Mo =EX™ =ZZ0x] p;.

1.2.2.2 Important Discrete Probability Distributions
Uniform Distribution A random variable X with range R = {x{, x5,..., x,} has a
discrete uniform distribution if
—P(X=x)=1; i=1,2,.n
Thus, each possible value has the same probability. Mean value and variance are
1 v 1 «n 2
Thus, E(X) is the arithmetic mean of all values which X can assume. In particular, if
x; =1, then
EX) = n(n+ 1) . Var(X) = (n li§n+ 1)

For instance, if X is the outcome of 'rolling a die', then R={1,2,...,6} and p; = 1/6.

Geometric Distribution A random variable X with range R={1,2,---} has a geo-
metric distribution with parameter p, 0 <p < 1, if
pi=PX=0=p(l-p i=12,.
Mean value and variance are
EX) =1lp, Var(X)=(1-p)/p?.
For instance, if X is the random integer indicating how frequently one has to toss a
die to get for the first time a '6', then X has a geometric distribution with p = 1/6.

Generally, X denotes the number of independent trials (independent random experi-
ments) one has to carry out to have for the first time a 'success' if the random event
'success' in one trial has probability p.

Sometimes the geometric distribution is defined with range R={0,1,---} and
p;=PX=i)=p(l-p)}; i=0,1,..
In this case, mean value and variance are

1- 1-
Ex)=—5F, varn=-—F

P
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1 PROBABILITY THEORY 11

Poisson Distribution A random variable X with range R={0,1,---} has a Poisson
distribution with parameter A if

i
pizp(xzi)zif—,e—%; i=0,1,... A>0.

The parameter A is equal to mean value and variance of X :
EX)=A, Var(X)=A\.
Bernoulli Distribution A random variable X with range R ={0, 1} has a Bernoulli
distribution or a (0,1)-distribution with parameter p, 0 <p <1, if
po=PX=0)=1-p, p=PX=1)=p.

Mean value and variance are

EX)=p and Var(X)=p(1-p).
Since X can only assume two values, it is called a binary random variable. In case
R={0, 1}, Xisa(0,1)-variable.
Binomial Distribution A random variable X with range R={0, 1, ...,n} has a bino-
mial distribution with parameters p and n if

pi=PX=i)= (’?)pl’(l —p)"i i=0,1,2,..,n; 0<p<l.
i

Frequently the following notation is used:

p;=b(,n,p)= ('z)pi(l -p)".
Mean value and variance are

EX)=np, Var(X)=np(1-p).

The binomial distribution occurs in the following situation: A random experiment,
the outcome of which is a (0,1)-variable, is independently repeated » times. Such a
series of experiments is called a Bernoulli trial of length n. The outcome X; of ex-

periment i can be considered the indicator variable of a random event 4 with proba-
bility p = P(4):

_ |1 if 4 occurs
! 0 if 4 occurs

If the occurrence of event A is interpreted as 'success', then the sum
n
X=2i X
is equal to the number of successes in a Bernoulli trial of length #n. Moreover, X has a
binomial distribution with parameters » and p.

Note that the number of experiments which have to be performed in a Bernoulli trial
till the first occurrence of event 4 has a geometric distribution with parameter p and
range {1, 2, ...}.
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Negative Binomial Distribution A random variable X with range {0,1,...} has a
negative binomial distribution with parameters pandr, 0 <p <1, r>0, if

P(X=i)= (”’l',‘ Dpit=pys i=0,1,..
Equivalently,
P(X=i)= (_ir)(—p)i(l -p): i=0,1,..
Mean value and variance are

Ex) =L~

1-p’

pr
(1-p)?
Note that the number of non-successes (event A) in a Bernoulli trial till the occur-

rence of the rth success has a negative binomial distribution, »=1,2,... (see geo-
metric distributior).

Var(X) =

Hypergeometric Distribution A random variable X with range
R={0,1,...,min (n,M)}
has a hypergeometric distribution with parameters M, N, and n, M< N, n <N, if

() (=)
m n—m .
G
n
As an application, consider the lottery 'S out of 45'. In this case, M=n=5, N=45
and pp is the probability that a gambler has hit exactly m winning numbers with one

coupon. More importantly, as example 1.4 indicates, the hypergeometric distribution
plays a key role in statistical quality control.

pm=PX=m)= m=0,1,...,min (n,M).

Approximations In view of the binomial coefficients involved in the definition of
the binomial and hypergeometric distribution, the following approximations are use-
ful for numerical analysis:

Poisson Approximation to the Binomial Distribution 1If n is sufficiently large and p
is sufficiently small, then
. . i
(’;)Pl(l -p)t = ?—,6_7‘; A=np, i=0,1,...n.

Binomial Approximation to the Hypergeometric Distribution If N is sufficiently
large compared to 7, then

G0 o pm, M
T~(m)p e p=y

n
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1 PROBABILITY THEORY 13

Poisson Approximation to the Hypergeometric Distribution If n is sufficiently large
and p = M/N is sufficiently small, then

GO

O

Example 1.3 On average, only 0.01% of trout eggs will develop into adult fishes.
What is the probability p, that at least three adult fishes arise from 40,000 eggs?
Let X be the random number of eggs out of 40,000 which develop into adult fishes. It
is assumed that the eggs develop independently of each other. Then X has a binomial
distribution with parameters n = 40,000 and p = 0.0001. Thus,

. 40,000
pl:P(X: l):( .

i
where i=1,2,...,40,000. Since #n is large and p is small, the Poisson distribution
with parameter A =np =4 can be used to approximately calculating the p;:

, where A=np.

) (0.0001)7(0.9999)40-000~,

i
D z?—|e_4; i=0,1,..
The desired probability is

pa=1-po—p1—py~1-0.0183-0.0733 -0.1465 = 0.7619. O

Example 1.4 A delivery of 10,000 transistors contains 200 defective ones. Accord-
ing to agreement, the customer accepts a percentage of 2% defective transistors. A
sample of size n =100 is taken. The customer will reject the delivery if there are no
more than 4 defective transistors in the sample. The probability of rejection pj is the
producer’s risk, since the delivery is in line with the agreement.

To determine py, the hypergeometric distribution with N= 10,000, M =200, and
n =100 has to be applied. Let X be the random number of defective transistors in the
sample. Then the producer's risk is

pr=1=-po—p1—P2—P3-P4

(200)( 9800 )
m 100-m
( 10,000) ’
100
Since N is large enough compared to 7, the binomial approximation with p = 0.02
can be applied:

with

pm=PX=m)=

pm=(190)(0.02)" 0.98)100m; 1y =0,1,2,3,4.

Thus, the delivery is rejected with probability py = 0.051. For the sake of compari-
son: The Poisson approximation with A =np =2 yields p, = 0.055. O
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14 STOCHASTIC PROCESSES

1.2.3 Continuous Random Variables

1.2.3.1 Probability Density and Numerical Parameters
As mentioned before, the range of a continuous random variable is a noncountably
infinite set. This property of a continuous random variable results from its definition:

A random variable is called continuous if its distribution function F(x) has a first
derivative.

Equivalently, a random variable is called continuous if there exists a function f(x) so
that

Feo)=[*_ fu)du.

The function
flx) = F/(x) =dF(x)/dx, xe Ry

is called the probability density function of X (briefly: probability density or simply
density). Sometimes the term probability mass function is used. A density has prop-
erty (Figure 1.4)

[*° fayde = Fleo) = 1.

Conversely, every nonnegative function f(x) satisfying this condition is the probabil-
ity density of a certain random variable X. As with its distribution function, the prob-
ability distribution Py of a continuous random variable X can be identified with its
probability density. The range of X coincides with the set of all those x for which its
density is positive: R = {x, fix) >0} (Figure 1.4).

J(x)

Figure 1.4 Distribution function and density

The mean value of X (mean, expected value) is defined as

EQX) =["7x f(x)dx
given that
[ Il fe) de < oo
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1 PROBABILITY THEORY 15

In terms of its distribution function, the mean value of X is given by
EQ) = [ - Fldx—[° Fx)dx.
In particular, for nonnegative random variables, the analogue to (1.15) is
EX) =[11 = F(x)] dx. (1.17)

If h(x) is a real function and X any continuous random variable with density f(x),
then the mean value of the random variable Y = A(X) can directly be obtained from
the density of X:

E(Y) = [T hx) f(x) dx. (1.18)
In particular, the mean value of 4(X) = (X— E(X))2 is the variance of X:
Var(X) = [ 720 = E(X))? f(x) dx.

Hence, the variance of a random variable is its mean squared deviation from its mean
value. Standard deviation and coefficient of variation are defined and motivated as
with discrete random variables.

The nth moment of X is
Wn = EX™) = [T %" fx)dx; n=0,1,...

The following relationship between variance, second moment and mean value is also
valid for discrete random variables:

Var(X) = E(X?) = (E(X))? =y —p2. (1.19)

For a continuous random variable X, the interval probability (1.13) can be written
as follows:

Pla<X<b)=Fb)~Fa)=[" f(x)dx.
The a—percentile xo, (also denoted as o—quantile q¢ ) of a random variable X is de-
fined as
Fxo)=o0.
This implies that in a long series of random experiments with outcome X, about 0%
of the observed values of X will be equal to or less than x¢.. The 0.5-percentile is cal-
led the median of X or of its probability distribution. Thus, in a long series of random

experiments with outcome X, about 50% of the observed values will be to the left
and to the right of x( 5 each.

A probability distribution is symmetric with symmetry center a if f(x) satisfies
fla—x)=f(a+x) forall x.
For symmetric distributions, symmetry center, mean value, and median coincide:
a=EX)=xg5.
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Figure 1.5 Illustration of the percentiles

A mode m of a random variable is an x-value at which f(x) assumes a relative maxi-
mum. A density f(x) is called unimodal if it has only one maximum.

Standardization A random variable Z (discrete or continuous) with
E(Z)=0 and Var(Z)=1

is called a standardized random variable. For any random variable X with finite
mean value [l and variance G, the random variable
X—-u

z=25

is a standardized random variable. Z is called the standardization of X.

1.2.3.2 Important Continuous Probability Distributions

In this section some important probability distributions of continuous random varia-
bles X will be listed. If the distribution function is not explicitely given, it can only
be represented as an integral over the density.

Uniform Distribution A random variable X has a uniform distribution over the in-
terval [c,d] with ¢ < d if it has distribution function and density

0, x<c 1 <r<d
F(x) = P c<x<d |, f(x):{ﬁ’ e=x= , c<d.

d—c’
1, d<x 0, x¢l[cd]

Thus, for any subinterval [a, b] of [c, d], the corresponding interval probability is

Pla<Xx<by=2=9
d-c
This probability depends only on the length of the interval [a, b], but not on its posi-
tion within the interval [c,d], i.e. all subintervals of [c,d] of the same length have
the same chance that X takes on a value out of it.
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Mean value and variance of X are

_c+d _ 1. 2
B =34, VarX) =15 (d-o).

Pareto Distribution A random variable X has a Pareto distribution over the interval
[d, o) if it has distribution function and density

F(x)_l—(—) foy =% ()CH,dezo.

Mean value and variance are

EX)=-<L >,
-
cd?

_— 2.
c-D2e-2

Var(X) =

Exponential Distribution A random variable X has an exponential distribution with
parameter A if it has distribution function and density

F)=1-e™,  f(x)=Le ™, x>0, A>0.
Mean value and variance are
EX)=1/A, Var(X)=1/A2.

In view of their simple structure and convenient properties, the exponential distribu-
tion is quite popular in all sorts of applications. Frequently, the parameter A is denot-
ed as 1/.

Erlang Distribution A random variable X has an Erlang distribution with parame-
ters A and # if it has distribution function and density

=1 -ehx g 001
=0 1!
(7\.x)n 1 Ax
T (n-1)1°
Mean value and variance are
EX)=n/\, Var(X)=n/\>2.

The exponential distribution is a special case of the Erlang distribution (n=1).

fx) = ;0 x20,A>0,n=1,2,..

Gamma Distribution A random variable X has a Gamma distribution with parame-
ters o and [ if it has density

o
fx) = rB(a) ~LeBx, x>0, 0>0,B>0,
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where the Gamma function T'(z) is defined by
I'(z) = IBO xZle™dx, z>0.
Mean value and variance are
EX)=a/B, Var(X)=o/p>.
Special cases: Exponential distribution for oo.=1 and B =A, Erlang distribution for

o=n and B=A.

Beta Distribution A random variable X has a Beta distribution in the interval [0, 1]
with parameters o and B if it has density

) = B((i 5 Xl —xB-1 0<x<1, a>0, B>0.
Mean value and variance are
EX) =%, Var op

> a X) = .
o+p (o+PB)2(a+B+1)
The Beta function B(x,y) is defined by

_TTy)

B(x,y) = TGc+y) x>0, y>0.

Weibull Distribution A random variable X has a Weibull distribution with scale pa-
rameter © and form parameter B if it has distribution function and density (Figure
1.6)
B-1
Py =1-e@0)P fx)= % (g) RODLAN B>0,6>0.

Mean value and variance are

E(X):SF(%+1), Var()()zez{l"(%+l) —(F(%+1D2}.

JSx)

> X

0

Figure 1.6 Densities of the Weibull distribution
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Special cases: Exponential distribution for 6 = 1/A and f =1, Rayleigh distribution
for p=2.

The Weibull distribution was found by the German mining engineers E. Rosin and E.
Rammler in the late twenties of the past century when investigating the distribution
of the size of stone, coal and other particles after a grinding process (see, for exam-
ple, [68]). In the forties of the past century, the Swedish engineer W. Weibull came
across this distribution type when investigating mechanical wear.

Normal Distribution A random variable X has a normal (or Gaussian) distribution
with parameters 1 and 62 ifit has density (Figure 1.7)

4(@)2
f)=——e 20/ | ey <too, —co<<+oo, G0,

J2T o

As the notation of the parameters indicates, mean value and variance are

Ex)=p, VarX)=02.
A normally distributed random variable (or, generally, the normal distribution) with
parameters U and 62 is denoted as N(u,cz). Different from most other probability
distributions, the standardization of a normally distributed random variable also has a
normal distribution. Therefore, if X = N(L, 02), then

N(o,l)z)%.

The density of the standardized normal distribution is denoted as @(x):
| -]
o(x) = e , —oo< X< 4o,
J2T

The corresponding distribution function ®(x) can only be represented as an integral,
but the percentiles of this distribution are widely tabulated.

u-26 wu-o 0 u+o u+2c

Figure 1.7 Density of the normal distribution (Gaussian bell curve)
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Since @(x) is symmetric with symmetry center 0,
O(x) =1—-D(—x).

Hence there is the following relationship between the o~ and the (1—o)- percentiles
of the standardized normal distribution:

—Xo=X]_qg, O<a<l1/2.
This is the reason for introducing the following notation (analogously for other dis-
tributions with symmetry center 0):

Zo=X|_qg, O<a<I1/2.
Hence,

P(—zgpn SN0,1)<z4n) =Pzgpn) —Pl—zgpn)=1-0.

Generally, if X=N(, 62), the interval probabilities (1.13) can be calculated by
using the standardized normal distribution:

(b—p) (a—u).

Plasx<b)=d —5 -~

Logarithmic Normal Distribution A random variable X has a logarithmic normal
distribution with parameters | and ¢ if it has density

_ 2
= 1 exp{ 1(Iny—p)
oy

m 5" o )}; >0, 6>0, —co< U< o0

Thus, X has a logarithmic normal distribution with parameters | and ¢ if it has struc-
ture X=e?, where Y= N, 62). Equivalently, X has a logarithmic normal distribu-
tion if Y = In X has a normal distribution. Therefore, the distribution function of X is

Fly) = cp(lnys_ “), x>0,

Mean value and variance are
2 2 2
E(X)=eMt072 yap(X) = 240 (ec - 1) )

Cauchy Distribution A random variable X has a Cauchy distribution with parame-
ters A and W if it has density

= k<o, A>0, —co< <o,

a2+ -2

Mean value and variance do not exist.

© 2006 by Taylor & Francis Group, LLC



1 PROBABILITY THEORY 21

Inverse Gaussian Distribution A random variable X has an inverse Gaussian distri-
bution with parameters o and B if it has density

2
flx)= ﬁexp[—“gﬁ%], x>0, >0, B>0.

The corresponding distribution function is
x—B “20/B x+PB
F(x)z(D( )—i—e o (D(—— , x>0.
Boox Box
Mean value and variance are

EX) =B, Var(X)=PB3/a.

Logistic Distribution A random variable X has a logistic distribution with parame-
ters W and ¢ if it has density

Tt exp (_L x;“j

30O

ﬁ6|:1+exp [_%%ﬂz’

Jx)=

—co<x<oo, 6>0, —co< U <00,

Mean value and variance are
EX)=u, Var(X)=oc2.
Example 1.5 A company needs wooden shafts of a length of 600 mm. It accepts de-

viations of maximal +6 mm. The producer delivers shafts of random length X which
has an N(200, 62)-distribution.

1) What percentage is rejected by the company if ¢ =3mm ? The probability that a
shaft will be rejected is

P(IX-600] > 6) = 1 — P(|X— 600| <6) =1—P(594 < X < 606)

o q)(606 : 600) _(D(594 : 600)

=1-[P2)-D(-2)]=2[1-D(2)]
=2-[1-0.97725]
=0.0455.
Thus, 4.55 % of the shafts are rejected.

2) What is the value of ¢ if the company rejects on average 10% of the shafts?
By making use of the previous derivation with ¢ =3 replaced by G,
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P(|X—-600] > 6) = 1—[®(6/0) — P(-6/0)] = 2[1 — D(6/5)].
This probability must be equal to 0.1. Hence, the parameter ¢ has to be determined
from ®(6/6) =0.95, or, equivalently, from
6/c =2095= 1.64,

since the 0.95-percentile of the standardized normal distribution is z( g5 = 1.64.
Thus, 6 =3.658. o

Example 1.6 In a certain geographical area of Southern Africa, mean value and var-
iance of the lifetime of the African wild dog have been determined as

u=8.86230 [years] and 62 =21.45964.

1) Assuming that the lifetime of an African wild dog has a Weibull distribution, the
parameters 0 and 3 of this distribution satisfy

E(X)=0T(1 +1/B) = 8.86230,
Var(X) =02 T(1+2/B) - (I(1+ 1/B))? | =21.45964.
Combining these equations yields an equation in B :
Ta=+2B) =1.27323.
[T(1+ 1/B)])?
The solution is § =2 (Rayleigh-distribution). Hence, 6 = 10.

2) What is the probability that an African wild dog will survive 10 years on condi-
tion that it has survived 5 years? According to (1.4), the probability of interest is

P(X>10)  ~(10/10)
PX>35)  ~(510)?

=¢075 = 0.47237.

P(X>10|X>5)) =

Note that the (unconditional) probability for an African wild dog to reach an age of
2
at least 10 years is e~ 1010)7 = o—1 = 0 36788. O

1.2.4 Mixtures of Random Variables

The probability distribution Py of any random variable X depends on one or more
numerical parameters. To emphasize the dependency on a special parameter 0, in
this section the notation Py g instead of Py is used. Equivalently, in terms of dis-

tribution function and density of X (if the latter exists),

Fx(x)=Fx(x,0), fy(x)=fx(x,0).
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Mixtures of random variables or their probability distributions arise from the as-
sumption that the parameter 0 is a realization of a random parameter ©, and all the
probability distributions being elements of the set {Py g, 6 € Rg@ } are mixed.

1. Discrete Random Variable © with range Rg ={0(,0;,...} Let the random pa-
rameter © have probability distribution

Po={q0,91,.-} With gn=P(©=0,}; n=0,1,...
Then the mixture of probability distributions of type Py g is defined as

G(x)=Z,20 Fx (x,0n)qn .

2. Continuous Random Variable © with range R@ < (—oo,+e) Let the random pa-
rameter ©® have probability density fg(0), 6 € R@. Then the mixture of probability
distributions of type Py g is defined as

G() =g Fx(x.0) f0(8)d6.

Thus, if © is discrete, then G(x) is the weighted sum of the Fy (x,0,) with weights
gn given by the probability distribution of ®. If ® is continuous, G(x) is the weight-
ed integral of Fy(x,0) with weight function fe(x,0). In either case, the function
G(x) satisfies properties (1.12). Hence, G(x) is the distribution function of a mixed
random variable Y and the probability distribution of Y is the weighted mixture of
probability distributions of type Py g .

If X is continuous, the respective densities of Y are
g0 =220 [x(c,0n)gn and g() =[p  fx(x.0)f0(6)d6.

In either case, by (1.16) and (1.18), G(x) is the mean value of the random variable
Fyx(x,0), and g(x) is the mean value of the random variable fy(x, ©):

G(x) = E(Fx(x,0)), gx)=E(fx(x,0)).

If X is discrete with probability distribution
Pyo=1{pi®)=P(X=x;0); i=0,1,..},

then the probability distribution of Y, given so far by its distribution function G(x),
can equivalently be characterized by its individual probabilities

P(Y=x)=2,_0p;i®n)qn; i=0,1,.. (1.20)
if © is discrete, and
P(Y:x,.)szep,.(e)fe(e)de; i=0,1,.. (1.21)

if © is continuous.
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The probability distribution of © is sometimes called structure or mixing distribu-
tion. Hence, the probability distribution Py of the 'mixed random variable' Y is a
mixture of probability distributions of type Py g with regard to a structure distribu-
tion Pg.

The mixture of probability distributions provides a method for producing types of

probability distributions, which are specifically tailored to serve the needs of certain
applications.

Example 1.7 (mixture of exponential distributions) Let X have an exponential dis-
tribution with parameter A:

Fy(x,\)=P(X<x)=1-¢ " x>0.
This distribution is to be mixed with regard to a structure distribution P; , where L is
exponentially distributed with density

S0y =pe ™
Mixing yields the distribution function
G =7 Fxe VM) dhr =[[7(1—e e mrdn,

=l-p/(x+p).

Hence, mixing exponential distributions with regard to an exponential structure dis-
tribution gives distribution function and density

G(x)=xfu, gx) = , x20.

This is a Pareto distribution. O

Example 1.8 (mixture of binomial distributions) Let X have a binomial distribu-
tion with parameters n and p:

PX=i)= (’;)pi(l -p)"7 i=0,1,2,...,n.

The parameter n is considered to be a value of a Poisson with parameter A distribut-
ed random variable N:

A A
P(N=n)= e n=0,1,... (Afixed).

Then, from (1.20), using

(’Z) =0 for n<i,

the mixture of binomial distributions P X M= 0,1,... with regard to the structure
distribution Py, is obtained as follows:
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o)

P(Y=i)= 20(’})p"(1—p>""'2—',’e*
p |

—Z()p(l p)}’ll e

_p' S -1k
i! kzo kl

i
- (7%) eh M),
Thus,

P(Y_)_O‘p) e, i=0,1,...

This is a Poisson distribution with parameter A p. |

Mixed Poisson Distribution Let X have a Poisson distribution with parameter A:
i
Px)={P(X=10)= i.”—!e"}‘; i=0,1,..;A>0}

Then a random variable Y with range {0, 1,...} is said to have mixed Poisson distri-
bution if its probability distribution is a mixture of the Poisson distributions Py

with regard to any structure distribution. For instance, if the structure distribution is
given by the density f7 (L) of a positive random variable L (i.e. the parameter A of
the Poisson distribution is a realization of L), the distribution of Y is given by

P(Y=i)= | Z_”—'le_foO»)dk, i=0.1,..
bl

A mixed Poisson distributed random variable Y has the following properties:
(1) E(Y)=EL)
(2) Var(Y)=E(L)+ Var(L)

(3) P(Y>n)= T ;‘—': eME; (V) d M,
0!

where Fj (A) = P(L <) is the distribution function of L and F (M) =1=Fr(\).

Example 1.9 (mixed Poisson distribution, gamma structure distribution) Let the
random structure variable L have a gamma distribution with density

100 = %W‘l Br A0, 0>0, B>0.

The corresponding mixed Poisson distribution is obtained as follows:
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oo o
P(Y=i)= (j)L, -X—FB((X) Ao-Te=Bh g

[}

_L‘FB_J A1 ,~A(B+) g,

0
_lB_ T i+o—1 ,—x
- i! ((X) (B+1)l+06 (J; X edx
_1 TG+ B

_i! I'(o) (B+1)i+0(

i— (1 )\ B \* _
( 1i+a)KBJlr1) 1) >0, B>0, i=0,1,..

This is a negative binomial distribution with parameters »=o and p=1/(B+1). In
deriving this result, the following property of the gamma function has been used:

I'i+o)=>G-1+o)T'G-1+a); i=1,2,... O

1.2.5 Functions of a Random Variable

Let X be a continuous random variable and y = /(x) a real function. This chapter
deals with the probability distribution of the random variable ¥ = A(X).

Theorem 1.1 Let X and Y be linearly dependent: Y= o X+ 3. Then,

Fy()= FX(%B) for o> 0,

Fy(=1 —FX(%B) for o< 0,

| _

o) = &%) foraxo,
EY) =0EX)+B, Var(Y)=o2Var(X).

Proof The distribution function of Y is obtained as follows:

Fy() = P(Y<y)=P(0.X+B <y)= P(Xs ijB) = FX(J%E') for 0> 0.

Fy(y)= P(Y<y)=P0X+B<y) = P(X> —) =1-F ( ) for 0<0.

The corresponding density fy(y) is obtained by differentiation of F'y(y).
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For oo > 0, the variance of Y'is
Var() = | (v= B2y 0y =] (=0 B —B)? & 1[5 )y
Substituting x = (y— B) /ot yields
Var(Y) = | (ox— 0 E(X))2 & fx(x) ovdx = a2 Var(X).

(The integrals involved refer to the ranges of X and Y.) The case ot < 0 is done analo-
gously. u

If X=N(, (52) , then the standardization of X, namely

_X-u 1, B
Z=—7% =5%-5>

also has a normal distribution. More generally, every linear transform Y=o X+ 3 of
X has a normal distribution. Usually, ¥ = oo.X+ B has not the same distribution type
as X. For instance, if X has distribution function

Fy(x)=1-e x>0,
then the distribution function of Y=oX+ is

_ B
Fy(y) = FX(%) —1-eMT, 2P, a>0.

This distribution function characterizes the class of shifted exponential distributions.
As a consequence, the standardization of an exponentially distributed random varia-
ble does not have an exponential distribution.

Strictly Monotone Function y=h(x) Let y=A(x) be a strictly monotone function
with inverse function x = 47! ).

If y="h(x) is strictly increasing, then, for any random variable X, the distribution
function of Y = A(X) is

Fy(y) = P(h(X) <y) = PX < h7L () = Fx(h ' ().
If y = h(x) is strictly decreasing, then, for any random variable X,

Fy() = P(h(X) <y) = P(X> h~L(y)).
Hence,

Fy(y)=1-Fy(h™ ().
By differentiation, applying the chain rule, the density of Y is in either case seen to be

dh~ 1@) dx(y)

Sy =fxh~ o) = fx(x(»))

Note that the formulas given are only valid for y being element of the range of Y.
Outside of this range, the distribution function of Y is 0 or 1 and the density of Yis 0.
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Example 1.10 A solid of mass m moves along a straight line with a random velocity
X, which is uniformly distributed over the interval [0, /']. The random kinetic energy
of the solid is

_1 2
Y—sz.

In view of y=h(x) = %mx 2 it follows that

_ 1
x=h~lo)= [2y/m and j—;: [1/2my) , 0<y<§mV2.

Since
fY® =1V, 0<x<V,
the density of Y is
1. 12

fr0)=5 g 0sysgmy2.

The mean kinetic energy of the solid is
mv2p | | mv2p
En= | vy JV@my) dy =5 J172m [ yV2ay
0 0

2
am (2] e Lmp2.

It is more convenient to determine E(Y) by means of (1.18):

EY)= _[ ~mx —dx- IJ(I)/ 2ax=1 sz O

1.3 TRANSFORMATION OF PROBABILITY DISTRIBUTIONS

The probability distributions or at least moments of random variables can frequently
be obtained from special functions, so called (probability- or moment-) generating
functions of random variables or, equivalently, of their probability distributions. This
is of importance, since it is in many applications of stochastic methods easier to de-
termine the generating function of a random variable instead of its probability distri-
bution. Examples will be considered in the following chapters. The method of deter-
mining the probability distribution or moments of a random variable from its generat-
ing function is theoretically justified, since to every probability distribution belongs
exactly one generating function of a given type and vice versa. Formally, going over
from a probability distribution to its generating function is a transformation of this
distribution. This section deals with the z-fransformation for discrete nonnegative
random variables and with the Laplace transformation for continuous random varia-

bles.
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1.3.1 z-Transformation

The discrete random variable X has range {0, 1,...} and probability distribution
{po,pl,...} with p; =P(X=i); i=0,1,...
The z-transform of X, or, equivalently, of its probability distribution, is defined as
M(z) = 2;0 pizi,

where z is a complex number. For our purposes it is sufficient to assume that z is a
real number. If misunderstandings are possible, the notation M y(z) is used instead of

M(z). From (1.16), M(z) is the mean value of the random variable Y= X
M(z) = Ez¥). (1.22)
M(z) converges absolutely for |z| <1 :
M@ <EZ0 p; || <ZZg pi=1.
Therefore, M(z) can be differentiated (as well as integrated) term by term:
M) =XZyip;z 1.
Letting z =1 yields
M(1)=XZyip;=EWX).
Taking the second derivative of M(z) gives
M (2) =220 —1)ip;zi2.
Letting z =1 yields
M'(1)=ZZy (- Dip;=2Z i’p; ~Zig ip; -
Therefore, M’ (H=EX 2) — E(X). Thus, the first two moments of X are
EX) =M (1), EX?%)=M"1)+M ).

Continuing in this way, all moments of X can be generated by derivatives of M(z).
Hence, the z-transform is indeed a moment generating function. In view of (1.19),

EX) =M (1),  Var(x)=M")+M (1)- [M/(l)]z. (1.23)
On the other hand, by expanding a given z-transform M(z) into a power series in z,

the resulting coefficients of z! are the probabilities p; = P(X =i). Hence, M(z) is also
called a probability generating function.

Poisson Distribution X has a Poisson distribution with parameter A :

i
pi=PX=i)= z‘—'e—x; i=0,1,..
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Then,

Hence,
M(z) = M),
The first two derivatives are
M/(Z): }Lek(z—l)’ M//(Z): A2eM(-1)
Letting z = 1 yields
M y=n, M’(1)=2%
Thus, mean value, second moment and variance of X are

EX)=A, Var(X)=A, EX2)=A+1).

Binomial Distribution X has a binomial distribution with parameters n and p:
pi=PX=i)= (’l?)pi(l -p)"i i=0,1,..,n.
Then,
M@ =Zig(Dp'(1-p)" 2 =T (Dp2) (1 -p)"™.
This is a binomial series so that
M@z)=[pz+(1-p]".

By differentiation,
M @) =nplpz+(1-p]",
M(2)= (- D)np?[pz+(1-p)"2.
Hence,
M (1)y=np and M"”(1)=(n-1)np?
so that

EX)=np, EWX?)=n-np>+np, Var(X)=np(l-p).

Convolution Let {pg, py,...} and {gg, q1,...} be the respective probability distri-
bution of the discrete random variables X and Y with joint range {0,1,...} and let a se-
quence {rq, '], ...} be defined as follows:

n
"n =20 Pidni =P0dn+P14dn1 + - +pPnqg. n=0,1,..  (1.24)

The sequence {rg, r1,...} is called the convolution of the probability distributions
{po-P1>--} and{qq, q1,...} . The convolution is the probability distribution of a cer-
tain random variable, since

Z;ozorn=1, rn20
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For deriving the z-transform of the convolution, the following formula is needed:
oo n oo oo
20 Zj=0 @in = =0 Lip=i %in (1.25)

If Z denotes that random variable whose probability distribution is the convolution
{rg, 1>, }, then its z-transform is

oo oo n
Mz(z) = anO rpz" = z:}1:0 z:i=0piqn—izn
= Ziopiz’(EZli qn—izn_l)

= (Ziopizi) (210{0:0 qkzk) :
Thus, the z-transform of Z is the product of the z-transforms of X and Y:

My(2) = My(z2) - My(z). (1.26)

1.3.2 Laplace Transformation

Let f(x) be any real-valued function on [0, +e0) with properties
1) f(x) is piecewise continuous,

2) there exist real constants a and s( such that f(x) < ae®0* forall x > 0.

The Laplace transform }”(s) of f(x) is defined as the parameter integral
[ =[5 e f(x)dx,
where the parameter s is any complex number satisfying Re(s) > 5.

Notation 1f z=x+ iy is any complex number (i.e. i = ,/—1 and x, y are real numbers,
then R(z) denotes the real part of z: R(z) =x.

Assumptions 1 and 2 make sure that }"(s) exists. With regard to the applications con-
sidered in this book, s can be assumed to be real. In this case, under the assumptions
1 ans 2, f(s) exists in the half-plane given by {s, s >s(}.
Specifically, if f(x) is the probability density of a nonnegative random variable X,
then f(s) has a simple interpretation:
1(s)=E(e5%). (1.27)

This relationship is identical to (1.22) if there z is written in the formz=¢75 .
The n fold derivative of }”(s) with respect to s is

d" f(s)

ds"

Hence, if f(x) is the density of a random variable X, then its moments of all orders

=(-D" J;o x"e™SX f(x)dx.
can be obtained from f(s):
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EX™) = (1)”d f(“) ; n=0,1,.. (1.28)
s=0

Thus, the Laplace transform is a moment generating function. However, the Laplace
transform is also a probability (density) generating function, since via a (complex)
inversion formula the density of X can be obtained from its Laplace transform.

In what follows, it is more convenient to use the notation

f&)=L{f}.
Partial integration in }(S) yields (s > s = 0)

L{[ faydu} =1 1) (1.29)
and

{df W1 _ L1 1 = s J(s) - 100). (130)

More generally, if f (”)(x) denotes the nth derivative of f(x) with respect to x, then
FO() =5" F(9) =51 f(0) =52 f/(0) =+ = s D (0) - 1= Do),
Let f1 and f, be any two functions satisfying assumptions 1) and 2). Then,
Lif1 40} =L} +L{) =116) 4720 (1.31)

Convolution The convolution f1 *f, of two functions f] and f,, which are defin-
ed on the interval [0, +o0), is given by

(1 #/2)@) = [ fole=w) f1 ) du.

The following formula is the 'continuous' analogue to (1.26):

Ly =/} = LI L) =116) f2(). (132)

A proof of this relationship is easily established:

L{fy #fo} =[5 e [§ oo —w)f1 (w) dudx
=[5 e [7 eSO £y (- u)dxdu
=[5 e /1w [§ eV ) dy du
=11(5) /206).

Verbally, formula (1.32) means that the Laplace transform of the convolution of two
functions is equal to the product of the Laplace transforms of these functions.
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In proving (1.32), Dirichlet's formula had been applied:

[6 Joreeyydxdy =5 [ fx.p)dyas. (1.33)

Obviously, formula (1.33) is the 'continuous analogue' to formula (1.25):

Retransformation The Laplace transform ]A‘(s) is called the image of f(x) and f(x) is

the pre-image of f(s). Finding the pre-image of a given Laplace transform (retrans-
formation) can be a difficult task. Properties (1.31) and (1.32) of the Laplace trans-
formation suggest that Laplace transforms should be decomposed as far as possible
into terms and factors (for instance, decomposing a fraction into partial fractions),
because the retransformations of the arising less complex terms and factors are usual-
ly easier done than the retransformation of the original image. Retransformation is
facilitated by contingency tables. These tables contain important functions and their
Laplace transforms. As already mentioned, there exists an explicit formula for obtain-
ing the pre-image of a given Laplace transform. Its application requires knowledge
of complex calculus.

Example 1.11 Let X have an exponential distribution with parameter A:
fx)= Ae™™X x>0,
The Laplace transform of f(x) is

() =J(°)° eS¥he M gy =), j;o e~ (TMX gy = sil'

It exists for s > —A. The nth derivative of }(S) is

d}’lf(s) _(_1\h }\J’l'

—— = (- ——=—
ds" (s+ 1)l

Thus, the nth moment is

!
E(X”):;z—h; n=0,1,.. m|
Example 1.12 The definition of the Laplace transform can be extended to functions
defined on the whole real axis (—eo,+o0). For instance, consider the density of an
N, (52) -distribution:

w?
f=——e 2% ; xe (-oo,4w).
J2no
Its Laplace transform is defined as
+oo _w?
;‘(s)z 1 J e 207 (.

J2n 6 =
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Obviously, this improper parameter integral exists for all 5. Substituting u = (x — 1)/c
yields

—+oo
~ 2
f(s)= 1 e—usj‘ e~ OSu,—ul2 g,
‘(ZTC —oo
Cusidig22te 1 2
1 o us+2(5 s J- o 2(u+($s) du.

Jon oo

The last integral is equal to /21t . Hence,

—us+%6252

fis)=e O

For probability densities f(x), two important variants of the Laplace transform are
the moment generating function and the characteristic function.

a) Moment Generating Function Let X be a random variable with density f(x) and
t a real parameter. Then the parameter integral

M) =E(e?) = [*7 et¥f(x) dx

is called the moment generating function of X. M(t) arises from the Laplace trans-
form of f(x) by letting s = —¢. (The terminology is a bit confusing, since, as mention-
ed before, the Laplace transform is moment generating as well.)

b) Characteristic Function Let X be a random variable with density f(x), ¢ a real
parameter and i = /—1 . Then the parameter integral

v = E(e1tX) = [7 eitxf(x) v

is called the characteristic function of X. Obviously, y(¢) is the Fourier transform of
f(x). The characteristic function y(#) is obtained from the Laplace transform by let-
ting s =—it.

Characteristic functions belong to the most important mathematical tools for solving
probability theoretic problems, e.g. for proving limit theorems and for characteriz-
ing and analyzing stochastic processes.

One of their main advantages to the Laplace transform and to the moment generating
function is that they always exist:

(o)l = |[17 eftpeo ax] < [*7 [ef¥] oy de = [*2 fyax=1.

The characteristic function has quite analogous properties to the Laplace transform
(if the latter exists) with regard to its relationship to the probability distribution of
sums of independent random variables.
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1.4 CLASSES OF PROBABILITTY DISTRIBUTIONS BASED ON
AGING BEHAVIOUR

This section is restricted to the class of nonnegative random variables. Lifetimes of
technical systems and organisms are likely to be the most prominent members of this
class. Hence, a terminology is used tailored to this application. The lifetime of a sys-
tem is the time span from its starting up time point (birth) to its failure (death), where
'failure’ is assumed to be an instantaneous event. In the engineering context, a failure
of a system need not be equivalent to the end of its useful life. If X is a lifetime with
distribution function F(), then F(x) is called failure probability and F(x) = 1 — F(x)
is called survival probability with regard to the interval [0,x], because F(x) and F(x)
are the respective probabilities that the system does or does not fail in [0, x].

Residual Lifetime Let Fy(x) be the distribution function of the residual lifetime X;
of a system, which has already worked for ¢ time units without failing:
Fix)=PX;<x)=PX—-t<x|X>1.

According to (1.6),

Fy) = PX—-tsxnX>0) PI<X<i+x)

PX>1) PX>1)

Formula (1.13) yields the desired result:
F(t+x)-F(1) .

Fix) = — x20, t=20. 1.34
(%) 7o (1.34)
The corresponding conditional survival probability Fy(x) = 1 — F4(x) is given by
Fo=20E0 . 0 0. (1.35)
F()
Hence, using (1.17), the mean residual lifetime p(¢) = E(X;) of a system is
1 oot
H==—|, F(x)dx. 1.36
h) = 2o [ Foo de (136)

Example 1.13 (uniform distribution) The random variable X has uniform distribu-
tion over [0, 7]. Then its density and distribution function are

0 for x<O0
UT fi <x<T ’
fy=] VT for Osx<T pos L or for 0<x<T,

0, elsewhere,

1 for T<x.

; X

0 X
X >|

Figure 1.8 Illustration of the residual lifetime
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The conditional failure probability is
Ft(x):ﬁ; 0<t<T, 0<x<T—t.

Thus, X; is uniformly distributed over the interval [0, 7—¢], and the conditional fai-
lure probability is increasing with increasing ¢, ¢ < T. O
Example 1.14 (exponential distribution) Let X have an exponential distribution with
parameter A, i.e. its density and distribution function are

f)=he™, Fx)=1-e™, x20.
Given ¢, the corresponding conditional failure probability is for x>0 and 1> 0
(1 _e—x(t+x)) —( _e—M)

e—kt

Fyx) = =1-eM=Fx). (1.37)

Thus, the residual lifetime of the system has the same distribution function as the life-
time of a new system, namely an exponential distribution with parameter A. The ex-
ponential distribution is the only continuous probability distribution, which has this
so-called memoryless property or lack of memory property. Consequently, the age of
an operating system with exponential lifetime has no influence on its future failure
behaviour. Or, equivalently, if the system has not failed in the interval [0, ¢], then,
with respect to its failure behaviour in [z, o0), it is at time ¢ as good as new. Complex
systems and electronic hardware often have this property if they have survived the
‘early failure time period'.

The fundamental relationship Fs(x) = F(x) is equivalent to
F(t+x)=F(t) F(x). (1.38)

It can be shown that the distribution function of the exponential distribution is the
only one which satisfies the functional equation (1.38). O

The engineering (biological) background of the conditional failure probability moti-
vates the following definition.

Definition 1.1 A system is aging (rejuvenating ) in the interval [t{,#;], ] <tp, if
for an arbitrary but fixed x, the conditional failure probability F(x) is increasing
(decreasing) for increasing ¢, 1| <t< t5 . )

In case of technical systems, periods of rejuvenation may be due to maintenance ac-
tions and, in case of human beings, due to successful medical treatments or adopting
a healthier lifestyle. Note that here and in what follows the terms 'increasing' and 'de-
creasing' have the meaning of 'nondecreasing' and nonincreasing', respectively.

Provided the existence of the density f(x) =F / (x), another approach to modeling the
aging behaviour of a system is based on the concept of its failure rate. To derive this
concept, the conditional system failure probability F;(Af) of a system in [#, ¢+ Atf] is
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considered relative to the length Az of this interval. This is a conditional failure prob-
ability per unit time, i.e. a 'failure probability rate'":

F(t+At)-F() 1
At 1_:(0 ’
For At — 0, the first ratio on the right hand side tends to f(#). Hence,

Jim L F(80) =10 F()

1 -
A Fe(dn) =

This limit is called failure rate or hazard function and denoted as A(?) :

Mo =f@)[F() . (1.39)
(In demograpy and in actuarial science, A(f) is called force of mortality.) M#) gives
information on both the instantaneous tendency of a system to fail and its 'state of
wear' at age ¢. Integration on both sides of (1.39) from =0 to # =x yields

X
Flx)=1 T Modt s,

If introducing the integrated failure rate
AE) =[5 Moy,
F(x), F¢(x) and the corresponding survival probabilities can be written as follows:
Fx)=1-eM® Fx)=e AW,
Fy(x) =1 — e [A0)-AWD] (1.40)

Fy(x) = e IAE-AD] x>0, 1>0.

This representation of F,(x) implies an important property of the failure rate:

A system ages in [t1,17], t] <t?p, ifits failure rate A7) is increasing in this
interval.

For many applications, the following property of A(#) is crucial:

PX—t< At X > 1) = Mo) At + o(AD),
where o(x) is the Landau order symbol with respect to x — 0, i.e. any function of x
satisfying

. olx)
lim —==0. 1.41
x—0 ¥ ( )
Thus, for A¢ being sufficiently small, A(f) Az is approximately the probability that the
system fails in (¢, 7+ A¢] if it has survived interval [0, ¢]. This property of the failure
rate can be used for its statistical estimation: At time ¢=0 a specified number of in-
dependently operating, identical systems start working. Then the failure rate of these
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systems in the interval [z, 7+ Af] is approximately equal to the number of systems,
which fail in [f,£+ Af], divided by the product of A¢ and the number of systems
which are still operating at time ¢.

For instance, if X has a Weibull distribution with parameters § and 0, then
A = (B/0) (/0)P-1, x>o0.

Consequently, the failure rate is increasing in [0,e0) if B> 1, and it is decreasing in
[0,00) if B< 1. If B =1, the failure rate is identically constant: A(f)y =A=1/0.

Based on the behaviour of the conditional failure probability of a system, several
nonparametric classes of probability distributions have been proposed and investigat-
ed during the past 50 years. Originally, they were defined with regard to applications
in reliability engineering. Nowadays these classes also play an important role in
fields as demography and actuarial science. The most obvious classes are IFR
(increasing failure rate) and DFR (decreasing failure rate).

IFR- (DFR-) Distribution F(x) is an IFR- (DFR-) distribution (briefly: F(x) is IFR
(DFR)) if F(x) is increasing (decreasing) in ¢ for fixed, but arbitrary x.
If the density f(x) = F/ (x) exists, then, from (1.40):

F(x) is IFR (DFR) if and only if the corresponding failure rate A(¢) is increasing
(decreasing) in ¢.

Another characterization of IFR and DFR is based on the Laplace transform /A‘(s) of
the density f(x) :F/(x). Forn=1,2,..., let

A _1\y1 gt
a_1(s)=1, ag(s) = %[1 —f(s)], an(s) = ( nll) ;S(;(S).

Then F(x) is IFR (DFR) if and only if

(1.42)

an(s) 3 an1 () ans1 (6 n=0,1,...

(Vinogradov [85]). If f(x) does not exist, then this statement remains valid if }(s) is
the Laplace-Stieltjes transform of F(x).

The example of the Weibull distribution shows that, within one and the same param-
etric class of probability distributions, different distribution functions may belong to
different nonparametric classes of probability distributions:

If > 1, then F(x) is IFR, if B < 1, then F(x) is DFR, if B =1 (exponential distribu-
tion), then F(x) is both [FR and DFR.

The IFR- (DFR-) class is equivalent to the aging (rejuvenation) concept proposed in
definition 1.1. The following nonparametric classes present modifications and more
general concepts of aging and rejuvenation than the ones given by definition 1.1.
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IFRA- (DFRA-) Distribution The failure rate (force of mortality) of human beings
(as well as of other organisms), is usually not (strictly) increasing. In short time per-
iods, for instance, after having overcome a serious illness or another life-threaten-
ing situation, the failure rate is likely to decrease. But the average failure rate will
definitely increase. Analogously, technical systems, which operate under different,
time-dependent stress levels (temperature, pressure, speed) will not have a (strictly)
increasing failure rate. Hence, the definition of the classes IFRA (increasing failure
rate average) and DFRA (decreasing failure rate average) makes sense:

F(x) is an IFRA- (DFRA-) distribution if the function
~L 1 Fo
is increasing (decreasing) in ¢.

This definition is motivated by the fact that, assuming the existence of the probability
density f(x) =F/(x), according to (1.39), the average failure rate over the interval
[0,7] is

wn=2L [t N
NOES [o M) dx = I F).
Another, equivalent characterization of IFRA (DFRA) is: F(x) is IFRA (DFRA) if

F(ax)é) [F(x)}a, a>1,x=0.

NBU- (NWU-) Distribution Since
Fi(x) =F(x)

is equivalent to F(¢+x) = F(f) F(x), a new system has a smaller failure probability
than a used system of age ¢ if and only if

F(t+x) < F(0) F(x).

This motivates the concepts of NBU (new better than used) and NWU (new worse
than used):

F(?) is an NBU- (NWU-) distribution if
F(t+x) (E)F(t) Fx) (1.43)
forallx >0, t>0.

(Note that the equation Fs(x) = F(x) means that a ‘used' system has the same lifetime
distribution as a new one.) As the classes IFR and DFR (as well as other classes),
NBU and NWU can be characterized by properties of Laplace transforms of its prob-
ability densities (Vinogradov [85]): With the notation (1.42),

F(x) is NBU (NWU) if and only if

an(s)am(s)(i)an+m+1(s) forall m=0,1,..; n=0,1,...,and s >0.
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NBUE- (NWUE-) Distribution According to (1.17) and (1.36), the mean life of a
new system U and the mean residual lifetime [L(f) of a system, which is still operat-
ing at age ¢ (used system) are given by

0o = 1 foo—=
w=[g Fx)ds, W):%L F(x)dx. (1.44)

When comparing 1 and W(f), one arrives at the classes NBUE (new better than used
in expectation) and NWUE (new worse than used in expectation):

F(x) is an NBUE- (NWUE-) distribution if
<

)

The survival function on the left-hand side of this inequality plays an important role
in renewal theory (section 3.3). There it is denoted as

ﬁfff(x)dx F() forall ¢>0.

IE'S(t) = ﬁ I:o F(x)dx.
The corresponding distribution function is
- 1 p—
Fg(= l—FS(t):HIf)F(x)dx. (1.45)
Hence, F(x) is an NBUE- (NWUE-) distribution if and only if
Fg(x) 5)F) forall x20.

Note that, if F(x) is IFR (DFR), then Fg(x) is IFR (DFR), too.

2-NBU- (2-NWU-) Distribution F(x) is a 2-NBU- (2-NWU-) distribution if the
corresponding distribution function Fg(x), defined by (1.45), satisfies

Fg(t+x) é)FS(t) Fg(x).
Obviously, this is equivalent to Fg(x) being NBU (NWU).

NBUL- (NWUL-) Distribution When applying the Laplace transform with s as a
real, nonnegative number to both sides of the defining relation (1.43) one obtains for
NBU

IBO e Y F(t+x)dx < F(t)]:; ™% F(x)dx,
and for NWU,

_[Bo e F(t+x)dx > F(t)_[(o)o e % F(x)dwx.
This leads to the following definition:

F(x) is an NBUL- (NWUL-) distribution (new better (worse) than used in Laplace
ordering) if
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I:o e SUF(u)du <

St
J.Bo T () d ) e P E(, s,t20.

Equivalently, F(x) is NBUL (NWUL) if

_[Bo e™SX Fy(x)dx é) IBO e F(x)dx; s,t20.

IMRL- (DMRL-) Distribution The monotonicity behaviour of the mean residual
lifetime [(#) motivates another class of nonparametric probability distributions:
F(x) is an IMRL- (DMRL-) distribution if
u(tz)é)u(tl) for0<1; <t,.
Implications between some classes of nonparametric distribution classes are:
IFR = IFRA = NBU = NBUE
DFR = DFRA = NWU = NWUE

Knowledge of the nonparametric class a distribution function belongs to and know-
ledge of some of its numerical parameters allow the construction of lower and/or up-
per bounds on this otherwise unknown distribution function. The first and most im-
portant results along this line can be found in Barlow and Proschan ([3, 4]).

1) Let F(x) = P(X<x) be IFR and Uy = E(X") the nth moment of X. Then,

P> expl=x (n!/un) /1] for x < pi/”
0 for x> u,l/n

In particular, for n =1, with u = | = E(X),

- e forx<
>
Fx) > {0 for x> 1 (1.46)

2) The lower bound (1.46) can be improved (Solov'ev [77]):

Fo) > e OXM for x < B
10 for x> pu’

where

) ) 1 )7L
B—u—2+(g—lja(lnm) .

The parameter o satisfies 0 < o< 1 and is solution of the equation

M2 _

_ 20~02+2(1-0) In(1-0)
w2 o '

! 2

o
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3) If F(x) is DFR, then

-x/u

e forx<p

F(x) < {
].L(ex)_1 for x>

and (Brown [14])
F(x) 2 e W) x>0,

where
1%

=—=-1.
2u2

Y

It can be shown that
< .. .
04 (E)O if F(x) is IFR (DFR).

The constant y also occurs in the estimates given under 4) and 5).

4) If F(x) is IFR, then (Solov'ev [77])
sup |F(x)—e_xm| <1- ‘/27——1,
5) If F(x) is DFR, then (Brown [14]),
sup |F(x)—e_x/”| <l-e™,
s1)1€p |1_7(x)—1_75(x)| <l-e™,
where Fg(x) is given by (1.45).

6) If F(x) is IFRA, then
- 1 forx<
F(x) <
) {e_rx for x>’
where » = r(x, L) is solution of
l—rpu=e™*.
7) If F(x) is NBUE, then,
F(x)<x/u forx<u.
8) If F(x) is NBUE (NWUE), then
< —x/!.l >
FS(x)(Z)e , x20.

Other results on nonparametric classes of distributions will be needed in subsequent
chapters and presented in connection with specific applications.
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1.5 ORDER RELATIONS BETWEEN RANDOM VARIABLES

Most classes of nonparametric probability distributions introduced in the previous
section can be embedded into the more general framework of order relations between
random variables. These 'stochastic orders' have proved a powerful tool for the
approximate analysis of complex stochastic models, which elude a mathematically
rig- orous treatment, in particular in queueing-, inventory-, and reliability theory, and
recently in actuarial science. The breakthrough in theory and application of stochas-
tic orders came with the publication of the English edition of the monograph Stoyan
[79], see [80]. The present state of art of theory and applications can be found in the
monograph Miiller and Stoyan [62].

In this section, the nonnegative random variables X and Y are assumed to have distri-
bution (survival) functions F(x) and G(x) (F(x) and G(x)).
Usual Stochastic Order X is smaller than Y with regard to the usual stochastic or-
der if

F(x) < G(x) forallx. (1.47)
Thus, X assumes large values with lower probability than Y. This order relation bet-
ween two random variables had been for many years the only one to be known. For

that reason it was simply called the stochastic order. Mann and Whitney [58] were
probably the first ones who introduced and used this concept.

Notation: X St Y
N
With regard to the previous section: F(x) is IFR (DFR) if and only if
XIZ 3 th (XIZ th th) for 0<¢t; <1y,
where X; is the residual lifetime of a system operating at time ¢.

F(x) is NBU (NWU) if and only if
X< X (X ;2 X) .
st st
Let the random variable Xg have the distribution function Fg(x) given by (1.45),
and Xg, be the corresponding residual lifetime. Then,

F(x) is 2-NBU (2-NWU) if and only if
X¢; <X (X > X ) .
st S Xs \Xsyp 2 Xg
Properties of the usual stochastic order (mean values are assumed to exist):

DIfX St Y, then E(X) < E(Y).
N

HIfX St Y, then E(h(X)) < E(h(Y)) for all increasing functions 4(-) and vice versa.
N

HIfX St Y and E(X) = E(Y), then X and Y have the same distribution functions.
S
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Hazard Rate Order This stochastic order is closely related to the distribution func-
tion of the residual lifetime. Let the residual lifetimes of systems with respective life-
times X and Y be denoted as X; and Y;. If the usual stochastic order
X; LY,
st

is required to hold for all £ > 0, then, according to (1.35), this is equivalent to

F(t+x) - G(t+x)

F® ~ GO

forallt>0,

or
F(t+x)< F(t) 50,250
Ge+x) Go 7

This relationship motivates the following order relation:
Xis smaller than Y with respect to the hazard rate order (failure rate order) if the ra-
tio F(£)/G(f) is decreasing with increasing ¢.

Notation: X < Y
hr

Properties of the hazard rate order:

1) If Xand Y have continuous densities so that the respective failure rates A y(#) and
Ay(?) exist, then X hS Y if and only if A y(#) 2 Ay(?) for 120.
r

2)Let X hS Y and A(-) be an increasing real function. Then, 4(X) hS h(Y).
r r
3IfX L Y, then X< Y.
hr st

Convex Orders The usual stochastic order and the hazard rate order refer to the ab-
solute sizes of the random variables to be compared. However, for many applications
it is useful to include the variability aspect. If random variables X and Y have about
the same mean, usually the one with the smallest variability is preferred. This aspect
is taken into account by convex orders.

(a) X is said to be smaller than Y in convex order if for all real-valued convex func-
tions A(-) with property that E(h(X)) and E(h(Y)) exist,

E(h(X)) < E(h(Y)).
Notation: X ch Y

(b) X is said to be smaller than Y in increasing convex order if for all real-valued in-
creasing convex functions A(-) with property that E(h(X)) and E(h(Y)) exist,

E(h(X)) < E(h(Y)).
Notation: X < Y

icx
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(c) X is said to be smaller than Y in increasing concave order if for all real-valued
concave functions A(-) with property that E(h(X)) and E(h(Y)) exist,

E(h(X)) < E(h(Y)). (1.48)
Notation: X < Y

ey
Before stochasticians started to thoroughly investigate these orders, some of them had
already been known in applied sciences for a couple of years. In actuarial science,
'increasing convex order' had been known as 'stop-loss order', whereas in decision
theory 'increasing concave order' had been called 'second order stochastic dominance'.

Properties of convex orders:

1) X £ Yifandonlyif-Y < —-X.

cx cy
Hence, only one of these stochastic orders needs to be investigated.

2) X ch Y holds if and only if
X £ Yand E(X)=E(Y).
cx
3)If X £ Y, then
cx
EX™)<E(Y") and E(X—EX))") <E(Y-E(Y)") forn=2,4,..

Specifically,
if X ch Y, then Var(X) < Var(Y).

4) Let (¢ —x)+ =max(0, ¢c—x). Then

holds if and only if for all x
E((X=x)+) < E(Y = x)4). (1.49)
Thus, for defining X < Y, condition (1.48) needs to be checked only for a simple
class of convex functi(l)(;fs, namely the so-called wedge functions
h(x) = (c=x)+ .
Note that the function
Tx(x) = E(X—x)4) = [ F(u) du (1.50)

is convex and decreasing in x. In actuarial science, this function is called the stop-
loss-transform, since the net premium of a stop-loss reinsurance contract has this
structure.
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1.6 MULTIDIMENSIONAL RANDOM VARIABLES

1.6.1 Basic Concepts

Let (X|,X5,...,Xn) be an n-dimensional vector, the components of which are ran-
dom variables. Then (X1,X>5,...,Xn) is called a random vector, a multidimensional
random variable or, more precisely, an n-dimensional random vector or an n-dimen-
sional random variable. Its joint distribution function or simply the joint distribution
function of the random variables X1, X5, ..., Xn is defined by

F(xl,xz,...,xn) =P(X1 SXI,XZ SXZ,...,Xn an). (151)

This function characterizes the probability distribution of (X{,X5,...,Xn). The dis-
tribution functions of the X;, denoted as

FXl_(x) =P(X;<x;),
can be obtained from the joint distribution function:
FXl-(xi) =F(oo,...,00,X;,00,...,0); i=1,2,..,n. (1.52)
The one-dimensional distribution functions
FX1 (), FX2 (), s Fy, (%)

are the marginal distributions of (X{,X»,...,Xn). The marginal distributions of a
random vector cannot fully characterize its probability distribution, since they do not
contain information on the statistical dependency between the X;. Only if the ran-
dom variables X; are independent, joint distribution and the set of the marginal dis-
tributions contain the same amount of information on X, X5, ..., Xn.

Independence The random variables X1, X5, ..., X are said to be independent if for
all vectors (x1,x2,...,Xn)

Flxy,x2,00%n) = Fx (X)) Fx, (x2) - -Fy, (xn). (1.53)

In this case, the distribution functions of the X; fully determine the joint distribution
function.

Identical Distribution The random variables X|,X,,...,X» are called identically
distributed if they have the same distribution function (probability distribution):

F(x) =FX[,(x); i=1,2,..,n.
For independent, identically distributed (iid) random variables,
Flx1,x9,..,xn) =F(x1) F(xp) - -Fn(xn) .

Thus, the joint distribution function of a random vector with independent compo-
nents is equal to the product of its marginal distribution functions.
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1.6.2 Two-Dimensional Random Vectors

1.6.2.1 Discrete Components

Consider a random vector (X, ¥), the components X and Y of which are discrete ran-
dom variables with respective ranges {x¢,x1,..} and {yg,y,...] and probability
distributions

;i=PX=x;;i=0,1,.. }and{qj P(Y=x:;j7=0,1,...}.
Furthermore, let
rij =PX=x;N Y=yj).
The set of probabilities {rlj, ,j=0,1,...} is the joint or two-dimensional probability
distribution of the random vector (X, Y). From the definition of the Fijs
Pi=Xi0rj, 4 =20 (1.54)

In accordance with the terminology introduced in section 1.6.1, the probability dis-
tributions {p;, i=0,1,...} and {q;,i=0,1,..} constitute the marginal distribution
of (X,Y). By (1.6), the conditional probabilities of X=x; given Y:yj and Y:yj
given X =x; are
rij }”ij

PX=x;|Y=y;) = 7 PY=yj|lX=x)=5".
The sets
rij .
—:;i=0,1,...t and ,,] 0,1,.
are the conditional probability distributions of X given Y=y /i and of Y given X=1x;,

respectively. The corresponding conditional mean values are

. .
EXY=y))= Zx,q, E(Y|X=x,-)=j§0yijlf

The conditional mean value E(X]Y) of X given Y is a random variable, since the
condition is random. Its range is

{EXY=yq), EX|Y=y1),...}.
The mean value of E(X]Y) is

E(E(XIY)) = 2E<X1Y V) P(Y= yp—z le 7 9)
frfar)

—Eer —inpl-zE(X).
i=0 ]—0 i=0

Because the roles of X and Y can be changed,
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E(E(X]Y)) = E(X) and E(E(Y|X)) = E(Y). (1.55)
From (1.53): X and Y are independent if and only if the random events ”X'=x;” and

Y= yj” are independent for all i, j=0, 1,2, ... Hence, if X and Y are independent,
rljzplqj, i,j:O,l,...

1.6.2.2 Continuous Components

Let X and Y be continuous random variables with respective distribution functions
and densities F y(x), Fy(»), fx(x), fy(y). The joint distribution function of (X, Y),

Fyyby)=PX<x,Y<y),
has the following properties:
1) Fyy(=eo,—0) =0, Fy y(+oo,+o0) =1
2) 0< Fyy@,y) < 1
3) Fyy(x,+o0) = Fx(x), Fyy(teo,y)=Fy(y) (1.56)
4)Forx| <xp and y| <yp

Fyyx1,y1)sFyyGo,y) <FyyGo,y)

Fxypy) SFyy(,y) SFyy(xo,y7)
Conversely, any function of two variables which has these properties is the joint dis-
tribution function of a random vector (X, ¥). (Properties 1 to 4 also hold for random

vectors with discrete components.) The probability distributions of X and Y are called
the marginal distributions of the two-dimensional random variable (X, Y).

Assuming its existence, the partial derivative of Fy y(x,y) with respect to x and y,

oF y y(x,)
Ixy@,y) = “oxay

is called the joint probability density of (X, Y). Equivalently, the joint density can be
defined as a function f(x,y) satisfying

FxyGn=[T_ " fxy@v)dudy (1.57)

—o0

for all x, y. Every joint (probability) density has properties

Sy )20, [T 17 fyy(ey)dedy = 1.

Conversely, any function of two variables x and y satisfying these two conditions can
be considered to be the joint density of a random vector (X, Y). Combining (1.56)
and (1.57), one obtains the marginal densities of (X, Y):

@ =" ey dr, fye) =2 fry ) d. (1.58)
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Thus, the respective marginal densities of (X, ¥) are simply the densities of X and Y.
If X and Y are independent, then, according to (1.52),
Fxyo,y) =Fx(x)Fy®).

Hence, in terms of the densities, if X and Y are independent, then the joint density of
the random vector (X, Y) is the product of its marginal densities:

Ixy 6p) =fx()fy().

The conditional distribution function of Y given X=x and the corresponding condi-
tional density of Y given X=x are denoted as

Fyoln =P(Y<yl x=2)
SfyWlx) = dF y(y|x)/dy.

For continuous random variables, condition X =x has probability 0 so that formula
(1.4) cannot directly be applied to deriving Fy(y|x). Hence, consider for Ax >0

PY<ynx<X<x+Ax)
Px<X<x+Ax)

PY<ylx<X<x+Ax)=

~ j_w Ax( x+Afo,y(u,v)du)dv

L[ Fyr+ Ax) = F ()]

If Ax — 0, then, assuming fy(x) >0,

Fy(ylx) = X(x) P fxyGvav.
Differentiation yields the desired conditional density:
Sx,y (%)
|x) = —2— 1.59
Iy 740 (1.59)
By changing the roles of X and Y, the conditional density of X given Y is
Sx,y (%)
f X y) -
] Sy

The conditional mean value of Y given X=x is

E(YIY) = [Ty fy(lx) dy.

The conditional mean value of Y given X is

EXNX) = [Ty fyolX) dy.
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E(Y| X) is a random variable with properties
E(XY) = E(XE(Y| X))
E(E(Y]| X)) = E(Y)

E(Y|+ Y| X)=E(Y (| X)+E(Y,| X). (1.60)
If X and Y are independent, then
E(X|Y=y) = E(X|Y) = E(X) (1.61)
EXY)=EX)E(). (1.62)
The covariance Cov(X, Y) between random variables X and Y is defined as
Cov(X,Y) = E{[x - E(XOI[Y - E(N)]}. (1.63)
This representation of the covariance is equivalent to
Cov(X,Y)=EXY)—-EX)E(Y). (1.64)

In particular, Cov(X, X) is the variance of X:
Cov(X, X) = Var(X) = E(X - E(X))?).

From (1.62), if X and Y are independent, then covariance between these two random
variables is 0: Cov(X, Y) =0. But if Cov(X,Y) =0, then X and Y are not necessarily
independent. The covariance can assume any value between —eo and +co. Neverthe-
less, it serves as a parameter giving information on the strength of the stochastic re-
lationship between two random variables X and Y.

The correlation coefficient between X and Y is defined as
Cov(X.Y)
PO T = e s
The correlation coefficient has the following properties:
1) If X and Y are independent, then p(X, ¥) = 0.
2) p(X, Y) ==1 if and only if there exist constants a and b so that Y =a X+ b.
3) For any random variables X and ¥, -1 < p(X,Y) < 1.

The correlation coefficient is, therefore, a measure of the strength of the linear sto-
chastic relationship between random variables.

(1.65)

X and Y are said to be uncorrelated if p(X, Y) = 0. Otherwise they are called positiv-
ely or negatively correlated depending on the sign of p(X, ¥). Obviously, X and Y are
uncorrelated if and only if

E(XY) = E(X) E(Y).
Thus, if X and Y are independent, then they are uncorrelated. But if X and Y are un-
correlated, they need not be independent. To show this, two examples are given. Ex-

ample 1.15 takes into account that the definitions of covariance and correlation coef-
ficient and properties derived from them also refer to discrete random variables.
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Table 1.1 Joint distribution for example 1.15
X

1l o |+
y| 2 | 116 | 116 | 116
-1 | 2116 | 1/16 | 2/16
+1 | 216 | 116 | 2/16
+2 | 116 | 116 | 1/16

Example 1.15 Let X and Y be discrete random variables with ranges
Ry=1{-2,-1,1,2} and Ry={-1,0,1}.

Table 1.1 shows the joint distribution of (X, ¥). Accordingly, the mean values of X

and Y are:

E(X)—16 (2)+ (1)+— 1+— 2=0

E(Y)—l—6 (- 1)+— 0+— 1=0

The mean value of the product XY is
E(XY)—16 (=2)(= 1)+— D= 1)+— 1-(= 1)+ 2-(=D

+%(2)0+ (1)o+—10+—2o

+% (=2)- 1+— -1)- 1+— 1 1+— 2-1=0.

Hence, E(XY) = E(X) E(Y) =0 so that X and Y are uncorrelated.

On the other hand,
P(X=2, Y——l)—— # PX=2) P(Y=—-1)==.8 18 _ 9
16 16 256 128°
Thus, X and Y are uncorrelated, but not independent. O

Example 1.16 Let the random vector (X, Y) have the joint probability density
2.2 2,2
Xy [xy e -
Sxy @y = y exp{ [ 5 )}, <X,y < oo,

According to (1.58), the marginal density fy(x) is obtained as follows:
fx@= [ 2 exp{—( 5 j}d)
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_ X212 (xz +oo 1 i+ j 2 o212 dy]
2m e Jom \/ﬁ '

The integrand in the first integral is the density of an N(0, 1)-distributed random var-
iable, the second integral is the variance of an N(0, 1) -distributed random variable.
Hence, both integrals are equal to 1. Thus,

-1 2 22
fy(x) = x“+1e , —oo<X < oo,
X 2J2n
Since fy,y(x,y) is symmetric in x and y,

2
+1)e? 2] —oo<y < oo,

1
fyw = i
Obviously, f y(x,y) #/x(x) - fy(y). Hence, X and Y are statistically dependent ran-
dom variables.

For fy(y) and fy(y) being symmetric with regard to the origin, £(X)=E(Y)=0. On
the other side, the mean value of the product XY is

+oo too 2 2..2
EXY)= | jxy 2 exp{—(x ;y )}dxdy

—00 —o0

“+oo
4n[-[ 322 dxj [_L 3 dy]'

The integrands in the integrals of the second line are asymmetric with regard to the
origin. Thus, both integrals are equal to 0. Hence,

E(XY)=EX)E(Y)=0.

This proves that X and Y are uncorrelated, but not independent. O

The following example shows that the correlation coefficient may give absolutely
wrong information on the degree of the statistical dependency between two random
variables other than the linear one.

Example 1.17 Let ¥ = sin X with X uniformly distributed over the interval [0, 7] :
Jx(x)=1/r, 0<x<m.
The mean values of interest are
EX)=m2, E(Y)=% [ sinxdv=2/m, EQXY)=4% [§xsinxdr=1.
Thus, the covariance between X and Y'is O:
Cov(X,Y)=1—§%=O.

Hence, p(X, ¥) = 0. Despite the functional relationship between the random variables
X and Y, they are uncorrelated. O
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Bivariate Normal Distribution The random vector (X, Y) has a bivariate normal or
a bivariate Gaussian distribution with parameters

Ux, Uy, Ox, Oy and p, —oo<lUx,ly<oo, 0x>0,0,>0, —1<p<l

if it has joint density
Sxy ey = (1.66)
1 expl -] [oc—ux)z_z (X—Mx)(y—lly)+(y_lly)2]
2m6xGy | 1-p2 20-p)\ oF Ox%y oy

with —eo < x,y < +eo. By (1.58), the corresponding marginal densities are

[ (r—tn2)

1 (x— )

fy(x) = eXp|————=— |, —oco<x<+oo
X V2T Ox L 20)% J

Fyo) == ep[ (y“y’z} oo <y <o,

Thus, if (X, Y) has a bivariate normal distribution with parameters Uy, Ox, Uy, Oy,
and p, then the random variables X and Y have each a normal distribution with res-
pective parameters Ly, Ox and [y, Gy . Since the independence of X and Y is equiv-
alent to fy y (x,y) =fx(x)fy(y), X and Y are independent if and only if p=0. It can
easily be shown that the parameter p is equal to the correlation coefficient between X
and Y. Therefore:

If the random vector (X, Y) has a bivariate normal distribution, then X and Y are
independent if and only if they are uncorrelated.

The conditional density of Y given X = x is obtained from f(x,y) and (1.59):

1 1 Gy 2
= - PR —m) -ty | b (167
fY(ylx) mcy‘/m exp{ 26}2;(1—p2)|:y p Ox (x le ) My:| } ( )

Thus, on condition X=x, the random variable Y has a normal distribution with
parameters

EY|X=x)=p % (- iy, Var(MX=x)=o02(1-p2).  (1.68)

Example 1.18 The daily consumptions of tap water X and Y of two neighbouring
houses have a joint normal distribution with parameters

Wy =Wy =16[m3], 6x =6y =2[m3] and p=0.5.
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The conditional probability density of ¥ on condition X =x has parameters
E(YI0) = p g (x— ) Ty = 0.5 - 2(-16)=%+8

Var(Yx) = 03(1-p2) =4(1-0.52)=3.

Hence,

—X_8 2
fyolx) = 1 exp —l(y 2 J , —oo<y< oo,
Jon 3 20 J3

This is the density of an N(8 +x/2, 3)—distributed random variable. Some condition-
al interval probabilities are:

P(14<Y<16lX=10)= <D(16 13) ¢(@]=o.958—0.718=0.24o

53 53
P(l4<Y<16lX=14 @(16‘15] @(ﬁj =0.718—0.282 = 0.436.
( )= g 5

The corresponding unconditional probability is

P4<r<16)=0( 1510 ) _o(1410) 2 0500-0.159=0341. O

In what follows, the joint density of a vector (X, Y) is applied to determining the
probability distribution of a product and a ratio of two random variables.

Distribution of the Product of two Random Variables Let (X, ¥) be a random vec-
tor with joint probability density fy y (x,y), and

Z=XY.
The distribution function of Z is given by (Figure 1.9)
Fze= I fxyGoydcdy

{Gey)sxy=z}
with {(x,)); xy Sz} ={—0<x<0,zx <y <o} U{0<x < oo, —co<y<z/x}. Hence,

0 oo /.
Fp@) =2 [T fry ey dyde+ [ [72 fyy () dydx.
Differentiation with regard to z yields the probability density of Z:
0 1 oo |
£ =1 (- 1) ey Bax+ 2 L fyy e yar.

This representation can be simplified:
F2@ =17 || fry s, ze (coo o), (1.69)

In case of nonnegative X and Y,
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A A
z>0 z<0
y_é
- X
y=%
Z X 0 > X

Figure 1.9 Derivation of the distribution function of a product

Fy) =]t g/fo,Y(x,y) dydx, z>0,
170 =[2 L ey Hax, 220, (1.70)

Distribution of the Ratio of two Random Variables Let (X, Y) be a random vector
with joint probability density fy y (x,y), and

Z=Y/X.
The distribution function of Z is given by (Figure 1.10)
Fpa= [ fyy@ydedy

[ari<)

with {(x,y);%ﬁz} ={-0<x<0,zx <y <o U{0<x <00, —eo<y<zx}. Hence

Fy=[0 [T fyyapdvde+ [ [22 fyy(ry)dyds.

z<0
z>0 —
6 > X 0 > X
y=zx

Figure 1.10 Derivation of the distribution function of a ratio
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Differentiation with regard to z yields the probability density of Z:
f7@) =2 1xl fyy (v, z0) d. (1.71)

In case of nonnegative X and 7Y,
—+oo
Fz)=[3" I8 fxy@ey)dydx, z20

fZ(z)zjgmfo’Yoc,zx)dx, z20. (1.72)
Example 1.19 The random vector (X, ¥) has the joint density
fxy(,y) = ;\ue—(KHVy)’ x20,y>0; A>0,v>0.

The structure of this joint density implies that X and Y are independent and have ex-
ponential distributions with parameters A and v, respectively. Hence, the density of
the ratio Z=Y/X is

f7(2) = ISQ xhve  MHVax g 2>0.
A slight transformation yields

f7(2) =

7\.+VZ>[0 x(A+vz)e~MVIxg 2>

The integral is the mean value of an exponentially distributed random variable with
parameter A+ Vv z. Hence,

f(2) = (Mx#)z Fyz)=1-

The mean value of Z does not exist. (Try to apply (1.17) to determining E(Z).) O

A

, z=20.
Atvz

Example 1.20 A system has the random lifetime (= time to failure) X. After a failure
it is replaced with a new system. It takes Y time units to replace a failed system.
Thus, within a (lifetime-replacement-) cycle, the random fraction the system is oper-
ating, is

X

S X+Y’
A is the availability of the system in a cycle. Determining the distribution function of
A can be reduced to determining the distribution function of Z=Y/X since

Fao=r(y <) =1-0(3 <12

Hence,
Fyh=1 —Fz(l ’), 0<r<1.

Differentiation with respect to ¢ yields the probability density of 4:

fA(t)ztlzfz(%), 0<t<l.
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Specifically, if f,(z) is the same as in example 1.19, then
AV At

f)y=—""""——, Ft)=7—""""—, 0<¢<1.
[(x_v)t_i_v]z ()\—V)f'i‘\/
For A # v, the mean value of 4 is
LJ L
)= x[l+v = | (1.73)
If A=v, then 4 is uniformly distributed over [0, 1]. In this case, E(4) = 1/2. O

1.6.3 n-Dimensional Random Variables

Let (X1, X»,...,Xn) be a random vector with joint distribution function
F(xy,x9,..,xn) =P(X| <x1, Xy <xp,...,Xn <xp).
Provided its existence, the nth mixed partial derivative of the joint distribution func-
tion with respect to the x{, x,, ...,x, is called the joint (probability) density of the
random vector (X1,X7,...,Xn) :
0" F(X1,X9, ..., Xn)
oxqdxyp---dxp

J(x1,x0,..,x0) = (1.74)
The characteristic properties of two-dimensional distribution functions and probabili-
ty densities can be extended in a straightforward way to n-dimensional distribution
functions and densities. Hence they will not be given here.

The marginal distribution functions are given by (1.52), whereas the marginal densi-
ties are

400 400 oo
S, = [ [ SOy sxn) diy - dvydipyy - din. (175)

If the X; are independent, then, from (1.53), the joint density of (X,X>,...,Xn) is
equal to the product of the densities of the .X;:

JOeysx0,000) = fx, (61)fx, (62) S x,, (Xn).- (1.76)

The joint distribution function (density) also allows for determining the joint proba-
bility distributions of all subsets of { X|,X>,...,Xn}. For instance, the joint distribu-

tion function of the random vector (X l-,XJ-), i<j, is
FX[,A/j(xl.’xj) = F(oo, "'9°oaxis 9y veey oo’xj’oo’ 900)
and the joint distribution function of X{,X,,..., X}, k<n, is

FX],Xz,...,Xk(xl’xZ’ ...,xk) = F(xl,xz...,xk, 0, 0o, ...,°<>). (1.77)
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The corresponding joint densities are

Txpx; (i xp) =
“+o00 +oo “+oo
__[ __[ _I f(xl,xz,...,xn)dxl--~dxl~_1dxl~+1--~dxj_1dxj+1--~dxn
and
IX) X X 15 X25 000 Xp) (1.78)
footoo oo
= [ [ o | fO1x0 s X X1 - Xn) dX gy Ao

Conditional densities can be obtained analogously to the two-dimensional case: For
instance, the conditional density of (X1,X>5,...,Xn) given X; =x;, i=1,2,...,n, is

x,‘) :f(xl,xz,...,xn) (1.79)

le.(Xl')

FACTIRRIS FENTS EI0 I )

and the conditional density of (X{,X>,...,Xn) given'X| =x1, Xp =xp, .., X=x}"is

— f(xlﬂxza""xn)
le 7X2’_‘_7Xk(x1 s X2, ...,xk)

SO 15X 125 o n X0 X1, X0, s X ) , k<n. (1.80)

Let y=h(xy,x,...,xn) be afunction of n variables. Then the mean value of the ran-
dom variable Y =/ (X,X>,...,Xn) is defined as

“+oo +oo —+oco
E(Y)= I I _[ h(x1,x9,..,xn) f(X1,X0, ..., xn)dxdxy---dxn. (1.81)

—00 —00

In particular, the mean value of the product Y'=X| X;---X; is
~+o0 400 ~+oo
EX1 Xy -Xp) = j j e _[ X1xpxXn f(X1,X,....xXpn)dx1dxy - -dxp .
In view of (1.76), for independent X; this n-dimensional integral simplifies to
B(X) Xy -Xn) = EX)) EQX) - -E(Xa). (1.82)

The mean value of the product of independent random variables is equal to the
product of the mean values of these random variables.

The conditional mean value of Y=h(X,X>,...,Xn) given
Xy =x, Xy =xp, 0 X = xy !

is
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E(lel,x2,~~,xk)= (183)
oot A% JS(x1,x0,...,xn)
= | h(xq,x0,..Xn) dxp1dXpyn---dxn .
_L_L _J;o 2 X X X X1 X25 000 XF) AR

Replacing in (1.83) the x{,x,,...,x; with the random variables X|,X,, ..., X} yields
the corresponding random mean value of Y given X, X5, ..., X}:

E(Y| X1,Xy, ... X))
The mean value of this random variable (with respect to all X{,X,,...,X}) is
EXlasz'»Xk( E(Y| X1,X5,...X)) = E(Y). (1.84)

The mean value of E(Y| X 1-X2,...,X} ) with respect to, for instance, the random var-
iables X1,X>5,...,X}_q is again a random variable:

EXl,Xz,,.,,Xk_l(E(Y|X1’X23~-~=Xk)) = E(Y| X}). (1.85)
From this it is obvious how to obtain the conditional mean value
E(lell, ELE 78
and its random analogue
E(Yl ll) 123""X' )
with regard to any subsets {xll, iy } and {X 11’ -~-,Xl~k} of the respec-

tive sets {x,x5,...,xn} and {X{, X7, ...,Xn}.

The conditional mean values of a sum of random variables have properties

EQY+ Yyt + Ymly; o ) = > =1 BYilxg oxgynexg ) (1.86)
and

EYp+Yp+ o+ YmlX; XX ) = > EYlX, i Xy i) (1.87)
Let

¢ij= Cov (Xi,XJ-)
be the covariance between X; and Xj; i,j=1,2,...,n. It is useful to unite the cjj in i
the covariance matrix C:
C= ((Cij)) ; Lj=1,2,...n
The main diagonal of C consists of the variances of the X; :

c;;=Var(X;); i=1,2,..,n
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n-Dimensional Normal Distribution Let (X{,X,,---,Xy) be an n-dimensional ran-
dom vector with vector of mean values W= (W1, My, -+, Ln) and covariance matrix
C =((c;j). Furthermore, let |C| and C~! be the positive determinant and the inverse
of C, respectively, and x = (x1,xp,---,xn). Then (X|,X5,---,Xn) has an n-dimen-
sionally normal (or Gaussian) distribution if it has joint density

-1 I —1v_inT
100= e e -3 xow e, (188)

where (x — ].L)T is the transpose of the vector
X_“‘: ('xl _Mla x2 _st"',xn—un)o

By doing the matrix-vector-multiplication in (1.88), f(x) becomes
f(xls-x29---:xn)= (189)

i Z;lzl Cij O =1 0x; = Mj),

1 ( 1
D S .
Jemriel A2l
where C;; is the cofactor of ¢; ;.
Forn=2,x;=x and x5 =y, (1.89) becomes the density of the bivariate normal dis-
tribution (1.66). Generalizing from the bivariate special case, it can be shown that the
random variables X; have an N(ul-,G?)—distribution with (512 =c;;i=1,2,..,n, if
(X1,X5,---,Xn) has an n-dimensional normal distribution. If the X; are uncorrelat-
ed, then C=((c; j)) is a diagonal matrix with c; ;= 0 for i#j so that the product
form (1.76) of the joint density and, therefore, the independence of the X; follows:

n s 2
fX(xl,xz,-~~,xn)=il:_Il {‘/%G. exp(—%(xlc—iul) j} (1.90)

Theorem 1.2 If the random vector (X{,X5,...,Xn) has an n-dimensionally normal
distribution and the random variables Y|, Y5, ..., Y, are linear combinations of the

Xj, i.e. if there exist constants a;; so that

m.
Y; ZZj:ll aij)(j; i=12,...m,

then the random vector (Y, Y, ..., Ym) is m-dimensionally normally distributed. W

Maximum of » Independent Random Variables Let X{,X,,...,Xn be indepen-
dent random variables and

X=max{X{,X5,..,Xn}.
Then the random event ' X <x ' occurs if and only if
‘X1 €x, Xy <x,..., Xp<x".
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Thus, the distribution function of the maximum of n independent random variables is
Fx(0)=Fy, () Fy, @) Fy, ). (1.91)

Minimum of » Independent Random Variables Let X{,X,,..., X, be independ-
ent random variables

Y =min{ X, X5, ... Xn}.
Then,
PY>x)=P(X|>x,Xy>x,..., Xn >Xx).
Hence,
Fy(x)=P(Y> x):FXl (x) ~FX2(x)~--FXn(x), (1.92)

Thus, the distribution function of the minimum of # independent random variables is

Fy(x)=1 —Fxl (x) - FXz (@) -Fx, (). (1.93)

Example 1.21 a) A system consists of » subsystems with independent lifetimes

X1,X»,...Xn. The system operates if at least one of its subsystems operates
1-42

(parallel system). Hence, its lifetime is

X=max {X{,Xs,...Xn}

and has distribution function (1.91). In particular, if the lifetimes of the subsystems
are identically exponentially distributed with parameter A,

Fy(x)=P(X<x)=(1—eM); x>0,
By (1.17), the corresponding mean system lifetime is
EQX) =711 (1—e)"dx.
Substituting u = 1 — ™™ yields

_Llrl=u® 1l eyt
B =5 [ du= [oll+u++u"du

Hence,

E(X):%[l+%+%+m+%}.

b) Under otherwise the same assumptions as in case a), the system fails as soon as
the first subsystem fails (series system). Thus, its lifetime is

Y=min{ X{, X5, ... Xn}

and has distribution function (1.93). In particular, if the lifetimes of the subsystems
are identically exponentially distributed with parameter A, then

Fy(x)=1-¢"™ x>0.

The corresponding mean system lifetime is E(Y) = 1/n\. O
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1.7 SUMS OF RANDOM VARIABLES

1.7.1 Sums of Discrete Random Variables

Mean Value of a Sum The random vector (X, Y) has the two discrete components X
and Y and its joint distribution is

{”ij =PX=x;N Yzyj}; i,j=0,1,...}.
Then the mean value of the sum Z=X+7 is
E@2)=ZiZ0 Zjcotj+yrij=ZioxiZio rij+ Zio V20 Tj-
Thus, in view of (1.54),

EX+Y)=EX)+E(Y). (1.94)
By induction, for any discrete random variables X, X»,...,Xn,
E(X1+Xy+-+Xpn)=E(X ) +EXp)+ -+ E(Xn). (1.95)

Distribution of a Sum Let X and Y be independent random variables with common
range R={0,1,...} and probability distributions

{p;=PX=i;i=0,1,..} and {qj =P(Y=j;,j=0,1,...}.
Then,
P(Z:k):P(X+Y:k)=Zf~€:0P(X: DP(Y=k-1i).
Letting rj, = P(Z= k) yields for all k=0,1, ...
Tk=P09k TP19k-1% " tPk40-

Thus, according to (1.24), the discrete probability distribution {rk; k=0,1, } is the
convolution of the probability distributions of X and Y. Hence, by (1.26),

My(2) = Mx(z) My(z). (1.96)

The z-transform M (z) of the the sum Z =X+ 7Y of two independent discrete

random variables X and Y with common range R = {0, 1,...} is equal to the
product of the z-transforms of X and Y.

By induction, if Z= X| + X, +---+ X, with independent X;, then
Mz(z)= My, (2) My, (2)---My, (2). (1.97)

Example 1.22 Let Z= X| +X, +---+X; be a sum of independent random varia-
bles, where X; has a Poisson distribution with parameter A;; i=1,2,...,n. The z-
transform of X; is (section 1.3.1)

My, (2) = eMi @ D),
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From (1.97),
My(z) = e thot - +hn) (z=1)

Thus, the sum of independent, Poisson distributed random variables has a Poisson
distribution the parameter of which is the sum of the parameters of the Poisson dis-
tributions of these random variables. O

1.7.2 Sums of Continuous Random Variables

In this section, X;; i=1,2,...,n; are random variables with respective distribution
functions, densities, mean values and variances

FXi(xl-), in(xl-), E(X;), and Var(X;); i=1,2,..,n

The joint density of the X1, X>, ..., X is denoted as f(x,x5,...,xn). All mean values
and variances are assumed to be finite.

Mean Value of a Sum Applying (1.81) with h(x{,x),...,xn) =x] +xp +---+xp
yields the mean value of a sum of # random variables:

Hootoo  foo
( 2 OX) _[ _[ j (cp+xp+--- +x0)fx(X1,X0, ... xp)dxdxy- - dxp.

From (1.75),
n n +oo
E<Zi=0 Xz’) =X xi fx, ) dx; .
Hence,

E(X|+Xy+---+ Xp) = E(X]) + E(Xy) + -+ E(Xp). (1.98)

The mean value of the sum of (discrete or continuous) random variables
is equal to the sum of the mean values of these random variables.

Variance of a Sum The variance of the sum of » random variables is
Var(zfzo X,.) =Xo Xy Cov(X;, X)). (1.99)
Since
Cov(X;,X;) =Var(X;) and Cov (Xi,Xj) = Cov (Xj,Xi),
formula (1.99) can be written in the form
Var(zle X,.) =3ty Var(X)+2 X}y Cov (X, X)). (1.100)

Thus, for uncorrelated X;,
Var(X|+Xp +---+ Xp) = Var(X1) + Var(Xy) +--- + Var(Xn). (1.101)
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The variance of a sum of uncorrelated random variables is equal to the sum
of the variances of these random variables.

Letap,05, -+, 0ty be any sequence of finite real numbers. Then,
E(Zj-“:l o Xl-) =¥ o E(X;) (1.102)
n n 2 n
Var(Zizl O(in') = 21':1 OCi Var(Xi) +2 Zw':l’ i<j O(l' OLJ' COV(Xl', X}) (1103)
If the X; are uncorrelated,
Var(z?zl ocl-Xi) =X ol Var(X;). (1.104)

For independent, identically distributed random variables with mean p and variance
62, formulas (1.74) and (1.75) simplify to

E():?zl X,.) =, Var(z?zl X,.) =nc2. (1.105)
Note Formulas (1.98) to (1.105) hold for discrete and continuous random variables.

Distribution of a Sum Let X and Y be two independent, continuous random varia-
bles with distribution functions F y(x), Fy(y) and densities fx(x), fy(»). On condi-
tion Y=y, the distribution function of the sum Z=X+7Y is

FZ(ZSZ|Y=y) =PX+y<z)=PX<z-y)=Fyx(z-y)
and, on condition X=x,
Fy(Z<zIX=x)=P(Y+x<z)=P(Y<z—-Xx)=Fy(z—x).
Hence,
Fz(2)=["2 Fx(z=y)fy)dy=["7 Fy(z=x)fx(x)dx. (1.106)
By differentiation, the probability density of the sum Z= X+ Y is seen to be
f2@ =12 fxE=nfy0)dy = [ fye =2 fx(x)dx. (1.107)

The integrals in (1.107) are equivalent definitions of the convolution of the densities
fX and fy.

Notation fz(Z) = (fX *fy)(Z) = (fY *fX)(Z)
In terms of the distribution functions, since dF(x) =f(x)dx, (1.106) can be written as
Fz(2) =" Fyz—x)dF x(x) = [ Fy(z—y) dF y(»). (1.108)

The integrals in (1.108) are equivalent definitions of the convolution of the distribu-
tion functions F y and Fy.

Notation Fyz(z)=Fy* Fy(z) =Fy* Fy(z)
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The distribution function (probability density) of the sum of two independent
random variables is given by the convolution of their distribution functions
(probability densities).

Note With regard to the general definition of the convolution in mathematics (which
applies to our definition of the convolution of densities), the convolution of two dis-
tribution functions F' and G with respective densities f and g is, by (1.106), simply
the convolution of F and g or, equivalently, the convolution of G and f.

If X and Y are nonnegative, then (1.106) and (1.107) become
Fy(2) = [§ Fx(z=x)fy(dx =[3 Fy(z=»)fy()dy, z20,  (1.109)

2@ =[G fye-0fx@dx =[5 fxe-»fywdy, z20.  (1.110)

Moreover, if L(f) denotes the Laplace transform of a function f'defined on [0, ) (its
existence provided), then, by (1.32),

L(f7)=L(fx * fy) = L(Fy) L(f). (1.111)
L(Fz)= L(Fx*fy) = L(Fx) L(fy). (1.112)

The Laplace transform of the density of the sum of two nonnegative, independent
random variables is equal to the product of their Laplace transforms.

By (1.29), L(Fy) = L(fy)/s so that
L(F,)=sL(Fy)L(Fy). (1.113)

The density of a sum Z=X| +X, +--- + X, of n independent, continuous random
variables X; is obtained by repeated application of formula (1.107). The resulting
function is the convolution of the densities fx |, fx, . fx, denotedas

S22 =fx, * [y %+ * S, 2): (1.114)

In particular, if the X; are identically distributed with density /', then f is the n-fold
convolution of fwith itself or, equivalently, the nth convolution power f *(”)(z) of f.
f *(”)(z) can be recursively obtained as follows:

[ D@y = [T D@ -0 fxdx, (1.115)

i=2,3,..,n; f *(1)(x) = f(x). For nonnegative random variables, this formula simpli-
fies to

D@ =[5 D=0 f(x)dx, z20. (1.116)
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From (1.111), by induction: The Laplace transform of the density f; of the sum of
nonnegative, independent random variables Z=X| +X, +---+ X is equal to the
product of the Laplace transforms of these random variables:

L(f7) = L(fx) L(fx,) L fx,)- (1.117)

The repeated application of (1.108) yields the distribution function of a sum of the n
independent random variables X|,X>, ..., Xn in the form

Fz(Z)=FX1 *FXZX*FXn(Z) (1.118)

In particular, if the X; are independent and identically distributed with distribution

function F, then F4(z) is equal to the nth convolution power of F:
Fy(z) = F*(2). (1.119
F7(z) can be recursively obtained from
F*O ) = [T FHED - x) dF(x); (1.120)

n=2,3,..; F*(O)(x) =1, F*(l)(x) = F(x). If the X; are nonnegative, then formula
(1.120) becomes

FO () = [§ F*ED(z - x) dF (). (1.121)
Example 1.23 (Erlang distribution) Let the random variables X| and X, be inde-
pendent and exponentially distributed with parameters A and A, :

Sx, 00 =2, e M, Fy (=1 —ehMi¥ x>0, i=1,2.
(1.110) yields the density of Z=X{ +X5:
f7(2)= jz % e M2 E) A e MY gy

=2 xze—xzzj e~ M—A)x gy

If Ay =Ay =2, then
fr@=A2ze 2, z20. (1.122)

This is the density of an Erlang distribution with parameters n =2 and A (section 1.3).
If?\,l * 7L2, then

A
fz2)= 7»11_2 (e_xzz—e_xlz), z>0.

Now let X{,X5,...,Xn be independent, identically distributed exponential random
variables with density f(x) = Aehx ; x 2 0. The Laplace transform of f is

F(s)=Ms+N).
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Hence, by (1.114), the Laplace transform of the density of Z=X| +X, +---+ Xy is

}Z(S)=( A )”

S+A

The pre-image of this Laplace transform is
Azl
f7(2) :7\,((,13—1)!6 )\,Z’ z20.

Hence, Z has an Erlang distribution with parameters n and A. O

Example 1.24 (Normal distribution) The random variables X; are independent and

have a normal distribution with parameters |; and (512; i=1,2:

2
1 1 e—Hy) .
()= exp|l—-—=———; i=1,2.
fX’ 1/27[ O; p[ 2 (52 J

1
According to example 1.12 (page 33), the Laplace transforms of the X; are

a istio2s2
Wis+707s%,

fx(s)=e

By (1.111), the density of the sum Z = X| +.X, has the Laplace transform

i=1,2.

1,2, 2,2
. . > (L1 HUy)s+5(07+05) s
J28) =[x, () [xy(s)=e = TR
But this is the Laplace transform of an N(u; +Uy, G% + G%) -distributed random var-

iable. Thus, the sum of two independent, normally distributed random variables also
has a normal distribution. By induction, if

Z=X1 +X2+~"+Xn
is a sum of independent random variables with X; = N(u;, 6?); i=1,2,...,n; then

Z:N(ul+u2+~~~+un,c%+c§+~-+c%). (1.123)

As a corollary from this result:

If X= N, 62), then, for everyn = 1,2, ..., X can be represented as sum of independ-
ent, identically as N(Wn, Gz/n) -distributed random variables. O

According to theorem 1.2, if (X],X>,...,X»n) has a joint normal distribution, then the
sum X| +X5 +--- + Xy has a normal distribution. In particular, if (X, ¥) has a bivar-
iate normal distribution with parameters Ly, |1y, Ox,0y and p, then X+ Y has a nor-
mal distribution with

EX+Y)=px+ly, Var(X+Y) =G +2pCxGy + 0. (1.124)
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1.7.3 Sums of a Random Number of Random Variables

Frequently, sums of a random number of random variables have to be investigated.
For instance, the total claim size an insurance company is confronted with a year is
the sum of a random number of random individual claim sizes.

Theorem 1.3 (Wald's identities) Let X, X,,... be a sequence of independent ran-
dom variables, which are identically distributed as X with E(X) < co. Let further N be
a positive, integer-valued random variable, which is independent of all X, X5, ...
Then mean value and variance of the sum Z= X| + X5 +---+ X}y are

E(Z) = E(X) E(N) (1.125)
Var(Z) = Var(X) E(N) + [EX)]? Var(N). (1.126)

Proof By conditioning,
E(Z) = 2‘;;1 EX{+Xy+---+XyIN=n)P(N=n)
=X E(X| + Xy +--+Xp) P(N=n)

=E(X) ;- nP(N=n).
This proves (1.125).
To verify (1.126), the second moment of Z is determined:

E(Z%) =X, E(Z*|N=n)P(N=n)
=Y E(IX] + X5+ -+ Xn]?) P(N = n).
By making use of (1.19),
E(Z2) =X ({Var(X| + Xy + -+ Xp) + [EX| + Xy + -+ Xn)]2} P(N = n)

=3 {nVar(X)+n? [E(X)]?} P(N = n)

= Var(X) E(N) + [E(X)]* E(N?).
Hence,
Var(2) = E(Z*) - [E(2)]?
= Var(X) E(N) + [E(X)]? ENV?) - [E(X) 1 [E(N))?
= Var(X) E(N) + [E(X))? Var(N).
This is the identity (1.126). |

Wald's identity (1.125) remains valid if the assumption that N is independent of all
X1,X>p, ... is somewhat weakened. To see this, the concept of a stopping time is in-
troduced.
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Definition 1.2 (stopping time) A positive, integer-valued random variable N is said
to be a stopping time for the sequence of independent random variables X, X>,... if
the occurrence of the random event 'N = n' is completely determined by the sequence
X1,X2,....Xn , and, therefore, independent of all X, ,{,X,,40,..., n=1,2,.... ®

Hint A random event A4 is said to be independent of a random variable X if A4 is in-
dependent of the events 'x < X <y' for all x and y with x < y.

Sometimes, a stopping time defined in this way is called a Markov time and only a
finite Markov time is called a stopping time. (Note that a random variable Y is said to
be finite if P(Y <eo)=1. In this case, E(Y) < e.) The notation 'stopping time' can be
motivated as follows: The X{,X,,... are observed one after the other. As soon as the
event 'N=n' occurs, the observation is stopped, i.e. the X, 1,X,,.2,... will not be
observed.

Theorem 1.4 Under otherwise the same assumptions and notation as in theorem 1.3,
let N be a finite stopping time for the sequence X{,X>,.... Then

E(Z) = E(X) E(N). (1.127)

Proof Let binary random variables Y; be defined as follows:

yoo) Lot N2io
o, if N<i”

Y; =1 holds if and only if no stopping has occurred after having observed the i — 1
random variable X{,X,,...,X;_; . Since N is a stopping time, Y; is independent of
X;, Xit1,... Since E(Y;)=P(N=1i) and E(X;Y;) = E(X;) E(Y;).

Bz x) =652, x,7;)
=272 EXG)E(Y) = EQX) X2y E(Y))
=EX) X2 P(N2i).
Now formula (1.15) implies (1.127). |

Example 1.25 a) Let X; =1 if the ith flipping of a fair coin yields 'head' and X; =0
otherwise. Then

N=min{n; X{+Xy+ - +Xp=8} (1.128)
is a finite stopping time for the sequence { X, X>,...}. From (1.127),
EX|{+Xy++ Xp) = %E(N).

According to the definition of N, X| + X, +---+ X, =8 . Hence, E(N) = 16.
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b) Let X; =1 if the ith flipping of a fair coin yields 'head' and X; =—1 otherwise.
Then N given by (1.128) is again a finite stopping time for { X;,X5,...}. A formal
application of Wald's equation (1.127) yields

E(Xy +Xy+---+ Xp) = EX) E(N).

The left hand side of this equation is equal to 8. The right hand side contains factor
E(X) = 0. Therefore, Wald's equation (1.127) is not applicable. O

1.8 INEQUALITIES IN PROBABILITY THEORY

1.8.1 Inequalities for Probabilities

Inequalities in probability theory are useful tools for estimating probabilities and mo-
ments of random variables the exact calculation of which is only possible with ex-
tremely high effort or is even impossible in view of incomplete information on the
underlying probability distribution. All occurring mean values are assumed to exist.

Inequality of Chebyshev For any random variable X with mean value p = E(X) and
variance 62 = Var(X),

P(|X—u| >¢) <o%/e2. (1.129)
To proof (1.129), assume for simplicity that X has density f(x). Then, for any € > 0,
o =["a-wHwdz [ @-pnde
{x, [r—p|>e}

> | e2 flx)dx = e2P(|X—u| 2 ¢).
{6, [ [>e}

This proves the two-sided Chebychev inequality (1.129). The following one-sided
Chebychev inequality is proved analogously:

PX—u>eg) < c?
-u=g)< .
o2 +¢2
Example 1.26 The height X of trees in a forest stand has mean value u=20m and
standard deviation 6 =2 m. To obtain an upper limit of the probability that the height
of a tree differs at least 4m from p, Chebyshev's inequality is applied:

P(1X—20| > 4) < 4/16 = 0.250.

For the sake of comparison, assume that the height of trees in this forest stand has a
normal distribution. Then the exact probability that the height of a tree differs at least
4 m from W is
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P(1X=20| > 4) = P(X—20 > 4) + P(X - 20 < —4)
=2d(-2)=0.046.
Thus, Chebyshev's inequality gives a rather rough estimate. O
no-Rules a) For any random variable X,
P(X-p|<no)21-1/n?; n=1.2,..

This results from (1.128) by letting there € = noc.

b) For any random variable X with a bell-shaped density f(x) and mode equal to |,

P(X-pl<no)z1-—4; n=12,..
9n?
(Any probability density is called bell-shaped if it has exactly one mode.)

Inequalities of Markov Type Let y=/h(x) be a nonnegative, strictly increasing
function on [0, e). Then, for any € > 0, there holds the general Markov inequality

P(Xl2¢) < E(ZEI))(D)_ (1.130)
(1.130) is proved as follows:
E(h(1XD) = [ 77 h(y]) )y
> 12 hyD Ay + [ 5 h(lyl) fv)dy
> h(leD[ 3o fdy+h(leD| S, fv)dy
= h(lel) P(1X] > €).
The special case h(x)=x%, a >0, yields Markov's inequality as such:
P(X|ze) < ——— E(lea) (1.131)

From (1.131) Chebychev's inequality is obtained by letting a =2 and replacing X
with X— L.

If h(x) = eP* b >0, Markov's inequality (1.131 yields an exponential inequality:
P(IX] 2 ¢) Se—bSE(elel)). (1.132)

Markov's inequality (1.131) and the exponential inequality (1.132) are usually super-
ior to Chebychev's inequality, since, given X and €, their right hand sides can be
minimized with respect to @ and b.
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1.8.2 Inequalities for Moments

Inequalities of Chebychev Let functions g(x) and /(x) be either both nonincreas-
ing or both nondecreasing. Then,

E(g(X)) E(h(X)) < E(g(X) h(X)). (1.133)
If g is nonincreasing and 4 nondecreasing or vice versa, then
E(g(X)) E(h(X)) 2 E(g(X) h(X)). (1.134)

As an important special case, let
g(x)=x" and h(x)=x5; r,s>0.
Then
E(X"|) E(X5]) < E(|x™¥]). (1.135)

Inequality of Schwarz

[E(XYDI? < E(X|?) E(1Y]?).

Hélder's Inequality Let » and s be positive numbers satisfying

1,1_
7+§—1.

Then
E(X YD) < [E(X|NY E(Y 19115,

For r =5 =2, Holder's inequality implies the inequality of Schwarz.
Inequality of Minkovski Forr2>1,
LEQX+ VDI < TEQXINYT + EE( .

Inequality of Jensen Let /(x) be a convex (concave) function. Then, for any X,

h(E(X»é) E(h(X)). (1.136)

In particular, if X is nonnegative and A(x) = x% (convex fora > 1 and a <0, concave
for 0<a<1), h(x)=e" (convex), and h(x) = Inx (concave), the respective inequal-
ities of Jensen are

[E(X)]? <EXY) fora>1ora<0,
[EX)]? 2 EX?) forO<a<1,
exp(£(X)) < E(exp(X)),

In E(X) > E(In.X).
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1.9 LIMIT THEOREMS

1.9.1 Convergence Criteria for Sequences of Random Variables

Limit theorems in probability theory are based on certain convergence criteria for se-
quences of random variables, which next have to be introduced.

1) Convergence in Probability A sequence of random variables { X1,X>,...} con-
verges in probability towards a random variable X if for all € > 0,

lim P(|X;-X]| >€)=0. (1.137)

i—>o0
2) Mean Convergence of pth Order A sequence of random variables { X, X>,...}
with property
E(|X;|P)<eo; i=1,2,..
converges in mean of the pth order towards a random variable X if, for all p with
1 <p<oo,
n@}mE(|Xi—X|P)=o and  E(|X|P) < oo. (1.138)

Specifically, if p =1, then the sequence { X1,X>5,...} converges in mean towards X.
If p=2,then { X|,X5,...} converges in mean square or in square mean towards X.

3) Convergence with Probability 1 A sequence of random variables { X{,X>,...}
converges with probability 1 or almost sure towards a random variable X if

P(lim X;=X)=1.

i—>00
4) Convergence in Distribution Let the random variables X; have distribution

functions F X[(x); i=1,2,.. Then the sequence { X1,X»,...} converges towards a

random variable X with distribution function Fy(x) in distribution if, for all points
of continuity x of Fy(x),

lim Fy (x) = lim P(X; <x) = P(X<x)=Fx(x).
j—o0 1 i—o0

Implications
a) 3 implies 4, 2 implies 1, and 1 implies 4. Moreover:

b) If {X{,X,,..} converges towards a finite constant a in distribution, then
{X1,X,,...} converges towards a in probability. Hence, if the limit is a finite con-
stant, convergence in distribution and convergence in probability are equivalent.
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c) If { X1,X,,...} converges towards a random variable X in probability, then there
exists a subsequence {Xl-l,Xiz,...} of {X,X5,..}, which converges towards X

with probability 1.

1.9.2 Laws of Large Numbers

There are weak and strong laws of large numbers. They essentially deal with the
convergence behaviour of arithmetic means X, for n — oo, where

i 1 n
Xn = ﬁ 2121 Xl
Theorem 1.5 Let { X7,X5,...} be asequence of independent, identically distributed

random variables with finite mean | and variance 02. Then the sequence of arithme-
tic means {X1, X5,...} converges in probability towards u:

lim P(|)?,, —ul >s) =0.

Proof In view of Var(X,) = o2/n, Chebyshev's inequality (1.129) yields

— 2
P([Xy-n|>e) <.
ne
Letting n — oo proves the theorem. u

A generalization of theorem 1.5 is the following one.

Theorem 1.6 Let { X|,X5,...} be asequence of (not necessarily independent) ran-
dom variables X; with finite means u; = £(X;); i=1,2,... On condition

lim Var(X;) =0,
)

the sequence {X| — 1, Xp — Wy, ...} converges in probability towards 0. u

Example 1.27 Let X be the indicator variable of the occurrence of random event 4:

Y= 1 if A4 occurs
0  otherwise
with
p=PA)=P(X=1), 1 —p=PX=0)=P(A).
Thus, X has a Bernoulli distribution with
EX)=p, Var(X)=p(l-p).

To estimate the probability p = P(4), the random experiment with outcomes A4 and
A is repeated n times independently of each other. The corresponding sequence of
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indicator variables be X1,X,,...,Xn . The X; are independent and identically distri-
buted as X. Hence, theorem 1.5 is applicable: With respect to convergence in proba-
bility,

A S Y
nlgroloXn = nh%rrolo 7 2= X;=p.
Note that pp(4) =X, is the relative frequency of the occurrence of random event 4

in a series of #n random experiments (sectionl.1). Thus, pp(A4) is a suitable estimator
for the probability of any random event 4. O

The following theorem does not need assumptions on variances. Instead, the pairwise
independence of the sequence { X{,X5,...} isrequired, i.e. X; and X; are independ-
ent for i #j.

Theorem 1.7 Let { X,X,,...} be a sequence of pairwise independent, identically

distributed random variables with finite mean [. Then the corresponding sequence of
arithmetic means {X 1,X7, } converges in probability towards L. |

Theorems 1.5 to 1.7 are called weak laws of great numbers, whereas the following
two theorems are strong laws of great numbers, since the underlying convergence
criterion is convergence with probability 1.

Theorem 1.8 Let { X1,X5,...} be asequence of independent, identically distributed
random variables with finite mean L. Then the corresponding sequence of arithmetic
means {X 1,X2, } converges with probability 1 towards L. u

Theorems 1.5 and 1.8 imply that the sequence of relative frequencies
{p1(4), pr(4), ...}
converges towards p = P(4) both with respect to convergence in probability and

with probability 1. The following theorem abandons the assumption of identically
distributed random variables.

Theorem 1.9 Let { X|,X5,...} be asequence of independent random variables with
parameters

W =EX;) and o7 = Var(Xy); i=1,2,..
On condition that
Y210/ <o,
the sequence { Y1, Y>,...} with
Yo =Xn—5 Zity Wi

converges with probability 1 towards 0. u
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1.9.3 Central Limit Theorem

The central limit theorem provides the theoretical base for the dominant role of the
normal distribution in probability theory and its applications. Intuitively, it states that
a random variable which arises from additive superposition of many random influen-
ces, where none of them is dominant, has approximately a normal distribution. There
are several variations of the central limit theorem. The simplest is the following one.

Theorem 1.10 (Lindeberg and Lévy) Let Y, =X +X, +---+X; be the sum of n
independent, identically distributed random variables X; with finite mean E(X;) =

and finite variance Var(X;) = 02, and let Z, be the standardization of Y, :

Yn—nu.
Zp=-"2""F
" o,Jn
Then,
LT o—uln
1 < = = —_— —u
lim P(Zp <x) = D(x) = _L e 2y, n

Corollary Under the conditions of theorem 1.10, Y; has approximately a normal
distribution with mean value npL and variance 62/n:

Yn = N(nw, 6%/n). (1.139)
Thus, Yy is asymptotically normally distributed as n — . (The fact that Y5 has
mean value nl and variance n 62 follows from (1.105).)

As a rule of thumb, (1.139) gives satisfactory results if » = 20. The following theo-
rem shows that the assumptions of theorem 1.10 can be weakened.

Theorem 1.11 (Lindeberg and Feller) Let Y, = X| + X5 +---+ X, be the sum of in-
dependent random variables X; with finite means u; = £(X;) and finite variances

G% = Var(X;) , and let Z, be the standardization of Y, :
Ya-E(Yn)  Yn-ZTLiM
n— - .
JVar(Yn) /Zp o2
=

i

Then Z; has the properties

X
: 1 —u?n
< = = —
lim P(Zp <x)= () = _Le du, (1.140)
lim E(Zn) = o=, (1.141)
and
lim  max (6,/E(Zn)) =0 (1.142)

n—=%0i=12,...,.n
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if and only if the Lindeberg condition

n

ey L 1 oy wde=0
= x| >e [VarZn)
is fulfilled for all € > 0. u

Conditions (1.141) and (1.142) imply that no term X; in the sum dominates the rest
and that, for n — oo, the contributions of the X; to the sum uniformly tend to 0. Un-
der the assumptions of theorem 1.10, the X; a priori have this property.

Example 1.28 On weekdays, a car dealer sells on average one car (of a certain
make) per 1L =2.4 days with a standard deviation of ¢ = 1.6.

1) What is the probability that the dealer sells at least 35 cars during a quarter (75
weekdays)? Let X;;i=1,2,..., X5 =0 be the time span between selling the (i - 1)th
and the ith car. Then Y =X + X, +---+X, is the time point, at which the nth car
is sold (selling times negligibly small). Hence, the probability
P(Y35<75)

has to be determined. If the X; are assumed to be independent,

E(Y35)=35-24=84 and Var(Y35)=35- 1.62 =89.6.
In view of (1.139), Y35 has approximately an N(84, 89.6) -distribution. Hence,

75—-84

P(Y35S75)zcb( T

) = d(—0.95) = 0.171.

2) How many cars n;, has the dealer at least to stock at the beginning of a quarter

to make sure that every customer can immediately buy a car with probability 0.95?
(It is assumed that this special make of a car is delivered by the manufacturer at no
other times.) Obviously, n =n,,;, is the smallest n with property that

P(Y 1 >75)20.95.

Equivalently, Minin is the smallest » with property

75-24(n+1)
1.64/n+1

Since the 0.05-percentile of an N(0, 1)-distribution is x( o5 =—1.64, the latter in-
equality is equivalent to
75-24Mn+1)
1.6yn+1

P(Y,] <75)<0.05 or <D[ j <0.05.

<-1.64 or (n-30.85)2>37.7.

Hence, n,;,, = 37. O
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Normal Approximation to the Binomial Distribution As pointed out in section
1.2, the binomial distribution arises in connection with a Bernoulli trial: Let 4 be a
random event and X its indicator variable:

P 1 if 4 occurs
" 10 otherwise
with
p=PX=1)=P(4) and 1 —p = P(X=0) = P(4).
A series of n random experiments with respective outcomes X, X5, ...,Xp is carried
out, where the X; are independent and identically distributed as X. Then

is the number of random experiments with outcome 4, whereas n— Yy is the number

of random experiments with outcome A. The random variable Y5 has a binomial
distribution with parameters n and p. Hence, its mean value and variance are

E(Yn)=np, Var(Yn)=np(l-p).

Since the assumptions of theorem 1.10 are fulfilled, ¥y has approximately a normal
distribution:

Zn = N(np, np(1 -p)).
Thus,

. 1 . 1
12+§—np ll—z—np
P(i)$Zp<ip)=®| —=—= | -®| —=——1|; 0<i;<ip<n.

Jnp(l=p) Jnp(1—p)

In particular,

Pn=0=(")pia-p

o1 o1
I+=—np I—=—np

S| —2 || —2 |
Jnp(1=p) Jrp(l=p)

The term £1/2 is called a continuity correction. It improves the accuracy of this ap-
proximation, since a discrete distribution is approximated by a continuous one. These
approximation formulas are the better, the larger # is and the nearer p is to 1/2. The
'normal approximation' of the binomial distribution yields satisfactory results if

E(Zy)=np>35 and Var(Zn)=np(l—p)>10.

The approximation of the binomial distribution by the normal distribution is known
as the central limit theorem of Moivre-Laplace.
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Theorem 1.12 (Moivre-Laplace) 1f the random variable X has a binomial distribu-
tion with parameters n and p, then, for all x,

. X—np 1 —2n
lim Pl —<x|=—— | e ¥ '“du. [ ]
e (\/np(l—p) J V2n —L

Example 1.29 Electronic circuits are subjected to a quality test. It is known that 5%
of the production is faulty. What is the probability that the proportion of faulty units
in a sample of 1000 circuits is between 4% and 6%?

Let X be the random number of faulty circuits in the sample. Then X has a binomial
distribution with parameters

n=1000 and p = 0.05.

Hence, the desired probability is
60

PA0sx<60)= 2 (190)(0.05)1 (0.95)1000-
i=40
For numerical reasons, it makes sense to apply the normal approximation: Since
E(X)=1000-0.05=50>35 and Var(X)=1000-0.05-0.95=47.5> 10,
its application will yield satisfactory results:

60+0.5— 50) _ @(40 —0.5— 50)
6.892 6.892

=d(1.523) - P(-1.523)
=0.972. O

P(40 < X < 60) = cb(

Normal Approximation to the Poisson Distribution Let

Yn=X1+Xp+---+Xp
be the sum of 7 independent, Poisson distributed random variables X, X5,---, Xn
with respective parameters A1, A5, ..., An. Then, by example 1.22 (section 1.7.1),

MY (Z) — 6(7\41+7\.2+‘ . ‘+7\.I1)Z.
n

Thus, Y has a Poisson distribution with parameter Ay +A, +---+Ap. As a conse-

quence, every random variable X which has a Poisson distribution with parameter A
can be represented as a sum of n independent random variables, each of which has a
Poisson distribution with parameter A/n. Since the assumptions of theorem 1.10 are
fulfilled, it is justified to approximate the Poisson distribution by the normal distribu-
tion: If X has a Poisson distribution with parameter A, then

EX)=A and Var(X)=A\.

Therefore,

© 2006 by Taylor & Francis Group, LLC



80 STOCHASTIC PROCESSES

X=NMA), F :qﬂ‘;}‘)
N, Fx(x) (ﬁ

so that, using the continuity correction 1/2 as in the case of the normal approxima-
tion to the binomial distribution,

P(il SXSiz) ~@| ——2

P(X=i)=® -

Since the distribution of a nonnegative random variable is approximated by the nor-
mal distribution, the assumption

EX)=A>3 [Var(X) =3/
has to be made. Hence, the normal approximation to the Poisson distribution should
only be applied if A > 9.
Example 1.30 The number X of traffic accidents in a town a day is known to have a
Poisson distribution with parameter A = E(X) = 12.
1) What is the probability that there are exactly 10 traffic accidents a day?

10
P(X=10)= IIZT e1220.104.

The normal approximation yields

10+0.5 - 12} _cp(lo -0.5- 12}
J12 J12
=0.3325-0.2330
=0.0995.
2) What is the probability that there are at least 10 traffic accidents a day?

For computational reasons, it is convenient to apply the normal approximation:

PX=10)= CD(

x i
PX=10)= X %e—lz -1 _¢{9+0.5 - 12)

=10 1 J12

=0.7673. O
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1.10 EXERCISES

Sections 1.1 to section 1.3

1.1) Castings are produced weighing either 1, 5, 10 or 20kg. Let 4, B and C be the
events that a casting does not weigh more than 1 or 5kg, exactly 10kg, and at least
20kg, respectively. Characterize verbally the events

ANB, AUB, AnC, and (AUB)NC.

1.2) Three persons have been tested for the occurrence of gene g. Based on this ran-
dom experiment, three random events are introduced as follows:

A ="no person has gene g'
B="at least one person has gene g'
C = 'not more than one person has gene g'
(1) Characterize verbally the random events 4 "B, BU C and (4 U B) N C.

(2) By introducing a suitable sample space, determine the sets of elementary events
which characterize the random events occurring under (1).

1.3) Let P(4) = 0.3; P(B) =0.5 and P(4n B)=0.2.
Determine the probabilities P(4 U B), P(ANB) and P(4U B) .

1.4) 200 plates are checked for surface quality (acceptable, non acceptable) and for
satisfying given tolerance limits of the diameter (yes, no). The results are:
surface quality
acceptable  unacceptable
diameter yes 170 15
no 8 7

A plate is selected at random from these 200. Let 4 be the event that its diameter is
within the tolerance limits, and let B the event that its surface quality is acceptable.

(1) Determine the probabilities P(4), P(B) and P(4 N B) from the matrix. By using
the rules developed in section 1.1, determine P(4 U B) and P(A4 U B).
(2) Are A and B independent?

1.5) A company optionally equips its newly developed PC Ibson with 2 or 3 hard
disk drives and with or without extra software and analyzes the first 1000 orders:

hard disk drives
three two
extra software yes 520 90
no 70 320
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A PC is selected at random from the first 1000 orders. Let 4 be the event that this PC
has three hard disk drives and let B be the event this PC has extra software.

(1) Determine the probabilities
P(4), P(B), and P(ANB)
from the matrix.
(2) By using the rules developed in section 1.1 determine the probabilities
P(4UB), P(A|B), P(B|4), P(AUB|B) and P(4|B).

1.6) 1000 bits are independently transmitted from a source to a sink. The probability
of a faulty transmission of a bit is 0.0005.

What is the probability that the transmission of at least two bits is not successful?

1.7) To construct a circuit a student needs, among others, 12 chips of a certain type.
The student knows that 4% of these chips are defective.

How many chips have to be provided so that, with a probability of not less than 0.9,
the student has a sufficient number of nondefective chips in order to be able to con-
struct the circuit?

1.8) It costs $50 to find out whether a spare part required for repairing a failed device
is faulty or not. Installing a faulty spare part causes a damage of $ 1000.

Is it on average more profitable to use a spare part without checking if
(1) 1% of all spare parts of that type

(2) 3% of all spare parts of that type

(3) 10 % of all spare parts of that type

are faulty ?

1.9) A test procedure for diagnosing faults in circuits indicates no fault with probabil-
ity 0.99 if the circuit is faultless. It indicates a fault with probability 0.90 if the circuit
is faulty. Let the probability that a circuit is faulty be 0.02.

(1) What is the probability that a circuit is faulty if the test procedure indicates a
fault?

(2) What is the probability that a circuit is faultless if the test procedure indicates that
it is faultless?

1.10) Suppose 2% of cotton fabric rolls and 3% of nylon fabric rolls contain flaws.
Of the rolls used by a manufacturer, 70% are cotton and 30% are nylon.

(1) What is the probability that a randomly selected roll used by the manufacturer
contains flaws?

(2) Given that a randomly selected roll used by the manufacturer does not contain
flaws, what is the probability that it is a nylon fabric roll?
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i

1.11) Transmission of information between computers s and ¢ (see figure) is possible
if there is at least one closed path between s and ¢. The figure indicates the possible
interruption of an edge (connection between two nodes of the transmission graph) by
a switch. In practice, such an interruption may be caused by a cable break or if the
transmission capacity of a channel is exceeded. All 5 switches operate independent-
ly. Each one is closed with probability p and open with probability 1-p. Only switch
3 allows for transmitting information into both directions.

(1) What is the probability wg (p) that s can send information to ¢?
(2) Draw the graph of w ;(p) as a function of p, 0<p<1.

1.12) From a source, symbols 0 and 1 are transmitted independently of each other in
proportion 1:4. Random noise may cause transmission failures: If a 0 was sent,
then a 1 will arrive at the sink with probability 0.1. If a 1 was sent, then a 0 will ar-
rive at the sink with probability 0.05. (Figure).

(1) A 1 has arrived. What is the probability that a 1 had been sent?
(2) A 0 has arrived. What is the probability that a 1 had been sent?

source sink
0.90
0 >0
0.05
0.10
1 > 1
0.95

1.13) A biologist measured the weight of 132 eggs of a certain bird species [gram]:

i 1 2 3 4 5 6 7 8 9 10
weight x; 38 41 42 43 44 45 46 47 48 50
number of eggs n; 4 6 7 10 13 26 33 16 10 7
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There are no eggs weighing less than 38 or more than 49. Let X denote the weight of
an egg selected randomly from this population.

(1) Determine the probability distribution of X, i.e. p; = P(X=x;); i=1,2,..., 10.
(2) Determine P(43 < X <48) and P(X > 45).
(3) Draw the distribution function of X.

1.14) 120 nails are classified by length:

i 1 2 3 4 5 6
length x; (in mm) <15.0 150 151 152 153 154 155 >155
number of nails 7; 0 8 26 42 24 15 5 0

Let X denote the length of a nail selected randomly from this population.

(1) Determine the probabilities p; = P(X=x;); i=1,2,...,6.

(2) Determine the probabilities P(X < 15.1), P(X>15.4), and P(15.0 < X< 15.5).
(3) Draw the distribution function of X.

1.15) Let X be given by exercise 1.13. Determine E(X) and Var(X).
1.16) Let X be given by exercise 1.14. Determine E(X) and Var(X).

1.17) Because it happens that not all airline passengers show up for their reserved
seats, an airline would sell 602 tickets for a flight that holds only 600 passengers.
The probability that for some reason or other a passenger does not show up is 0.008.
The passengers behave independently.

What is the probability that every passenger who shows up will have a seat?

1.18) Water samples are taken from a river once a week. Let X denote the number of
samples taken over a period of 20 weeks which are polluted. It is known that on
average 10% of the samples are polluted. Assuming independence of the outcomes
of the sample analyses, what is the probability that X exceeds its mean by more than
one standard deviation?

1.19) From the 300 chickens of a farm, 100 have attracted bird flue. If four chickens
are randomly selected from the population of 300, what is the probability that all of
them have bird flue?

1.20) Some of the 140 trees in a park are infested with a fungus. A sample of 10 ran-
domly selected trees is taken.

(1) If 25 trees from the 140 are infested, what is the probability that the sample con-
tains at least one infested tree?

(2) If 5 trees from the 140 are infested, what is the probability that the sample con-
tains at least two infested trees?
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1.21) Flaws occur at random along the length of a thin copper wire. Suppose that the
number of flaws follows a Poisson distribution with a mean of 0.15 flaws per centi-
metre. What is the probability of more than 2 flaws in a section of length 10 centime-
tre?

1.22) The number of dust particles which occur on the reflector surface of a teles-
cope has a Poisson distribution with intensity 0.1 per centimetre squared. What is the
probability of not more than 2 particles on an area of 10 squared centimetres?

1.23) The random number of crackle sounds produced per hour by an old radio has a
Poisson distribution with parameter A = 12. What is the probability that there is no
crackle sound during the 4 minutes transmission of a listener's favourite hit?

1.24) Show that the following functions are probability density functions for some
value of ¢ and determine c:

(1) f@)=cx?, 0<x<4
Q) fx)=c(1+2x), 0<x<2
3) fx)=ce™, 0<x<oo

These functions are assumed to be identically 0 outside their respective ranges.

1.25) Consider a random variable X with probability density function

2
f)=xe ™2, x>0.
Determine x such that
P(X<x)=0.5, P(X<x)=0.5, and P(X>x)=0.95.

1.26) A road traffic light is switched on every day at 5:00 a.m. It always begins with
'red' and holds this colour 2 minutes. Then it changes to 'green' and holds this colour
4 minutes. This cycle continues till midnight. A car driver arrives at this traffic light
at a time point which is uniformly distributed between 9:00 and 9:10 a.m.

(1) What is the probability that the driver has to wait in front of the traffic light?

(2) Determine the same probability on condition that the driver's arrival time point
has a uniform distribution over the interval [8:58, 9:08]?

1.27) According to the timetable, a lecture begins at 8:15. The arrival time of profes-
sor Durrick in the venue is uniformly distributed between 8:13 and 8:20, whereas the
arrival time of student S/ugish is uniformly distributed between 8:05 to 8:30.

What is the probability that Sluggish arrives after Durrick in the venue?

1.28) Determine E(X) and Var(X) of the three random variables X with probability
density functions specified in exercise 1.24.
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1.29) The lifetimes of bulbs of a particular type have an exponential distribution with
parameter A [h~1]. Five bulbs of this type are switched on at time #= 0. Their life-
times can be assumed independent.

(1) What is the probability that at time = 1/A a) all 5, b) at least 3 bulbs are failed?
(2) What is the probability that at least one bulb survives 5/A hours?

1.30) The probability density function of the annual energy consumption of an enter-
prise [in lngwh] is

f@)=300-2)2[ 1-26-2)+(x-2)% |, 2<x<3.

(1) Determine the distribution function of X.
(2) What is the probability that the annual energy consumption exceeds 2.8?
(3) What is the mean annual energy consumption?

1.31) Assume X is normally distributed with mean 5 and standard deviation 4.

Determine the respective values of x which satisfy P(X>x)=0.5,P(X>x)=0.95,
P(x<X<9)=02, PB<X<x)=0.95,and P(—x < X <+x)=0.99.

1.32) The response time of an average male car driver is normally distributed with
mean value 0.5 and standard deviation 0.06 (in seconds).

(1) What is the probability that the response time is greater than 0.6 seconds?
(2) What is the probability that the response time is between 0.5 and 0.55 seconds?

1.33) The tensile strength of a certain brand of polythene sheet can be modeled by a
normal distribution with mean 36 psi and standard deviation 4 psi.

(1) Determine the probability that the tensile strength of a sample is at least 28 psi.

(2) If the specifications require the tensile strength to exceed 30 psi, what proportion
of the production has to be scrapped?

1.34) The total monthly sick-leave time X of employees of a small company has a
normal distribution with mean 100hours and standard deviation 20 hours. (1) What is
the probability that the total monthly sick-leave time is between 50 and 80hours?

(2) How much time has to be budgeted for sick leave to make sure that the budgeted
amount is exceeded with a probability not greater than 0.1?
1.35) Let X = Xg have a geometric distribution with
pi=PX=i)=(1-0)8%;i=0,1,..; 0<0<1.
By mixing the Xg with regard to a suitable structure distribution density, show that
3 1
—=1.
15) I+ 1)(E+2)
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1.36) A random variable X = X, have distribution function
Fo(x)=e %% 0>0, x>0
(Frechet distribution). What distribution type arises when mixing the Fig, with regard
to the structure distribution density
flo)=re ™ X>0, a>0?

Sections 1.4 and 1.5

1.37) The times between the arrivals of taxis at a rank are independent and identical-
ly exponentially distributed with parameter A = 4 [h~!]. Assume that an arriving cus-
tomer does not find an available taxi, the previous one left 3 minutes ago, and no
other customers are waiting. What is the probability that the customer has to wait at
least 5 minutes for the next free taxi?

1.38) The random variable X has distribution function
Fx)=Ax/(1+Ax), A>0, x=>0.
Check whether there is a subinterval of [0, o) on which F(x) is DFR.

1.39)* Consider lifetimes X and Y with the respective probability densities

Lx, 0<x<2

10
5
<x< —=x, 2<x<3
fo={ b AETER =g T S
, otherwise %Ox,SSxS4

0, otherwise

With the notation introduced in section 1.4, let X, and Y, be the corresponding resi-
dual lifetimes given that X > 2 and Y > 2, respectively.

(1) Show that X St Y. (2) Check whether X, St Y, and interpret the result.
S S

1.40)* Let the random variables 4 and B have uniform distributions over [0, a] and
[0,b], a< b, respectively.
(1) Show that A < B and 4 < B.

st hr

(2) Let X be defined by P(X=0)=P(X=1)=1/2. Show that if X is independent of
Aand Bthen A+ X £ B+X.

hr
(3) Let Ay and By be the random variables arising by mixing 4 and B, respectively,
with regard to the distribution of X as structure distribution. Show that

Ay £ By.
hr
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Sections 1.6 to 1.9

1.41) Every day a car dealer sells X cars of type I and Y cars of type II. The table
shows the joint distribution {’"ij =PX=iY=j)), i,j=0, 1,3} of (X,Y):

Y| o 1 2

X 0 0.1 0.1 0
1 0.1 03 0.1
2 0 02 0.1

(1) Determine the marginal distributions of (X, ¥).
(2) Are X and Y independent?
(3) Determine the conditional mean values E(X|Y = 1) and E(Y|X = 0).

1.42) The random vector (X, ¥) has joint density
fxy(ey)=x+y, 0<x,y<l.

(1) Are X and Y independent?

(2) Determine the probability density of Z=XY.

1.43) The random vector (X, ¥) has joint density
fxy,y) = 6x2y, 0<x,y<1.
(1) Are X and Y independent? (2) Determine the density of Z=X7Y.

1.44) A supermarket employes 24 shop-assistants. 20 of them achieve an average
daily turnover of $8000, whereas 4 achieve an average daily turnover of $§ 10,000.
The corresponding standard deviations are $2400 and $3000, respectively. The daily
turnovers of all shop-assistants are independent and have a normal distribution. Let Z
be the daily total turnover of all shop-assistants.

(1) Determine E(Z) and Var(Z).
(2) What is the probability that the daily total turnover Z is greater than $ 190,000?

1.45) A helicopter is allowed to carry at most 8 persons provided that their total
weight does not exceed 620kg. The weights of the passengers are independent, iden-
tically normally distributed random variables with mean value 76kg and standard
deviation 18kg.

(1) What are the probabilities of exceeding the permissible load with 7 and 8 passen-
gers, respectively?

(2) What would the maximum total permissible load have to be to ensure that, with
probability 0.99, the helicopter will be allowed to fly 8 passengers?
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1.46) A freighter has to be loaded with 2000 tons of hard coal. The coal arrives at the
harbor by railway carriages each of which holds independently of each other a ran-
dom load X with E(X) = 50 and Var(X) = 64.

What is the smallest number n =n_;, of railway carriages which are necessary to
make sure that with a probability of not less than 0.99 the freighter can be loaded
with at least 2000 tons of coal?

1.47) In a certain geographical region, the height X of women has a normal distri-
bution with E(X) =168 cm and Var(X) = 64 cm, whereas the height ¥ of men has a
normal distribution with E(Y) =175cm and Var(¥Y) =100 cm.

Determine the probability that a randomly selected woman is taller than a randomly
selected man.

Hint The desired probability has structure P(X > Y) = P(X+(-Y) 2 0).

1.48)* Let X| and X, be independent and identically distributed with density

1 A
X) = , X E (—o0,+00).
fx) ) ( )

This is a Cauchy distribution with parameters A =1 and i =0 (section 1.2.3.2).
Verify that X} + X, has a Cauchy distribution with parameters A=2 and u=0.

1.49) Let X have a geometric distribution with parameter p, 0 <p <1 :
PX=i=p(1-p)il; i=1,2,..
(1) Determine the z-transform of X and by means of it E(X) and Var(X).

(2) Let X; and X, be independent random variables, identically distributed as X.
Determine the z-transform of Z=X| +X, and by means of it E(Z) and Var(Z).

Verify the 2nd moment obtained in this way by another method.

1.50) Let X|,X,,..,X; be independent, binomially distributed random variables
with respective parameters (n1,p1), (n2,02), ... M, Py
Under which condition has the sum Z= X + X, +--- + X a binomial distribution?

Hint Determine the z-transform of Z.

1.51) (X, Y) has a uniform distribution over the square [0 <x<T7,0<y<T], ie. its
joint density is
UT?, 0<x,y<T
Sxy®y) = { 0, otherwise

(1) Are X and Y independent?
(2) Determine the density of the sum Z=X+7Y.
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1.52) Let X have a Laplace distribution with parameters A and U, i.e. X has density
f(x) = %e—Mx—HL A>0, —oco< |l <400, —o0< X< oo,

Determine the Laplace transform of f(x) and, by means of it,

E(X), E(X?), and Var(X).

1.53) 6% of the citizens in a large town suffer from severe hypertension. Let B; be
the number of people in a sample of » randomly selected citizens from this town
which suffer from this desease (Bernoulli trial).

(1) By making use of the Chebychev inequality find a positive integer n with prop-

erty
A

(2) Find a positive integer n(, satisfying relationship (i) by making use of the central
limit theorem.

i—”—o.%‘ >0.01) <005 forall n with n > ng, ()
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CHAPTER 2

Basics of Stochastic Processes

2.1 MOTIVATION AND TERMINOLOGY

A random variable X is the outcome of a random experiment under fixed conditions.
A change of these conditions will influence the outcome of the experiment, i.e. the
probability distribution of X will change. Varying conditions can be taken into ac-
count by considering random variables which depend on a deterministic parameter ¢:
X =X(¢). This approach leads to more general random experiments than the ones de-
fined in section 1.1. To illustrate such generalized random experiments, two simple
examples will be considered.

Example 2.1 a) At a fixed geographical point, the temperature is measured every
day at 12:00. Let x; be the temperature measured on the ith day of a year. The value
of x; will vary from year to year and, therefore, it can be considered a realization of a
random variable X;. Thus, X; is the (random) temperature measured on the ith day
of a year at 12:00. Apart from random fluctuations of the temperature, the X; also
depend on a deterministic parameter, namely on the time, or, more precisely, on the
day of the year. However, if one is only interested in the temperatures X, X, X3 on
the first 3 days (or any other 3 consecutive days) of the year, then these temperatures
are at least approximately identically distributed. Nevertheless, indexing the daily
temperatures is necessary, because modeling the obviously existing statistical de-
pendence between the daily temperatures requires knowledge of the joint probability
distribution of the random vector (X, X, X3). This situation and the problems
connected with it motivate the introduction of the generalized random experiment
'daily measurement of the temperature at a given geographical point at 12:00 during
a year'. The random outcomes of this generalized random experiment are sequences
of random variables {X,X>,..., X365} with the X; being generally neither indepen-

dent nor identically distributed. If on the ith day temperature X; has been measured,
then the vector (x1,x,,...,xX365) can be interpreted as a function x =x(#), defined at
discrete time points #, t€ [1,2,...,365] : x(f) =x; for t=i. Vector (x,x,...,X365)
is a realization of the random vector (X,X>, ..., X345).

b) If a sensor graphically records the temperature over the year, then the outcome of
the measurement is a continuous function of time #: x =x(¢), 0 <¢<1, where x(?) is
realization of the random temperature X(#) at time ¢ at a fixed geographical location.
Hence it makes sense to introduce the generalized random experiment 'continuous
measurement of the temperature during a year at a given geographical location'. It
will be denoted as {X(f), 0<¢<1}.
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A complete probabilistic characterization of this generalized random experiment re-
quires knowledge of the joint probability distributions of all possible random vectors

(X(11), X(ty), . X(1n)); O0S 1y <ty<---<tn<l; n=1,2,..

This knowledge allows for statistically modelling the dependence between the X{(¢;)
in any sequence of random variables

X(t), X(tp), ..., X(tn).
It is quite obvious that, for small time differences ¢, | —¢;, there is a strong statistical
dependence between X(¢;) and X(#;,1). However, there is also a dependence bet-
ween X(¢;) and X(z;) for large time differences t —¢; due to the inertia of weather
patterns over an area. O

Example 2.2 The deterministic parameter, which influences the outcome of a ran-
dom experiment, need not be time. For instance, if at a fixed time point and a fixed
observation point the temperature is measured along a vertical of length L to the
earth's surface, then one obtains a function x = x(4) with 0 </ < L which obviously
depends on the distance / of the measurement point to the earth's surface. But if the
experiment is repeated in the following years under the same conditions (same time,
location and measurement procedure), then, in view of the occurrence of nonpredict-
able influences, different functions x = x(4) will be obtained. Hence, the temperature
at distance / is a random variable X(/%) and the generalized random experiment 'meas-
uring the temperature along a vertical of length L', denoted as {X(%), 0<h <L}, has
outcomes, which are real functions of 4: x =x(h), 0 <h < L.

In this situation, it also makes sense to consider the temperature in dependence of
both 4 and the time point of observation ¢:

x=x(h,t); 0<Sh<L, t20.
Then the observation x depends on a vector of deterministic parameters:
x=x(0), 0=(h,1).
In this case, the outcomes of the corresponding generalized random experiment are

surfaces in the (4,tx)-space. However, this book only considers one-dimensional
parameter spaces.

An already 'classical' example for illustrating the fact that the parameter need not be
time is essentially due to Cramer and Leadbetter [22]: A machine is required to con-
tinuously produce ropes of length 10 m with a given nominal diameter of 5 mm. De-
spite maintaining constant production conditions, minor variations of the rope diame-
ter can technologically not be avoided. Thus, when measuring the actual diameter x
of a single rope at a distance d from the origin, one gets a function x =x(d) with
0 <d < 10. This function will randomly vary from rope to rope. This suggests the in-
troduction of the generalized random experiment 'continuous measurement of the
rope diameter in dependence on the distance d from the origin'. If X(d) denotes the
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x(d)
5.05

AV VANY

Figure 2.1 Random variation of the diameter of a nylon rope

diameter of a randomly selected rope at a distance d from the origin, then it makes
sense to introduce the corresponding generalized random experiment

{X(d), 0<d<10}
with outcomes x =x(d), 0 <d <10 (Figure 2.1). O

In contrast to the random experiments considered in chapter 1, the outcomes of
which are real numbers, the outcomes of the generalized random experiments, dealt
with in examples 2.1 and 2.2, are real functions. Hence, in literature, such general-
ized random experiments are frequently called random functions. However, the ter-
minology stochastic processes is more common and will be used throughout the
book. In order to characterize the concept of a stochastic process more precisely,
further notation is required: Let the random variable of interest X depend on a param-
eter ¢+ which assumes values from a set T: X=X(¢), t€ T. To simplify the termino-
logy and in view of the overwhelming majority of applications, in this book the pa-
rameter ¢ is interpreted as time. Thus, X(¢) is the random variable X at time ¢ and T
denotes the whole observation time span. Further, let Z denote the set of all values,
the random variables X(7)can assume for all € T.

Stochastic process A family of random variables {X(¢), t € T} is called a stochastic
process with parameter space T and state space Z .

If T is a finite or countably infinite set, then {X(?), € T} is called a stochastic pro-
cess in discrete time or a discrete-time stochastic process. Such processes can be
written as a sequence of random variables {X7, X5,...} (example 2.1 a). On the
other hand, every sequence of random variables can be thought of as a stochastic
process in discrete time. If T is an interval, then {X(?), t € T} 1is a stochastic process
in continuous time or a continuous-time stochastic process. A stochastic process
{X(®), te T} is said to be discrete if its state space Z is a finite or a countably infi-
nite set, and a stochastic process {X(¢), t € T} is said to be continuous if Z is an in-
terval. Thus, there are discrete stochastic processes in discrete time, discrete stochas-
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tic processes in continuous time, continuous stochastic processes in discrete time,
and continuous stochastic processes in continuous time. Throughout this book the
state space Z is assumed to be a subset of the real axis.

If the stochastic process {X(¢), t € T} is observed over the whole time period T, i.e.
the values of X(¢) are registered for all € T, then one obtains a real function
x=x(t), te T. Such a function is called a sample path, a trajectory or a realization
of the stochastic process. In this book the concept sample path is used. The sample
paths of a stochastic process in discrete time are, therefore, sequences of real num-
bers, whereas the sample paths of stochastic processes in continuous time can be any
functions of time. The sample paths of a discrete stochastic process in continuous
time are piecewise constant functions (step functions). The set of all sample paths of
a stochastic process with parameter space T is, therefore, a subset of all functions
over the domain T.

In engineering, science and economics there are many time-dependent random phe-
nomena which can be modeled by stochastic processes: In an electrical circuit it is
not possible to keep the voltage strictly constant. Random fluctuations of the voltage
are for instance caused by thermal noise. If v(t) denotes the voltage measured at time
point ¢, then v = v(¢) is a sample path of a stochastic process { ¥/(f), t 20} where V(¢)
is the random voltage at time ¢ (Figure 2.2). Producers of radar and satellite support-
ed communication systems have to take into account a phenomenon called fading.
This is characterized by random fluctuations in the energy of received signals caused
by the dispersion of radio waves as a result of inhomogeneities in the atmosphere and
by meteorological and industrial noise. (Both meteorological and industrial noise
cause electrical discharges in the atmosphere which occur at random time points with
randomly varying intensity.) 'Classic' applications of stochastic processes in econo-
mics are modeling the development of share prices, profits, and prices of commodi-
ties over time. In operations research, stochastic processes describe the develop-
ment in time of the 'states' of queueing, inventory and reliability systems. In statisti-
cal quality control, they model the fluctuation of quality criteria over time. In medi-
cine, the development in time of 'quality parameters' of health as blood pressure and
cholesterol level are typical examples of stochastic processes. One of the first ap-
plications of stochastic processes can be found in biology: modeling the development
in time of the number of species in a population.

A
Av(d)

Figure 2.2 Voltage fluctuations caused by random noise
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2.2 CHARACTERISTICS AND EXAMPLES

From the mathematical point of view, the heuristic explanation of a stochastic pro-
cess given needs to be supplemented. Let F¢(x) be the distribution function of X(¢):

Fyx)=PX()<x), te T.

The family of the one-dimensional distribution functions
{Fix),te T}
is the one-dimensional probability distribution of {X(f), t € T}. In view of the statis-
tical dependence, which generally exists between the X(¢1), X(t3), ..., X(tn) for any
t1,t,...,tn, the family of the one-dimensional distribution functions {F(x), e T}
does not completely characterize a stochastic process (see examples 2.1 and 2.2). A
stochastic process {X(¢),t€ T} is only then completely characterized if, for all
n=1,2,..., for all n-tuples {tl,tz, ...,tn} with ¢; € T, and for all {x{,x5,...,xn} With
x; € Z, the joint distribution function of the random vector
(X(11),X(13), ..., X(tn))

is known:

Fitytgtn®1,X2,..xn) = PX(11) < x1, X(tp) < x3, ..., X(tn) Sxn).  (2.1)
The set of all these joint distribution functions defines the probability distribution of

the stochastic process. For a discrete stochastic process, it is generally simpler to
characterize its probability distribution by the probabilities

P(X(t)) e A1, X(ty) € Ap,..., X(tn) € An)
forallt{,tp,....tn witht;e Tand 4, cZ; i=1,2,..,n; n=1,2,...
Trend Function Assuming the existence of E(X(¢)) for all t € T, the trend or trend

function of the stochastic process {X(#), € T} is the mean value of X(¢) as a func-
tion of #

m(t) = EX(F), teT. (2.2)

Thus, the trend function of a stochastic process describes its average development in
time. If the densities f;(x) = dFs(x)/dx exist, then

m(f) =If:xft(x) dx, teT.

Covariance Function The covariance function of a stochastic process {X(¢), t € T}
is the covariance between random variables X(s) and X(¢) as a function of s and ¢.
Hence, in view of (1.63) and (1.64),

C(s, f) = Cov (X(s), X(1)) = E(IX(s) - m(s)| [X) - m(®)]); s,te T,  (2.3)
or
C(s, f) = E(X(s) X(0)) — m(s)m(d); s,te T. (2.4)
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In particular,
C(t, ) = Var(X(9)). (2.5)
The covariance function is a symmetric function of s and #:
C(s, 1) = C(2,5). (2.6)

Since the covariance function C(s, ) is a measure for the degree of the statistical de-
pendence between X(s) and X(7), one expects that

lim C(s,f)=0. Q@.7)

|t=s|—o0

However, example 2.3 shows that this need not be the case.

Correlation Function The correlation function of {X(f), t € T} is the correlation
coefficient p(s, f) = p(X(s), X(¥)) between X(s) and X(¢) as a function of s and ¢. Ac-
cording to (1.65),

Cov (X(s),X(?))

JVar(X(s) [Var(X(t) -

p(s,0) = (2.8)

The covariance function of a stochastic process is also called autocovariance func-
tion and the correlation function autocorrelation function. This is useful when con-
sidering covariances and correlations between X(s) and Y(s) with regard to different
stochastic processes {X(¢), t € T} and {¥(¢), t € T}.

Example 2.3 (cosine wave with random amplitude) Let

X(t) =A coswt,
where A4 is a nonnegative random variable with E(A4) < eo. The process {X(¢), 1= 0}
can be interpreted as the output of an oscillator which is selected from a set of identi-

cal ones. (Random deviations of the amplitudes from a nominal value are technolog-
ically unavoidable.) The trend function of this process is

m(t) = E(A) cos mt.
By (2.4), its covariance function is
C(s, 1) = E([4 cos ws][A4 cos wt]) — m(s)m(f)

= [E(42) — (E(4))?](cos ws)(cos(o)).
Hence,
C(s,t) = Var(A)(cos ws)(cos mr).

Obviously, the process does not have property (2.7). Since there is a functional
relationship between X(s) and X(¢) for any s and ¢, X(s) and X(f) cannot tend to
become independent as |t —s| — . Actually, the correlation function between X(s)
and X(?) is identically equal to 1: p(s,?) = 1. For a modification of this process, see
exampie 2.6. O
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The stochastic process considered in example 2.3 has a special feature: Once the ran-
dom variable 4 has assumed a value a, the process develops in a strictly determini-
stic way. That means, by only observing a sample path of such a process over an ar-
bitrarily small time interval, one can predict the further development of the sample
path with absolute certainty. (The same comment refers to examples 2.6 and 2.7).

More complicated stochastic processes arise when random influences continuously,
or at least repeatedly, affect the phenomenon of interest. The following example
belongs to this category.

(0]
a

0 1 1 0 0

T 1 |
| | | |
| | | |
| | | |
| | | |
| | | |
l l l l
-2 -1 0 1 2 3 4

Figure 2.3 Pulse code modulation

Example 2.4 (pulse code modulation) A source generates symbols 0 or 1 independ-
ently with probabilities p and 1 —p, respectively. The symbol 0 is transmitted by
sending nothing during a time interval of length one. The symbol 1 is transmitted by
sending a pulse with constant amplitude a during a time unit of length one. The
source has started operating in the past. A stochastic signal (sequence of symbols)
generated in this way is represented by the stochastic process {X(¢), t € (—oo,+00)}
with

+o0
Xt)= X Anh(t—n), n<t<n+l, (2.9)
NnN=—oo

where the 4y; n=0,%1,12,...; are independent binary random variables defined by

B

A= 0 with probability p
"7 | a with probability 1-p
and A(f) is given by
<
h(t) = 1 for 0<¢t<1
0 elsewhere

For any ¢,
0 with probability p

X = {a with probability 1—-p °

For example, the section of a sample path x =x(f) plotted in Figure 2.3 is generated
by the following partial sequence of a signal:

---1011001---
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Note that the time point # = 0 coincides with the beginning of a new transmission pe-
riod. The process has a constant trend function:

mi)=a- PX()=a)+0-P(X(®)=0)=a(l —p).
Forn<s,t<n+1; n=0,£1,%2, ...,
E(X(s)X(1)) = E(X(s)X(0)| X(s) = a) - P(X(s) = a)
+ E(X(5)X(1)| X(s) = 0) - P(X(s) = 0)
=a%(1-p).

fm<s<m+landn<t<n+1 with m#n, then X(s) and X(f) are independent.
Hence the covariance function of {X(), t € (—oo,+e0)} is

Cls, 1) = a’p(1-p) for n<s,t<n+1; n=0,%1,42, ...
, 0 elsewhere

Although the stochastic process analyzed in this example has a rather simple struc-
ture, it is of considerable importance in physics, electrical engineering, and commu-
nication. A modification of the pulse code modulation process is considered in exam-
ple 2.8. As the following example shows, the pulse code modulation is a special
shot noise process. O

Example 2.5 (shot noise process) At time points Ty, pulses of random intensity A4
are induced. The sequences {7, Tq,...} and {4,45,...} are assumed to be discrete-
time stochastic processes with properties

1) With probability 1, 7) < Tp <--- and nhggoTn = oo,
2) E(Ap) <eo;n=1,2,...

In communication theory, the sequence {(Tn,4,); n=1,2,...} is called a pulse pro-
cess. (In section 3.1, it will be called a marked point process.) Let function A(f), the
response of a system to a pulse, have properties

h(t)y=0 fort<0 and tlim h(t)=0. (2.10)
—>00

The stochastic process {X(?), t € (—oo,+o0)} defined by
X =X,-1 Anh(t—Tn) @2.11)

is called a shot noise process or just shot noise. It quantifies the additive superposi-
tion of the responses of a system to pulses. The factors A, are sometimes called am-
plitudes of the shot noise process. In many applications, the 45 are independent,
identically distributed random variables, or, as in example 2.4, even constant.

If the sequences of the T, and A4 are doubly infinite,

[Tp; n=0,£1,£2,..} and {An; n=0,+1,42,..},
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then the shot noise process {X(?), t € (—oo,4+0)} is defined as
XO= X Aph(t—Ty). (2.12)
Nn=—oo

A well-known physical phenomenon, which can be modeled by a shot noise process,
is the fluctuation of the anode current in vacuum tubes (‘tube noise'). This fluctuation
is caused by random current impulses, which are initiated by emissions of electrons
from the anode at random time points (Schottky effect).

The term shot noise has its origin in the fact that the effect of firing small shot at a
metal slab can be modeled by a stochastic process of structure (2.11). More examples
of shot noise processes are discussed in chapter 3, where special assumptions on the
underlying pulse process are made. O

2.3 CLASSIFICATION OF STOCHASTIC PROCESSES

Stochastic processes are classified with regard to properties which reflect for instance
their dependence on time, the statistical dependence of their developments over dis-
joint time intervals, and the influence of the history or the current state of a stochas-
tic process on its future evolvement. In the context of example 2.1: Has the date any
influence on the daily temperature at 12:00? (That need not be the case if the meas-
urement point is near to the equator.) Or, has the sample path of the temperature in
January any influence on the temperature curve in February? For reliably predicting
tomorrow's temperature at 12:00, is it sufficient to know the present temperature or
would knowledge of the temperature curve during the past two days allow a more ac-
curate prediction? What influence has time on trend or covariance function?

Special importance have those stochastic processes, for which the joint distribution
functions (2.1) only depend on the distances between ¢; and #;, 1, i.c. only the relative
positions of #{,1,,...,tn to each other have an impact on the joint distribution of the
random variables X(¢1),X(¢), ..., X(tn).

Strong Stationarity A stochastic process {X(¢), t € T} is said to be strongly station-
ary or strictly stationary if for alln = 1,2, ..., for any &, for all n-tuples

(t1,tp,..,tn) witht; e Tand t;+he T; i=1,2,..,n;
and for all n-tuples (x1,x5,...,x»n), the joint distribution function of the random vec-
tor (X(t1),X(¢5), ..., X(tn)) has the following property:
byt stn X 15%25 s Xn) = Fy o, tyh 15X 25 0 X0)- (2.13)

Thus, the probability distribution of a strongly stationary stochastic process is invar-
iant against absolute time shifts. In particular, by letting n = 1, property (2.13) im-
plies that the one-dimensional distribution functions F(x) do not depend on ¢ In this
case there exists a distribution function F(x) so that
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Fix)=F(kx), te T. (2.14)
Hence, trend- and variance function of {X(¢), t € T} do not depend on ¢ either:
m(t) = E(X(f)) = m = constant, (2.15)
Var(X(t)) = constant.
The trend function of a strongly stationary process is, therefore, a parallel to the time

axis and the fluctuations of its sample paths around the trend function experience no
systematic changes with increasing ¢.

Substituting n =2, 1; =0, t, =t—s and h=s in (2.13) yields for all s < ¢,
Fo,1s(x1,x2) = Fyg 1(x1,x2),

i.e. the joint distribution function of the random vector (Xs, X;), and, therefore, the
mean value of the product X5 X, depend only on the difference T =¢—s, and not on
the absolute values of s and ¢. Since, according to (2.4),

C(s,?) = E[X(s) X()]-m? for s, te T,
C(s,?) must have the same property:
C(s,5) =C(s, s+ 1) = C(0, T) = C(7).
Therefore, the covariance function of strongly stationary processes depends only on
one variable: Forall s € T,
C(t) = Cov (X(s), X(s + 1)). (2.16)
Since the covariance function C(s, f) of a stochastic process is symmetric in the var-

iables s and ¢, the covariance function of a strongly stationary process is symmetric
with respect to T =0, i.e. C(t) = C(-1) or, equivalently,

C(ty=C(Itl). (2.17)

In practical situations it is generally not possible to determine the probability dis-
tributions of all possible random vectors {X(z{), X(#;),---, X(¢n)} in order to check
whether a stochastic process is strongly stationary or not. The user of stochastic pro-
cesses is, therefore, frequently satisfied with the validity of properties (2.15) and
(2.16). Hence, based on these two properties, another concept of stationarity has
been introduced. It is, however, only defined for second order processes.

Second Order Process A stochastic process {X(¢), t € T} is said to be a second or-
der process if

EX2(f)) < forall te T. (2.18)

The existence of the second moments of X(#) as required by assumption (2.18)
implies the existence of the covariance function C(s,#) for all s and ¢, and, therefore,
the existence of the variances Var(X(¢)) and mean values E(X(¢)) for all re T (see
inequality of Schwarz, section 1.8.2).
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Weak Stationarity A stochastic process {X(¢), t € T} is said to be weakly station-
ary if it is a second order process, which has properties (2.15) and (2.16).

A strongly stationary process is not necessarily weakly stationary, since there are
strongly stationary processes, which are not second order processes. But, if a second
order process is strongly stationary, then, as shown above, it is also weakly station-
ary. Weakly stationary processes are also called wide-sense stationary, covariance
stationary or second-order stationary. Further important properties of stochastic pro-
cesses are based on properties of their increments.

Homogeneous Increments The increment of a stochastic process {X(¢), t € T} with
respect to the interval [71,7,] is the difference X(#,) —X(¢1).

A stochastic process {X(f), t € T} is said to have homogeneous or stationary incre-
ments if for arbitrary, but fixed #{,f, € T the increment X{(#, +7) —X(¢{ +7) has the
same probability distribution for all T with property t| +t€ T, ) +1€ T.

An equivalent definition of processes with homogeneous increments is the following
one: {X(#),te T} has homogeneous increments if the probability distribution of
X(t+ 1) — X(¢) does not depend on ¢ for any fixed 1; ¢, t+1t€ T.

A stochastic process with homogeneous (stationary) increments need not be station-
ary in any sense.

Independent Increments A stochastic process {X(?), t € T} has independent incre-
ments if for all n=2,3, ... and for all n-tuples (¢1,¢;, ....,tn) with t; € T and

11 <tp<t3<---<ipn
the increments

X(tp) = X(21), X(13) = X(tp), -+, X(tn) = X(2,_1)
are independent random variables.
Gaussian Process A stochastic process {X(¢), t€ T} is a Gaussian process if the

random vectors (X(¢1), X(#3), ..., X(tn)) have a joint Normal (Gaussian) distribution
for all n-tuples (¢1,),...,tn) with ;€ Tandt) <ty <---<ty; n=1,2,...

Gaussian processes have an important property: A Gaussian process is strongly sta-
tionary if and only if it is weakly stationary. Important Gaussian processes will be
considered later.

Markov Process A stochastic process {X(?), t € T} has the Markov(ian) property if
for all (n+1)-tuples (¢1,tp,....t;,41) With t;€ T and ¢| <ty <---<t,,1, and for
any A;cZ;i=1,2,..,n+1;

P(X(ty31) € Ay | X(tn) € An, X(ty_1) € Ay, X(t]) € A7)
= P(X(ty41) € Apyyy | X(tn) € An). (2.19)
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The Markov property has the following implication: If ¢,,, | is a time point in the fu-
ture, t, the present time point and, correspondingly, #{,%,,...,¢,_1 time points in the
past, then the future development of a process having the Markov property does not
depend on its evolvement in the past, but only on its present state. Stochastic proces-
ses having the Markov property are called Markov processes.

A Markov process with finite or countably infinite parameter space T is called a dis-
crete-time Markov process. Otherwise it is called a continuous-time Markov process.
Markov processes with finite or countably infinite state spaces Z are called Markov
chains. Thus, a discrete-time Markov chain has both a discrete state space and a dis-
crete parameter space. However, deviations from this notation can be found in litera-
ture.

Markov processes play an important role in all sorts of applications, mainly for four
reasons: 1) Many practical phenomena can be modeled by Markov processes. 2) The
input necessary for their practical application is generally more easily provided than
the necessary input for other classes of stochastic processes. 3) Computer algorithms
are available for numerical evaluations. 4) Stochastic processes with independent in-
crements always have the Markov property. In this book, the practical importance of
Markov processes is illustrated by many examples.

Theorem 2.1 A Markov process is strongly stationary if and only if its one-dimen-
sional probability distributions do not depend on time, i.e. if there exists a distribu-
tion function F(x) with

Fy(x)=P(X(f) <x)=F(x) forall te T. u

Hence condition (2.14) is necessary and sufficient for a Markov process to be strong-
ly stationary.

Mean-Square Continuous A second order process {X(?), t € T} is said to be mean-
square continuous at point t =t € T if

lim E([X(tg+h) —X(to)]z) =0. (2.20)
h—0

The process {X(#), t € T} is said to be mean-square continuous in the region T,
Ty c T, if it is mean-square continuous at all points ¢ € T .

According to section 1.9.1, the convergence used in (2.20) is called convergence in
mean square.

There is a simple criterion for a second order stochastic process to be mean-square
continuous at ¢ : A second order process {X(f), t € T} is mean-square continuous at
to if and only if its covariance function C(s, ) is continuous at (s, ) = (g, ().

As a corollary from this statement: A weakly stationary process {X(), t € (—oo,+e0)}
is mean-square continuous in (—eo,+e0) if and only if it is mean-square continuous
at time point ¢ = 0.
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The following two examples make use of two addition formulas from trigonometry:
cosa cosP = %[COS(B — o)+ cos(a+PB)],
cos(B—o) =cosa cosP+sinasinf.

Example 2.6 (cosine wave with random amplitude and random phase) In modify-
ing example 2.3, let

X(®) = A cos(wt+ @),

where 4 is a nonnegative random variable with finite mean value and finite variance.
The random parameter @ is assumed to be uniformly distributed over [0,27n] and in-
dependent of 4. The stochastic process {X(f), t € (—oo,400)} can be thought of the
output of an oscillator, selected from a set of oscillators of the same kind and having
been turned on at different times. Since

E(cos(ot + @) = == [*™ cos(wr + ¢) do
210
N 2m _
= [sin(or + @)™ =0,

the trend function of this process is identically zero: m(#) = 0. From (2.4), its covar-
iance function is

C(s,t) = E{[A4 cos(ms + D)][A4 cos(wt + D)]}

—E(A2)— 0 cos(a)s+(p) cos(®t + @) do

= B(4?) - I(z)n;{cosco(t $)+cos [(s + 1) +2¢]} do.

The first integrand is a constant with respect to integration. Since the integral of the
second term is zero, C(s, ) depends only on the difference t=¢—s:

C(t) = %E(Az) COSWT.
Thus, the process is weakly stationary. a
Example 2.7 Let 4 and B be two uncorrelated random variables satisfying
E(A)=EB)=0 and Var(4d) = Var(B) =62 < .
The stochastic process {X(?), t € (—eo,+e0)} be defined by
X(f)=Acoswt+ Bsinwt.

Since Var(X(?)) = 62 < oo for all 1, {X(?), t € (—o0,+00)} is a second order process. Its
trend function is identically zero: m(f) = 0. Thus, from (2.4),

C(s, 1) = E(X(s) X(2)).
For A and B being uncorrelated, E(4B) = E(4) E(B). Hence,
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C(s,t) = E(Azcos ®s cos o + B2sin ws sin wr)
+ E(AB cos s sin 0t + AB sin (s cos o¢)
=o? (cos (s cos ®f + sin s sin o)

+ E(AB) (cos (s sin ¢ + sin @s cos o)

= GchS(D(t—S).

Therefore, the covariance function depends only on the difference T=1¢—s:
Ct)= o2cosmT.
Thus, the process {X(?), t € (—oo,+o0)} is weakly stationary. O

Example 2.8 (randomly delayed pulse code modulation) Based on the stochastic
process {X(?), t € (—eo,+o0)} defined in example 2.4, the stochastic process

[Y(D), t € (—o0,+00)} with Y(£) = X(t—2)

is introduced, where Z is uniformly distributed over [0, 1]. Thus, when shifting the
sample paths of the process {X(¢), t € (—oo,+00)} exactly Z time units to the right, one
obtains the corresponding sample paths of the process {Y(?), t € (—oo,+o0)}. For in-
stance, shifting the section of the sample path shown in Figure 2.2 exactly Z =z time
units to the right yields the corresponding section of the sample path of the process
{¥(#), t € (—oo,400)} shown in Figure 2.4.

The trend function of the process {¥(¢), t € (—oo,400)} is

m(t)=a(l-p).
To determine the covariance function, let B = B(s,f) denote the random event that
X(s) and X(7) are separated by a switching point n+Z; n=0,%=1,£2,... Then
PB)=lt—s|, PB)=1-|t—s|.
The random variables X(s) and X(¢) are independent if |t—s| > 1 and/or B occurs.
Therefore,
C(s,H)=0 if |t—s| > 1 and/or B occurs.

If [t—s| <1, X(s) and X(¢) are only then independent if B occurs. Hence, the covar-
iance function of { Y(£), t € (—eo,+o)} given |f—s| <1 can be obtained as follows:

Figure 2.4 Randomly delayed pulse code modulation
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O ap(1-p)

> 1T

-1 +1

Figure 2.5 Covariance function of the randomly delayed pulse code modulation

C(s, f) = E(X(s) X(1)| B)P(B) + E(X(s) X(1)| B) P(B) — m(s) m(z)
= E(X(s)) E(X(0)) P(B) + E(LX(5)]%) P(B) — m(s) m(2)
= [a(1 -p))?lt=sl+a>(1 - p)(1 = |t=s]) = [a(1 - p)]? .
Finally, with T =¢—s, the covariance function becomes

C(r) = a’p(l-p)(1-Itl)  for [t/<1
0 elsewhere

Thus, the process { ¥(f), t € (—o0,+00)} is weakly stationary. Analogously to the tran-
sition from example 2.3 to example 2.6, stationarity is achieved by introducing a uni-
formly distributed phase shift in the pulse code modulation of example 2.4. O

2.4 EXERCISES

2.1) A stochastic process {X(?), t > 0} has the one-dimensional distribution
2
Fix)=PX(H)<x)=1—e" D7 x>0,

Is this process weakly stationary?

2.2) The one-dimensional distribution of the stochastic process {X(¢), t >0} is

(wnn?
1 j e 2(521‘ du

M2t G —oo

Fi(x)=PX(?) <x) =

with >0, 6>0; x € (—oo+00).
Determine its trend function m(¢) and, for u =2 and 6 =0.5, sketch the functions

yi1(O) =m@O+ [Var(X(®)) and yo(t) = m()— [Var(X(®)) , 0<t<10.

2.3) Let X(¢) = 4 sin(wt+ D), where 4 and @ are independent, nonnegative random
variables with @ being uniformly distributed over [0, 27] and E(Az) < oo,

(1) Determine trend-, covariance- and correlation function of {X(¢), t € (—eo,+o0)}.
(2) Is the stochastic process {X(#), t € (—oo,+00)} weakly and/or strongly stationary?
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2.4) Let X(¢1) = A(¢) sin(wt+ D), where A(f) and @ are independent, nonnegative ran-
dom variables for all 7, and let @ be uniformly distributed over [0, 27].

Verify: If {A(?), t € (—oo,+o0)} is a weakly stationary process, then the stochastic
process {X(?), t € (—oo,+o0)} is also weakly stationary.

2.5) Let {ay,as,....,an} be a sequence of real numbers and {®|,P,,...,P,} a se-
quence of independent random variables which are uniformly distributed over the in-
terval [0,2n]. Determine covariance- and correlation function of the stochastic pro-
cess {X(¢), t € (—oo,+00)} given by

X@0)=XL a; sin(or+D;).

2.6)* A modulated signal (pulse code modulation) {X(?), t € (—oo,+00)} is given by
X(t)= X2 An h(t=n),
where the A are independent and identically distributed random variables which
can only take on values —1 and +1 and have mean value 0. Further, let
1 for 0<¢<1/2

h(t) = 0 elsewhere

1) Sketch a section of a possible sample path of the process {X(?), t € (—eo,4o0)}.
2) Determine the covariance function of this process.

3) Let Y(¢) = X(t—Z), where the random variable Z has a uniform distribution over
[0, 1. Is the stochastic process { (), t € (—oo,+o0)} weakly stationary?

2.7) Let {X(?), t € (—oo,+00)} and { ¥(f), t € (—o0,4+o0)} be two independent, weakly
stationary stochastic processes, whose trend functions are identically 0 and which
have the same covariance function C(7).

Prove: The stochastic process {Z(¢), t € (—oo,+e0)} with
Z(t) = X(¢) cos ot — Y(¢) sin wt

is weakly stationary.

2.8) Let X(¢) = sin ®@¢, where @ is uniformly distributed over the interval [0, 27].

Verify: (1) The discrete-time stochastic process {X(¢); t=1,2, ...} is weakly, but not
strongly stationary. (2) The continuous-time stochastic process {X(f), =0} is nei-
ther weakly nor strongly stationary.

2.9) Let {X(¢), t € (—oo,+o0)} and {Y(¢), t € (—o0,+0)} be two independent stochastic
processes with trend- and covariance functions m y(f), my(f) and Cx(s,?), Cy(s,?),
respectively. Further, let U(¢) = X(¢) + Y(¢) and V(¢) = X(¢) — Y(¢), t € (—oo,400).

Determine the covariance functions of the stochastic processes {U(?), ¢t € (—oo,+0)}
and {V(?), t € (—oo,+00)}.
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CHAPTER 3

Random Point Processes

3.1 BASIC CONCEPTS

A point process is a sequence of real numbers {#{,¢,...} with properties
ty<ty<--- and lim ¢;=+co. 3.1
i—> o0
That means, a point process is a strictly increasing sequence of real numbers, which
does not have a finite limit point. In practice, point processes occur in numerous sit-
uations: arrival time points of customers at service stations (workshops, filling sta-
tions, supermarkets, ...), failure time points of machines, time points of traffic acci-
dents, occurrence of nature catastrophies, occurrence of supernovas,... Generally, at
time point #; a certain event happens. Hence, the ¢; are called event times. With re-
gard to the arrival of customers at service stations, the ¢; are also called arrival times.
If not stated otherwise, the assumption #; =0 is made.

Although the majority of applications of point processes refer to sequences of time
points, there are other interpretations as well. For instance, sequences {¢,,,...} can
be generated by the location of potholes in a road. Then ¢#; denotes the distance of the
ith pothole from the beginning of the road. Or, the location is measured, at which an
imaginary straight line, which runs through a forest stand, hits trees. (This is the base
of the well-known Bitterlich method for estimating the total number of trees in a for-
est stand.) Strictly speaking, since both road and straight line through a forest stand
have finite lengths, to meet assumption (3.1), they have to be considered finite sam-
ples from a point process.

A point process {¢1,?5,...} can equivalently be represented by the sequence of its

interevent (interarrival) times
vy, ywith y;=t;,—t;_1;i=1,2,..; tg =0.

Counting Process Frequently, the event times are of less interest than the number of
events, which occur in an interval (0, ¢], ¢ > 0. This number is denoted as n(z):

n(t) =max{n, ty <t}.

For obvious reasons, {n(f), t > 0} is said to be the counting process belonging to the
point process {f{,¢;,...}. Here and in what follows, it is assumed that more than one
event cannot occur at a time. Point processes with this property are called simple.
The number of events, which occur in an interval (s, 7], s <1, is

n(s, ) = n(t) — n(s).
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To be able to count the number n(4) of events which occur in an arbitrary subset 4
of [0,0) the indicator function of the event '#; belongs to 4' is introduced:

| ift;ed

. 2
0 otherwise (3.2)

I;(4) = {
Then,
n(A) = 2o I;(A4).

Example 3.1 Let be given a finite sample from a point process:

{2,4,10,18,24,31,35,38,40,44,45,51,57,59}
The figures indicate the times (in seconds) at which within a time span of a minute a
car passes a control point. Then, within the first 16 seconds, n(16) =3 cars passed
the control point, and in the interval (31,49] exactly n(31,49) =n(49)-n(30)=5
cars passed the control point. In terms of the indicator function (3.2), given the time
span 4 =(10,20] U [51,60]

I18(A) =1r4(A) =151(A) = 157(4) = I59(4) =1,

1;(4)=0 fori =18, 24, 51, 57, 59.

Hence,

n(d) = £20 1;4) = = 1,4) =5. m|

Recurrence Times The forward recurrence time of a point process {t{,t,...} with
respect to time point ¢ is defined as
a(ty=t,. —t for th<t<t, ;5 n=0,1,..,¢=0. 3.3)
Hence, a(¢) is the time span from ¢ (usually interpreted as the 'presence') to the occur-
rence of the next event. A simpler way of characterizing a(?) is
a(t) = ty(p41 1. (3.4)
In(r) 1s the largest event time before ¢ and 7,5, is the smallest event time after 7.

The backward recurrence time b(t) with respect to time point ¢ is
bty =t—1ty()- 3.5)

Thus, b(?) is the time which has elapsed from the last event time before 7 to time ¢.

Marked Point Processes Frequently, in addition to their arrival times, events come
with another piece of information. For instance: If ¢; is the time point the ith custom-

er arrives at a supermarket, then the customer will spend there a certain amount of
money m;. If ¢; is the failure time point of a machine, then the time (or cost) m; ne-

cessary for removing the failure may be assigned to #;. If #; denotes the time of the
ith bank robbery in a town, then the amount m; the robbers got away with is of in-
terest. If #;is the arrival time of the ith claim at an insurance company, then the size
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m; of this claim is of particular importance to the company. If ¢; is the time of the ith
supernova in a century, then its light intensity m; is of interest to astronomers, and

so on. This leads to the concept of a marked point process: Given a point process
{t1,t2,...}, asequence of two-dimensional vectors

{(tl,ml), (tz,mz),...} (36)

with m; being an element of a mark space M is called a marked point process. In
most applications, as in the four examples above, the mark space M is a subset of the
real axis (—oo, + o) with the respective unites of measurements attached.

Random Point Processes Usually the event times are random variables. A sequence
of random variables {T'{, T3, ...} with

Ty <Ty<- and P(lim T;=+e)=1 3.7

i—>oo
is a random point process. By introducing the random interevent (interarrival) times
Yl'=Tl'—Tl'_1; = 1,2,, T0=0,

a random point process can equivalently be defined as a sequence of positive random
variables {Y, Y5, ...} with property

P(lim 3o Y;=o)=1.

In either case, with the terminology introduced in section 2.1, a random point process
is a discrete-time stochastic process with state space Z = [0,+<<). Thus, a point pro-
cess (3.1) is a sample path, a realization or a trajectory of a random point process. A
point process is called simple if at any time point 7 not more than one event can occur.

Recurrent Point Processes A random point process {71, 75, ...} is said to be recur-
rent if its corresponding sequence of interarrival times {Y1,Y,,...} is a sequence of
independent, identically distributed random variables. The most important recurrent
point processes are homogenous Poisson processess and renewal processes (sections

3.2.1 and 3.3).

Random Counting Processes Let

N({)=max{n, Ty <t}
be the random number of events occurring in the interval (0,7]. Then the contin-
uous-time stochastic process {N(¢), ¢ = 0} with state space Z = {0, 1,...} is called the
random counting process belonging to the random point process {7,75,...}. Any
counting process {N(f), t = 0} has properties
1) N(0) =0,
2) N(s) N() for s<t,
3)For any s, ¢t with 0 <5 <¢, the increment N(s, ) = N(¢) — N(s) is equal to the num-
ber of events which occur in (s, 7].
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Conversely, every stochastic process {N(f), t >0} in continuous time having these
three properties is the counting process of a certain point process {7, 75, ...}. Thus,
from the statistical point of view, the stochastic processes
{Tl, T2, }, {Yl, Yz, } , and {N(t), t=> 0}
are equivalent. For that reason, a random point process is frequently defined as a con-
tinuous-time stochastic process {N(¢), t = 0} with properties 1 to 3. Note that
N() = N0, ?).
The most important characteristic of a counting process {N(¢), t = 0} is the probabil-

ity distribution of its increments N(s, £) = N(f) — N(s) , which determines for all inter-
vals [s,1), s <t, the probabilities

pi(s,t)=P(N(s,0) =k); k=0,1,..
The mean numbers of events in (s, 7] is
m(s, 1) = m(t) = m(s) = E(N(s, 1)) = XjZg kpy(s, 1). (3.8)
With
P =p(0,0),

the trend function of the counting process {N(#),#= 0} is
m(t) = E(N(0) = Zjeo kpp(t), t=0. (3.9)

A random counting process is called simple if the underlying point process is simple.
Figure 3.1 shows a possible sample path of a simple random counting process.

Note In what follows the attribute 'random’ is usually omitted if it is obvious from the
notation or the context that random point processes or random counting processes are
being dealt with.

Definition 3.1 (stationarity) A point process {7, 75, ...} is called stationary if its
sequence of interarrival times {Y|,Y5,...} is strongly stationary (section 2.3), that is
if for any sequence of integers iy, iy, ...,i With 1 <iy <ip<---<ip, k=1,2,... and
for any t=0,1,2,..., the joint distribution functions of the following two random
vectors coincide:

{Yil,Yiz,...,Yik} and {Yi1+T’Yi2+T""’Yik+T}' ®
n(t)A
e —_—
4\ _ _ _ _ _______________ — :
o :
———————
2t--------- — I : :
I I

— o

! ! ! [ > ¢

>
0 5] ty 3 iy tg te

Figure 3.1 Sample path of a simple counting process
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It is an easy exercise to show that if the sequence {Y,Y,...} is strongly stationary,
the corresponding counting process {N(f), >0} has homogeneous increments and
vice versa. This implies the following corollary from definition 3.1:

Corollary A point process {71,T5,...} is stationary if and only if its corresponding
counting process {N(f), t 2 0} has homogeneous increments.

Hence, for a stationary point process, the probability distribution of any increment
N(s,?) depends only on the difference T=¢—s:

pr()=P(N(s,s+1)=k); k=0,1,..; s=0, T>0. (3.10)

Thus, for a stationary point process,
m(t) =m(s,s+1)=m(s+1)—m(s) foralls>0,7t>0. (3.11)
For having nondecreasing sample paths, neither the point process {7, 75, ...} nor its
corresponding counting process {N(f), t 20} can be stationary as defined in section

2.3. In particular, since only simple point processes are considered, the sample paths
of {N(¢), t 2 0} are step functions with jump heights being equal to 1.

Remark Sometimes it is more convenient or even necessary to define random point
processes as doubly infinite sequences

(s T_9, T}, T, T1, T, ...},

which tend to infinity to the left and to the right with probability 1. Then their sample
paths are also doubly infinite sequences: {..., t_»,#1,%y,t1,¢p, ...} and only the in-
crements of the corresponding counting process over finite intervals are finite.

Intensity of Random Point Processes For stationary point processes, the mean
number of events occurring in [0, 1] is called the intensity of the process and will be
denoted as A. By making use of notation (3.9),

A=m(1)=2Xilgkpi(1). (3.12)

In view of the stationarity, A is equal to the mean number of events occurring in any
interval of length 1:
A=m(s,s+1), s=>0.
Hence, the mean number of events occurring in any interval (s, 7] of length t=7—s is
m(s,H) =A(t—s) = AT.
Given a sample path {¢,75,...} of a stationary random point process, A is estimated
by the number of events occurring in [0, f] divided by the length of this interval:
A=n()t,
In example 3.1, an gstimate of the intensity of the underlying point process (assumed
to be stationary) is A = 14/60 = 0.233.
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In case of a nonstationary point process, the role of the constant intensity A is taken
over by an intensity function M(f). This function allows to determine the mean num-
ber of events m(s, f) occurring in an interval (s, ¢] : For any s, with 0 < s <1,

m(s, 1)) = Iz Ax) dx .

Specifically, the mean number of events in [0, ] is the trend function of the corres-
ponding counting process:

m(t) =m(0,1) = [ Mx)dx, 120. (3.13)
Hence, for At — 0,
Am(t) = M1) At + o(Ar), (3.14)

so that for small A¢ the product A(?) At is approximately the mean number of events
in (t,¢+Af]. Another interpretation of (3.14) is: If A¢ is sufficiently small, then
A1) At is approximately the probability of the occurrence of an event in the interval
[¢,¢+ Af]. Hence, the intensity function A(¢) is the arrival rate of events at time ¢.
(For Landau's order symbol o(x), see (1.41).)

Random Marked Point Processes Let {7,75,...} be arandom point process with
random marks M; assigned to the event times 7’;. Then the sequence

{(T, M), (Tr,Mp),...} (3.15)

is called a random marked point process. Its (2-dimensional) sample paths are given
by (3.6). The pulse process {(Tn,4n); n=1,2,...} considered in example 2.5 is a
special marked point processes.

Random marked point processes are dealt with in full generality in Matthes, Kerstan,

and Mecke [60]. For other mathematically prestigious treatments, see, for instance,
Konig and Schmidt [51] or Stigman [78].

Compound Stochastic Processes Let {(7,M), (Tp,M>),...} be a random mark-
ed point process and {N(?), £=0} be the counting process belonging to the point
process {11, T, ...} . The stochastic process {C(¢), t= 0} defined by

0 for 0<t<T,

N(¢t
le(l) Ml fOI' t> Tl

W) =

is called a compound (cumulative, aggregate) stochastic process. According to the
underlying point process, there are, for instance, compound Poisson processes and
compound renewal processes. If {T',T,...} is a claim arrival process and M; the
size of the ith claim, then C(?) is the total claim amount in [0, 7). If T is the time of
the ith breakdown of a machine and M; the corresponding repair cost, then C(7) is
the total repair cost in [0, #).
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3.2 POISSON PROCESSES

3.2.1 Homogeneous Poisson Processes

3.2.1.1 Definition and Properties

In the theory of stochastic processes, and maybe even more in its applications, the
homogeneous Poisson process is just as popular as the exponential distribution in
probability theory. Moreover, there is a close relationship between the homogeneous
Poisson process and the exponential distribution (theorem 3.2).

Definition 3.2 (homogeneous Poisson process) A counting process {N(7), t>0} is

a homogeneous Poisson process with intensity A, A > 0, if it has the following prop-
erties:

1) N(0)=0,
2) {N(?), t =2 0} is a stochastic process with independent increments.

3) Its increments N(s,?) = N(f) — N(s), 0 <s < ¢, have a Poisson distribution with pa-
rameter AM(f—s):

NN )
P(N(s,t)zi):(x(ti—'s))e_k(t_s); i=0,1,..., (3.16)
or, equivalently, introducing the length T = #—s of the interval [s,¢], forall t> 0,
i
P(N(s,s+r)=i):0‘,—f)e—m; i=0,1,.. (3.17)

l
L

(3.16) implies that the homogeneous Poisson process has homogeneous increments.
Thus, the corresponding Poisson point process {T1,T5,...} is stationary in the sense
of definition 3.1.

Theorem 3.1 A counting process {N(¢), t = 0} with N(0) =0 is a homogeneous Pois-
son process with intensity A if and only if it has the following properties:

a) {N(?), t =2 0} has homogenecous and independent increments.

b) The process is simple, i.e. P(N(t,t+h) =22)=o(h).

c) PIN(t,t+h)=1)=Ah+o(h).

Proof To prove that definition 3.2 implies properties a), b) and c), it is only neces-
sary to show that a homogeneous Poisson process satisfies properties b) and c).

The simplicity of the Poisson process easily results from (3.17):

PONGt+h)22)=e M 3, (7Ll_/'t)’
&

22 S O o
=\ h<e iz%) (i+2)!£k h* =o(h).
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Another application of (3.17) and the simplicity of the Poisson process proves c):

P(N(t,t+h)=1)=1—P(N(t,t+ h) = 0) — P(N(t, t + ) > 2)
=1—eMyoh)=1—-(1-\h)+o(h)
=Ah+o(h).

Conversely, it needs to be shown that a stochastic process with properties a), b) and
¢) is a homogeneous Poisson process. In view of the assumed homogeneity of the in-

crements, it is sufficient to prove the validity of (3.17) for s = 0. Thus, letting
p;()=P(NO,t)=i)=PN()=i); i=0,1,...
it is to show that

()

- M. i=0,1,...

pi()=
From a),
pot+h)=PWN(t+h)=0)=PWN({) =0, N(t,t+h) =0)
= P(N(1) = 0) P(N(t,t+ h) = 0) = po() po(h) .
In view of b) and ¢), this result implies
Po(t+h) =po(H(1 = Mh) +o(h)

or, equivalently,

t+h)y—po(t
M =—Apo(t) +o(h).

Taking the limit as 2 — 0 yields
P& ==Apo(0).
Since p(0) =1, the solution of this differential equation is
pod=eM, >0,
so that (3.18) holds for i = 0.

Analogously, fori > 1,
pi(t+h)=P(N(t+h)=1i)

= PON(D) = i, N(t+h) = N(5) = 0) + PON(t) =i — 1, N(t + 1) — N(5) = 1)
+Xh ) PN =k, Nt +h) - N(O) =i~ k).
Because of c), the sum in the last row is o(k). Using properties a) and b),
pit+h)=p;Opoh) +p;_1(O)p1(h)+oh)
= (O (1=Ah)+p;_ (O M+ o(h),

or, equivalently,
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(+h)—p;(t
BP0 1) - iy 01+ o),

h
Taking the limit as 2 — 0 yields a system of linear differential equations in the p;(7)
PiO=-Mpi0-pi O] i=1.2,.. (3.19)
Starting with pg () = e M , the solution (3.18) is obtained by induction. u

The practical importance of theorem 3.1 is that the properties a), b) and c) can be
verified without any quantitative investigations, only by qualitative reasoning based
on the physical or other nature of the process. In particular, the simplicity of the
homogeneous Poisson process implies that the occurrence of more than one event at
the same time has probability 0.

Note Throughout this chapter, those events, which are counted by a Poisson process
{N(®), t 2 0}, will be called Poisson events.

Let {T|,T5,...} be the point process, which belongs to the homogeneous Poisson
process {N(t), t 2 0}, i.e. T is the random time point at which the nth Poisson event
occurs. The obvious relationship

Tn <t if and only if N(¢¥) > n

implies
P(Ty £t)=P(N(H) 2 n). (3.20)
Therefore, Ty has distribution function
oo i
Fr,0)=P(N(t)2n)= X (7;—?(7“’; n=1,2,.. (3.21)
=n *

Differentiation of F'7, (¢) with respect to 7 yields the density of 7 :
e T e Wl
N e M ( e M _
I O=he B2 e R
On the right-hand side of this equation, all terms but one cancel:

a1
Fr, (0 =1 e

Thus, Ty has an Erlang distribution with parameters » and A. In particular, 77 has an
exponential distribution with parameter A and the interevent times

Yl'= Tl_Tl—l’ i= 1,2,, k= 1,2,, TO =0.
are independent and identically distributed as 7'y (see example 1.23). Moreover,
Tn = Z;/lzl Yl

These results yield the most simple and, at the same time, the most important charac-
terization of the homogeneous Poisson process:

0120, n=1,2,.. (3.22)
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Theorem 3.2 Let {N(f), =0} be a counting process and {Y, Y>,...} be the corres-
ponding sequence of interarrival times. Then {N(¢), t > 0} is a homogeneous Poisson
process with intensity A if and only if the Y, ¥, ... are independent, exponentially
with parameter A distributed random variables. u

The counting process {N(#),¢ > 0} is statistically equivalent to both its corresponding
point process {7j,75,...} of event times and the sequence of interarrival times
{Y{,Yy,...}. Hence, {T'|,T5,...} and {Y{,Y,,...} are sometimes also called Poisson
processes.

Example 3.2 From previous observations it is known that the number of traffic acci-
dents N(f) in an area over the time interval [0,#) can be described by a homogeneous
Poisson process {N(f), t=0}. On an average, there is one accident within 4 hours,
i.e. the intensity of the process is

A=025[r"17.
(1) What is the probability p of the event (time unit: hour)
"at most one accident in [0, 10), at least two accidents in [10, 16), and no
accident in [16, 24)"?
This probability is
p=P(N10)-N@0) <1, N(16) — N(10) =2, N(24)— N(16) =0).

In view of the independence and the homogeneity of the increments of {N(¢), t > 0},
p can be determined as follows:

p = P(N(10) — N(0) < 1) P(N(16) — N(10) = 2) P(N(24) — N(16) = 0)

= P(N(10) < 1) P(N(6) 22) P(N(8) = 0).
Now,
P(N(10) £1)=P(N(10) =0) + P(N(10) = 1)

=¢702510 4 025.10.¢70-2510 = 9 2873,
P(N(6)22)=1-¢0256_025.6.¢0-250 = 0.4422,
P(N(8) = 0) = ¢ 0258 = .1353.
Hence, the desired probability is p =0.0172.

(2) What is the probability that the 2 nd accident occurs not before 5 hours?

Since T, the random time of the occurrence of the second accident, has an Erlang
distribution with parameters n =2 and A = 0.25,

P(Ty>5)=1-Fr,(5)= e 0255(1+0.25-5).

Thus, P(T > 5) = 0.6446 . O
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The following examples make use of the hyperbolic sine and cosine functions:

X — X —X
. ef—e ef+e
sinh x = > cosh x = >

X € (—o0,+00).

Example 3.3 (random telegraph signal) A random signal X(¢) have structure
XO=Y)ND, >0, (3.23)

where {N(f), >0} is a homogeneous Poisson process with intensity A and Y is a bi-
nary random variable with

PY=1)=PY=-1)=1/2,
which is independent of N(¢) for all . Signals of this structure are called random tele-
graph signals. Random telegraph signals are basic modules for generating signals
with a more complicated structure. Obviously, X(¢) = 1 or X(¢) =—1 and Y determines
the sign of X(0). Figure 3.2 shows a sample path x =x(f) of the stochastic process
{X(%), t=20} oncondition Y=1and Ty =ty; n=1,2,...
{X(®), t =20} is wide-sense stationary. To see this, firstly note that

|X()|?=1<eo forallz>0.
Hence, {X(#), t >0} is a second-order process. With

I =EnN0,
its trend function is m(¢) = E(X(¢)) = E(Y) E(I(t)). Hence, since E(Y) =0,
m(t) =0.

It remains to show that the covariance function C(s,#) of this process depends only
on |¢—s|. This requires knowledge of the probability distribution of /(z): A transition

from I(f) =—1 to I(f) =+1 or, conversely, from /() =+1 to I(f) =—1 occurs at those
time points, at which Poisson events occur, i.e. when N(#) jumps:

P(I(t) = 1) = P(even number of jumps in [0, #])

=0 (20!
() A

I — -
|
|
l

0 | > ¢
{

Figure 3.2 Sample path of the random telegraph signal
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Analogously,
P((t) =—1) = P(odd number of jumps in [0, 7])

=M :0 % = ¢ Mginh At.
Hence the mean value of 1() is
E[UHO]=1-PU(H)=1)+(-1)- PU(t) =-1)

= e M[cosh At — sinh Af] = e 2 M,

Since
C(s, ) = Cov [X(s), X(¥)]
= E[(X(s) X()] = E[Y I(s) Y I(1)]

= E[Y2 I(s) [(§)] = E(Y?) E[L(s) ()]
and E(Y 2) =1, the covariance function of {X(¢), £> 0} has structure
C(s,0) = E[I(s)I(?)] .

Thus, in order to evaluate C(s, ), the joint distribution of (I(s), /(f)) has to be deter-
mined: From (1.6) and the homogeneity of the increments of {N(?), >0}, assuming
s<t,

P11 =PUs) =1, 1(t) = 1) = P(I(s) = )P(I(t) = 1|I(s) = 1)
= e Mcosh As P(even number of jumps in (s, £])
= e Mcosh Ase M=) cosh Mt —s)
= e Mcosh As cosh Mi—s).

Analogously,

p1-1=PU(s)=1,1t)=-1) =e"M coshis sinh A(t—s),

p_11=PUs)=-111)=1) = M sinh As sinh A(t—s),

P11 =PU(s)=~1,1(t)=-1)=¢"M sinh As cosh A(t—s).
Now

E[I()I(D]=p11+P-1-1—P1~1—P-1,1>
so that
C(s,f)=e2 Mt—s), s<t.
Since the order of s and ¢ can be changed,
C(s,H) = e 2Mi=s| |

Hence, the random telegraph signal {X(?), > 0} is a weakly stationary process. [
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Theorem 3.3 Let {N(¢), >0} be a homogeneous Poisson process with intensity A.
Then the random number of Poisson events which occur in the interval [0, s] on con-
dition that exactly n events occur in [0,¢], s<t¢; i=0,1,...,n; has a binomial distri-
bution with parameters p = s/t and n.

Proof In view of the homogeneity and independence of the increments of the Pois-
son process {N(¢), t = 0},
P(N(s) =i, N(t) =n)

P(N(s) =i|N(f) = n) =

P(N(t) =n)
_ P(N(s)=1i, N(s,t)=n—1)
- P(N(t) =n)
()’ s =" )
_P(N(s) =) P(N(s.n=n—0) _ @ (n—i)!
P(N(t) = n) A" e
n!
n)(s)! s\
=(i)(;) (1—;) ; i=0,1,...,n. (3.24)

This proves the theorem. u

3.2.1.2 Homogeneous Poisson Process and Uniform Distribution

Theorem 3.3 implies that on condition ' N(#) = 1' the random time 7’| to the first and

only event occuring in [0, ] is uniformly distributed over this interval, since, from
(3.24), fors<t,

P(Ty <s1Tp <) =P(N(s) = 1|N(t)= 1) = %
This relationship between the homogeneous Poisson process and the uniform distri-

bution is a special case of a more general result. To prove it, the joint probability
density of the random vector (7'(, Ty, ..., Tn) is needed.

Theorem 3.4 The joint probability density of the random vector (T, 7>, ..., Tn) is

AMe=Mn  for 0ty <tp<---<tpn

0 elsewhere (3.25)

f(ll,tz, v ln) = {
Proof For 0 <ty <1y, the joint distribution function of (T, T,) is given by

3!
P(Ty <ty, Ty<ty)=[o P(Ty <tp|Ty =0) fr (Dt
According to theorem 3.2, the interarrival times
Yl'=Tl'—Tl'_1; i= 1,2,...,

are independent, identically distributed random variables which have an exponential
distribution with parameter A.
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Hence, since 7) =Y,

t
P(Ty <ty, Ty <ty) =] P(Ty <to|T) =1)he M.
Given 'T'| =¢', the random event
'Tz Stz' and 'Yz Slz—l‘
are equivalent. Thus, the desired two-dimensional distribution function is

t
Flt1,ty) = P(Ty <t1, T <t5) = [o (1—e M2y )\ e Mgy

t
= XJ-OI (e_m—e_Mz)dt.
Hence,
F(t1,ty) = l—e_ktl —7@16_7\12 , 11 <Ip.

Partial differentiation yields the corresponding two-dimensional probability density

7\,26_7\'t2 for OSll<l‘2

f(f1,f2)={0

elsewhere

The proof of the theorem is now easily completed by induction. u

The formulation of the following theorem requires a result from the theory of order-
ed samples: Let {X{,X,,...,Xn} be a random sample taken from X, i.e. the X; are
independent, identically as X distributed random variables. The corresponding order-
ed sample is denoted as

X X5, X)), 0SX|<SX) < <X

Given that X has a uniform distribution over [0,x], the joint probability density of
the random vector {XT,X;, WXt s

ES ES ES
n!/x", 0<x] <xy<--<xp<x,

S aXn) = { (3.26)

0, elsewhere

For the sake of comparison: The joint probability density of the original (unordered)
sample {X|,X5,...,Xn} is

1/x™, 0<x;<x

(3.27)
o , elsewhere

f(xl,xz,...,xn) = {

Theorem 3.5 Let {N(¢), >0} be a homogeneous Poisson process with intensity A,
and let T; be ith event time; i=1,2,...; T =0. Given N(¥)=n; n=1,2,..., the
random vector {7|,T5,...,Tn} has the same joint probability density as an ordered
random sample taken from a uniform distribution over [0, £].
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Proof By definition, for disjoint, but otherwise arbitrary subintervals [¢;,¢; + ;] of
[0,7], the joint probability density of {7'{, T, ..., Tn} on condition N(¢) =n is

S(t1,ty, . tn|N(t) = 1)

li P(tl < Tl < tl+hl’ i= 1,2,,7’l|N(t) = i’l)
= m .
max(h,hy,....hn)—0 hihy:-hn

Since the event 'N(¢¥) = n'is equivalent to Ty <t < T,

_P(tl < Tl < tl"'rhl', i=l,2,...,n; t< T}’l+1)
P(N() = n)

oo tpthy p-1thy—1 1140 -

I AL ARt - dg dix
t tn th—1 1

At

A"\t

n!

ChphyhaMe™ by chy
- " e_kt - iz n

n!

Hence, the desired conditional joint probability density is

nl/t", 0<t;<th<---<tp<t
f(t1:t9, e tn|N(2) = 1) = 172 " (3.28)
0, elsewhere
Apart from the notation of the variables, this is the joint density (3.26). ]

The relationship between homogeneous Poisson processes and the uniform
distribution proved in this theorem motivates the common phrase that a homogen-
eous Poisson process is a purely random process, since, given N(f) = n, the event
times 7'y, Ty, ..., Tn are 'purely randomly' distributed over [0, 7].

Example 3.4 (shot noise) Shot noise processes have been formally introduced in ex-
ample 2.5. Now an application is discussed in detail: In the circuit, depicted in Figure
3.3, a light source is switched on at time #=0. A current pulse is initiated in the cir-
cuit as soon as the cathode emits a photoelectron due to the light falling on it. Such a
current pulse can be quantified by a function /A(¢) with properties

h(t)=0, h(f)=0 for t<0 and [ h())dt <. (3.29)
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lighN
; 3
_T— v
- cathode
C = L
. R

Figure 3.3 Photodetection circuit (Example 3.4)

Let Ty, T5,... be the sequence of random time points, at which the cathode emits
photoelectrons and {N(f), t =2 0} be the corresponding counting process. Then the to-
tal current flowing in the circuit at time ¢ is

X =X7Z, h(t=T)). (3.30)
In view of (3.29), X(¢) can also be written in the form
N
Xo=X;— h(t=T)).

In what follows, {N(#), >0} is assumed to be a homogeneous Poisson process with
parameter A. For determining the trend function of the shot noise {X(?), = 0}, note
that according to theorem 3.5, on condition 'N(t) =n', the T{, Ty, ..., T are uniform-
ly distributed over [0, f]. Hence,

E(h(t=TpIN® =n) =1 [§ ht—x)dx =1 [0 hoy i
Therefore,
EX()|N(t) =n) = E( Ty he=Tp|Nw) = n)

=X E(h(t—T;)IN(@) = n)

= (% _[6 h(x) dx) n.

The total probability rule (1.7) yields
E(X(1)) = Xmg EQX()|N(2) = n) P(N(t) = n)

A"
n!

= % If) h(x)dx E::O n

= G ) 6 h(x) dx) E(N(?)) = (% If) h(x) dX) A2).
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Therefore, the trend function of the shot noise process is
m(t) =1 [ h(x)dx. (3.31)

In order to obtain the covariance variance function, the mean value of the product
X(s) X(¢) has to be determined:

E(X($)X(0) = £ ETh(s — T;) h(t—T))]
=X2) E(h(s = T;) h(t=T)))

v Hns-Tpha-Tp],
ij=1,i#j

Since, on condition 'N(¢) = n', the T, T5, ..., T are uniformly distributed over [0, ],
1
E(h(s—T;)h(t—T;)IN()=n) = n _[(t) h(s—y)h(t—y)dy.
Thus, for s < ¢, substituting x =s—y,
E(h(s=T))h(t—T))|N(®) =n) = % jf) h(x) h(t—s+x)dx.

Moreover, by theorem 3.5, on condition ' N(f) =n' the T'{, T, ..., T are independent.
Hence,

E(h(s—T;) h(t— Tj)|N(f) =n) = E(h(s— T;)|N(2) = n) E(h(t - Tj)|N(f) =n)
= (L5 ns—wyax) (L[4 =) )
= (% ff) h(x) dx) (% ﬁ) h(x) dx) .

Thus, for s <t,
E(X(s) X()|N(H) = n) = (% jf) h(x)h(t—s +x) dx) n

+G [ h) dx) G [ ho) dx) (n—1yn.

Applying once more the total probability rule,
EX(s) X(2)) = (% _[(S) h(x)h(t—s+x) dx) E(N(1))
+G [ n) dx) G [ h) dx) [EW2() - Evy) .

In view of

EN(@) =Mt and E(N2(f)) =Mt (M+1),
making use of (3.31) and (2.4) yields the covariance function:

C(s,b) = 7»_[8 hx)h(t—-s+x)dx, s<t.
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More generally, for any s and ¢, C(s, f) can be written in the form
.ty =1 [0 b hlt =1 +x) dix.
Letting s = ¢ yields the variance of X(¢) :
Var(X(t) = [ i () dx.
By letting s — oo, keeping || = #—s constant, trend- and covariance function become

m=2[g hix)dx, (3.32)
C(v)=A[g hx) h(lTl +x)dx. (3.33)

These two formulas are known as Campell's theorem. They imply that, for large ¢,
the shot noise process {X(f), t 20} is approximately weakly stationary. (For another
proof of Campell's theorem see exercise 3.7, and for more general formulations of
this theorem see, for instance, Brandt, Franken, and Lisek [13], Stigman [78].)

If the current impulses induced by photoelectrons have random intensities 4;, then
the total current flowing in the circuit at time ¢ is

X =0 4 ne-T).

Provided the A; are identically distributed as 4, independent of each other, and in-
dependent of all T}, then determining trend- and covariance function of the general-

ized shot noise {X(#), = 0} does not give rise to principally new problems. Provided
the first two moments of A exist, one obtains

m(t) = LEA)[ () hx)dx, (3.34)

Cls, ) = M(A%j{)nin(s’” () h(|t = s| +x) dx. (3.35)

If the process of inducing current impulses by photoelectrons has already been oper-
ating for an unboundedly long time (the circuit was switched on a sufficiently long
time ago), then the underlying shot noise process {X(¢), t € (—oo,+e0)} is given by

X =XXZ4;h(t-T)).

In this case the process is a priori stationary. O

Example 3.5 Customers arrive at a service station (service system, queueing system)
according to a homogeneous Poisson process {N(¢), > 0} with intensity A. Hence,
the arrival of a customer is a Poisson event. The number of servers in the system is
assumed to be so large that an incoming customer will always find an available ser-
ver. To cope with this situation, the service system must be modeled as having an in-
finite number of servers. The service times of all customers are assumed to be inde-
pendent random variables, which are identically distributed as Z.
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Let G(t) = P(Z <) be the distribution function of Z, and X(¢) be the random number
of customers in the system at time ¢, X(0) = 0. The aim is to determine the state prob-
abilities p(t) of the system:
p,)=PX(H)=1); i=0,1,..; t=0.

A customer arriving at time x is still in the system at time ¢, 7> x, with probability
1 — G(t—x), i.e. its service has not yet been finished by z. Given N(¢) = n, the arrival
times 7'y, T, ..., Tn of the n customers in the system are, by theorem 3.4, independent
and uniformly distributed over [0, #]. For calculating the state probabilities, the order
of the T; is not relevant. Thus, the probability that any of the n customers who arriv-
ed in [0, 7] is still in the system at time ¢, is

pi=[ta —G(t—x))%dxz %_[6(1 —G())dx.

Since, by assumption, the service times are independent of each other,
PO =i N =m = (") OV - pO) ™ i=0,1,cm
By the total probability rule (1.7),

pi(= E P(X(0) = i|N(t) = n) - P(N(2) = )

n=i

This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Thus, from example 1.8 (there the parameter A has to be replaced with A¢), the
state probabilities of the system are

[Xt]?'(t)]i ) 6_7“ tp(t);
i

pl(t) = i=0,1,...

Hence, X(#) has a Poisson distribution with parameter
E(X(1)) = htp(D).
Consequently, the trend function of the stochastic process {X(¢), t >0} is
m(t) =1 [o(1- G)dx, 120.

For t — oo the trend function tends to

Jim m(f) = E(Y)

where E(Y)=1/A is the mean interarrival time and E(Z) the mean service time of a
customer:

(3.36)

E(Z)=[5(1-Gx))dx.
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By letting
p=E(2)/EY),
the stationary state probabilities of the system become
i
pi=lim pi(=2eP; i=0,1,.. (3.37)
{—>o0 i!

If Z has an exponential distribution with parameter L, then
[t~ A
m(t)—?»J-Oe “xdx—u<1 e”).

In this case, p = M. O

3.2.2 Nonhomogeneous Poisson Processses

In this section a stochastic process is investigated, which, except for the homogeneity
of its increments, has all the other properties listed in theorem 3.1. Abandoning the
assumption of homogeneous increments implies that a time-dependent intensity func-
tion A =A(#) takes over the role of A. This leads to the concept of a nonhomogene-
ous Poisson process. As in section 3.1, the following notation will be used:

N(s, ) = N(t) = N(s), 0<s<t,

Definition 3.3 A counting process {N(?), t = 0} satisfying N(0) =0 is called a non-
homogeneous Poisson process with intensity function M(f) if it has properties

(1) {N(¢), t 2 0} has independent increments,

(2) P(N(t,t+h) =2 2) =o(h),

(3) P(N(t,t+h)=1)=Mt)h+o(h). )

Three problems will be considered:

1) Computation of the probability distribution of increments N(s, ?):
pi(s,0)=P(N(s,1)=1); 0<s<t, i=0,1,..

2) Computation of the probability density of the random event time T; (time point at
which the ith Poisson event occurs).

3) Computation of the joint probability density of (', T5,...,Tn); n=1,2,...
1) In view of the assumed independence of the increments, for 4 > 0,
pols,t+h)=P(N(s,t+h)=0)
=P(N(s,t)=0, N(t,t+ h) =0)
= P(N(s,£) = 0) - P(N(t,t+ h) = 0)
=po, D1 -M)h+o(h)].
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Thus,
p (Sat+h)_p (Sst) o(h
0 00 = Apols.n+ 2.
h h
Letting # — 0 yields a partial differential equation of the first order:

2 pots.) =-MOPo(s. ).
Since N(0) =0 or, equivalently, py(0,0) =1, the solution is
pos 1) = e IAD=AGI (3.38)

where
AG) = [ Muydu; x>0, (3.39)

Starting with p(s,?), the probabilities p;(s,#) for i =1 can be determined by induc-
tion:

A)—A(s)]?
(s, z)=we-w0-/\(sﬂ; i=0,1,2,.. (3.40)

In particular, the absolute state probabilities
Pi(0)=pi(0,0)=P(N(®) =)
of the nonhomogeneous Poisson process at time ¢ are

A i
pi(t)Z#e_A(t); i=0,1,2,... (3.41)

Hence, the mean number of Poisson events m(s, ) = E(N(s, f)) occurring in the inter-
val [s,7], s<t, is

m(s,t) = A(f) — A(s) = _[; Mx) dx . (3.42)
In particular, the trend function of the nonhomogeneous Poisson process is

m(t) = A1) = [y M) dx, 120.

2) Let F T (t) = P(T| < 1) be the distribution function and le (¢) the probability den-

sity of the random time 7' to the occurrence of the first Poisson event. Then

po(t) =p0(0,t) ZP(Tl > l) =1 —FT1 (t)

From (3.38),

po®= =A@
Hence,
FT] (t) =1 _e_JS A'(x)dx’ _JS A'(x)dx’

S, =M)e 120. (3.43)
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A comparison of (3.43) with (1.40) shows that the intensity function A(f) of the non-
homogeneous Poisson process {N(?), >0} is identical to the failure rate belonging
to Ty. Since

Fr, () =P(Tn <t)=P(N(t) 2 n), (3.44)
the distribution function of the nth event time T, is
7, ()= 2 [A(t)] A p=12, (3.45)
— !

Differentiation with respect to ¢ ylelds the probability density of T :

-1
an(t)=%x(t)e—A<f); 120, n=1,2,... (3.46)
Equivalently,
NG e
fra0=CH e 0: 120, n=12...
By (1.17), the mean value of T, is
E(Ty) = | e—A(f)( z Aff)] j . (3.47)
0 -

Hence, the mean time
E(Yn)=E(Tn)—E(T)—1)
between the (n — 1) th and the nth event is

E(Yp)=—= [ IA@1" e ADar; n=1,2,. (3.48)

(n 1)'

Letting A(#) =\ and A(¢) = At yields the corresponding characteristics for the homo-
geneous Poisson process, in particular E(Yy) = 1/A.

3) The conditional probability P(T5 <t, | Ty =ty  is equal to the probability that at
least one Poisson event occurs in (¢1,,], t| <. Thus, from (3.40),

Fry(talt1) = 1=po(t1,15) = 1 = 1A2ACDL,
Differentiation with respect to ¢, yields the corresponding probability density:
sz(tzl )= }\4(12) e_[A(tz)_A(tl)] , 0=t <ty
By (1.59), the joint probability density of (7', T) is

Mty) f1, (1) for 1y <1y
flty.tp) = 0, elsewhere °
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Starting with f(¢1,¢,), one inductively obtains the joint density of (71,75, ..., Tn):

7L(t1)7L(t2)~--7L(tn_1)fT1 (tn) for0<t;<ty<---<tp

flty,t,.ntn) = {o (3.49)

elsewhere

This result includes as a special case formula (3.25).

As with the homogeneous Poisson process, the nonhomogeneous Poisson counting
process {N(f), t=0}, the corresponding point process of Poisson event times
{T,T,...} and the sequence of interevent times {Y,Y,,...} are statistically equiv-
alent stochastic processes.

A
60+
Me)

40F

20

0 | | | | | L5y
>
s 6 7 8 9 10 11

Figure 3.4 Intensity of the arrival of cars at a filling station

Example 3.6 From historical observations it is known that the number of cars arriv-
ing for petrol at a particular filling station weekdays between 5:00 and 11:00 a.m.
can be modeled by an nonhomogeneous Poisson process {N(?),# >0} with intensity
function (Figure 3.4)

M) = 104354 (t—5)e~ B 5<i<11.

1) What is the mean number of cars arriving for petrol weekdays between 5:00 and
11:00? According to (3.42), this mean number is

2
EWG, 1) = [ de= 5 (10+35.416778 ) ay
6
= [wz— 141.6e—f2/8]0 =200.

2) What is the probability that at least 90 cars arrive for petrol weekdays between
6:00 and 8:00? The mean number of cars arriving between 6:00 and 8:00 is

jg M) dt:ﬁ(10+35.4te_’2/8)dt

2,673
= [10;- 141.6 e~ /SL =99,
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Hence, the random number of cars N(6,8) = N(8) — N(6) arriving between 6:00 and
8:00 has a Poisson distribution with parameter 99. Thus, desired probability is
> n
P(N(6,8)290)= X 20= 7099,
n=90

By using the normal approximation to the Poisson distribution (section 1.9.3):

oo n _
Y P 099 1—¢[MJ ~1-0.1827.
n=90 " 799
Hence,

P(N(6,8) > 90) = 0.8173. O

3.2.3 Mixed Poisson Processes

Mixed Poisson processes were already introduced by Dubourdieu [24] for model-
ing claim number processes in accident and sickness insurance. In view of their flex-
ibility, they are now a favourite point process model for many other applications. A
recent monograph on mixed Poisson processes is Grandell [35].

Let {N(f), t >0} be a homogeneous Poisson process with parameter A. To explic-
itely express the dependence of this process on A, in this section the notation
{Ny(1), t =0} for the process {N(¢), t =0} is adopted. The basic idea of Dubourdieu
was to consider A a realization of a positive random variable L, which is called the
(random) structure or mixing parameter. Correspondingly, the probability distribu-
tion of L is called the structure or mixing distribution (see section 1.2.4).

Definition 3.4 Let L be a positive random variable with range R;. Then the count-
ing process { Ny (?), t = 0} is said to be a mixed Poisson process with structure param-
eter L if it has the following properties:

(1) {Ny |72, t 2 0} has independent, homogeneous increments for all A € R .

i
2) P(NLIsz(t):i) =0:,—?e_7u forallAe Ry, i=0,1,... °

Thus, on condition L = A, the mixed Poisson process is a homogeneous Poisson pro-
cess with parameter A:

{N7| =D, 120} = {N) (1), 12 0}

The absolute state probabilities p;(f) = P(N (f) = i) of the mixed Poisson process at
time ¢ are

P(NL(t)zi) =E((Li—f)le—“j; i=0,1,. (3.50)
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If L is a discrete random variable with P(L=A;)=m;; k=0,1,...; then
® (At
P(NL(z)zi) =X ({{—)e_xktnk. (3.51)
=0 !
In applications, a binary structure parameter L is particularly important. In this case,
Ay o)t Ay )
P(NL(t)=i) =#e_h1tn+@e_7‘2t(l—n) (3.52)
il il

for0<m<1, 7\,1 ?57\,2.

The basic results, obtained in what follows, do not depend on the probability distri-
bution of L. Hence, for convenience, throughout this section the assumption is made
that L is a continuous random variable with density f; (A). Then,

pi(t)= T(ﬁ—?le-“fL(x)dx; i=0,1,..
o i

Obviously, the probability p(f) = P(Ny(f) =0) is the Laplace transform of f7(A)

with parameter s = ¢ (section 1.3.2):
po) =L (=EE =[5 e dn.
The ith derivative of p(?) is

dipo(t : - '
Z?t( ) =g O =[N M Ry an.

Therefore, all state probabilities of a mixed Poisson process can be written in terms
of po(®) :
i
P =P 0= =D Epf @ i=1.2,.. (3.53)

Mean value and variance of Nj(f) are (compare with the parameters of the mixed
Poisson distribution given in section 1.2.4)):
EWNp(t)=tEWL), Var(Np@)=tEL)+ t2Var(L). (3.54)

The following theorem lists two important properties of mixed Poisson processes.

Theorem 3.6 (1) A mixed Poisson process {Ny (), t =0} has homogeneous incre-
ments.

(2) If L is not a constant (i.e. the structure distribution is not degenerate), then the in-
crements of the mixed Poisson process {N (f), =0} are not independent.

Proof (1) Let 0 =1y <?¢| <---<tp; n=1,2,... Then, for any nonnegative integers

i1209smin,
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PINp(tp_1 +7T, tp +T) =iy k=1,2,...,n)
j PINp(tjey +7, 1 +T) =ifs k= 1,2,..,m)f; M) dr
=[5 PONA(te1» 1) = g k=1,2,...m) (W L
= PN (tj_1» tp) = ifs k=1,2,..,n).
(2) Let 0 <ty <ty <t3. Then,
P(N(t1,ty) = i1, Ny (t2,13) = ip)
= [ PINA(t1.1p) =1, No(tp.13) = ip) fL (Wd\
= jg" P(N)(t],t) = i1) P(Np(ta,13) = in) f1 (M)dh
# [ PIN)(t1,12) = 1) fL (WdM [§ P(Ny(t2.13) = in) fL M)
= P(Ny(t],t5) =i]) P(N[(ty.13) = i5).

This proves the theorem if the mixing parameter L is a continuous random variable.
If L is discrete, the same pattern applies. u

Multinomial Criterion Let 0 =ty <t| <---<typ; n=1,2,... Then, for any nonneg-
ative integers i1,ip,...,in Withi=ij+iy+---+ip,

PN (tg—1> ) =ig; k=1,2,..,nIN (tn) =)

T ff_l\il(ﬂ\iz...(M)i" (3.55)

Tiptiglein\t) Ut ) Uy
Interestingly, this conditional probability does not depend on the structure distribu-
tion (compare to theorem 3.4). Although the derivation of the multinomial criterion

is elementary, it is not done here (exercise 3.15).

As an application of the multinomial criterion (3.55), the joint distibution of the in-
crements Ny (0,7) =Ny (¢) and Ny (¢t t+7) will be derived:

PNy (t)=1i, Ny (t,t+7) = k)

= PN ()= il Ny (t+T) =i+ k) PN (1+7T) = i + k)

(i+0)! (¢ ! [}L(t+T)]l+ o
T ik (m) (H-’c) (j) REY D fL ) d .

Hence, the joint distribution is
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PNy (0,6)=i, Ny (t,t+7T)=k) = jo Atk e D £ ydn  (3.56)

lkl
fori,k=0,1,...

Since a mixed Poisson process has dependent increments, it is important to get infor-
mation on the nature and strength of the statistical dependence between two neigh-
bouring increments. As a first step into this direction, the mean value of the product
of the increments N;(f)= N;(0,#) and N;(¢,t+7) has to be determined. From
(3.56),

EQNL 0] INL(Lt+ D) = 3 3 ik S jo Atk =MD 1 0y dd

i=1 k=1
1S T g (of oM (D)
mjx ;0 AT SLWd)

=117 J-O Zi=0 7\.2 eme}”e_}‘(tﬂ)fLO») d\

=17 [ A2 [ d.
Thus,
E(IN O] [N, (t,t+D)]) = tT E(L?). (3.57)

Hence, in view of (2.4) and (3.57),
Cov(Ny(t), Np(t,t+¢t))=ttVar(L).

Thus, two neighbouring increments of a mixed Poisson process are positively corre-
lated. Consequently, a large number of events in an interval will on average induce a
large number of events in the following interval ('large’ relative to the respective
lengths of these intervals). This property of a stochastic process is also called posi-
tive contagion.

Polya Process A mixed Poisson process with a gamma distributed structure parame-
ter L is called a Polya process (or Polya-Lundberg process).
Let the gamma density of L be

10 = rﬁ( )W—l ePr A>0, 0>0, B>0.

Then, proceeding as in example 1.9 (section 1.2.4) yields

i o
PIN[()=0)=]g O:—? e M % AT BA gy,

_TG+o) tB*
CIT(0) (B4 gt
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Hence,

P(NL(t):i) _ (i—1i+oc) (BH) (BEJ“ i=0,1,... (3.58)

Thus, the one-dimensional distribution of the Polya process { Ny (), t = 0} is a nega-
tive binomial distribution with parameters »= o and p =¢/( +¢). In particular, for
an exponential structure distribution (0. = 1), Ny (f) has a geometric distribution with
parameter p =¢/(¢+B).

To determine the n-dimensional distribution of the Polya process, (3.58) and the
multinomial criterion (3.55) are used:

ForO=ty<t; <---<tp; n=1,2,..and iy =0,
PWNp(tp)=ip k=1,2,..,n)
= P(N[(ty) =ip; k=1,2,...,nIN(tn) = in ) P(N [ (tn) = in)
= PINL(tieys ) =i —ij_1; k=1,2,...,nlN  (tn) = in) P(NL(tn) = in)

- in! ﬁ(fk—fk—l\ik"ik—l(in—1+oc\( tn (B \©
My (i = i) NI Ui J\Bra) \Brtn/

After some algebra, the n-dimensional distribution of the Polya process becomes
P(NL(lk) = ik; k=1,2,...,n)

in! (in—1+a)(_ B V¢

- I G —igp)! U B

( —tk 1\lk i1

T :|s

For the following three reasons it is not surprising that the Polya process is increas-
ingly used for modeling real-life point processes, in particular customer flows:

1) The finite dimensional distributions of this process are explicitely available.
2) Dependent increments occur more frequently than independent ones.

3) The two free parameters o and B of this process allow its adaptation to a wide va-
riety of data sets.

Example 3.7 An insurance company analyzed the incoming flow of claims and
found that the arrival intensity A is subjected to random fluctuations, which can be
modeled by the probability density f7 (A) of a gamma distributed random variable L
with mean value E(L)=0.24 and variance Var(L) =0.16 (unit: working hour). The
parameters o and B of this gamma distribution can be obtained from

E(L)=024=0/B, Var(L)=0.16=0/B2.
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Hence, 0.=0.36 and B = 1.5. Thus, L has density
_ (15936 (64 —(1.5)A
fL(k)_—F(O.36) A e , A>0.

In time intervals, in which the arrival rate was nearly constant, the flow of claims be-
haved like a homogeneous Poisson process. Hence, the insurance company modeled
the incoming flow of claims by a Polya process { Ny (¢), t =0} with the one-dimen-
sional probability distribution

P(NL(t):i) =("‘?°64)(ﬁ)i(l.ls'it)o'%; i=0,1,..

According to (3.54), mean value and variance of Ny (¥) are

E(Np (1) =024, Var(Ny(1)=0241+0.1612.

As illustrated by this example, the Polya process (as any other mixed Poisson pro-
cess) is a more appropriate model than a homogeneous Poisson process with inten-
sity A = E(L) for fitting claim number developments, which exhibit a greater variabil-
ity with increasing . O

Doubly Stochastic Poisson Process The mixed Poisson process generalizes the ho-
mogeneous Poisson process by replacing its parameter A with a random variable L.
The corresponding generalization of the nonhomogeneous Poisson process leads to
the concept of a doubly stochastic Poisson process. A doubly stochastic Poisson pro-
cess {N L(,)(t), t>0} can be thought of as a nonhomogeneous Poisson process the

intensity function A(f) of which has been replaced with a stochastic process
{L(#), t 20} called intensity process. Thus, a sample path of a doubly stochastic
Poisson process {N L(,)(t), t>0} can be generated as follows:

1) A sample path {A(¢), t=> 0} of a given intensity process {L(¢), =0} is simulated
according to the probability distribution of {L(?), t = 0}.

2) Given {\(f), t >0}, the process {N 1(H(®0, 120} evolves like a nonhomogeneous
Poisson process with intensity function A(f).

Thus, a doubly stochastic Poisson process {N, L(,)(t), t=0} is generated by two inde-
pendent 'stochastic mechanisms'.

The absolute state probabilities of the doubly stochastic Poisson process at time ¢ are
ot
, 1 t i —|nL(x)dx .
PN,y =i) = HE(UO Lydx] o ] i=01,..  (3.60)
In this formula, the mean value operation ' E' eliminates the randomness generated by

the intensity process in [0, 7].
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The trend function of {NL(,)(t), t>0} is

m(?) =E(I6L(x) dx) =[o EL(x))dx, =0.

A nonhomogeneous Poisson process with intensity function A(z) = E(L(f)) can be
used as an approximation to the doubly stochastic Poisson process {Ny (1), 2 0}.
The doubly stochastic Poisson process becomes

1. the homogeneous Poisson process if L(f) is a constant A,

2. the nonhomogeneous process if L(f) is a nonrandom function A(%), ¢ = 0,

3. the mixed Poisson process if L(¢) is a random variable L, which does not depend
ont.

The two 'degrees of freedom' a doubly stochastic Poisson process has make this pro-
cess a universal point process model. The term 'doubly stochastic Poisson process'
was introduced by Cox [21], who was the first to investigate this class of point pro-
cesses. Hence, these processes are also called Cox processes. For detailed treatments
and applications in engineering and insurance, respectively, see, for instance, Snyder
[76] and Grandell [34].

3.2.4 Superposition and Thinning of Poisson Processes

3.2.4.1 Superposition

Assume that a service station recruits its customers from » different sources. For in-
stance, a branch bank serves customers from » different towns, or a car workshop
repairs and maintains n different makes of cars. Each town or each make of cars,
respectively, generates its own arrival process (flow of demands). Let

{N;@®),t=20}; i=1,2,..,n,

be the corresponding counting processes. Then, the total number of customers arriv-
ing at the service station in [0, #] is

NO=N{(O)+Ny(&)+---+Nn(?).
Note that {N(?), £ >0} can be thought of as the counting process of a marked point
process, where the marks indicate from which source the 'customers' come.
On condition that {N;(f), t=0} is a homogeneous Poisson process with parameter
A;; i=1,2,...,n, what type of counting process is {N(7), ¢ = 0}?
From example 1.22 (section 1.7.1) it is known that the z-transform of N(?) is

MN([)(Z) — e-(?\,1+7\42+ cee +7Ln) [(Z—l)'

Therefore, N(¢) has a Poisson distribution with parameter
A +Ap+-+An)t.
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Since the counting processes {N;(f), =0} have homogeneous and independent in-
crements, their additive superposition {N(f), t 20} also has homogeneous and inde-
pendent increments. This proves the following theorem:

Theorem 3.7 The additive superposition {N(f), 1 >0} of independent homoge-
neous Poisson processes {N;(f), t>0} with intensities A;; i=1,2,...,n; is a homo-
geneous Poisson process with intensity A=A; + Ay + -+ Ap. [ |

Quite analogously, if the {N;(#), >0} are independent nonhomogeneous Poisson
processes with intensity functions A;(#); i=1,2,...,n; then their additive superposi-
tion {N(#), 20} is a nonhomogeneous Poisson process with intensity function

MO=X O+ (D) + -+ An(D.

3.2.4.2 Thinning
There are many situations in which not superposition, but the opposite operation,
namely thinning or splitting, of a Poisson process occurs. For instance, a cosmic par-
ticle counter registers only o.-particles and ignores other types of particles. Or, a
reinsurance company is only interested in claims, the size of which exceeds, say, one
million dollars. Formally, a marked point process {(7{,M), (Tp,M>),...} arrives
and only events with special marks will be taken into account. It is assumed that the
marks M; are independent of each other and independent of {7|,T5,...}, and that
they are identically distributed as
{ mq with probability 1—p
M= . .
my with probability  p

i

i.e. the mark space only consists of two elements: M = {m,m, }. In this case, there
are two different types of events, type 1-events (attached with mark m ) and type
2-events (attached with mark m). If only type 1-events are counted, of what kind is
the arising point process?

Let Y be the first event time with mark m, . Note that if < 7|, then there is surely
no type 2-event in [0,¢], and if 7 <¢< T, , then there are exactly n events in [0, 7]

and (1 —p)” is the probability that none of them is a type 2-event. Hence,
PY>H=P0<t< T1)+Z 1 P(Tn<t<T, ) (1-p)".
Since P(Tp <t<T,41)=P(N(t) =n),

P(Y>f=e M4 2 ((M) —M)(l—p)"

— oM N Z [k(l;z'?)t]” :e—M_’_e—?Lt[e?L(l—p)t_ 1].

n=1
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Hence,
P(Y>f)=e Ml >0,

Hence, the interevent times between type 2-events have an exponential distribution
with parameter pA. Moreover, in view of our assumptions, these interevent times are
independent. By changing the roles of type 1 and type 2-events, theorem 3.2 implies
theorem 3.8:

Theorem 3.8 Given a homogeneous Poisson process {N(¢),¢ >0} with intensity A
and two types of Poisson events 1 and 2, which occur independently with respective
probabilities 1 —p and p. Then N(¢) can be represented in the form

N(t) = N1 (6) + N, (D), (3.61)

where {N{(?), t=0} and {N,(¥), t=0} are two independent homogeneous Poisson
processes with respective intensities (1 —p)A and p A, which count only type 1- and
type 2-events, respectively. ]

Nonhomogeneous Poisson Process Now the situation is somewhat generalized by
assuming that the underlying counting process {N(¢),#=>0} is a nonhomogeneous
Poisson process with intensity function A(f) and that an event, occurring at time ¢, is
of type 1 with probability 1 —p(¢f) and of type 2 with probability p(f). Let Y be the
time to the first occurrence of a type 2-event,

G(t)y=P(Y<?)
its distribution function, and G(7) = 1 — G(¢). Then the relationship

P(t<Y<t+AHY>£) = p(t) M) At + o(AY) .

implies
% GU+B0=6(0 _ 31y, 280
Letting A7 tend to 0 yields,
/
GG ((t)) POMD.
By integration,
Gy = o ToPOIDL g (3.62)

If p(t)=1, then G is the survival function of the system.

Theorem 3.9 Given a nonhomogeneous Poisson process {N(#),¢ = 0} with intensity
function A(?) and two types of events 1 and 2, which occur independently with res-
pective probabilities 1 —p(f) and p(¢) if ¢ is an event time. Then N(¢) can be repre-
sented in the form

N(@®) = N1()+Ny(9),
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where {N{(?),t=0} and {N,(f),#=0} are independent nonhomogeneous Poisson
processes with respective intensity functions

(1=p®O)Mz) and p(OMy),
which count only type 1 and type 2-events, respectively. u

In section 3.2.6.3, some more sophisticated results will be needed: Let Z be the ran-
dom number of type 1-events to the occurrence of the first type 2-event. Then

P(Z=0)=[5 p)fit)dt.
where () = f T (#) is the density of the first event time 7' as given by (3.43):

—_[6 Ax) dx’

f=A0D)e t>0.

From (3.49), for k> 1,
oo (Yt X3 %2 k-
Pz=k=[gfo " o Jo Tz DO ACe) dx; pocr 1) f Coprn) dgr -
By making use of the well-known formula
X X3 X2 1 n
JS o [o” [o” T g(x;)dxydxy---dxn =E[I6g(x)de , n>2, (3.63)

the desired probability is seen to be

Pz—k—lj“’(jt- A d)k DADde, k=0,1 3.64
After some algebra,
EZ)=X 1 kP(Z=hk = j("; A dG(t) - 1. (3.65)
If p(y=p >0, then Z has a geometric distribution with parameter p so that
Ez) =22 (3.66)
p
and G(¢) has structure
G =[FP; t=0. (3.67)

Now, let Z; be the random number of type 1-events in (0, min(Y,¢)) and
rik)=P(Z;=klY=0); k=0,1,..
Then, by (1.6),

 P(Zi=knt<Y<i+A)
k=1
r(k) A0 PU<Y<itA)
PU<Y=Xp  <t+AD)

- Altir—>no G(t+AD) - G() : (3.68)
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From (3.49) and (3.63), the numerator in (3.68) becomes
Pt<Y=Xj 1 <t+A))

AL (Tt X3 X2k _
=170 Jo” Jo~ Thimy PO Moy do; ple ey ) g1 g

k
= L[ ([ 5w ) p3 A .

Dividing numerator and denominator in (3.68) by Az and taking the limit as At — 0
yields

k it =
rt(k)=%(j6p(x)x(x)dx) coP@AM@dr o

Hence, given Y =¢, the random variable Z; has a Poisson distribution with mean

E(Z(|Y=1)= [ B(x) Mx) dx, (3.69)
so that
EZ|Y<1)=[{) E(Zx|Y =x)dG(x)/G(1)
= [0 [5 PO) M) dy dG)/G (1) (3.70)
and
EZ|Y20)= EZ|Y=0)=[} p(x)Ax)dx. (3.71)

Now the (unconditional) mean value of Z; can be otained from
E(Z) = E(Z;|Y <) G(t) + E(Z;|Y 2 ) G().
The result is

E(Zy) = [y Gx) Mx) dx = G(@). (3.72)

For these and related results see Beichelt [5].

3.2.5 Compound Poisson Processes

Let {(T;,M;); i=1,2,...} be a marked point process, where {7T;;i=1,2,...} is a
Poisson point process with corresponding counting process {N(f), t 2 0}. Then the
stochastic process {C(?), >0} defined by

=200 M,

with M =0 is called a compound (cumulative, aggregate) Poisson process.
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Compound Poisson processes occur in many situations: 1) If 7; is the time point at
which the ith customer arrives at an insurance company and M; its claim size, then
C(?) is the total claim amount the company is confronted with in time interval [0, 7].
2) If T; is the time of the ith breakdown of a machine and A; the corresponding re-
pair cost, then C(#) is the total repair cost in [0,7]. 3) If 7; is the time point the ith
shock occurs and M; the amount of (mechanical) wear this shock contributes to the
degree of wear of an item, then C(¢) is the degree of wear of the item at time ¢. (For
the brake discs of a car, every application of the brakes is a shock, which increases
their degree of mechanical wear. For the tires of the undercarriage of an aircraft, every
takeoff and touchdown is a shock, which diminishes their tread depth.)

In what follows, {N(?), t > 0} is assumed to be a homogeneous Poisson process with
intensity A. If the M; are independent and identically distributed as M and independ-

entof {T1,T5,...}, then {C(¢), t= 0} has the following properties:
1) {C(¥), t =20} has independent, homogeneous increments.
2) The Laplace transform of C(¢) is
C(s) = M M1, (3.73)
where
M(s) = E(e—s M )
is the Laplace transform of M. The proof of (3.73) is straightforward: By (1.27),

ét(s) = E(e—s C(I)) — E(e—s (Mo+M+Mp+-- '+MN(t))

o)

— Z E(e—S (M0+M1+M2+...+Mn) P(N(t) — n)
n=0
oo n n
_§ g 00
n=0 n.
S ML _ e bis)-11
n=0 n!
From C ¢(s), all the moments of C(#) can be obtained by making use of (1.28). In par-
ticular, mean value and variance of C(¢) are
E(C(H)) =MEM), Var(C())=MEM?). (3.74)
These formulas also follow from (1.125) and (1.126).

Now the compound Poisson process is considered on condition that M has a Ber-
noulli distribution:

_ |1 with probability p

~ |0 with probability 1-p
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Then My +Mj, +---+M; as asum of independent and Bernoulli distributed random
variables is binomially distributed with parameters » and p (section 1.2.2.2). Hence,

P(C(t) = k) = X4_1 P(Mo+M{ +---+My = k|N(t) = n) PON(t) = n)

_ S () kg -k QD"
_’Eo(k)p (1-p) TR
This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Hence, by example 1.8 (section 1.2.4), C(¢) has a Poisson distribution with pa-
rameter Ap¢:

n
P(C(t) = ) = (ki—f)e—kpf; k=0.1,..

Corollary If the marks of a compound Poisson process {C(#), £ = 0} have a Bernoulli
distribution with parameter p, then {C(#), > 0} is a thinned homogeneous Poisson
process with parameter Ap.

If the underlying counting process {N(?), = 0} is a nonhomogeneous Poisson pro-
cess with intensity function

M) and A(t) = [ M) dx,
then (3.73) and (3.74) become
Ei(s) = eNO M1
and
E(C(0)) = A() E(M),  Var(C(H)) = A(f) EM ?). (3.75)

Again, formulas (3.75) are an immediate consequence of (1.125) and (1.126). For
compound renewal processes, see section 3.3.7.

3.2.6 Applications to Maintenance

3.2.6.1 Nonhomogeneous Poisson Process and Minimal Repair

The nonhomogeneous Poisson process is an important mathematical tool for optimiz-
ing the maintenance of technical systems with respect to cost and reliability criteria
by applying proper maintenance policies (strategies). Maintenance policies prescribe
when to carry out (preventive) repairs, replacements or other maintenance measures.
Repairs after system failures usually only tackle the causes which triggered off the
failures. A minimal repair performed after a failure enables the system to continue its
work but does not affect the failure rate of the system. In other words, after a mini-
mal repair the failure rate of the system has the same value as immediately before the
failure. For example, if a failure of a complicated electronic system is caused by a
defective plug and socket connection, then removing this cause of failure can be con-
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sidered a minimal repair. Preventive replacements (renewals) and preventive repairs
are not initiated by system failures, but they are carried out to prevent or at least to
postpone future ones. Of course, preventive minimal repairs make no sense.

In what follows it is assumed that all renewals and repairs take only negligibly small
times and that, after completing a renewal or a repair, the system immediately resum-
es its work. The random lifetime 7 of the system has probability density f(#), distri-
bution function F(f), survival probability F(£) = 1 — F(z), and failure rate A(f). For a
recent survey see Kapur, Garg, and Kumar [44]. The following maintenance policy is
directly related to a nonhomogeneous Poisson process.

Basic Policy Every system failure is (and can be) removed by a minimal repair.

Let 7, be the random time point, at which the nth system failure (minimal repair)
occurs. Then

Yn:Tn—Tn_l

is the length of the time span between the (n—1)th and the nth system failure,
n=1,2,..; To=0. The first failure of the system after starting to work at time =0
occurs at time 7= T7. Given T| =¢, the failure rate of the system after completion
of the repair is A(¢). Hence, the future failure behaviour of the system is the same as
that of a system which has worked up to time point ¢ without failing. Therefore, from
(1.34), the time between the first and the second system failure Y, =T, — T} given
Ty =t, has distribution function
F+y) - K@)
Fi) =P £9)=——2 ==
According to (1.40) and (3.38), equivalent representations of F¢(y) are

Fiy) = 1 — e IAE)-A0)] (3.76)
and
Fi(y)=1-po(t,t+y).

Obviously, these equations are also valid if ¢ is not the time point of the first failure,
but the time point of any failure, for instance the n th failure. Then Fy(y) is the distri-
bution function of the (n + 1)th interarrival time Y, =T, —Tn given that T, =1.
The occurrence of system failures (minimal repairs) is, therefore, governed by the
same probability distribution as the occurrence of Poisson events generated by a
nonhomogeneous Poisson process with intensity function A(f). Specifically, the ran-
dom vector (7', T, ..., Tn) has the joint probability density (3.49) for alln=1,2, ...
Therefore, if N(f) denotes the number of system failures (minimal repairs) in [0, ],
then {N(¢), t > 0} is a nonhomogeneous Poisson process with intensity function A(f).

In particular, N(¢) has a Poisson distribution with parameter A(%):

E(N(®) = A(t) = [ M) dx. (3.77)
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The nonhomogeneous Poisson point process {7}, T5,...} is an ingredient to a mark-
ed point process {(T'1,M1),(Ty,M>), ...}, where M; denotes the cost of the ith min-
imal repair. The corresponding compound process {M(¢), t >0} is given by

N
M(t) 221':((;) Ml" MO =0,

where M(?) is the total repair cost in [0,¢]. The M|, M>,... are assumed to be inde-
pendent of each other, independent of N(#), and identically distributed as M with
¢m = E(M) < . Then the trend function of {M(?), t 20} is

m(t) = E(M(2)) = cm A®D) . (3.78)

3.2.6.2 Standard Replacement Policies with Minimal Repair

The basic policy discussed in the previous section provides the theoretical fundament
for analyzing a number of more sophisticated maintenance policies. In what follows,
four policies of this kind will be considered. To justify preventive replacements, the
assumption has to be made that the underlying system is aging (section 1.4, defini-
tion 1.1), i.e. its failure rate A(¢) is increasing. In addition, all replacement and repair
times are assumed to be negligibly small. The latter assumption is merely a matter of
convenience.

The criterion for evaluating the efficiency of maintenance policies will be the aver-
age maintenance cost per unit time over an infinite time span. To establish this criter-
ion, the time axis is partitioned into replacement cycles, i.e. into the times between
two neighbouring replacements. Let L; be the random length of the i th replacement
cycle and C; the total random maintenance cost (replacement + repair cost) in the ith
replacement cycle. It is assumed that the L,L,,... are independent and identically
distributed as L. This assumption implies that a replaced system is statistically as
good as the previous one (‘as good as new') from the point of view of its lifetime.
The Cy, C5, ... are assumed to be independent, identically distributed as C, and inde-
pendent on the L;. Then the maintenance cost per unit time over an infinite time

span is
n
-1 C
K= lim z’n—l ’
" i1 L
The strong law of the large numbers implies that
_EQ©)
K= D) (3.79)

For the sake of brevity, K is referred to as the (long-run) maintenance cost rate.
Thus, the maintenance cost rate is equal to the mean maintenance cost per cycle di-
vided by the mean cycle length. In what follows, cp denotes the cost of a preventive
replacement, and cy; is the cost of a minimal repair; cp, ¢, constant.
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Policy 1 A system is preventively replaced at fixed times 1, 27,... Failures between
replacements are removed by minimal repairs.

This policy reflects the common approach of preventively overhauling complicated
systems after fixed time periods whilst in between only the absolutely necessary re-
pairs are done. With this policy, all cycle lengths are equal to T, and, in view of
(3.77), the mean cost per cycle is equal to

Cp + CmA('C).
Hence, the corresponding maintenance cost rate is

KI(T):M~

A replacement interval T = T*, which minimizes K (7), satisfies condition
TAMT)-A(M) =cplem.
If A(?) tends to oo as ¢t — oo, there exists a unique solution T=T* of this equation.

The corresponding minimal maintenance cost rate is
Ki(t%) = e M%) .

Policy 2 A system is replaced at the first failure which occurs after a fixed time .
Failures which occur between replacements are removed by minimal repairs.

This policy fully makes use of the system lifetime so that, from this point of view, it
is preferable to policy 1. However, the partial uncertainty about the times of replace-
ments leads to larger replacement costs than with policy 1. Thus, in practice the
maintenance cost rate of policy 2 may actually exceed the one of policy 1.

The residual lifetime 7t of the system after time point T, when having survived in-
terval [0,7], has, according to (1.36), the mean value

W(t) = E(Tx) = e MO = e AOt. (3.80)

The mean maintenance cost per cycle is, from the notational point of view, equal to
that of policy 1. Thus, the maintenance cost rate is

since T+ (T) is the mean cycle length. An optimal renewal interval T =1* satisfies
the necessary condition dK»(1)/dt=0, i.e.

cp
(A®+ g5 = DO =T.
If T exists, then the minimal maintenance cost rate is

cp +emlA(T) 1]

K2 (Tx) = o
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Example 3.8 Let the system lifetime 7 have a Rayleigh distribution with failure rate
AMt) =2t/62 . The corresponding mean residual lifetime of the system after having

survived [0, T] is
w(t) = Gﬁe(”e)z{l —q{%rj }

In particular, if =100 [h_l], cm =1, and cp =5, the optimal parameters are
= 180[h], Kp(T*)=0.0402. O

Policy 3 Each failure is removed by a minimal repair. On the first failure after a given
time 71, an unscheduled replacement is carried out. However, if there is no replace-
ment in [T{,T5], T <T,, then at time point T, a preventive replacement is done.

Under this policy, the random cycle length is
L=ty +min(T7,Ty —T1),
so that the mean cycle length is
E(L)=1; +1(t],Ty) with n(ty,tp)=]g> ' Fr, (.
Hence, if ¢y is the cost of an unscheduled replacement, the maintenance cost rate is
em A(Ty) +cerFry (g —T)) +cpFry(Tp—T1)
Ty +U(T,7T0) ’

An optimal pair (T,Tp) = (‘CT, ’C;) is solution of the equation system

K3(t1,19) =

MT) (T, Tp) + Fr, (1) —T1) —eml(cr —cp) =0,

CmA(Tl)+Cr—Cm _
7L('C2)- (Cr—Cp)Tl =0

A sufficient condition for the existence of a unique solution (IT,T;) which satisfies
the condition 0 < ‘ET < I; is
Mt) = oo and 0<cr—cp<cm<cr<eoe.
In this case, the minimal maintenance cost rate is
k% *
K3(T1,T2) =(cr— Cp) 7\,('52) .
Policy 4 The first n— 1 failures are removed by minimal repairs. At the time point of
the n th failure, an (unscheduled) replacement is carried out.
The random cycle length is L = T. Hence, the maintenance cost rate is

cr+(m—1)em
E(Tn)
where the mean cycle length E(7%) is given by (3.47).

Ky4(n) =
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By analyzing the behaviour of the difference K4(n) — K4(n—1), an optimal n = n* is
seen to be the smallest integer & satisfying

E(Tn)—[n—1+crlemlE(Y,0)20; n=12, ., (3.81)

where the mean time E(Y) between the (n — 1)th and the nth minimal repair is giv-
en by formula (3.48).

Example 3.9 Let the system lifetime 7 have a Weibull distribution:
_B(\B! _(1)B
7L(t) =9 (6) , A@)= (5) 5 B > 1. (3.82)

Under this assumption, condition (3.82) becomes

Brn—[n—1+crlem]20.

I c
v =g (-0

where |lx|| is the largest integer being less than or equal to x. (If x < 0, then |lx| = 0.) O

Hence, if ¢y > cm,

3.2.6.3 Replacement Policies for Systems with two Failure Types

So far, it has been assumed that every system failure can be removed by a minimal
repair. This is not always possible. For example, the restoration of the roadworth-
iness of a car after a serious traffic accident can surely not be achieved by a minimal
repair. To be able to model such situations, two failure types are introduced:

Type 1: Failures of this type are (and can be) removed by minimal repairs.

Type 2: Failures of this type are removed by replacements.

Type 1 failures are minor ones, which can be removed without much effort, whereas
type 2 failures may be complete system breakdowns. A failure occuring at system
age t is a type 2 failure with probability p(f) and a type 1 failure with probability
1 —p(f). The types of failures are assumed to occur independently of each other. Ob-
viously, this is the same situation as discussed in section 3.2.4.2: The type 1 (type 2)
Poisson events introduced there are here interpreted as type 1 (type 2) failures.

Policy 5 The system is maintained according to the failure type.

Under policy 5, a replacement cycle is the time between two neighbouring type 2 fai-
lures. Hence, according to (3.62), the distribution function of the cycle length L is

t
Gt = 1 — e J0POMDD 5 (3.83)

The random number Z of minimal repairs between neighbouring replacements has
mean value (3.65). Thus, the maintenance cost rate is
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[ 15 AdG(t) ~1 Jem +cr

= ; (3.84)
by oo PN |
In the special case p(f) =p >0, by (3.66) and (3.67),
_d-plplem+er (3.85)

5T [5 [F@)JPar

Policy 6 The system is maintained according to the failure type. In addition, pre-
ventive replacements are carried out T time units after the previous replacement.

Let cm, cr, and cp with 0 <cm < cp <cr denote the cost of a minimal repair, a re-
placement after a type 2 failure (unscheduled replacement) and a preventive replace-
ment, respectively. Then

Lz =min(Y, 1)
is the random length of a replacement cycle (time between successive replacements

of any type) and, if Zt denotes the random number of minimal repairs in a replace-
ment cycle, the maintenance cost rate has structure

_cm E(Zx) +cr G() +¢p G(T)

Ke( ELo)

In view of (3.72) and
E(Ly) = [§ G dt,

the maintenance cost rate becomes

em [ [§ GOMDAE— G() |+ er G(v) +cp G(T)

Kg(t) = _ (3.86)
jf) G dt
In particular, for p(f) = p,
Ko = {er+1(1=p)plem}G(T) +cp G(T) ' (3.87)

T
[5 G@yat
If there exists an optimal preventive replacement interval T=1" with regard to the

maintenance cost rate K(T), then it is solution of the equation

Pcp
(cr—cp—cm)p+em”

pADf§ Gy dt—G(v) =

As proved in [5], a unique solution T* exists if A(¢) is strictly increasing to infinity
and cr—cp >cm(1+p)/p. If there is no preventive maintenance, i.e. T= oo, then

(3.86) and (3.87) reduce to (3.84) and (3.85), respectively.
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Minimal repairs and replacements are extreme maintenance actions in the sense that
they have no influence at all at the system reliability, or they restore the initial relia-
bility level, respectively. Beginning with the papers of Uematsu and Nishida [83]
and Kijma, Morimura and Suzuki [49], approaches to modeling general degrees of
repairs have been suggested which take into account the intermediate stages. For a
recent, comprehensive survey see Guo, Ascher and Love [37].

3.2.6.4 Repair Cost Limit Replacement Policies with Minimal Repair
Replacement policies based on repair cost limits are widely acknowledged as partic-
ularly userfriendly and efficient strategies for organizing the maintenance of complex
systems. Different from the maintenance policies considered so far, repair cost limit
replacement policies explicitely take into account that repair costs are random varia-
bles. The theoretical basis for the analysis of the repair cost limit replacement policy
considered in this section is the two failure type model introduced in the previous
section.

Policy 7 (Repair cost limit replacement policy) After a system failure, the necessary
repair cost is estimated. The system is replaced by an equivalent new one if the repair
cost exceeds a given level c(f), where ¢ is the age of the system at the time of failure.
Otherwise, a minimal repair is carried out.

Let C; be the random repair cost of the system if it fails at age #. Then the two failure
type model applies to policy 7 if the failure types are generated by C; in the follow-
ing way: A system failure at time ¢ is of type 1 (type 2) if

Cr<c(t) (Cr>c(d).
Thus, if

Ri(x)=P(C;<x)

denotes the distribution function of C; and if Ry(x) = 1 — R;(x), then the respective
probabilities of type 1 and type 2 failures are

1=p(t) = Re(c(®),  p(t) = Ry(c (1) (3.88)

As before, let ¢, be the cost of a replacement after a type 2 failure. It is reasonable to
assume that, for all 7> 0,
1 ifx=cr
O<c(f)<cr and Ry(x)= 0 if x<0

With the failure type probabilities given by (3.88), the length L of a replacement
cycle has, according to (3.83), distribution function

t p—
Gty = 1 Jo ReCOMM@ar (3.89)

By (3.86), the corresponding maintenance cost rate is
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t p—
[ [ AOMORe(c(t) o RalcCDA@dry gl

K7 = = . (3.90)
J-(o)o e—JO Ry (c(x))M(x) dxdt.

The problem consists in finding a repair cost limit function ¢ = ¢(f) which minimiz-
es (3.66). Generally, an explicit analytical solution cannot be given. Hence, some
special cases will be discussed. In particular, the system lifetime X is assumed to be
Weibull distributed:

Fiy=PxX<n=1-¢OP ;>0 p>1, 0>0. (3.91)

The respective failure rate and integrated failure rate are given by (3.82).

Constant Repair Cost Limit For the sake of comparison, next the case is consider-
ed that the repair cost limit is constant and that the cost of a repair C does not depend
onti.e.

c()=c and Ry(x)=R(x) forall x and ¢
In this case, the probability p = R(c) does not depend on time so that the length of a
replacement cycle has distribution function
G)=1-eROWOP 50
Hence, the mean cycle length is
E(L)=0T(1+1B)[ Ro)] P,

The corresponding maintenance cost rate can immediately be obtained from (3.87):
R(c)
=cm+
R©) CmTCr
or(1+1/)[ Ry
This maintenance cost rate depends on ¢ only via R(c). The value of y = R(c) mini-
mizing K7(c) is easily seen to be

Kq(0)=

—— -1
y* :R(C'P):g_—l with k= Cr/Cm.

By assumption, k> 1 and B> 1. Hence, since 0 <y™ < I, an additional assumption
has to be made:

1<B<k (3.92)
Given (3.92), for any R with inverse function E_l, the optimal limit ¢ = ¢™ is
O | (B -1 \
c =R \k=1J- (3.93)

Its application yields the smallest possible maintenance cost rate, which can be achiev-
ed with a constant repair cost limit:
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Bem (k—l\ 1-1/8
or(1+1/8) \p—1/

K7(c™) =

In particular, for B =2 (Rayleigh distribution),

I'L+1/8)=T@3/2)= /4
so that
4c

m k=1 _ m [
5 ‘/ T =2.2568 g k1. (3.94)

Hyperbolic Repair Cost Limit Function System aging implies an increase in the
mean failure frequency and in the mean repair cost with increasing system age t.
Thus, a decreasing repair cost limit ¢(#) is supposed to lead to a lower maintenance
cost rate than a constant repair cost limit or an increasing repair cost limit function.
To demonstrate this, the efficiency of the following nonincreasing repair cost limit
function will be investigated in conjunction with a repair cost C being uniformly dis-
tributed over the interval [0, ¢;] :

K7(c™) =

< _
=14 " Ost<dler=c)  G<ocep, (3.95)
c+d/t, dl(cyr—c)<t<oo

xlcyr, 0<x<cy

R(x)=P(C<x)= { (3.96)

1, Cr<x<°°'

Combining (3.95) and (3.96) gives the probability that a system failure, which occurs
at age ¢, implies a replacement:

_ 0, 0<t<dl(cr—c)
Rc®) =9 cr—c  d d__, , 0<c<er
cr T oert? G =t<e
Letting
r=dlc, s=(cr—c)lcy, z=rls (3.97)
yields
5 0 0<t<z
R(c(t)) = ’ . 3.98
() {S(l—z/t), z<t<oo ( )

Scheduling replacements based on (3.98) is well motivated: Replacements of systems
in the first period of their useful life will not be scheduled. After this period, a sys-
tem failure makes a replacement more and more likely with increasing system age.

To obtain tractable formulas, the system lifetime is assumed to have a Rayleigh dis-
tribution (distribution function (3.91) with B =2):

Mo =21/02, A1) =(t/0)2. (3.99)
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Under these assumptions, the maintenance cost rate (3.90) can explicitely be evaluat-
ed by making use of the following three basic integrals:

jox e “hsx? dv=—1—

2(hs)2”
o 2 Asx2,; __ 1 [&
[ x2ehsx dv=g= [ (3.100)

oo Asx2 . _ 1
IO xe dx = s

The result is

__ 2 | [mr , 1(r)?
K7(F,S)—2r+e = (1—S+e E +§(6) +k) Cm

In order to minimize K-(r,s) with respect to  and s, in a first step K(r,s) is mini-
mized with respect to » with s fixed. The corresponding optimal value of 7, denoted
as ™ =7r"(s), is solution of the quadratic equation d K7 (r,s)/dr =0

) 2 _ 0
(I”+§ TCS) _T[4S(k_ 1)+4—TC].

Since, by assumption, k = ¢;/ci; > 1, the right-hand side of this equation is positive.
Hence, a solution exists:

r*(s)zgﬁ[,/4s(k—1)+4—n —,/ﬂ.

To make sure that 7*(s) > 0, an additional assumption has to be made:

n—2
k>—= r +1. (3.101)

The corresponding maintenance cost rate is

Ko™ (s),5) = G- Jatk-1)+ 5% (3.102)

Since s <1, the function K7(r (s),s) assumes its minimum at s = 1. Hence, ¢ =0.
With s =1, condition (3.101) holds if and only if

k>m/2=1.57.

Since replacement costs are usually much higher than repair costs, this condition
hardly imposes a restriction on the application of the repair cost limit function (3.95).

Summarizing: If k > 1/2, the optimal repair cost limit function of structure (3.95) is

¢=0 and d*zg[.mk—n V7 Jer.

and the corresponding minimal maintenance cost rate is

K7(d)— dk-m . (3.103)
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Figure 3.5 Cost comparison constant-decreasing repair cost limit

Under what condition is K7(d™) smaller than K7(c*)? The inequality

Kq(d*) =<2 Jak-n <K7(c*):4‘ém k1
holds if and only if

16— 12

16—4n’

Since 1.785 < k™ < 1.786, this restriction is slightly stronger than & > /2, but for the
same reasons as given above, will have no negative impact on practical applications.
Figure 3.5 compares the relative cost criteria

K@) = 2 K7(d*) and Kp(c*)= o= Kq(c™)

k>k* =

in dependence on k, k> k™.

Age Dependent Repair Cost Till now it has been assumed that the repair cost C
does not depend on the failure time. However, it is more realistic to assume that on
average repair costs increase with increasing system age. Hence, let the cost of a re-
pair, occurring at system age ¢, have a uniform distribution over [a, a + bf] witha =0
and b > 0. Then,
1, 0<t<®=4
Ri®)=P(C;<0)=1 vu va' - (3.104)
F , T <t
Constant repair cost limit For the sake of comparison, next a constant repair cost ¢
limit is applied. Then, a failure at time ¢ implies a replacement with probability

0, 0<t<r

Rt(c):P(Ct>c)={ o e

where r = (¢ —a)/b. With the lifetime characteristics (3.99) and again making use of
the integrals (3.100), the maintenance cost rate (3.90) reduces to
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[(r/e)2 + 6ﬁ ] cm+cer

r+0Jmn/4

K7(r) =

The value » = 7" minimizing K4(r) is
r* =g[,/4k—7t - ﬁ],

where, as before, k= ¢, /cm. To make sure that #* >0, the inequality k > /2 must
be satisfied. Then corresponding optimal repair cost limit is ¢* =a+br*. Its appli-

cation yields

K7(c*)=%",/4k—n. (3.105)

Decreasing repair cost limit Let

- <<
c(t)={c dt, 0siscld , a<c, d>0,

0, cd<t
be a linearly decreasing repair cost limit and
r=(c-a)b, s=b+d)/b, y=(c-a)d, z=rls.

Then, from (3.104), a system failure at age ¢ implies a replacement with probability

0, 0<t<z
Ri(c(®) =1 s(1=z/t), z<t<y
1, y<t

If d is assumed to be sufficiently small, then letting y = will only have a negligi-
bly small effect on the maintenance cost rate (3.90). Moreover, the replacement prob-
ability R;(c()) has the same functional structure as (3.98). Thus, for small d the min-
imal maintenance cost rate is again given by (3.102):

K7(r*(s),5) = %’” |4tk 1)+4_T’c : (3.106)

Note that, different to the definition of s by (3.97), now s > 1. Hence, with K7(c*)
given by (3.105), one easily verifies that
K7(c™) > K7(r™(5),5).

Thus, a linearly decreasing repair cost limit function must exist, which is more effi-
cient than a constant repair cost limit. However, an optimal parameter s = s™ cannot
be constructed by minimizing (3.106), since K7(r*(s),s) decreases with increasing s,
but for (3.106) to be approximately valid, the assumption 's is sufficiently near to 1'
had to be made.

The results obtained in this section indicate that the application of decreasing repair

cost limits leads to lower maintenance cost rates than the application of constant
repair cost limits if the total repair cost is progressively increasing in time.
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3.3 RENEWAL PROCESSES

3.3.1 Definitions and Examples

The motivation for this chapter is a simple maintenance policy: A system is replaced
on every failure by a statistically equivalent new one in negligible time and, after
that, the new system (or the 'renewed system') immediately starts operating. In this
context, the replacements of failed systems are also called renewals. The sequence of
the system lifetimes after renewals generates a renewal process.

Definition 3.5 An ordinary renewal process is a sequence of nonnegative, indepen-
dent, and identically distributed random variables {Y;; i=1,2,...}. ®

Thus, Y; is the time between the (i—1)th and the i th renewal; i=1,2,..., Y7 =0.
Renewal processes do not only play an important role in engineering, but also in the
natural, economical and social sciences. They are a basic stochastic tool for modeling
particle counting, population development, and arrivals of customers at a service
station. In the latter context, Y; is the time between the arrival of the (i —1)th and the
ithcustomer. Renewal processes are particularly important in actuarial risk analysis,
namely for modeling the arrival of claims at an insurance company (section 3.5). In
this chapter a terminology is adopted which refers to the 'simple maintenance policy'.
If the observation of a renewal process starts at time z=0 and the process has
already been operating for a while, then the lifetime of the system operating at time
t=0 is a 'residual lifetime' and will, therefore, usually not have the same probability
distribution as the lifetime of a system after a renewal. Hence it makes sense to
define a generalized renewal process by assuming that only the Y5, Y3, ... are identi-
cally distributed. This leads to the following definition:

Definition 3.6 Let {Yq, Y5,...} be a sequence of nonnegative, independent random
variables with property that Y has distribution function

F () =P(Y| <1),

whereas the random variables Y5, Y3, ... are identically distributed as Y with distribu-
tion function

F()=P(Y<0), Fi(t) £ F().
Then {Y1,Y>,...} is called a delayed renewal process. ®

The random time point at which the n th renewal takes place is
Th=%1 Y n=1.2,..

The random point process {7, T5,...} is called the process of the time points of
renewals. The time intervals between two neighbouring renewals are renewal cycles.
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The corresponding counting process {N(f), t = 0}, defined by

max (n; Tn <)

1) =
M| 7 T

is called renewal counting process. Note that N(f) is the random number of renewals
in (0,¢]. The relationship
N()=2n ifand only if Ty <1, (3.107)
implies
Fr,(©)=P(Tn <t)=P(N(?) 2 n). (3.108)

Because of the independence of the Y}, the distribution function Fr, (#) is the convo-
lution of F'{ () with the (n— 1) th convolution power of F (see section 1.7.2):

Fr,0)=F *F*0=D@, F*Omn=1, 1>0; n=1,2,.. (3.109)
If the densities
f1O=F\ () and f()=F (1
exist, then the density of T, is
fr,0=f1 %D, FOw=1, 120, n=1,2,.. (3.110)
Using (3.108) and
P(N(H) 2 n)=P(N(H) =n)+ P(N(H) 2 n+ 1),
the probability distribution of N(¥) is seen to be
PN =nm=Fr,0)=Fr @O, Fr ()= 1; n=0,1,... (3.111)
Example 3.10 Let {Y;,Y>,...} be an ordinary renewal process with property that
the renewal cycle lengths Y¥; have an exponential distribution with parameter A :
F)=P(Y<f)=1—-eM, ¢>0.

Then, by theorem 3.2, the corresponding counting process { N(¢), t = 0} is the homo-
geneous Poisson process with intensity A. In particular, by (3.21), T has an Erlang
distribution with parameters » and A:

oo i
Fr,()=P(Tn<t=e M X Gy O
i= i!
Apart from the homogeneous Poisson process, there are two other important ordinary
renewal processes for which the convolution powers of the renewal cycle length dis-

tributions explicitely exist so that the distribution functions of the renewal times 7,
can be given:
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1) Erlang Distribution The renewal cycle length Y has an Erlang distribution with
parameters m and A. Then, Ty is a sum of mn independent, identically distributed
exponential random variables with parameter A (example 1.23, section 1.7.2). There-
fore, Ty has an Erlang distribution with parameters mn and A :

(M)

FO(p) = P(Tp<ty=e™M 3, E

i=mn

t>0. (3.112)

This result is of general importance, since the probability distribution of any nonneg-
ative random variable can be arbitrarily accurately approximated by an Erlang distri-
bution by proper choice of the parameters of this distribution.

2) Normal Distribution Let the renewal cycle length Y have a normal distribution
with parameters L and G, L > 36. (The assumption U > 3G is necesssary for making
sure that the cycle lengths are practically nonnegative. However, renewal theory has
been extended to negative 'cycle lengths'.) Since the sum of independent, normally
distributed random variables is again normally distributed, where the parameters of
the sum are obtained by summing up the parameters of the summands (example 1.24,
section 1.7.2), Ty has distribution function

F*M(1) = P(Ty < 1) = q{;‘/”;j 1>0. (3.113)

This result also has a more general meaning: Since Ty is the sum of # independent,
identically distributed random variables, then, by the central limit theorem 1.9, T
has approximately the distribution function (3.113) if n is sufficiently large, i.e.

Ty = N(np, 62n) if n > 20.

Example 3.11 The distribution function of 75 can be used to solve the so-called
spare part problem: How many spare parts (spare systems) are absolutely necessary
for making sure that the renewal process can be maintained over the intervall [0, ]
with probability 1 —o.?
This requires the computation of the smallest integer » satisfying

1-Fr, ()=PN@®)<n)21-o

For instance, let be
w=E(Y)=8 and 62 = Var(Y) = 25.
If t=200 and 1 — o= 0.99, then

1-F7,(200)=1-® (zg(’fg”) >1-0=099
is equivalent to

8n—200
20.01 =232< W .
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Thus, at least n,);,, = 34 spare parts have to be in stock to ensure that with probabil-

ity 0.99 every failed part can be replaced by a new one over the interval (0,200]. In
view of n,;, = 20, the application of the normal approximation to the distribution of

Ty is justified. O

3.3.2 Renewal Function

3.3.2.1 Renewal Equations

The mean number of renewals which occur in a given time interval is of great practi-
cal and theoretical importance.

Definition 3.7 The mean value of the random number N(¢) of renewals occurring in
(0, 1] as a function of ¢ is called renewal function. ®

Thus, with the terminology and the notation introduced in section 2.2, the renewal
function is the trend function of the renewal counting process {N(¢), t > 0}:

m(t) = E(N()).
However, to be in line with the majority of publications on renewal theory, in what

follows, the renewal functions belonging to an ordinary and a delayed renewal pro-
cess are denoted as H(z) and H(t), respectively.

If not stated otherwise, it is assumed throughout section 3 that the densities of ¥ and
Y, exist. Hence,

dF(t) = f(t)dt and dF((H)=f1(Hdt.
In this case, the first derivatives of H(f) and H(¢) also exist:

dH (¢ dH
=10 =0

The functions % (¢) and h(¢) are the renewal densities of a delayed and of an ordina-
ry renewal process, respectively. From (1.15), a sum representation of the renewal
function is

H(f)=E(N() = 2,1~ P(N(®) = n). (3.114)
In view of (3.108) and (3.109),
Hi{(t)=Xgy Fy * F*=D(p), (3.115)
In particular, the renewal function of an ordinary renewal process is
H(t) =X F*M (1), (3.116)

By differentiation of (3.114) and (3.115) with respect to ¢, one obtains sum represen-
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tations of the respective renewal densities:
@O =221 /140, =2 ).

Remark These sum representations allow a useful probabilistic interpretation of the
renewal density: For At sufficiently small,

h 1 (H) At
is approximately equal to the probability of the occurrence of a renewal in the inter-
val [¢, 1+ Af].

In view of (3.115) and the definition of the convolution power of distribution func-
tions,

H{(t) =20 Fy # F*0()
=F (0 + X [o F1 #F* D (-x) dF(x)
=F1(0+]y Ty (Fl x F*(”_l)(t—x)) dF(x).
Again by (3.115), the integrand is equal to H(1—x). Hence, H (?) satisfies
Hy(t)=F(0)+ [ Hy(t=x)dF(x). (3.117)

According to (1.32), the integral in (3.117) is the convolution H * f of the renewal
function A with f. In particular, the renewal function H(f) of an ordinary renewal
process satisfies

H(t) = F(t) + [ H(t—x) dF(x). (3.118)

Another derivation of formula (3.118) can be done by conditioning with regard to
the time point of the first renewal: Given that the first renewal occurs at time x, the
mean number of renewals in [0, 7] is

[1+H(-x)], 0<x<t

Since the first renewal occurs at time x with 'probability’ dF(x) = f(x) dx, taking into
account all possible values of x, yields (3.118). The same argument yields an integral
equation for the renewal function of a delayed renewal process:

H\(t)=F(0)+ [y Ht=x)dF | (x). (3.119)

This is because after the first renewal at time x the process develops in (x, f] as an or-
dinary renewal process. By partial integration of the convolutions, the renewal equa-
tions can be rewritten. For instance, integral equation (3.117) is equivalent to

H\(t)=F(0)+ [ Fle—x)dH{ (x). (3.120)
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By differentiating the renewal equations (3.117) to (3.119) with respect to ¢, one ob-
tains the following integral equations of renewal type for /11 () and A(¢):

hy (O =f1(0+[f hy(t—x) @) dx, (3.121)
h(t)= f(t) + [ h(t=x)f(x)dx, (3.122)
hy(0)=f1(0)+ [ ht=x)f1 (x) dx. (3.123)

Generally, solutions of integral equations of renewal type can only be obtained by
numerical methods. However, since all these integral equations involve convolu-
tions, it is easily possible to find their solutions in the image space of the Laplace

transformation: Let A (s), h(s), f1(s) and f(s) be the respective Laplace transforms
of hy(¥), h(t), f1(¢) and f(¢). Then, by (1.33), applying the Laplace transform to the
integral equations (3.121) and (3.122) yields algebraic equations for 4 (s) and A(s):

hy(s)=F16)+h1(8)-f(s),  h(s)=f(s)+h(s)-f(s).
The solutions are

. i)

his) sy =L

1-/(s) 1-/(s)
Thus, for ordinary renewal processes there is a one-to-one correspondence between

the renewal function and the probability distribution of the cycle length. By (1.29),
the Laplace transforms of the corresponding renewal functions are
he g J©

s(1=1(s)) s(1=f(s))

(3.124)

Hy(s) = (3.125)

Integral Equations of Renewal Type The integral equations (3.117) to (3.119) and
the equivalent ones derived from these are called renewal equations. They belong to
the broader class of integral equations of renewal type. A function Z(¥) is said to sat-
isfy an integral equation of renewal type if for any function g(¢), which is bounded
on intervals of finite length, and for any distribution function F(¢) with probability

density 1'(¢),

2(t) = g(0)+ [ Z(t—x) f)dx. (3.126)
The unique solution of this integral equation is
Z(t) = g(t) + [y gt = x)h(x) dx, (3.127)

where A(?) is the renewal density of the ordinary renewal process generated by f (f).
For a proof, see Feller [28]. A function Z(f) given by (3.127) need not be the trend
function of a renewal counting process.
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Example 3.12 Let
A1 =fO=re ™, 1>0.
The Laplace transform of f() is

f(s) =
By (3.125),

His) = +x/( sﬁsx) =%

s
The corresponding pre-image is

H() =\t.
Thus, an ordinary renewal process has exponentially with parameter A distributed
cycle lengths if and only if its renewal function is given by H(f) = At. O

Example 3.13 Let the cycle length of an ordinary renewal process have distribution
function

F)=(1-e"12, 120.

Thus, F(f) = 1 — F(¢) can be thought of the survival function of a parallel system con-
sisting of two subsystems, whose lifetimes are independent, identically distributed
exponential random variables with parameter A =1. The corresponding probability
density and its Laplace transform are

2

— (=t _ 2t Tle) —
fO =2t '-e“" and f(s)_(s+l)(s+2)'

From (3.124), the Laplace transform of the corresponding renewal density is

A

h(s) =

2
s(s+3)°
By splitting the fraction into partial fractions, the pre-image of it(s) is seen to be
h(t) = %(1 —e31).

Integration yields the renewal function:

H() =2 [;+31(-3f—1)] O

Explicit formulas for the renewal function of ordinary renewal processes exist for the
following two classes of cycle length distributions:

1) Erlang Distribution Let the cycle lengths be Erlang distributed with parameters
m and A. Then, by (3.108), (3.112), and (3.116),
Hh=e™MY X (Il

n=1i=mn 1!
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Special cases are:

m=1: H{)=M\t (homogeneous Poisson process)

m=2: H() 2_7»1‘ 2+2e

m=3: H(t)=% 7»t—1+%e_1’5>“t sin[@%ﬂrgj}

_4. [y, 3 1 o A E]
m=4: H(t)—4;7»t 2+ e +,/5e sm(kt+4).

2) Normal distribution Let the cycle lengths be normally distributed with mean val-
ue p and variance 62, pn> 362. From (3.108), (3.113) and (3.116),

1
2

o t—nu
H(z)_n§1 q{—c NG j (3.128)

This sum representation is very convenient for numerical computations, since only
the sum of the first few terms approximates the renewal function with sufficient ac-
curacy.

As shown in example 3.12, an ordinary renewal process has renewal function
H(t)=At=t/u ifand only if f(f)=Ae™M, >0,

where 1 = E(Y). Hence an interesting question is, whether, for given F(7), a delayed
renewal process exists which also has renewal function H{(f) =t/u.

Theorem 3.10 Let {Y,Y5,...} be a delayed renewal process with cycle lengths
Y;,Y3,... being identically distributed as Y. If Y has finite mean value 1 and distri-
bution function F(f) = P(Y <t), then {Y, Y5, ...} has renewal function

Hi(=t/u (3.129)
if and only if the length of the first renewal cycle Y has density f](¢) =fg(f) , where
fS(t)zﬁ(l—F(t)), t=20. (3.130)

Equivalently, {Y},Y5,...} has renewal function (3.129) if and only if Y has distri-
bution function F'y (¢) = Fg(f) with

FS(t)=ﬁj6 (1= F(x))dx, t20. (3.131)

Proof Let }‘(S) and /A‘S(s) be the respective Laplace transforms of f(#) and fg(2).
Then, by applying the Laplace transformation to both sides of (3.130) and taking into
account (1.29),

Fs() =5 (1=F(5).
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Replacing in the first equation of (3.125) JA{I (s) with }‘S(S) yields the Laplace trans-
form of the corresponding renewal function H () = Hg(?) :

H(s) = 1/(us?).

Retransformation of £ s(s) gives the desired result: Hg(f) =¢/u. u

The random variable S with density (3.130) (distribution function (3.131)) plays an
important role in characterizing stationary renewal processes (section 3.3.5). More-
over, this distribution type already occurred in section 1.4 in connection with the

NBUE-distribution (formula (1.45). The first two moments of S are (exercise 3.24)

2 2
uo+o 2 M3

ES)= E === 132
(9=Fg 7 and B$H=37, (3.132)

where
62 = Var(Y) and w3 = E(Y3).

Higher Moments of N(f) Apart from the renewal function, which is the first mo-
ment of N(¢), higher moments of N(f) also have some importance, in particular when
investigating the behaviour of the renewal function as ¢ — oo.

Let {Y{,Y5,...} an ordinary renewal process and {N(¢), t = 0} its corresponding re-
newal counting process. Then, moments of higher order can be derived from bino-
mial moments of N(¢). The binomial moment of the order n of N(f) is defined as

n

E(N(t)) _ ni!E{[N(t)][N(t) — 1] [N = (n=1)]}. (3.133)

The binomial moment of order n of N(¢) is equal to the nth convolution power of
the renewal function:

E N(¢ i
( ;(l )) (n) (t)'
Specifically, for n =2,

E(Né”) = %E{ [NOIIN@®) - 11} = %{E[N(;)ﬂ _ H(,)} - @)

so that the variance of N(7) is equal to
Var(N(t)) =2 [y H(t - x) dH(x) + H() - [H(1)]?

Since
H(t—-x)<H(f) for 0<x<¢,

this equation implies an upper bound for the variance of N(7):

Var(N(t)) < [H(t)]2 +H(?).

© 2006 by Taylor & Francis Group, LLC



STOCHASTIC PROCESSES 164

3.3.2.2 Bounds on the Renewal Function

Generally, integral equations of renewal type have to be solved by numerical meth-
ods. Hence, bounds on H(f), which only require information on one or more numeri-
cal parameters of the cycle length distribution, are of special interest. This section
presents bounds on the renewal function of ordinary renewal processes.

1) Elementary Bounds By definition of T,

max ¥; <Y Y;=Th.
<i<n

Hence, for any ¢ with F(f) < 1,
F¥() = P(Ty < 1) < P( max Y; < 1) = [F(0)]" .
1<i<n

Summing from n =1 to e on both sides of this inequality, the sum representation of
the renewal function (3.116) and the geometric series yield

F(%)
F)<H@) < l——F(t) .

Note that the left-hand side of this inequality is the first term of the sum (3.116).
These 'elementary bounds' are only useful for small ¢.
2) Linear Bounds Let F={r; >0, F(r)< 1}, p=E(Y), F(/)=1-F(t), and
F@)—-Fql(t F(t)—Fq(t
ag= g FOZFSO _FO-Fs@)
e FQ) teF  F(@)
where Fg() is given by (3.131). Then (Marshall [59])

t t
[ +agSHOS{+ay. (3.134)

The derivation of these bounds is straightforward and very instructive: According to
the definition of ay and a [,

agF(t) SF(t)-Fg(t) <ay F(2).
Convolution of both sides with F' >k(”)(t) leads to
ag| F* () - F* 04D (1) | < FH0D () - Fg # F*O(0) < a | F*0) ()= F* 04D ) |,
In view of (3.116) and theorem 3.10, summing up from n =0 to e on both sides of
this inequality proves (3.134). Since
F(t) - Fg(0)
F(f)

formula (3.134) implies a simpler lower bound on H(?):

2-Fg(t)=z-1 forallt=0,

t t
H(t)ZH_FS(t)ZH_I‘

© 2006 by Taylor & Francis Group, LLC



3 POINT PROCESSES 165

Let
As(t) =/s@) IF (1)
be the failure rate belonging to Fg():

F(t
ls(l‘) = OQ_L .
7 F(x)dx
Then a( and a can be rewritten as follows:
1 1
apg=1 inf ——=—-1 and a«a I Sup 7= - 1.
07K teF }‘S() 1 HoeF xS(t)
Thus, (3.134) becomes
LA _1<H@n<Ly l sup -1 (3.135)
“’ u tEF ks(t) ll l‘EF Ks(l‘)
Since
inf A(f) < inf Ag(r) and sup A7) = sup Ag(?),
teF teF teF teF
the bounds (3.135) can be simpliﬁed:
.1 <t oo 1
u+ tlenlt; l(t) —1<H@® < H m ts;% 0 1. (3.136)

3) Upper Bound If p=FE(Y) and uy = E(YZ) then (Lorden [55])
Hz

HH<++—=-1. (3.137)
i u
4) Upper Bound for IFR If F(¢) is IFR, then (3.137) can be improved (Brown [14]):
Hn<i + ﬁ -1,
2u2
5) Two-Sided Bounds for IFR If F(?) is IFR, then (Barlow and Proschan [4])
— L — 1 <Hp < < O, (3.138)
[ Fx)dx [oFw) dx’

Example 3.14 As in example 3.13, let be
Fity=(1-e1)2, >0,

the distribution function of the cycle length Y of an ordinary renewal process. In this
case, L= E(Y)=3/2 and

FS(t)=ﬁ f:ol?(x)dx= (2—%e_t)e_t, t=>0.

W[
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Figure 3.6 Failure rates Figure 3.7 Bounds for the renewal function

Therefore, the failure rates belonging to F(¢) and Fg(f) are (Figure 3.6)

2(1—eh)
M) ==2—" 2
® 2—e™

>
o t=0.

2—e”
Ac()=2 )
s 47t

Both failure rates are strictly increasing in # and have, moreover, the properties
MO) =0, M) =1,
Ag(0) =2/3, Ag(ee) =1.
Hence, the respective bounds (3.135) and (3.136) are

%t——<H(t)<—t and —t——<H(t)<oo

In this case, the upper bound in (3.136) contains no information on the renewal func-
tion. Figure 3.7 compares the bounds (3.135) with the exact graph of the renewal
function given in example 3.13. The deviation of the lower bound from H(?) is negli-
gibly small for ¢ > 3.

3.3.3 Asymptotic Behaviour

This section investigates the behaviour of the renewal counting process {N(?), t = 0}
and its trend function as # — oo. The results allow the construction of estimates of the
renewal function and of the probability distribution of N(?) if ¢ is sufficiently large.
Throughout this section, it is assumed that both E(Y|) and E(Y) = u are finite. Some
of the key results require that the cycle length Y or, equivalently, its distribution
function, is nonarithmetic, i.e. that there is no positive constant a with property that
the possible values of Y are multiples of a. Correspondingly, Y is called arithmetic if
there is a constant a so that ¥ has range R = {0, a, 2a,...}. (The set R consists of all
possible values, which Y can assume.) A continuous random variable is always non-
arithmetic.
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A simple consequence of the strong law of the large numbers is

NGO 1)
P(tli)rEoT = u) =1. (3.139)

To avoid technicalities, the proof is given for an ordinary renewal process: The in-
equality

TN <t <TNpy+1
implies that

Vo _ o _Ivow _ TNa+ N+
N@) S N@ S N@  No+l NG
or, equivalently, that

M) / [ ] ZN(t)+1 Y}N(t)+1

|
Wzlfl Yism N(o)+1 <=1 NG

Since by assumption W= E(Y) < oo, N(f) tends to infinity as t — o=. Hence, theorem
1.8 yields the desired result (3.139). For u being the mean distance between two re-
newals, this result is quite intuitive. The following theorem considers the correspon-
ding limit behaviour of the mean value of N(¢7). As with theorems 3.12 and 3.13, no
proof is given.

Theorem 3.11 (elementary renewal theorem) The renewal function satisfies
. Hi(n
tli?;lc Tt T u
Thus, for large ¢, /11 (¢) = t/u. The theorem shows that for  — oo the influence of the

first renewal interval with possibly E(Y|)# W fades away. (For this property to be
valid, the assumption E(Y)<ec had to be made.) In terms of the renewal density,
the analogue to theorem 3.11 is

. 1
lim 7(6) =1
Jim 10=q
Note that (1.139) does not imply theorem 3.11. The following theorem was called
the fundamental renewal theorem by its discoverer W. L. Smith.

Theorem 3.12 (fundamental renewal theorem) 1f F(t) is nonarithmetic and g(¢) an
integrable function on [0, <), then

tlgxolojg gt—x)dH | (x) = ﬁ IBO ga(x)dx. u

The fundamental renewal theorem (or key renewal theorem, theorem of Smith) has
proved a useful tool for solving many problems in applied probability theory and sto-
chastic modeling. Theorem 3.13 gives another variant of the fundamental renewal
theorem. It refers to the integral equation of renewal type (3.126).
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Theorem 3.13 Let g(¥) be an integrable function on [0,e0) and f(¢) a probability
density. If Z(¢#) satisfies the equation of renewal type (3.126), namely

2(t) = g(t) + [ Z(t—x) f(x) dx,
then
. 1 (oo
Jim ()= ¢ [5 gt dx. (3.140)
| |

Proofs of the now 'classic' theorems 3.11 to 3.13 can be found in [28]. The equiva-
lence of the theorems 3.12 and 3.12 results from the structure (3.127) of Z(?).

Blackwell's renewal theorem Let

() = I forO<x<h
& 0 elsewhere

Then the fundamental renewal theorem implies Blackwell's renewal theorem: If F(t)
is nonarithmetic, then, for any # >0,

lim [H | (t+h) - H{ ()] = (3.141)
[—oo

h
-
Whereas the elementary renewal theorem refers to 'a global transition' into the statio-

nary regime, Blackwell's renewal theorem refers to the corresponding 'local beha-
viour' in a time interval of length 4.

Theorem 3.14 If F(¢) is nonarithmetic and o= Var(Y) < oo, then

. 2 E(Yy)
_ty_o- =11
thn; (Hl(t) u) = % Tty (3.142)

Proof The renewal equation (3.120) is equivalent to

H\(t)=F(0)+][{ Fy(t—x)dH(x). (3.143)
If F(t) =Fg(1), then, by theorem 3.10, this integral equation becomes
ﬁ = Fg(t)+ [ Fs(t—x) dH(). (3.144)

By subtracting integral equation (3.144) from integral equation (3.143),
Hy () - ﬁ =Fs(t)-F1(t)+ [ Fs(t—x)dHx) - [ F (t—x) dH(x).
Applying the fundamental renewal theorem yields
Jim (Hl (z)—a) = ujo Fg(x)d(x) ujo F1(x)d().
Now the desired results follows from (1.17) and (3.132). |
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For ordinary renewal processes, (3.142) simplifies to
~ _t)_1[g?_
tlgxgo(H(t) M) =3 (uz lj. (3.145)

Corollary Under the assumptions of theorem 3.14, the fundamental renewal theo-
rem implies the elementary renewal theorem.

Theorem 3.15 For an ordinary renewal process, the integrated renewal function has

property
2
2
lim 1 [ H(o dx— ’—J{ﬁ_ljt M2 M3
t—>oo 2}1 2u2 4u3 6H2
with [, = E(Y2) and py = E(Y3). m

For a proof see, for instance, Tijms [81]. The following theorem is basically a conse-
quence of the central limit theorem (for details see Karlin and Taylor [45]).

Theorem 3.16 The random number N(7) of renewals in [0, 7] satisfies

| VO~ 1
o tu3

lim

(—>o0

<x|=D(x). ]

Thus, for ¢ sufficiently large, N(¢) is approximately normally distributed with mean
value ¢/ and variance GZI/u3 :

N() = N(t/u, 62t/ 13). (3.146)

Hence, theorem 3.16 can be used to construct approximate intervals, which contain
N(¢) with a given probability: If ¢ is sufficiently large, then

Pt 2o Ot SN <L 4zgp0,tu3 Voi—a.  (3147)
\H H )
As usual, z /5 is the (1 — 0/2)- percentile of the standard normal distribution.

Example 3.15 Let =1000, =10, 6 =2, and o0 = 0.05. Since z o5 = 2,
P(96 < N(t) < 104)=0.95. O

Knowledge of the asymptotic distribution of N(f) makes it possible, without knowing
the exact distribution of Y, to approximately answer a question which already arose
in section 3.3.1: How many spare systems (spare parts) are necessary for guaran-
teeing that the (ordinary) renewal process can be maintained over an interval [0, 7]
with a given probability of 1 —a?
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Since with probability 1 — o
N@) -t/

<za,
G,/tu

for large ¢ the required number ;. is approximately equal to

Prnin = {1 +20. 0y 117 . (3.148)

Example 3.16 The same numerical parameters as in example 3.11 are considered:
1=200, u=8, 62 =25, and a.=0.01.

in2 2010305200 873 =3225.

8

Hence, about 33 spare parts are needed to make sure that with probability 0.99 the
renewal process can be maintained over a period of 200 time units. (Formula (3.113)
applied in example 3.11 yielded n.,: . = 34.) O

Since 20.01 = 232,

n

min

3.3.4 Recurrence Times

For any point processes, recurrence times have been defined by (3.3) and (3.5). In
particular, if {Y{,Y,,...} is a renewal process and {7, T>,...} is the corresponding
process of renewal time points, then its (random) forward recurrence time A(f) is

AW =Ty — 1
and its (random) backward recurrence time B(f) is
B(t)=t—Tpy).
A(?) is the residual lifetime and B(f) the age of the system operating at time ¢.

k— B() %« A %

| | | > ¢

0 7 Ty - Tn Tn+1

Figure 3.8 Illustration of the recurrence times

The stochastic processes
{Y,Yy,.}.{T1,T5,..} , {N(@®, t =20}, {A(t), =0}, and {B(z), t 20}

are statistically equivalent, since there is a one to one correspondence between their
sample paths, i.e. each of these five processes can be used to define a renewal pro-
cess (Figures 3.8 and 3.4).
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Figure 3.9 Sample paths of the backward and forward recurrence times processes

Let
FA([) x)=P(4(r)<x) and FB(t) (x)=P(B(f) £x)

be the distribution functions of the forward and the backward recurrence times, res-
pectively. Then, for 0 < x < ¢, by making use of (3.115),

Fygp) =P(TN(py1 1<)
= X0 P(Tpy+1 < t+x, N(t) = n)
=F(t+X)=F1()+Xpe) P(Tn <t<Tpy St+x)

=F(t+x) = F () + 1 [([F(xe+1-y)— Ft- )] dF 1, ()

=F|(t+x)~F1 () + [{[Fx+1-y) = Ft =) Z;1 dF 7, ()
= Fy(t+x) = F () + [g[F(c+ 1= ) = Ft=»)1Z,2y d(Fy * FH D)
= Fy+0) = Fy O+ [pF+ 0= = F-pld(Ziy Fy < FOD ()

= Fy(t+x)— F{(0)+ [ [F(x + =) = F(t )] dH/ (7).

This representation of F A(r) can be simplified by combining it with (3.120). The
result is

F g0 =Fi(t+x)= [ Fae+t—y)dH () x,120. (3.149)
Differentiation yields the probability density of A(f):

L@ =f1(+x)+ [ [+ 1=y by () dy; x,020. (3.150)
F A(D) x)=1-F A(,)(x) is the probability that the system, which is working at time ¢,

does not fail in (¢, £+ x]. Therefore, F A7) (x) is sometimes called interval reliability.

For determining the mean value of the forward recurrence time of an ordinary renew-
al process, A(?) is written in the form
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Aty = ZN(t)+1 Y1,

where the Y, Y5, ... are independent and identically distributed as Y with = E(Y).
Wald's identity (1.125) cannot be applied to obtain E(A(f)), since N(f)+ 1 is surely
not independent of the sequence Y, Y,,... However, N(#)+1 is a stopping time for
the sequence Y1,Y>,...:

PNiO)+1=n"="N{t)=n—-1"="Y| +Yp+--+Y, | St<Y|+Yy+ -+ Yy"

Thus, the event ”N(¢) + 1 =n” is independent of all ¥,,,,Y,,4o,... so that, by defini-
tion 1.2, N(£)+1 is a stopping time for the sequence Y1, Y5, ... Hence, the mean val-
ue of A(?) can be obtained from (1.127) with N=N(@)+1:

E(A@®) =nlH () +1]-1.
Thus, the mean forward recurrence time of an ordinary renewal process is
E(A(0) =u[H@n+1] 1.

The second moment of the forward recurrence time of an ordinary renewal process is
given without proof:

E((A(1)?) = EQY)[1+ HO)1 -2 EDt+[{ Hx)dx] +12, 120.
The probability distribution of the backward recurrence time is obtained as follows:

FB(t)(x) ZP([—X < TN(Z‘))
=S P(t—x < Tn, N@&) = 1)

=Zn:1P(t—xSTn <t<Tyyp)

=3 I ’_ F(t—u)dFr, (u)
j F(t— u)d( S Fp F*("))
=[i_ F-wdH ).

Hence, the distribution function of B(?) is

t _
F(t—u)dH for 0<x<t¢
Fppw=1 &0 = (3.151)

1 for t>x
Differentiation yields the probability density of B(¢):

F(x)hl(t x) for 0<x<t¢

. (3.152)
for t<x

f B() (x)= {

© 2006 by Taylor & Francis Group, LLC



3 POINT PROCESSES 173

One easily verifies that the forward and backward recurrence times of an ordinary
renewal process, whose cycle lengths are exponentially distributed with parameter A,
are also exponentially distributed with parameter A :

Ja® = fBp(x) = Ae M forall 1> 0.

In view of the memoryless property of the exponential distribution (example 1.14,
section 1.4), this result is not surprising. A direct consequence of the fundamental
renewal theorem is that (), as defined by (3.131), is the limiting distribution func-
tion of both backward and forward recurrence time as ¢ tends to infinity:

. o _ .
Jim Fyp@)=lim Fp(0)=Fgk), x=0. (3.153)

Paradox of Renewal Theory In view of the definition of the forward recurrence
time, one supposes that the following equation is true:

lim E(A@#)=u/2.
[—o0

However, according to (3.153) and (3.132),

2 2
SR
2u 2

lim E(A() = [§ (0 dr= E(S) =

This 'contradiction' is known as the paradox of renewal theory. The intuitive expla-
nation of this phenomenon is that on average the 'reference time point' ¢ is to be
found more frequently in longer renewal cycles than in shorter ones.

3.3.5 Stationary Renewal Processes

By definition 3.1, a renewal process {Y, Y5, ...} is stationary if for all k=1,2,... and
any sequence of integers iy,iy,...,iy with 1 <i| <ip <---<ip and any 1=0,1,...
the joint distribution functions of the vectors

(Yl'l,Yl'z,...,Yl'k) and (Yi1+T’Yi2+T""’Yik+T)

coincide, k=1,2,... According to the corollary after definition 3.1, {Y},Y5,...} is
stationary if and only if the corresponding renewal counting process { N(#), ¢ = 0} has
homogeneous increments. A third way of defining the stationarity of a renewal pro-
cess {Yq,Y,,...} makes use of the statistical equivalence between {Y;,Y,,...} and
the corresponding process {A4(f), t = 0} of its forward recurrence times:

I A renewal process is stationary if and only if the process of its forward
recurrence times {A(f), t 2 0} is strongly stationary.

Of course, the process of backward recurrence times {B(?), ¢t = 0} would do as well:
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A renewal process is stationary if and only if the process of its backward
recurrence times {B(f), t 2 0} is strongly stationary.

The stochastic process in continuous time {B(f), t =0} is a Markov process. This is
quite intuitive, but a strict proof will not be given here. By theorem 2.1, a Markov
process {X(¢),t € T} is strongly stationary if and only if its one-dimensional distri-
bution functions

Fiy(x) = P(X(?) < x)

do not depend on ¢. Hence, a renewal process is stationary if and only if there is a
distribution function F(x) so that

Fypn) = P(A(f) £x)=F(x) forallx>0and >0.

The following theorem yields a simple criterion for the stationarity of renewal pro-
cesses.

Theorem 3.17 Let F(x) = P(Y <x) be nonarithmetic and )= E(Y) < eo. Then a de-
layed renewal process given by F'{(x) and F(x) is stationary if and only if

Hy(t)=t/. (3.154)

Equivalently, as a consequence of theorem 3.10, a delayed renewal process is sta-
tionary if and only if

Fi(x) =Fg(x) = ﬁ [SFo)dy forallx20. (3.155)

Proof If (3.154) holds, then (3.155) as well, so that, from (3.149),

Fa® =k [ Foydy= % [ Foer =) dy

= 1 Fo v = [ Foydy
=4[5 Foyay.
Hence, F A(D) (x) does not depend on .

Conversely, if F A(D) (x) does not depend on ¢, then (3.153) implies
FA(t)(x) = Fs(x) for all ¢.

This completes the proof of the theorem. [ |
As a consequence from theorem 3.17 and the elementary renewal theorem: After a
sufficiently large time span (transient response time) every renewal process with non-

arithmetic distribution function F(f) and finite mean cycle length u = E(Y) behaves
as a stationary renewal process.
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3.3.6 Alternating Renewal Processes

So far it has been assumed that renewals take only negligibly small amounts of time.
In order to be able to model practical situations, in which this assumption is not ful-
filled, the concept of a renewal process has to be generalized in the following way:
The renewal time of the system after its i th failure is assumed to be a positive ran-
dom variable Z;; i=1,2,... Immediately after a renewal the system starts operating.
In this way, a sequence of two-dimensional random vectors {(Y;,Z;); i=1,2,...} is

generated, where Y; denotes the lifetime of the system after the ith renewal.

Definition 3.8 (alternating renewal process) 1If {Y{,Y,,..} and {Z|,Z,,...} are
two independent sequences of independent, nonnegative random variables, then the
sequence of two-dimensional random vectors {(Y,Z1), (Y5,Z5),...} is said to be an
alternating renewal process. ®

The random variables
S| =Y Sn=X" (Vi +Z)+Yn; n=2.3,...
are the time points at which failures occur, and the random variables
Tn=X0 (Vi +2) n=1,2,..

are the time points at which a renewed system starts operating. If an operating sys-
tem is assigned a 'l' and a failed system a '0', then a binary indicator variable of the
system state is

X(t)={ 0, if te€[Sp.Tp), n=1,2,.. (3.156)

1, elsewhere

Obviously, an alternating renewal process can equivalently be defined by the stochas-
tic process in continuous time {X(?), ¢ = 0} with X(¢) given by (3.156) (Figure 3.10).

In what follows, all ¥; and Z; are assumed to be distributed as ¥ and Z with distribu-

tion functions Fy(v) = P(Y<y) and Fy(z) = P(Z<z), , respectively. By agreement,
PXH0)=1)=1.

X
1

\ 2

0 S, Ty S, T, S5 T4 Sy Ty

Figure 3.10 Sample path of an alternating renewal process
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Analogously to the concept of a delayed renewal process, the alternating renewal
process can be generalized by assigning the random lifetime Y| a probability distri-
bution different from that of Y. However, this way of generalization and some other
possibilities will not be discussed here, although no principal difficulties would arise.

Let N f(t) and Ny(?) be the respective numbers of failures and renewals in (0, #]. Since
Sy and Ty are sums of independent random variables (compare to (3.109)),
Fs,()=PSn<t)=P(Ny(f)2n)=Fy* (Fy* F)*n=Dp), (3.157)
Fr,()=P(Tn <)=P(N/(t) 2 n) = (Fy * F 7)*"(1). (3.158)
Hence, analogously to the formulas (3.115) and (3.116), sum representations of
Hy(0) = BNy (0)) and Hr(0) = EQNr(0)
are
Hy(t) =20y Fy = (Fy=Fz) D@,
Hr(t)= X0 (Fy  F2)" ™).

H f(t) and Hy(¢) are referred to as the renewal functions of the alternating renewal
process. Since H f(t) can be interpreted as the renewal function of a delayed renewal
process, whose first system lifetime is distributed as Y, whereas the following 'system
lifetimes' are identically distributed as Y+ Z, it satisfies renewal equation (3.117)
with

Fi(=Fy(H) and F(t)=Fy* F,(1).
Analogously, Hy(f) can be interpreted as the renewal function of an ordinary renewal

process whose cycle lengths are identically distributed as Y+Z. Therefore, Hy(f)
satisfies renewal equation (3.118) with F(¢) replaced by F'y * F ,(1).

Let R; be the residual lifetime of the system if it is operating at time ¢. Then
PX()=1,R;>x)

is the probability that the system is working at time ¢ and does not fail in the interval
(¢, t+x]. This probability is called interval availability (or interval reliability) and is
denoted as Ax(f). It can be obtained as follows:

Ax(t)= P(X()=1, R; > x)
=X 0 P(Tn<t, Tn+Y, 1 >t+x)

=Fy(t+x)+ Xy [§ P(t+x < Tn+ Y1 | Tn = 1) dF 7, (u)

=Fy(t+x)+[{ P(t+x—u< V) d X, (Fy* F7)* ™).
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Hence,
Ax(t)=Fy (t+x)+ [{ Fy(t+x—u)dHy(u). (3.159)

Note In this section '4' no longer refers to 'forward recurrence time'.

Let A(¢) be the probability that the system is operating at time ¢, or, more generally,
that it is available at time #:

A(H) = P(X(H) = 1). (3.160)

This important characteristic of an alternating renewal process is obtained from
(3.159) by letting there x =0 :

A(t)=Fy(2) +jf) Fy(t—u)dHr(u). (3.161)

A(?) is called availability of the system (system availability) or, more exactly, point
availability of the system, since it refers to a specific time point ¢ It is equal to the
mean value of the indicator variable of the system state:

EX(H) =1-PX(t) = 1)+ 0 - P(X(f) = 0) = P(X() = 1) = A(2).

The average availability of the system in the interval [0, 7] is

i 1

A= [ A dx.
The random fotal operating time U(f) of the system in the interval [0, ] is

U = [y Xy dx. (3.162)
By changing the order of integration,
E(U®) = E(jg X(%) dx) = [ EX(@)) dx.
Thus,
EU) = [ Ay dx =1 A(1).

The following theorem provides information on the limiting behaviour of the interval
reliability and the point availability as ¢ tends to infinity. A proof of the assertions
need not be given since they are an immediate consequence of the fundamental renew-
al theorem 3.12.

Theorem 3.18 If E(Y)+ E(Z) <o and the distribution function (F'y * F)(#) of the
sum Y+ Z is nonarithmetic, then

_ . _ 1 (oo Ryt
Ax—thngoAx(t)——E(Y)JrE(Z) jx Fy(u)du,
. .= EW
A —tlln;lo A(t)—thnolo A(t)_—E(Y)+E(Z)' (3.163)
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Ax 1is said to be the long-run or stationary interval availability (reliability) with re-
gard to an interval of length x, and 4 is called the long-run or stationary availability.
Clearly, it is 4 =A. If, analogously to renewal processes, the time between two

neighbouring time points at which a new system starts operating is called a renewal
cycle, then the long-run availability is equal to the mean share of the operating time
of a system in the mean renewal cycle length.

It should be mentioned that equation (3.163) is also valid if within renewal cycles Y;
and Z; depend on each other. As illustrated by the following example, in general,

Y E(Y)
E(Y+Z)¢E(Y)+E(Z)' (3.164)

Example 3.17 Let life and renewal times have exponential distributions:
fr)=re™, y>0; frz)=veVZ, z20.
Application of the Laplace transform to (3.161) yields

A(s)=Fy(s)+Fy(s)- hr(s)— k[1+hr(s)] (3.165)

The Laplace transform of the convolution of fy and f is

A
Uy 2= 6oy

Hence, from the second equation of (3.126),

hy (s) = —2V

s(s+A+v)’
By inserting izr (s) into (3.165) and expanding Izl(s) into partial fractions,

A A

A(S) S+7\, s(s+7u)_s(s+7k+v)'

Retransformation yields the point availability:

_ A V)1
A() = k+v+k+v t20. (3.166)

Since

E(Y)=1/A and EZ) = 1/v,

taking in (3.166) the limit as # — o verifies relationship (3.163). On the other hand,
if A # v, then, from example 1.20,

Y Y_ v A A
E(Y+Z) _v—k(lJrv—?» an)'
For instance, if E(Z) =0.25 E(Y), then

_EM
T E(Y)+E2)

-0.800 and E(YYZ)=0.717. O
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Generally, numerical methods have to be applied to determine interval and point
availability when applying formulas (3.159) and (3.161). This is again due to the fact
that there are either no explicit or rather complicated representations of the renewal
function for most of the common lifetime distributions. However, formulas (3.159)
and (3.161) can be applied for obtaining approximate values for interval and point
availability if they are used in conjunction with the bounds and approximations for
the renewal function given in sections 3.3.2.2 and 3.3.3.

3.3.7 Compound Renewal Processes

3.3.7.1 Definition and Properties

Compound stochastic processes arise by additive superposition of random variables
at random time points. (For motivation, see section 3.2.5.)

Definition 3.9 Let {(7|,M), (T5,M;), ...} be a random marked point process with
property that {T'|,T,...} is the sequence of renewal times of a renewal process
{Y1,Y5,...}, and let {N(¢), t =0} be the corresponding renewal counting process.
Then the stochastic process {C(¢), £ > 0} defined by

N()

c(t):{ Ziop M; if N 21 (3.167)
0 if N(jy=0

is called a compound (aggregate, cumulative) renewal process, and C(t) is called a
compound random variable. ®

The compound Poisson process defined in section 3.2.5 is a compound renewal
process with property that the renewal cycle lengths Y; =7;-T,;_;, i=1,2,..., are
independent and identically exponentially distributed (theorem 3.2).

A compound renewal process is also called a renewal reward process, in particular,
if M; is a 'profit' of any kind made at the renewal time points. In most applications,

A
cw - —

C(Ts)‘ZMl +My+Msy+My+Ms

C(T3)'=M1 +M2 +M3

carpf=m—— ] .

0 T T, Ty T4 Ts Ts

Figure 3.11 Sample path of a compound process with positive increments
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however, M; is a 'loss', for instance, replacement cost or claim size. M; also can re-
present a 'loss' or 'gain' which accumulates over the ith renewal cycle (maintenance
cost, profit by operating the system). In any case, C(¢) is the total loss (gain), which
has accumulated over the interval (0,¢]. The sample paths of a compound renewal
process are step functions. Jumps occur at times 7; and the respective jump heights
are M; (Figure 3.11).
Compound renewal processes are considered in this section under the following as-
sumptions:
1) {N(®), t =0} is a renewal counting process, which belongs to an ordinary renewal
process {Y[,Y5,...} .
2) The sequences are { M,M>,,...} and {Y{,Y5,...} are independent of each other
and consist each of independent, nonnegative random variables, which are identical-
ly distributed as M and Y, respectively. However, M; and Y; may depend on each
other if i =}, i.e. if they refer to the same renewal cycle.
3) The mean values of Y and M are finite and positive.
Under these assumptions, Wald's equation (1.125) yields the trend function
m(f) = E(C(f)) of a compound renewal process:

m(t) = E(M)H(?), (3.168)
where H(f) = E(N(f)) is the renewal function of the underlying renewal process
{Y{,Y5,...}. Formula (3.168) and the elementary renewal theorem (theorem 3.11)

imply an important asymptotic property of the trend function of compound renewal
processes:

. E(C(0) _ E(M)
lim ————==—-—=. 3.169

;g& t E(Y) ( )
Equation (3.169) means that the average long-run (stationary) loss or profit per unit

time is equal to the average loss or profit per unit time within a renewal cycle. The
'stochastic analogue' to (3.169) is: With probability 1,

. C() _EM)
A= =)
To verify (3.170), consider the obvious relationship

N N(ty+1
Zi:(f) M;<C@) < Z,-:(f)+ M;.

(3.170)

From this,

(1 <No \N@D _Co _( 1 Ny YN+
\N() Lot My == Ssz(t)+12i=1 Mi) =

Now the strong law of the large numbers (theorem 1.8) and (3.139) imply (3.170).
The relationships (3.169) and (3.170) are called renewal reward theorems.

© 2006 by Taylor & Francis Group, LLC



3 POINT PROCESSES 181

Distribution of C(f) If M has distribution function G(¢), then, given N(f) =n, the
compound random variable C(f) has distribution function

P(C(t) < x|N(t) =n) = G*W(x),
where G*(”)(x) is the nth convolution power of G(¢). Hence, by the total probabili-
ty rule,
Fe )= PC() <x) =250 G* D) PG =), (3.171)

where the probabilities P(N(f) =n) are given by (3.111). (In the light of section
1.2.4, F ey is a mixture of the probability distribution functions G, g*@), ) If
Y has an exponential distribution with parameter A, then C(¢) has distribution func-
tion

(M)

Fep@)=e” —M Z G, "0y =1, x>0, t>0. (3.172)

If, in addition, M has a normal distribution with E(M) =3 ,/Var(M) , then

( x—nEWM) ) A"
L‘/n Var(M)J n!

The distribution function F'¢;), for being composed of convolution powers of G and

Fc(t)(x)=€_7‘t[1+ T o ]; x>0,¢>0. (3.173)

n=1

F, is usually not tractable and useful for numerical applications. Hence, much effort
has been put into constructing bounds on Fy,) and into establishing asymptotic
expansions. For surveys, see, e.g. [67, 89]. The following result of Gut [38] is partic-
ularly useful.

Theorem 3.19 If

Y2 = Var (E(Y)yM—-E(M)Y) > 0, (3.174)
then
) - % ¢
lim P| ————————<x | =®(x),
o= | EDI 2y
where ®(x) is the distribution function of the standardized normal distribution. u

This theorem implies that for large ¢ the compound variable C(#) has approximately a

normal distribution with mean value i,((A;)) t and variance [E(Y)]_3 72 t,le.
- N[ EMD) 342
C(t) = EY) " t, [E(Y)] ) (3.175)

If M and Y are independent, then the parameter y2 can be written in the following
form:
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Y2 = [E())? Var(M) + [EM))? Var(Y). (3.176)

In this case, in view of assumption 3, condition (3.174) is always fulfilled. Condition
(3.174) actually only excludes the case 72 =0, i.e. linear dependence between Y and
M. The following example presents an application of theorem 3.19. Its application to
actuarial risk analysis is illustrated in section 3.4.4.

Example 3.18 For an alternating renewal process {(Y;,Z;); i=1,2,...}, the total
renewal time in (0, ] is given by (a possible renewal time running at time ¢ is neg-
lected)
C(t) = ZZ(II) Z;,
where
N@) = max {n, Ty < t}.

(Notation and assumptions as in section 3.3.6.) Hence, the development of the total
renewal time is governed by a compound stochastic process. In order to investigate
the asymptotic behaviour of C(f) as t — oo by means of theorem 3.19, M has to be
replaced with Z and Y with Y+ Z. Consequently, if ¢ is sufficiently large, then C(¢)
has approximately a normal distribution with parameters

EQ?) v

E(Y)+E(Z)t and Var(X(?)) [E(Y)+E(Z)]3 t.

Because of the independence of Y and Z,

E(X(1) =

Y2 = VarlZE(Y+ Z)— (Y + Z) E(Z)]
=Var[ZE(Y)-YE(Z)]
= [EMN*Var(2) + [E@)]*Var(Y) >0
so that assumption (3.174) is satisfied. In particular, let (all parameters in sours)
E(Y)=120, [Var(Y) =40 and E@2)=4, [Var(Z) =2.

Then,
¥2=120%-4+16-1600=83200 and y=288.4.

Consider, for example, the total renewal time in the interval [0, 104 hours]. The
probability that C(104) does not exceed a nominal value of 350 hours is

3.50—1‘2‘—4 104
P(C(10%) <350) =@ =d(1.313).

124732 288.4-/ 104

Hence,
P(C(10%) <350) = 0.905. O
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3.3.7.2 First Passage Time

The previous example motivates an investigation of the random time L(x), at which
the compound renewal process {C(¢), > 0} exceeds a given nominal value x for the
first time:

L(x) = inf{t, C(f) > x}. (3.177)
t

If, for instance, x is the critical wear limit of an item, then crossing level x is com-
monly referred to as the occurrence of a drift failure. Hence, it is justified to denote
L as the lifetime of the system. Since, by assumption 2, the M; are nonnegative ran-
dom variables, the compound renewal process {C(¢), = 0} has nondecreasing sam-
ple paths. In such a case, the following relationship between the distribution function
of the first passage time L(x) and the distribution function of the compound random
variable C(7) is obvious (Figure 3.12):

P(L(x) < 1) = P(C(t) > x). (3.178)
A
o0 -
L) <to |

i — Clg) >x

— o

I ! ‘ : : N,

) T, Lw=T; ty Iy 7!

Figure 3.12 Level crossing of a compound stochastic process

Specifically, if {N(¢),t>0} is the homogeneous Poisson process, then, from formu-
las (3.172) and (3.177),

(M)

P(L(x)> )= e ™M 2 G ()22 >0

with x, x>0, fixed. The probability distribution of L(x) is generally not explicitly
available. Hence the following theorem (Gut [38]) is important for practical applica-
tions, since it provides information on the asymptotic behaviour of the distribution of
L(x) as x — oo. The analogy of this theorem to theorem 3.19 is obvious.

Theorem 3.20 If y2 = Var[E(Y) M — E(M) Y] >0, then

E(Y)

' Lx) — == Eon)

lim P| ————2= <1 | = D),
Xz | [EM)] YJx

where ®(7) is the distribution function of the standardized normal distribution. |
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Actually, in view of our assumption that the compound process {C(¢),t>0} has
nondecreasing sample paths, condition (3.178) implies that theorems 3.19 and 3.20
are equivalent.

A consequence of theorem 3.20 is that, for large x, the first passage time L = L(x) has
approximately a normal distribution with parameters

E(L(x)) = g((;;))x and Var(L(x)) = [E(M)] 392 x,

ie.

Lx) = N( 5&2 x, [E(M)] 372 x) . x>0 (3.179)

The probability distribution given by (3.179) is called Birnbaum-Saunders distribu-
tion.

Example 3.19 Mechanical wear of an item is caused by shocks. (For instance, for
the brake discs of a car, every application of the brakes is a shock.) After the ith
shock the degree of wear of the item increases by M; units. The M|, M5, ... are

supposed to be independent random variables, which are identically normally distri-
buted as M with parameters

EM)=9.2 and [Var(M) =2.8 [in 10~*mm].
The initial degree of wear of the item is zero. The item is replaced by an equivalent
new one if the total degree of wear exceeds a critical level of 0.1 mm.

(1) What is the probability p;go that the item has to be replaced before or at the
occurrence of the 100th shock? The degree of wear after 100 shocks is

100
Cro0=2i=1 M;

and has approximately the distribution function (unit of x: 1074 mm)

P(Crp <) = q)[x—9.2- 100J _ q)(x—zzzo) .

J2.82:100

Thus, the item survives the first 100 shocks with probability
P100 = P(Cipo < 1000) = D(2.86).

Hence, p1gg =0.979.

(2) In addition to the parameters of M, the random cycle Y is assumed to have mean
value and variance

E(Y)=6 and ,/Var(Y) =2 [hours].

What is the probability that the nominal value of 0.1 mm is not exceeded within the
time interval [0, 600] (hours)?
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To answer this question, theorem 3.20 can be applied since 0.1 mm is sufficiently
large in comparison to the shock parameter E(M). Provided M and Y are indepen-
dent, y=0.0024916. Hence,

600 — % 103
P(L(0.1) > 600) = 1 — ® ~ =1—D(-1.848).
(9.2)732.2491.6- /0.1
Thus, the desired probability is P(L(0.1) > 600) = 0.967. O

3.3.8 Regenerative Stochastic Processes

At the beginning of this chapter on renewal theory it has been pointed out that, apart
from its own significance, renewal theory provides mathematical foundations for
analyzing the behaviour of complicated systems which have renewal points imbed-
ded in their running times. This is always the case if the running time of a system is
partitioned by so-called regeneration points into regeneration cycles with the follow-
ing characteristic properties:
1) After every regeneration point the future operation of the system is independent of
its past operation.
2) Within every regeneration cycle the operation of the system is governed by the
same stochastic rules.
Thus, regeneration points are nothing but renewal points of a system and, hence, gen-
erate a renewal process. However, now it is not only the distance between regenera-
tion points that is interesting, but also the behaviour of the system within a regenera-
tion cycle.
For a mathematical definition of a regenerative stochastic process, an ordinary renew-
al process {L1,L,,...} isintroduced, where L; is the random length of the ith regen-
eration cycle. Thus, the L; are independent and identically distributed as L. The time
points

_yh .

Tn=X_,L

i» n= 1, 2,
are now called regeneration points of the system. The ith regeneration cycle is
given by

{(Li’ Wi (x)), 0<x< Li}’

where W;(x) denotes the state of the system at time x (with respect to the preceeding
regeneration point). The verbally given properties of regeneration points and regen-
eration cycles become mathematically precise by assuming that the regeneration cyc-
les are independent of each other and are identically distributed as the typical
regeneration cycle {(L, W(x)), 0 <x < L}. The probability distribution of the typical
regeneration cycle is called the cycle distribution.
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Definition 3.10 Let {N(¢),£> 0} be the renewal counting process, which belongs to
the ordinary renewal process {L{,L,...}. Then the stochastic process {X(#),t=0}
defined by

X = WN(t)(t_ TN([)) (3.180)
is said to be a regenerative stochastic process. The time points Ty; n=1,2,...; are
its regeneration points. L4

Intuitively speaking, definition 3.10 means that 7 N(t)» the regeneration point before ¢,
is declared to be the new origin. After 7y the process

{WN(I)(X)’ X2 0} with x=1— TN(I)
evolves from x =0 to the following regeneration point 7)1, which is reached at
‘cycle time'

X =Lyp+1 = T+ = Iivay-

Thus, a regenerative process restarts at every regeneration point.
Example 3.20 The alternating renewal process {(¥;,Z;); i=1,2,...} is a simple ex-
ample of a regenerative process. In this special case the cycle length L; is given by

the sum of life- plus renewal time L; =Y;+Z;, where the random vectors (Y;,Z;)

are independent of each other and identically distributed as (Y,Z). The stochastic
process { W(x), x > 0} indicates the working and renewal phases within a cycle:

<
Wix) = 1 for 0<x<Y .
0 for Y<x<Y+Z
Therefore, the typical regeneration cycle is
{(L,W(x)),0<x<L}
with L =Y+ Z. Thus, not only the lengths L; of the regeneration cycles are of inter-
est, but also the working and renewal phases within a cycle. O

Let B be a subset of the state space of {W(x), x>0} and H(¢) be the renewal func-
tion belonging to the ordinary renewal process {L,L,,....}. Analogously to the der-
ivation of (3.159) it can be shown that the one-dimensional probability distribution
of the regenerative stochastic process {X(¢), >0} is given by

P(X(t) € B)=Q(t, B)+ [, Q(t—x,B) dH(x), (3.181)

where
O(x,B) = P(W(x) € B,L > x).

The following theorem considers the behaviour of the probability (3.181) as ¢ — oo.
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Theorem 3.21 (Theorem of Smith) If L is nonarithmetic and E(L) > 0, then

lim POX() € B) =55 [5 O, B)dx (3.182)

and
lim % [} P € Bydx= ﬁ [& ot Bydx. (3.183)
|

This theorem is an immediate consequence of the fundamental renewal theorem 3.12.
The practical application of the stationary state probabilities (3.182) and (3.183) of a
regenerative stochastic process is illustrated by analyzing a standard maintenance
policy. This policy is a special case of policy 6 in section 3.2.6.3.

Example 3.21 (age replacement policy) The system is replaced upon failure or at
age T by a preventive renewal, whichever occurs first.

After a replacement the system has the same lifetime distribution as the original one,
i.e. it is 'as good as new'. Unscheduled and preventive replacements require the con-
stant times d; and dp, respectively. Furthermore, let F(f) = P(T < f) be the distribu-

tion function of the system lifetime T, F(1)=1-F(t) the survival probability and A(7)
the failure rate of the system.

To specify an underlying regenerative stochastic process, the time points at which a
system starts resuming its work are declared to be the regeneration points. Therefore,
the random length L of the typical renewal (replacement) cycle has structure

L=min (T,1)+Z,

where the random replacement time Z is

7= dr for T<=1 _ | dy with probability F(1)
| dp for T21 dp with probability F(t) '

Since
E{min(T,7)} = [§ F(1)dt,
the mean length of a regeneration cycle is
E(L) = [ F(t)ydt+dy F(t) +dp F().
Let

1 if the system is working
0 otherwise

Wix) = {

Then, for B= {1},

IN
ININ
a ™~

O, B)=P(W(x)=1,L >x) = { %(x) g g

© 2006 by Taylor & Francis Group, LLC



188 STOCHASTIC PROCESSES

Thus,
J-BO Ox, B)dx = J-(T) F(x)dx.
Now (3.182) yields the stationary availability of the system:
_ I(T) F(x)dx
[§ F)dx+deF(t) +dpF(T)

A(T) = lim POY() = 1)

The age replacement policy can also be described by an alternating renewal process.
Applying formula (3.163) would yield the same result.
Let t* denote a renewal interval T which maximizes A(t). Then T* satisfies the nec-
essary condition

MO Flydx - F(r) = —4—

0 1—d

with d =dp/de. A unique solution T exists if A(#) is strictly increasing to infinity
and d < 1. The corresponding maximum availability is

~ 1
A = T e dphen) =

3.4 APPLICATIONS TO ACTUARIAL RISK ANALYSIS

3.4.1 Basic Concepts

Random point processes are key tools for quantifying risk in the insurance industry.
(Principally, the following results are applicable to analyzing financial risk in many
other branches as well.) A risky situation for an insurance company arises if it has to
pay out a total claim amount, which tends to exceed the total premium income plus
its initial capital. To be able to establish the corresponding mathematical risk model,
next the concept of a risk process has to be introduced: An insurance company starts
its business at time #=0. Claims arrive at random time points 7,75, ... and come
with the respective random claim sizes M, M,,... Thus, the insurance company is
subjected to a random marked point process {(T'{,M), (Tp,M5),---} called risk
process. The two components of the risk process are the claim arrival process
{T,Ty,...} and the claim size process {M|,M,,...}. Let {N(#), =0} be the ran-
dom counting process which belongs to the claim arrival process. Then the total
claim size C(f), the company is faced with in the interval [0,f], is a compound ran-
dom variable:

N(?)

cm:{ izt My N 21 (3.184)
0 if N(5)=0
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The compound stochastic process
{C@®,t20}
is the main ingredient of the risk model. With the terminology introduced in sections

3.2.5and 3.3.7, {C(#),t = 0} is a compound Poisson process if {N(¢),z> 0} is a Pois-
son process and a compound renewal process if {N(7),7 > 0} is a renewal process.

To equalize the loss caused by claims and to eventually make profit, an insurance
company imposes a premium on its clients. Let k(#) be the total premium income of
the insurance company in [0, #]. In case C(¢) < x(f), the company has made a profit of

k(1) — C(1)
in the interval [0, /]. With an initial capital or an initial reserve of x, x 2 0, which the
company has at its disposal at the start, the risk reserve at time ¢ is defined as
R(®) =x+x(t)— C(2). (3.185)
The corresponding risk reserve process is
{R(?), t = 0}.
If the sample path is negative at a time ¢, the financial expenses of the company in

[0,#g] exceed its available capital at time #(. This leads to the definition of the ruin
probability p(x) of the company (Figure 3.13):

p(x) = P(there is a positive, finite ¢ so that R(¢) < 0). (3.186)

Consequently, the non-ruin probability or survival probability of the company is
q(x) =1-px).
The probabilities p(x) and g(x) refer to an infinite time horizon.
The ruin probability of the company with regard to a finite time horizon T is
p(x,T) = P(there is a finite # with 0 < ¢ < T so that R(f) < 0).

A
R / / :T
! | | |
/ 7 s
! |
N I 4
l | l l | ‘
|
: A i / :
| | | | ‘ | i ‘
I I | | | : L
l : l } L . ruin
: : : T >t
0 T Ty, Ty Ty Ts Tg T7
Ty

Figure 3.13 Sample path of a risk process leading to ruin
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Of course, the ruin probabilities p(x) and p(x,T) decrease with increasing initial capi-
tal x. Since ruin can only occur at the arrival times of claims (Figure 3.13), p(x) and
p(x,7T) can also be defined in the following way:

p(x) = P(there is a finite, positive integer n so that R(Ty) < 0), (3.187)
and

p(x,T) = P(there is a finite, positive integer n with Ty < 7 so that R(7T) < 0),

where R(Ty) is understood to be R(+Ty), i.e. the value of the risk reserve process
including the effect of the nth claim. (In the actuarial literature, claim sizes are fre-
quently denoted as Uj, the initial capital as u, and the ruin probability as y(u).)

3.4.2 Poisson Claim Arrival Process

In this section, the problem of determining the ruin probability is considered under
the following 'classical assumptions":
1) {N(#),t = 0} is a homogeneous Poisson process with parameter A = 1/
2) The claim sizes M,M,, ... are independent, identically as M distributed random
variables. The M; are independent of {N(#),t=0}.
3) The premium income is a linear function in

k() =xt, x>0, t=0.
The parameter K is the premium rate.
4) The time horizon is infinite (T = o).
Under asumptions 1 and 2, risk analysis is subjected to a homogeneous portfolio, i.e.
claim sizes are independent, differences in the claim sizes are purely random and the
arrival rate of claims is constant. For instance, consider a portfolio which comprises
policies covering burgleries in houses. If the houses are in a demarcated area, have
about the same security standard and comparable valuables inside, then this portfolio
may be considered a homogeneous one. Generally, an insurance company tries to
establish its portfolios in such a way that they are approximately homogeneous.
Regardless of the terminology adopted, the subsequent risk analysis will not apply to

an insurance company as a whole, but to its basic operating blocks, the homogeneous
portfolios.

By assumption 1, the interarrival time Y of claims has an exponential distribution
with parameter A = 1/l.. The mean claim size is denoted as v. Hence,

w=EY) and v=EM). (3.188)

By (3.74) or (3.168), under the assumptions 1 and 2, the trend function of the total
claim size process {C(¢),# = 0} is a linear function in time:

E(C(z)):ﬁz, 120. (3.189)
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This justifies assumption 3, namely a linear premium income in time. In the long-
run, an insurance company, however large its initial capital may be, cannot be suc-
cessful if the average total claim cost in any interval [0,7] exceeds the premium
income in [0, f]. Hence, in what follows, let

Vv _ KU—Vv

- H = It > 0.
The positive difference kL — Vv is called safety loading and will be denoted as G:
C=KUL—V. (3.190)

Let distribution function and density of the claim size M be
B(y)=P(M<y) and b(y) =dB(y)/dy.

To derive an integro-differential equation for g(x), consider what may happen in the
time interval [0, Af] :

1) No claim arrives in [0, A7]. Under this condition, the survival probability is
q(x+xAY).

2) One claim arrives in [0,Af], the risk reserve remains positive. Under this condi-
tion, the survival probability is

SHAL GOct kAL =) b() dy.

3) One claim arrives in [0,A7], the risk reserve becomes negative (ruin occurs). Un-
der this condition, the survival probability is 0.

4) At least 2 claims arrive in [0, A7]. Since the Poisson process is ordinary, the proba-
bility of this event is o(A?).

Therefore, given the initial capital x,
g(x) =[1 = AAt+ o(A)] g(x + K AP)
LA+ 0(AD)] j’é*“t q(x+ KAt =) b(y) dy + o(At).
From this, letting 2 = x At,

h —
LD IO L gire - R 5 g+ h-nb) v+ 2.

Assuming that g(x) is differentiable, letting # — 0 yields
¢/ =2 g0~ 3 ge-n) b0y dy . (3.191)
A solution can be obtained in terms of Laplace transforms: Let g(s) and lA)(s) be the

Laplace transforms of g(x) and b(s). Then, applying the Laplace transformation to
(3.191), using its properties (1.30) and (1.33), and replacing A with 1/u yields
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1 L 0. (3.192)
s—K—u[l—b(s)]

This representation of g(s) involves the survival probability ¢(0) on condition that
there is no initial capital.

q(s) =

Example 3.22 Let the claim size M have an exponential distribution with parameter
1/v. Then,

S o0 _ 1 _ 1
= sy Lo=(IN)y gy, =
b(s) Ioe ve dy il
Hence,
AN vs+1
q(s) = s (v + 1) —vs qO)px.
By introducing the coefficient
K-V
o= =%, O<a<l, (3.193)

g(s) simplifies to

1= Tt e,

s+a/v VS s+alv

Retransformation yields (mind formula (1.29))

I N
g=| V¥ L= L g0
Condition g(+e) = 1 yields the survival- and ruin probabilities in case x =0 :
g0)=0a, pO0)=1-o (3.194)

so that the parameter o is the company's probability to survive without any initial
capital. Thus, survival and ruin probability are for x > 0

o o
g =1-(1-ae VY, prx)=(1-ae V7' (3.195)

Other explicit results can be obtained for mixed exponential claim size distributions,
for instance

b()=ehje ™I +(1—g)hye™2¥; 320, 0<e<l. O
Renewal Equation for ¢(x) To be able to construct an approximation for g(x) for

large x, the integro-differential equation (3.191) needs to be transformed into an
integral equation of renewal type, i.e. into an integral equation of type (3.126):

q(x) = a(x) + [ g(x =) g0 dy, (3.196)

where g(y) is a probability density and a(x) an integrable function on [0, c°).
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1) Firstly, an integral equation for g(x) will be constructed. Integrating (3.191) from
x=0 tox=tyields

40— 0) = g [ a@ dv [ [§ ae=y) by dyax ] (3.197)

By partial integration and application of Dirichlet's formula (1.33), the double inte-
gral in (3.197) becomes

Jo o aG=» by dydx
= [ a)dx — q(0)[§ Bydx - [ [§ ¢/ (x =) Be) dy dx
= [ a@)dx — g(0)f B)dx - [ BR) q(e—y) dy +q(0)f Bx)dx
= [ aG)dx = [ BO:) q(t—-y)dy.
By combining this result with (3.197) and replacing ¢ with x,
400 =q(0)+ i [ [§ a-» B0 ay ]. (3.198)

Letting x — oo in (3.198) yields

9(=2) = 4(0) + i v4(=2).

Since g(ec) =1,

q(0)=1 —ﬁ =o. (3.199)

Interestingly, this probability depends on the probability distributions of the random

variables involved only via their mean values. Hence, its is not surprising that formu-
las (3.194) and (3.199) coincide.

2) To establish an integro-differential equation for the ruin probability p(x), in for-
mula (3.198) the survival probability ¢(x) is replaced with 1 —p(x) :

1=p(0) = at g J§ 11 -pe=)1 B dy |

= o+ e o BOYdy— g [§ pe= ) By
Hence,
P =1-0-gc [§ Bo)dy+ [§ pe—3) e Bo) dy. (3.200)

Formally, this integral equation in the ruin probability p(x) looks like the integral
equation of renewal type (3.196) with functions a(x) and g(y) given by

a(@)=1-0- jo BO)dy, g()= B(y), x>0,y>0. (3.201)
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The function g(y) is nonnegative, but it is not a probability density since
oo 1 0o
[o e0dv=1g ]y B)dy=q=1-0a<1.

However, g(y) can be thought of as characterizing a defective probability distribu-
tion with a defect of o.. Hence, integral equation (3.200) is called a defective integral
equation of renewal type.

3) Now a proper integral equation of renewal type for p(x) will be constructed: The
procedure is simple: The integral equation (3.200) will be multiplied by a factor e’V
so that the product e”Vg(y) is a probability density. Hence, the parameter  has to be
chosen such that

ﬁ [ ey Boydy=1. (3.202)

The unique constant r satisfying (3.202) is called a Lundberg exponent. It exists for
claim size probability densities with a sufficiently short tail, which implies that large
claim sizes occur very seldom. With a(x) and g(y) given by (3.201), let

ar(x)=e"tax), gr(y)=e"g(y), prx)=e""p(x).

Then, multiplying (3.200) by e’ = " &) . oY where r satisfies (3.202), gives an
integral equation of renewal type for the function py(x):

pr(x) =ar(x) +ﬁ§ prix=y)gr(y)dy. (3.203)

This integral equation can easily be solved in the image space of the Laplace trans-
formation (just as (3.192)). When doing this, note that, for instance, the Laplace
transform of a, is given by

L(ar)=a(s-1),

where a is the Laplace transform of a.

Approximation of the Ruin Probability For being able to apply theorem 3.13 to
the integral equation of renewal type (3.203), the following integrals have to be de-
termined:

IBO ar(x)dx and Igoygr(y) dy.

Sincel—a:ﬁ,

Jsoar(x)dx:_[g’erxp—a—ﬁ ﬁ; Z_?(y)dy}dx
:jgerx[l—u—ﬁ(\/—'{; l_?(y)dy)}dx

= g [y (17 Boyay) .
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Now, changing the order of integration according to Dirichlet's formula (1.33) and
making use of (3.202) yields

IBO ar(x)dx = ﬁ IBO B(») U)(; e’ dx:| dy
= i[5 BOIe™ — 11dy

1 oo -
= m[ =V B()dy - v].
Hence,
IBO ar(x)dx = % .

The mean value, which belongs to the density g»(y), is
oo 1 oo =
m=]; ygr(y)dy=ﬁ_[0 ye"V B(y)dy. (3.204)
Now, from theorem 3.13 (the constant i which occurs in theorem 3.13 is here denot-
ed as m),
. _ . rx _ i
Aim pro) = lim e p() =775
Hence, for large values of the initial capital x,
)= s (3.205)

where the parameters » and m are given by (3.202) and (3.204), respectively. This
approximation frequently yields excellent results even for small values of x. Formula
(3.205) is called the Cramér-Lundberg approximation to the ruin probability. Under
the assumptions stated, the ruin probability is bounded by

px)<e™ (3.206)

This is the famous Lundberg inequality. A proof will be given in section 6.2 by using
martingale based methods. Both H. Cramér and F. Lundberg did their pioneering re-
search in collective risk analysis in the first third of the 20th century.

Continuation of example 3.22 It is interesting to evaluate the Cramér-Lundberg ap-
proximation to the ruin probability if the claim size M has an exponential distribu-
tion, since in this case the exact value of the ruin probability is known. Thus, let M
have distribution function

Fop)=1-e UMy 30,
According to (3.202), the corresponding Lundberg exponent r is given by
J-SO "V e~ (MY gy = k.

Hence,
r=o/v.
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By (3.204), the parameter m is obtained as follows:

m=pelgyer MV dy=go 2 [Ty G -ne Ve
(v )?
T K (l—vr> '

(x— —_
mr—l o.

Hence,

By comparing these results with (3.150): In case of exponentially distributed claim
sizes, the Cramér-Lundberg approximation gives the exact formula for the ruin prob-
ability. O

3.4.3 Renewal Claim Arrival Process

Much effort has been put into determining the ruin probability under more general
assumptions than the 'classical' assumptions 1 to 4 stated in section 3.4.2. In what
follows, some results are listed on condition that, whilst retaining assumptions 2 to 3,
assumption 1 is replaced by assuming that claims arrive according to a renewal pro-
cess. Thus, the interarrival times need no longer be exponentially distributed. For
proofs and surveys on the state of art of actuarial risk theory, including first-passage
time behaviour of random walks, see Feller [28], Grandell [34, 35], Asmussen [1],
and Rolski et al. [67].

Ordinary Renewal Process Let the sequence {Y,Y>,...} of the claim interarrival
times Y; be an ordinary renewal process. In the ith cycle, the company makes the
random 'profit' (notation as introduced before)

Zl'ZKYl'—M"

1°

i=1,2,..

The Z,Z,, ... are independent, identically as Z=xY— M distributed random varia-
bles. Hence, the discrete-time stochastic process {S{,S>, ...} with

Sp=X1, Z;=KTn—C(Tp) (3.207)
is a random walk with independent, identically distributed increments Z;. Let L(a) be
the first passage time of this random walk with regard to a negative level a:

L(a@)= min {n, Sy <a}.
n=1,2,...

Ruin will occur at time L(—x) if x is the initial capital of the company. Thus, deter-
mining the ruin probability is closely related to the first passage time behaviour of
random walks. In particular, the ruin probability is given by

px) = P(L(=x) < o).
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As in section 3.4.2, to make sure that p(x) < 1, a positive safety loading 6 =KL —V is
required. In this case, by (3.168), the stochastic process {S,57,...} has a nonnega-
tive, linearly increasing trend function:
m(t) =E(Sy) = (xu—-v)t; t=1,2,..

Let z(s) be the Laplace transform of Z= kY —M:

2(s) = Ee %)
Since M and Y are independent,

2(s) = E(e V) E(esM).

In terms of the Laplace transforms of the densities of Y and M,

Z(s)= fy(sK) b(=s).
The Lundberg exponent r is now the positive solution of
z(r)=1. (3.208)

As under the assumption of a homogeneous Poisson claim arrival process, an explicit
formula for the ruin probability exists if M has an exponential distribution:

px)=(1-rv)e™*, x20. (3.209)

Given r as solution of (3.208), the Lundberg inequality has the same structure as
(3.2006):

X

px)<e™

For large x, there is also a Cramér-Lundberg approximation for the ruin probability:

p(x)=ce*.

However, the value of the constant ¢ cannot be given here (see the references given
above).

Stationary Renewal Process Let the sequence {Y,Y>,...} of the claim interarrival
times Y; be a stationary renewal process. Then, by theorem 3.17, if the Y5, Y3, ... are
identically distributed with distribution function F(#), Y has distribution function
(3.155). Again by theorem 3.17 (formula (3.154)), the trend function of the total
claim size process {C(#), £ = 0} is a linear function in time:

N
E(C(1) = E(Ziz(f) Ml-) =EN@®) EM) = ﬁv = ﬁt :

In what follows, the ruin probability referring to a stationary renewal claim arrival
process is denoted as ps(x), whereas p(x) refers to the ordinary renewal claim arriv-
al process. With a positive safety loading 6 =k —V, there is the following rela-
tionship between pgs(x)and p(x):

ps@) = [[7BOYdy+ [ pa—») Bo) dy |. (3.210)
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In particular, survival and ruin probabilities on condition x = 0 (no initial capital) are
gs(0) = I_KLLL’ ps(0)=KLu-

These probabilities do not depend on the type of the distributions of Y and M, but
only on their mean values (insensitivity). Since in case of exponentially distributed
claim interarrival times F(f) = Fg(¢), on condition x =0 the probabilities gs(0) and
ps(0) coincide with the 'classical' survival and ruin probabilities (3.194).

For exponentially distributed claim sizes, inserting (3.209) in (3.210) yields

ps)=gge”™, x20.

3.4.4 Normal Approximations for Risk Processes

Let the process of the claim interarrival times {Y{,Y5,...} be an ordinary renewal
process. Otherwise, assumptions 2 to 4 of section 3.4.2 will be retained. Then, by

theorem 3.19, if ¢ is sufficiently large compared to L, the total claim size in [0, #] has

approximately a normal distribution with mean value ﬁt and variance u_3yzt :

o zN(ﬁ 2 u_372t), (3.211)
where
Y% = w2 Var(M) +v2Var().
The random profit the insurance company has made in [0, /] is given by
GO =R —x=xt-C(1).
By (3.211), G(¢) has approximately a normal distribution with parameters
E(G(@) = (k=) and Var(G()) = n3y2s.

The application of this result is illustrated by two examples. Note that examples 3.23
and 3.24 refer to the situation that, when being 'in red numbers' (ruin has happened),
the company continues operating until it reaches a profitable time period and so on.
In case of a positive safety loading, it will leave 'loss periods' with probability 1.

Example 3.23 Given a risk process {(Y{,M), (Y5, M>), ...} with

w=EY)=21[hl, Var(Y)=3[h?],
v=EM)=900[$], Var(M)=360000 [$2].

(1) What minimal premium per hour K¢, has the insurance company to take in so that
it will achieve a profit of at least 106 [$] within 103 hours with probability o = 0.95?
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Since y=1967.2,
P(G(10%) >10%) = P(C(1) < 10%(k 95 — 100))

_ (I)((K 0.95— 100) —450)
2715 19672

Since the 0.95-percentile of the standardized normal distribution is z(y g5 = 1.64, the
desired premium per hour K 95 satisfies equation
K0.95— 550
———=1.04.
6.955 6
Hence,
Kp.95 = 561 [$/h]

Of course, this result does not take into account the fact that the premium size has an
influence on the claim flow.

(2) Let the premium income of the company be x = 460 [$//]. Thus, the company has
a positive safety loading of ¢ = 10[$]. Given an initial capital of x = 104 [$], what is
the probability of the company to be in the state of ruin at time ¢ = 1000 [/]?

This probability is given by

~10% — (460 — 450) 103 ]
2715 19672 - /1000

=P(-0.910) =0.181. O

P(G(103) <—107% =q>(

The following example uses the approximate distribution of the first passage time
L(a) of the compound claim size process {C(¢), >0} with respect to level a as
given by theorem (3.20):

L(a) = N5 a, v3y2a).
Example 3.24 Let the parameters of a risk process {(Y,M),(Y,,M>),...} be
w=EX)=5[hl, Var(¥)=25[h?],
v=EM)=1000 [$], Var(M)=640000 [$2].

What is the probability that the total claim reaches level a = 100 [$] before the time
point £ = 5500 [A]?

Since y= 6403,

5500 — 5000 j

P(L(10%) < 6000)=<D(
1000715 . 6403 - 103

= (2.45) = 0.993. O
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3.5 EXERCISES

Sections 3.1 and 3.2

3.1) The number of catastrophic accidents at Sosal & Sons can be described by a
homogeneous Poisson process with intensity A = 3 a year.

(1) What is the probability p>, that at least two catastrophic accidents will occur in
the second half of the current year?

(2) Determine the same probability given that two catastrophic accidents have occur-
red in the first half of the current year.

3.2) By making use of the independence and homogeneity of the increments of a
homogeneous Poisson process {N(?), t > 0} with intensity A show that its covariance
function is given by

C(s, ) = Amin(s, 7).

3.3) The number of cars which pass a certain intersection daily between 12:00 and
14:00, follows a homogeneous Poisson process with intensity A =40 per hour.
Among these there are 0.8% which disregard the STOP-sign.

What is the probability p»| that at least one car disregards the STOP-sign between
12:00 and 13:00?

3.4) A Geiger counter is struck by radioactive particles according to a homogeneous
Poisson process with intensity A = 1 per 12 seconds. On average, the Geiger counter
only records 4 out of 5 particles.

(1) What is the probability p->, that the Geiger counter records at least 2 particles a
minute?

(2) What are mean value [min] and variance [minz] of the random time Y between

the occurrence of two successively recorded particles?

3.5) An electronic system is subject to two types of shocks which arrive indepen-
dently of each other according to homogeneous Poisson processes with intensities

A1 =0.002 and A, =0.01 per hour,

respectively. A shock of type 1 always causes a system failure, whereas a shock of
type 2 causes a system failure with probability 0.4.

What is the probability of the event A that the system fails within 24 Aours due to a
shock?

3.6) Consider two independent homogeneous Poisson processes 1 and 2 with respec-
tive intensities A and A,. Determine the mean value of the random number of
events of process 2 (type 2-events) which occur between any two successive events
of process 1 (type 1-events).

© 2006 by Taylor & Francis Group, LLC



3 POINT PROCESSES 201

3.7) Let {N(¢), t > 0} be a homogeneous Poisson process with intensity A. Prove that
for an arbitrary, but fixed positive 4 the stochastic process {X(f), t =2 0} defined by

X(&)=N(t+h)—N()
is weakly stationary.

3.8) Let {N(¢), =0} be a homogeneous Poisson process with intensity A and let
{T,T5,...} be the associated point process. For t — o, determine and sketch the
covariance function C(t) of the (stochastic) shot noise process {X(¢), t = 0} given by

sint for 0<t<m

X() = Z, 1 h(t T;) with h()= { 0 elsewhere"

3.9)* Let {N(¢), >0} be a homogeneous Poisson process with intensity A and let
{T1,Ty,...} be the associated random point process. Derive trend function m(¢) and
covariance function C(s, f) of the shot noise process {X(¢), t > 0} defined by

X(t) = 2, D - T;) with h(f)=0fort<0, [ h(x)dx<eo,

by partitioning the positive half axis [0,0) into intervals of length Ax and making
use of the homogeneity and independence of the increments of a homogeneous Pois-
son process.

Note that {X(¢), =0} is the same process as the one analyzed in example 3.4 with
another technique.

3.10) At a used car dealer, cars of a specific type arrive according to a homogeneous
Poisson process {N(f), = 0} with intensity A. Let {T',T5,...} be the corresponding
arrival time process. The car arriving at time 7; can immediately be resaled by the
dealer at price C;, where the C, C5, ... are assumed to be independent and identical-
ly distributed as C. However, if a buyer acquires the car, which arrived at 7;, at time
T;+7, then he only has to pay an amount of

e %TC; with o> 0.

At time ¢, the dealer is in a position to sell all cars of this type to a customer. What
will be the mean total price E(K) the car dealer achieves?

3.11) Statistical evaluation of a large sample justifies to model the number of cars
which arrive daily for petrol between 12:00 a.m. and 4:00 a.m. at a particular filling
station by a nonhomogeneous Poisson process {N(f), t 2 0} with intensity function

M=8-41 +312 [h7!], 0<t<4.

(1) How many cars arrive on average between 12:00 a.m. and 4:00 a.m.?
(2) What is the probability that at least 40 cars arrive between 2:00 and 4.00 a.m.?
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3.12)* Let {N(¢), t = 0} be a nonhomogeneous Poisson process with intensity func-
tion A(?), trend function A(¢) = f6 A(x)dx and arrival time point T; of the ith Poisson
event. Show that, given N(f) =n, the random vector (7|, T5,...,Tx) has the same

probability distribution as »n ordered, independent, and identically distributed random
variables with distribution function

AG)
Fx)=1+ MO
1, t<x

for 0<x<t¢

Hint Compare to theorem 3.5.

3.13) Determine the optimal renewal interval T* and the corresponding maintenance
cost rate K(t) for policy 1 (section 3.2.6.2) given that the system lifetime has a
Weibull distribution with form parameter B and scale parameter 8; > 1, 6 > 0.

3.14) Clients arrive at an insurance company according to a mixed Poisson process
the structure parameter L of which has a uniform distribution over the interval [0, 1].

(1) Determine the state probabilities of this process at time .
(2) Determine trend and variance function of this process.

(3) For what values of o and B are trend and variance function of a Polya arrival
process identical to the ones obtained under (2)?

3.15)* Prove the multinomial criterion (formula 3.55). Assume that L has density f .

3.16)* A system is maintained according to policy 7 (section 3.2.6.4). The repair cost
of a system failing at time ¢ has a uniform distribution over the interval [a,a + bt]
with ¢ >0 and b > 0.
Under the same assumptions as in section 3.2.6.4 (in particular assumptions (3.96)
and (3.99)), show that every linearly increasing repair cost limit

c()=c+dt witha<c and d<b

leads to a higher maintenance cost rate than K 7(0*) given by (3.105).

3.17) A system is maintained according to policy 7 with a constant repair cost limit
c. System lifetime L and repair cost C have the respective distribution functions F(7)
and R(x). The cost of a minimal repair is assumed (quite naturally) to depend on ¢ as
follows: ¢ = cm(c) = E(C|C<c).

(1) Determine the corresponding maintenance cost rate via formula (3.85) for any
distribution function F(f) and for any distribution function R(x) =P(C<x) with
density 7(x) and property R(cy)=1.

(2) Determine the optimal repair cost limit with F(¢) given by (3.91) and R(x) given
by (3.96)
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Sections 3.3 and 3.4

Note Exercises 3.18 to 3.29 refer to ordinary renewal processes. The functions f(¢)
and F(#) denote density and distribution function; the parameters L and L, are mean
value and second moment of the cycle length Y. N(¢) is the (random) renewal count-
ing function and H(f) denotes the corresponding renewal function.

3.18) A system starts working at time ¢ = 0. Its lifetime has approximately a normal
distribution with mean value 1 = 120 and standard deviation ¢ =24 [hours]. After a
failure, the system is replaced by an equivalent new one in negligible time and imme-
diately resumes its work. How many spare systems must be available in order to be
able maintain the replacement process over an interval of length 10,000 hours

(1) with probability 0.90,
(2) with probability 0.99 ?

3.19) (1) Use the Laplace transformation to find the renewal function H(¢) of an ordi-
nary renewal process whose cycle lengths have an Erlang distribution with parame-
ters n =2 and A.

(2) For A = 1, sketch the exact graph of the renewal function and the bounds (3.138)
in the interval 0 < ¢ < 6. (Make sure that the bounds (3.138) are applicable.)

3.20) The probability density function of the cycle lengths of an ordinary renewal
process is the mixture of two exponential distributions:

fO=phie Mp(1-phye™! 0<p<l, 120,
By means of the Laplace transformation, determine the associate renewal function.

3.21)* (1) Verify that the probability
p(H) = P(N(¢) is odd)
satisfies the integral equation

P =F)~ [ pt=x) /) dx, f(x)=F(x).

(2) Determine p(?) if the cycle lengths are exponential with parameter A.

3.22) An ordinary renewal process has the renewal function H(f) = ¢/10. Determine
the probability P(N(10) 2> 2).

3.23)* Verify that H,(¢) = E(N 2(t)) satisfies the integral equation
Hy (1) = 2H(t)— F(t) + [ Hy(t—x) fix) dx.
3.24) Given the existence of the first 3 moments of the cycle length Y, prove equa-

tions (3.132).
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3.25) The cycle length Y of an ordinary renewal process is a discrete random variable
with probability distribution p; = P(Y=k); k=0,1,2,...

(1) Show that the corresponding renewal function H(n); n=0, 1,... satisfies
H(n)=gn+HO)pn+H1)p,_| +---+Hn)pg
withgn =P(Y<n)=pg+p1+---+pn; n=0,1,...
(2) Consider the special cycle length distribution
P(Y=0)=p, PY=1)=1-p

and determine the corresponding renewal function. (This special renewal process is
sometimes referred to as the negative binomial process.)

3.26) Consider an ordinary renewal process the cycle length Y of which has the dis-
tribution function

2
Fi=1-¢71", t>0.

(1) What is the statement of theorem 3.12 if g(x) = (x+ 1)_2, x=207?
(2) What is the statement of theorem 3.14 (formula (3.145))?

3.27) The time intervals between the arrivals of successive particles at a counter ge-
nerate an ordinary renewal process. After having recorded 10 particles, the counter is
blocked for T time units. Particles arriving during a blocked period are not registered.

What is the distribution function of the time from the end of a blocked period to the
arrival of the first particle after this period if T — oo?

3.28) Let A(¢) be the forward and B(f) the backward recurrence times of an ordinary
renewal process at time ¢. For x >y/2, determine functional relationships between
F(¢) and the conditional probabilities

(1) PA@® >y -t|B®)=t—x), 0<x<t<y,

(2) P(A(1) <y|B(t) =x).

3.29)* Prove formula (3.145) by means of theorem 3.13.
Hint Let Z(t) = H(t) — t/.

3.30) Let (Y, Z) be the typical cycle of an alternating renewal process, where Y and Z
have an Erlang distribution with joint parameter A and parameters n=2 and n=1,
respectively.

For t — oo, determine the probability that the system is in state 1 at time ¢ and that it
stays in this state over the entire interval [¢, £+ x], x > 0.

Hint Process states as introduced in section 3.3.6.
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3.31) The time intervals between successive repairs of a system generate an ordinary
renewal process {Y|,Y5,...} with typical cycle length Y. The costs of repairs are
mutually independent, independent of {Y, Y5, ...}, and identically distributed as M.
The random variables Y and M have parameters

w=E(Y)=180[days], 6= [Var(Y) =30,
v=EM)=$200, /Var(M) =40.
Determine approximately the probabilities that
(1) the total repair cost arising in [0, 3600 days] does not exceed $4500,
(2) a total repair cost of $3000 is not exceeded before 2200 days.

3.32) A system is subjected to an age renewal policy with renewal interval T as des-
cribed in example 3.21. Determine the stationary availability of the system by model-
ing its operation by an alternating renewal process.

3.33) A system is subjected to an age renewal policy with renewal interval T.
Contrary to example 3.21, it is assumed that renewals occur in negligible time and
that preventive and emergency renewals give rise to the respective constant costs
cp and ce with 0 <cp < ce. Further, let F(¢) be the distribution function of the sys-
tem lifetime 7 and A(¢) be the corresponding failure rate.

(1) Determine the maintenance cost rate (total maintenance cost per unit time) K(T)
for an unbounded running time of the system. (Note Total maintenance cost' includes
replacement and repair costs.)

(2) Give a necessary and sufficient condition for the existence of an optimal renewal
interval T*.

(3) Determine 1* if T has a uniform distribution over the interval [0, z].

3.34) A system is preventively renewed at fixed time points T, 27,... Failures bet-
ween these time points are removed by emergency renewals. (This replacement poli-
cy is called block replacement.)

(1) With the notation and assumptions of the previous problem, determine the main-
tenance cost rate K(T).

(2) On condition that the system lifetime has distribution function
Fi)=(1-e*)2 >0,

give a necessary condition for a renewal interval T=1* which is optimal with res-
pect to K(t). (Hint Make use of the renewal function obtained in example 3.13.)

3.35) Under the model assumptions of example 3.22,

(1) determine the ruin probability p(x) of an insurance company with an initial capi-
tal of x = $20,000 and operating parameters
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/p=2 [A~1], v=$800, and k= 1700 [$/A],

(2) with the numerical parameters given under (1), determine the upper bound e~

of the Lundberg inequality (3.2006),

(3) under otherwise the same conditions, draw the respective graphs of the ruin prob-
ability p(x) for x = 20,000 and x =0 (no initial capital) in dependence on k¥ over the
interval 1600 < x <1800,

3.36) Under otherwise the same assumptions and numerical parameters as made in
exercise 3.35 (1),

(1) determine the ruin probability if claims arrive according to an ordinary renewal
process the typical cycle length of which has an Erlang distribution with parameters
n=2and A =4,

(2) determine the ruin probability if claims arrive according to the corresponding sta-
tionary renewal process.

3.37) Under otherwise the same assumptions as made in example 3.22, determine the
ruin probability if the claim size M has density

b)) =a’ye ™, a>0, y>0.

3.38) Claims arrive at an insurance company according to an ordinary renewal pro-
cess {Y{,Y,...}. The corresponding claim sizes My, M5, ... are independent and
identically distributed as M and independent of {Y,Y5,....}. Let the Y; be distribu-
ted as ¥; i.e. Y is the typical interarrival interval. Then (Y, M) is the typical interarriv-
al cycle. From historical observations it is known that

w=EX)=2[hl, Var(Y)=3, v=EM)=8900, Var(M)=360,000.
Find approximate answers to the following problems:

(1) What minimum premium per unit time K has the insurance company to take

min, o
in so that it will make a profit of at least § 106 within 10,000 hours with probability
o=0.95?

(2) What is the probability that the total claim amount hits level $4 - 108 in the inter-
val [0, 7,000 hours]?

(Before possibly reaching its goals the insurance company may have experienced
one or more ruins with subsequent 'red number periods'.)
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CHAPTER 4

Discrete-Time Markov Chains

4.1 FOUNDATIONS AND EXAMPLES

This chapter is subjected to discrete-time stochastic processes {X(), X1, ...} with dis-
crete state space Z which have the Markov property. That is, on condition X; =xp
the random variable X, . is independent of all X, X,...,X,,_1. However, without
this condition, X,,,; may very well depend on all the other X;, i <n.

Definition 4.1 Let {X(,X,...} be a stochastic process in discrete-time with discrete
state space Z. Then {X(,X|,...} is a discrete-time Markov chain if for all vectors
X0, X 15Xy Withxy € Z and foralln=1,2,...,

P(X i1 =Xpi1 | Xn =xn, s X| =21, X0 =%0 ) = PX g =Xps1| Xn=x0) (4.1)
[ ]

Condtion (4.1) is called the the Markov property. It can be interpreted as follows: If
time point ¢ = n is the present, then £ =n+ 1 is a future time point and the time points
t=n-1, .., 1,0 are in the past. Thus,

I The future development of a discrete-time Markov chain depends only on its
present state, but not on its evolution in the past.

Note that for the special class of stochastic processes considered in this chapter defi-
nition 4.1 is equivalent to the definition of the Markov property via (2.19) in chapter
2. It usually requires much effort to check by statistical methods, whether a partic-
ular stochastic process has the Markov property (4.1). Hence one should first try to
confirm or to reject this hypothesis by considering properties of the underlying tech-
nical, physical, economical or other practical situation. For instance, the final profit
of a gambler usually depends on his present profit, but not on the way he has obtain-
ed it. If it is known that at the end of the »th month a manufacturer has sold a total of
Xn =xn personal computers, then for predicting the total number of computers
X,+1, sold a month later, knowledge about the number of computers sold within the
first n — 1 months will make no difference. A car driver checks the tread depth of his
tires after every 5000 km. For predicting the tread depth after a further 5000 km, the
driver will only need the present tread depth, not how the tread depth has evolved to
its present value. On the other hand, for predicting the future concentration of nox-
ious substances in the air, it has been proved necessary to take into account not only
the present value of the concentration, but also the past development leading to this
value. In this chapter it will be assumed that the state space of the Markov chain is
given by Z={0, =1, £2,...}. Hence, states will be denoted as 7, j, £, ...
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Transition Probabilities The conditional probabilities
are the one-step transition probabilities of the Markov chain. A Markov chain is said

to be homogeneous if it has homogeneous increments. Thus, a Markov chain is
homogeneous if and only if its one-step transition probabilities do not depend on n:

pu(”) :pl] forall n= O, 19

Note This chapter only deals with homogeneous Markov chains. For the sake of brev-
ity, the attribute homogeneous is generally omitted.

The one-step transition probabilities are combined in the matrix of the one-step tran-
sition probabilities (shortly: transition matrix) P:

(pOO pPo1 P02 )

P1o P11 P12 "~
P=| i
Pio Pi1 Pi2 "

pij is the probability of a transition from state i to state j in one step (or, equiva-
lently, in one time unit, in one jump). With probability p;; the Markov chain remains

in state i for another time unit. The one-step transition probabilities have some ob-
vious properties:

jeZ
The m-step transition probabilities of a Markov chain are defined as
P\ = Pm =/ X = )3 m=1,2,... (43)
Thus, pE}rI) is the probability that the Markov chain, starting from state 7, will be
after m steps in state j. However, in between the Markov chain may already have
arrived at state j. Note that p; = pgjl.) . It is convenient to introduce the notation
(0) 1 if i=j
=8 = . 4.4
Pij =0 {Oifiqéj “44)

5ij defined in this way is called the Kronecker symbol.

The following relationship between the multi-step transition probabilities of a dis-
crete-time Markov chain is called Chapman-Kolmogorov equations:

(m) _ (r) (m=r), _
Py _kezzpl.kpkj ; r=0,1,..,m. (4.5)
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The proof is easy: Conditioning with regard to the state, which the Markov chain as-
sumes after 7 time units, 0 < » < m, and making use of the Markov property yields

P = Pt =j| Xg =)= 3 P(Xm=j, Xr=k Xo=10)
ij keZ

=k2 P(Xm =j| Xr =k, Xo =) P(Xr =k| Xy =1)
eZ

= Z P(Xm :j|Xr:k)P(Xr:k|X0:l)
keZ

Ly 0
keZplkpk]

This proves formula (4.5).

It simplifies notation, when making use of the matrix of the m-step transition proba-
bilities of the Markov chain:

pim) = ((pgn))), m=0,1,...

Then Chapman-Kolmogorov's equations can be written in the elegant form
p(m) = p(r) pm-r) ;o r=0,1,..,m.
This relationship implies that
pim =pm,

Thus, the matrix of the m-step transition probabilities is equal to the m-fold product
of the matrix of the one-step transition probabilities.

A probability distribution p(o) of Xy is said to be an initial distribution of the Mar-

kov chain:

0 N 0
p(o):{pg ):P(X():l), ieZ, pr ):1} (46)
ieZ
A Markov chain is completely characterized by its transition matrix P and an initial
distribution p(o). To prove this, one has to show that, given P and p(o) , all finite-

dimensional probabilities can be determined: By the Markov property, for any finite
set of states ig,iy,...,in,

P(Xg=ig, X| =il Xn=1in)
=PXn=inlXg=ig, X1 =i],00 Xyo) =ip_1) PXg=i0s X =i1sesXppe] =ip_1)
=PXn=inlX,_1 =i, 1) PXo=ig. X =i, Xpe] =ip_1)
=Pi in PXo=i0.X1 i1, Xy =iy ).

The second factor in the last line is now treated in the same way. Continuing in this
way yields
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. . . 0)
P(XO = lO,Xl = ll,...,Xn = ln) =pi0 ‘piol‘l ‘pl'll'2 e pin—lin. (47)
This proves the assertion.

The absolute or one-dimensional state probabilities of the Markov chain after m
steps are

o P, o
Given an initial distribution p(O) = { pgo) , i€ Z}, by the total probability rule,

(m) 0) _(m)
p; =X p; o, m=1,2,.. 4.8)
A A
Definition 4.2 An initial distribution {®; = P(X, =1i); i€ Z} is called stationary if
it satisfies the system of linear equations
Tl:j:.Z nipij; jE Z. (49)
ieZ
[ J
Furthermore, it can be shown by induction that in this case even the absolute state
probabilities after any number of steps are the same as in the beginning:

(m)

p; _iezlnipij =m;, m=12,.. (4.10)
Thus, state probabilities 7t; satisfying (4.9) are time-independent absolute state pro-
babilities, which, together with the transition matrix P fully characterize a stationary
probability distribution of the Markov chain. They are also called equilibrium state
probabilities of the Markov chain. Moreover, in this particular case, the structure
(4.7) of the n-dimensional state probabilities verifies theorem 2.1: A Markov chain is
strictly stationary if and only if its (one-dimensional) absolute state probabilities do
not depend on time.

Markov chains in discrete time virtually occur in all fields of science, engineering,
operations research, economics, risk analysis and finance. In what follows, this will
be illustrated by some examples. More examples will be given in the text.

Example 4.1 (random walk) A particle moves along the real axis in one step from
an integer-valued coordinate 7 either to i+ 1 or to i— 1 with equal probabilities. The
steps occur independently of each other. If Xy is the starting position of the particle
and X the position of the particle after n steps, then {X(, X|,...} is a discrete-time
Markov chain with state spaceZ = {0,%1,12,---} and one-step transition probabil-
ities

_[1/2 for j=i+lorj=i-1

- . O
Pij= 1o otherwise
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Example 4.2 (random walk with absorbing barriers) Example 4.1 is modified in
the following way: The starting position of the particle is restricted to 0 < X < 5.
There are absorbing barriers at x = 0 and x = 6, i.e. if the particle arrives at state 0 or
at state 6, it cannot leave these states anymore. The state space of the corresponding
Markov chain {X(),X1,...} is Z=1{0,1,...,6} and the transition probabilities are

1/2 for j=i+1l orj=i—-1 and 1<i<5
pij=y 1 fori=j=0o0ri=j=6
0 otherwise

The matrices of the one and two-step transition probabilities are

(1 0 0 0 0 0 0 )
12 012 0 0 0 0
012 0 12 0 0 0
P=| 0 012 0 12 0 0 |
0 0 0 12 0 12 0
0 0 0 0 12 0 12
0 0 0 0 0 0 1
(1 0 0 0 0 0 0 )
1214 0 140 0 0
/4 0 12 0 1/4 0 0
PAD=| 0 14 0 12 0 1/4 0
0 0 1/4 0 12 0 1/4
0 0 0 1/4 0 1412

o 0 0 0 0 0 1

If the starting position of the particle X|; is uniformly distributed over {1, 2, ..., 5},

P\ =Py =i)=1/5; i=1,2,...,5;

then, by (4.8), the absolute distribution of the position of the particle after 2 steps is

p(2) = {i’ L’ i’ i) i) i) i} . D
20° 20° 20° 20° 20°20° 20

Example 4.3 (random walk with reflecting barriers) For a given positive integer z,
the state space of a Markov chain is Z={0,1,---,2z}. A particle moves from posi-
tion i to position j in one step with probability

2z—i

.2—2 fij=i+1
Pij=\ 5 forj=i-1" (4.11)
0 otherwise
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Thus, the greater the distance of the particle from the central point z of Z, the greater
the probability that the particle moves in the next step into the direction of the central
point. Once the particle has arrived at one of the end points x =0 or x =2z, it will
return in the next step with probability 1 to position x =1 or x =2z— 1, respectively.
(Hence the terminology reflecting barriers.) If the particle is at x = z, then the prob-
abilities of moving to the left or to the right in the next step are equal, namely 1/2. In
this sense, the particle is at x=z in an equilibrium state. This situation may be
thought of as caused by a force, which is situated at the central point. Its attraction to
a particle increases with the particle's distance from this point. O

Example 4.4 (Ehrenfest's diffusion model ) P. and T. Ehrenfest came across a ran-
dom walk with reflecting barriers as early as 1907 whilst investigating the following
diffusion model: In a closed container there are exactly 2z molecules of a particular
type. The container is separated into two equal parts by a membrane, which is per-
meable to these molecules. Let X5 be the random number of the molecules in one
part of the container after n transitions of any molecule from one part of the contain-
er to the other. If Xy denotes the initial number of molecules in the specified part of
the container, then they observed that the random sequence {X), X1, ...} behaves ap-
proximately as a Markov chain with transition probabilities (4.11). Thus, the more
molecules are in one part of the container, the more they want to move into the other
part. In other words, the system tends to the equilibrium state, i.e. to equal numbers
of particles in each part of the container. The system of linear equations (4.9) for the
stationary state probabilities is

o =m1P10>
TCj :th_lpj_l,j+nj+1pj+1’j; j=12,..,2z—1.

T2z =M2z—1P22-1,2z2
The solution is

_(2z)\h2z. ._
nj—(j)Z ; j=0,1,..,2z.

As expected, state z has the greatest stationary probability. O

Example 4.5 (electron orbits) Depending on its energy, an electron circles around
the atomic nucleus in one of the countably infinite set of trajectories {1,2,...}. The
one-step transition from trajectory i to trajectory j occurs with probability

pl] =al-e_b|i_j|, b>0.
Hence, the two-step transition probabilities are
@)

4T age

The a; cannot be chosen arbitrarily. In view of (4.2), they must satisfy condition
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a; (e_b(i_l) +e00=2) 4 -~~+e_b) +al.z,°::0 ek = 1,

or, equivalently,

l-e l-e
Therefore,
b
e’ -1
a;= ;o i=1,2,
1 +eb —e=bG=1)
The structure of the Pij implies that a; = p;; foralli=1,2, ... |

Example 4.6 (occurrence of traffic accidents) Let X; denote the number of traffic
accidents over a period of n weeks in a particular area, and let Y¥; be the correspond-
ing number in the ith week. Then,

Xn=X1,7;.
The Y; are assumed to be independent and identically distributed as a random varia-
ble Y with probability distribution {g; = P(Y=k); k=0,1,...}. Then {X|,X>5,...} is
a Markov chain with state space Z = {0, 1, ...} and transition probabilities
_{ qp ifj=i+k k=0,1,..
Pij = 0 otherwise

Example 4.7 (sequence of moving averages) Let {Y;; i=0,1,...} be a sequence of
independent, identically distributed binary random variables with
P(Y;=1)=P(Y;=-1)=1/2.
Moving averages X are defined as follows:
Xp = %(Yn +Y, ); n=1,2,..
Xpn has range {-1, 0, + 1} and probability distribution
1 1 1
{P(Xn =-n=1 Po=0)=1, Pat,=+1)= Z} .
Since X and X4, are independent for m > 1, the corresponding matrix of the m-

step transition probabilities pgﬂ) =PXpim =jl Xn=1) is
-1 0 +1
-1 1/4 172 1/4
PM =0 | 14 12 1/4

+1 1/4 172 1/4

The matrix of the one-step transition probabilities p; j=PXpy = | Xn=i) is
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172 12 0

PO =P =1 1/4 12 1/4

0 12 12
Since P(D . p(D) » P(Z), the Chapman-Kolmogorov equations do not hold. There-
fore, the sequence of moving averages {X{,X>,...} cannot be a Markov chain. O

4.2 CLASSIFICATION OF STATES

4.2.1 Closed Sets of States

A subset C of the state space Z of a Markov chain is said to be closed if

Y p;=1 forall ie C (4.12)
jeC

If a Markov chain is in a closed set of states, then it cannot leave this set since (4.12)
is equivalent to p; ;= 0 forallie C, j¢ C. Furthermore, (4.12) implies that

pl(.;.n)=0 forall ie C,je¢ Cand m=1. 4.13)
For m =2 formula (4.12) can be proved as follows: From (4.5),
@
pii = X pikPrjt X PikPkj =0,
e ey
since j ¢ C implies Pkj= 0 in the first sum and p;; =0 in the second sum. Now
formula (4.13) follows inductively from the Chapman-Kolmogorov equations.

A closed set of states is called minimal if it does not contain a proper closed subset.
In particular, a Markov chain is said to be irreducible if its state space Z is minimal.
Otherwise the Markov chain is reducible.

A state i is said to be absorbing if p;; = 1. Thus, if a Markov chain has arrived in an
absorbing state, it cannot leave this state anymore. Hence, an absorbing state is a
minimal closed set of states. Absorbing barriers of a random walk (example 4.2) are
absorbing states.

Example 4.8 Let Z={1,2,3,4,5} be the state space of a Markov chain with transi-
tion matrix

(02 0 0503 0 )
01 0 09 0 0
P=| 0 1 0 0 0
04 0.1 02 0 0.3
0 0 0 0 1
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Figure 4.1 Transition graph in example 4.8

It is helpful to illustrate the possible transitions between the states of a Markov chain
by transition graphs. The nodes of these graphs represent the states of the Markov
chain. A directed edge from node i to node j exists if and only if p ij>0, that is, if a

one-step transition from state 7 to state j is possible. The corresponding one-step tran-
sition probabilities are attached to the edges. Figure 4.1 shows that {1,2,3,4} is not
a closed set of states since condition (4.12) is not fulfilled for i = 4. State 5 is absorb-
ing so that {4} is a minimal closed set of states. This Markov chain is, therefore,
reducible. O

4.2.2 Equivalence Classes

State j is said to be accessible from state i (symbolically: i = j) if there exists an
m =1 such that pg.n) > 0. The relation '="' is transitive: If i = k and k =, there

exist m >0 and n > 0 with p%) >0 and pg;.) > (. Therefore,

(m+n) (m) (n)_ (m) (n)
Pij zrezzpir Pyj 2Pk Pij >0

Consequently, i = k and k= j imply i = j, that is, the transitivity of '=".

The set M(i) = {k, i = k} consisting of all those states which are accessible from i is
closed. In order to prove this assertion it is to show that k€ M(i) and j ¢ M(i) im-
ply k=5 j. The proof is carried out indirectly: If under the assumptions stated £ = j,
then i = k and the transitivity would imply i = j. But this contradicts the definition
of M(i).

If both i=j and j=>i hold, then i and j are said to communicate (symbolically:
i & ). Communication '&' is an equivalence relation since it satisfies the three
characteristic properties:
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(D) iei. reflexivity
2) If iej,then j & i. commutativity
3) fiejand j ok, theni s k. associativity

Properties (1) and (2) are an immediate consequence of the definition of '&'. To
verify property (3), note that i & j and j < k imply the existence of m and n so that

pl.;.n) >0 and pjr/i > 0, respectively. Hence, by (4.5),

() _ g Om) ) ()

(n)
Pik ir Pri 2Py Pji > 0.

Likewise, there exist M and N with
M+N) (M) (N)

Pri 2p kj p i >0
so that the associativity is proved.
The equivalence relation '<' partitions state space Z into disjoint, but not necessar-
ily closed classes in the following way: Two states i and j belong to the same class if
and only if they communicate. In what follows, the class containing state 7 is denoted
as C(i). Clearly, any state in a class can be used to characterize this class. All proper-
ties of states introduced in what follows will be class properties, i.e. if state i has one
of these properties, all states in C(7) have this property as well.
A state i is called essential if any state j which is accessible from i has the property
that 7 is also accessible from j. In this case, C(i) is called an essential class.
A state i is called inessential if it is not essential. In this case, C(i) is called an ines-
sential class. If i is inessential, then there exists a state j for whichi =; and j =% i.

It is easily verified that essential and inessential are indeed class properties. In exam-
ple 4.8, the states 1, 2, 3 and 4 are inessential since state 5 is accessible from each of
these states but none of the states 1, 2, 3 or 4 is accessible from state 5.

Theorem 4.1 (1) Essential classes are minimal closed classes. (2) Inessential classes
are not closed.

Proof (1) The assertion is a direct consequence of the definition of essential classes.
(2) If i is inessential, then there is a state j with i = and j % i. Hence, j ¢ C(i).
Assuming C(7) is closed implies that pg;.l) =0 forall m=>1, ke C@) and j ¢ C(7).
Therefore, C (i) cannot be closed. (According to the definition of the relation i = j,

there exists a positive integer m with p(.m) >0.) u

ij
Let pl(.m)(C) be the probability that the Markov chain, starting from state 7, is in state
set C after m time units:

(m) (m)

p; (C):Zjecpij .
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Furthermore, let C,, and C; be the sets of all essential and inessential states of a
Markov chain. The following theorem asserts that a Markov chain with finite state
space, which starts from an inessential state, will leave the set of inessential states
with probability 1 and never return (for a proof see Chung [19]. This theorem
justifies the notation essential and inessential states. However, depending on the
transition probabilites, the Markov chain may in the initial phase return more or less
frequently to the set of inessential states if it has started there.

Theorem 4.2 Let the state space set Z be finite. Then,
. (m)
1 . (Cy)=0. [ |
S p 7 (Cu)
Example 4.9 If the number of states in a Markov chain is small, the essential and
inessential states can immediately be identified from the transition matrix. However,
it may be useful to create a more suitable form of this matrix by rearranging its rows

and colums, or, equivalently, by changing the notation of the states, For instance,
consider a Markov chain with state space Z = {0, 1, 2, 3} and transition matrix

(35 0 25 0 )

0 34 0 1/4
130 23 0
0 172 0 12

By changing the order of rows and columns, an equivalent representation of P is

(35255 0 0 ) Qll 0

po| 1323 0 0 |_
B I T2 V2 I Y | ’
0 0 1212 Q2

where Q1 and Q,, are square matrices of order 2 and 0 is a square matrix with all
elements equal to zero. Hence this Markov chain is reducible. Its state space (in new
notation) consists of two essential classes C(0) = {0, 1}and C(2) = {2,3} with transi-
tion matrices Q1 and Q,, respectively. O

Example 4.10 Let Z={0,1,...,5} be the state space of a Markov chain with transi-
tion matrix

(1323 0 0 0 0
12120 0 0 0 Qi 0 0
o 0o w23 0 0 | _
P=l 0 0 2313 0 o 0 Qn 0 |,
04 0 02 01 0.1 02 Q31 Q32 Q33

0.1 02 0.1 02 03 0.1
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where the symbolic representation of the transition matrix, introduced in the previous
example, is used. This Markov chain has the two essential classes

C0)={0,1} and C(2)={2,3}
and the inessential class
C4)=1{4,5}.

It is evident that, from the class of inessential states, transitions both to essential and
inessential states are possible. However, according to theorem 4.2, the Markov chain
will sooner or later leave the inessential class for one of the essential classes and
never return. O

4.2.3 Periodicity

Let d; be the greatest common divisor of those indices m =1 for which p
(m)
i

of i is defined to be infinite. A state i is said to be aperiodic if d;=1.
(m)

il

()
11

>0.

Then d; is said to be the period of state i. If p..” =0 for all m >0, then the period

If i has period d;, then p..” >0 holds if and only if m can be represented in the
form

m=n-d; n=1,2,..
Hence, returning to state i is only possible after such a number of steps which is a
multiple of d;. The following theorem shows that the period is a class property.

Theorem 4.3 All states of a class have the same period.

Proof Let i< j. Then there exist integers m and n with p(r.n) >0 and pj(.:.l) >0.If

ij
the inequality pg) > 0 holds for a positive integer 7, then, from (4.5),

(rtrtm) 5 p™ 1 M S 0.
JJ Ji ii Fij
Since
@ng ) )
pi; " 2Pii Pip >0
this inequality also holds if  is replaced with 2 r:

(n+2 r+m)

; >0.
JJ

Thus, d /i divides the difference
n+2r+m)—(m+r+m)=r.
")
11
of i and j shows that d; also divides dj. Thus, d; = dj. ]

Since this holds for all » for which p:” >0, d /; must divide d;. Changing the roles
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Example 4.11 Let a Markov chain have state space Z = {0, 1,...,6} and transition

matrix
(1323 0 0 0 0 0 )
31313 0 0 0 0
1 0 0 0 0 0 0
P=| 0 1/3 0 1313 0 0
00 0 0 1 0 0
0 0 0 0 0 1212
0 0 0 0 172 0 12

Clearly, {0, 1, 2} is a closed set of essential states. State 4 is absorbing, so {4} is
another closed set. Having once arrived in a closed set of states the Markov chain
cannot leave it again. {3, 5, 6} is a set of inessential states. When starting in one of
its sets of inessential states, the Markov chain will at some stage leave this set and
never return. All states in {0, 1, 2} have period 1. O

Theorem 4.4 (Chung [19]) The state space Z of an irreducible Markov chain with
period d, d > 1, can be partitioned into disjoint subsets Z|,Z1, ..., Z; with

d
7=\ 1Z;
k=1
such that from any state i € Z;, a transition can only be made to a state j € Zj,.
(By agreement, je Zj ifie Z,;). ]

This theorem implies a characteristic structure of the transition matrix of a periodic
Markov chain. For instance, if d = 3, then the transition matrix P looks like

7, 1, 73

7, 0 Q; 0
P= 7, 0 0 Q |,
7, Q; 0 0

where P may be rotated by 90°. (Q; and 0 refer to the notation introduced in exam-
ple 4.10.) According to the definition of a period, if a Markov chain with period d
starts in Z;, it will again be in Z; after d transitions. Hence the corresponding d-step
transition matrix is

7, 7, 73

Z, (R 0 0
PD= 7z, | 0 Ry, 0
Z; L0 0 R,
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This structure of the transition matrix allows the following interpretation: A Markov
chain {X,X|,...} with period d becomes a Markov chain with period 1 and closed
equivalence classes Z{,Z,,...,Z  if, with respect to transitions within the Markov
chain {X(), X1, ...}, only the states after every d steps are registered.

Example 4.12 Let a Markov chain have state space Z={0,1,...,5} and transition

matrix
(0 0 2535 0 0 )
0 0 1 0 0 0
p_| 0 0 0 0 1212
0 0 0 0 23 1/3
1212 0 0 0 0
1434 0 0 0 0

This Markov chain has period d = 3. One-step transitions are possible in the order
Zl 2{0,1} —)Z2 2{2,3} —)Zl 2{4,5} —)Zl.

The 3-step transition matrix is

i

(2535 0 0 0
3858 0 0 0

p(3)_| O 0 31/40 940 0
0 0 34 14 0 0

0 0 0 0 1120 920

0 0 0 0 21/40 19/40

S O O

4.2.4 Recurrence and Transience

This section deals with the return of a Markov chain to an initial state. Such returns
are controlled by the first-passage time probabilities

M) _ p(Xy = Xy 2 k=12, ..m—1|Xg=i): ije Z
Js Xi #J 0 J

t

Thus, fl(Jm) is the probability that the Markov chain, starting from state i/, makes its
(m)
ij
Markov chain, starting from state , is in state j after m steps, but it may have been in
state j in between. For m =1,

first transition into state j after m steps. Recall that p is the probability that the

1 1
1) =P§j) =Pij-
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The total probability rule yields a relationship between the m-step transition probabil-
ities and the first-passage time probabilities

(k) (m —k)

r’ =2 ey,

Py (4.14)

0)

where, by convention, p i = 1 for all j € Z. Thus, the first-passage time probabil-

ities can be determined recursivley from the following formula:

f(m) (m) _ Z f(k) (m—k)

i =pi P s m=23, (4.15)

The random variable L; 5 with probability distribution

(m),  _
fim=12,.},
is a first-passage time. Its mean value is
=E(L; ]) Zm m f

The probability of ever maklng a transition into state j if the process starts in state i
is

(m)

fij=Zm 1. (4.16)

In particular, f;; is the probability of ever returning to state i. This motivates the
introduction of the following concepts:

I A state 7 is said to be recurrent if f;; =1 and transient if f;; < 1.

Clearly, if state 7 is transient, then W;; = eo. But, if 7 is recurrent, then ;; = is also
possible. Therefore, recurrent states are classified as follows:

A recurrent state i is said to be positive recurrent if |;; <o and null-recurrent
if u;; =o0. An aperiodic and positive recurrent state is called ergodic.

The random time points 7; ,; n=1,2,...; at which the nth return into starting state i

l, i’l’
occurs, are regeneration points of the Markov chain (see definition 3.10, section
3.3.8). By convention, 7; o = 0. The time spans between neighbouring regeneration

points T; , —T;,_1; n=1,2,...; are called recurrence times. They are independent
and identically distributed as L;;. Hence the sequence of recurrence times consti-
tutes an ordinary renewal process. Let

Ni(t)=max(n; Tj,, <0), H(t)=EN;(©),

Nifeo) = lim Nit),  Hy(e=) = lim Hy(0).
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Theorem 4.5 State i is recurrent if and only if
(1) Hj(eo) =, or

o (m)
(2) Zm:l pl'l' = oo,
Proof (1) If i is recurrent, then P(T;,, ==)=0 for n=1,2,... The limit N;(e) is
finite if and only if there is an n with 7} ,, = eo. Therefore,

P(Nj(e) <o0) S ;24 P(T; ;= 22)=0.

Thus, assumption f;; =1 implies N;(0) = and, therefore, H;(c0) = oo is true with
probability 1.
On the other hand, if f;; < 1, then the Markov chain will not return to state i with pos-

itive probability 1—f;;. In this case, N;(e) has a geometric distribution with mean
value (section 1.2.2.2)

Jii
1-1ii

Both results together prove part (1) of the theorem.

E(Nj(e)) = Hi(0) = < oo,

(2) Let the indicator variable for the random event that the Markov chain is in state i

at time 1 =m be
[m,l:{l for Xm=i .,

0 for Xm#i
Then,
Nioo) =X et L i -
Hence,
1) = B Zoot I ) = Sonet Bl )
=Sy Pl =1) =Ty pff”
Now assertion (2) follows from (1). |

By adding up both sides of (4.15) from m =1 to <= and changing the order of sum-
mation according to formula (1.25), theorem 4.5 implies the following corollary.

Corollary If state j is transient, then, for any i e Z,
o (m
Zm:l P ' <o
and, therefore,

lim p™ =0. (4.17)
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Theorem 4.6 Let i be a recurrent state and i < j. Then state j is also recurrent.

Proof By definition of the equivalence relation '<', there are integers m and n with

(m) (n)
pij >0 and Pji >0.
By (4.5),
ntrdm o () () (m)
Pjj iji Pij Pij >
so that
oo +r+ (m) (n)sroo ()
X p}zjr " Zp,'j Pji pI Pij =°°-
The assertion is now a consequence of theorem 4.5. u

Corollary Recurrence and transience are class properties. Hence, an irreducible
Markov chain is either recurrent or transient.

The following statement is elementary, but important

I An irreducible Markov chain with finite state space is recurrent.

It is easy to see that an inessential state is transient. Therefore, each recurrent state is
essential. But not each essential state is recurrent. This assertion is proved by the fol-
lowing example.

Example 4.13 (unbounded random walk) Starting from x =0, a particle jumps a

unit distance along the x-axis to the right with probability p or to the left with proba-

bility 1—p. The transitions occur independently of each other. Let X; denote the

location of the particle after the nth jump. Then the Markov chain {X, X7, ...} with
Xo =0 has period d=2. Thus,

2m+1

1’5)0 :

In order to be back in state x =0 after 2m steps, the particle must jump m times to

=0; m=0,1,...

the left and m times to the right. There are (2,::’ ) sample paths which satisfy this con-

dition. Hence,

2m 2
Pgo = ( mm)P'” (1-p)"; m=1,2,..

Letting x = p (1 — p) and making use of the well-known series

S (2m)emo L _yacx<i,
mzo(m) 1—4x
yields

)y p(m)— 1 1 p#1/2.

m=0 00 '(I—Zp)z _|l—2p|’
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Thus, the sum

o (m)
=0 P 0n01

is finite for all p # 1/2. Hence, by theorem 4.5, state 0 is transient. Consequently, by
the corollary from theorem 4.6, the Markov chain is transient, since it is irreducible.

If p=1/2 (symmetric random walk), then

> o = lim = co. (4.18)
m=0 00 p—1/2 |1-2p|

Therefore, in this case all states are recurrent. However, for any p with 0 < p < 1, all

states are essential since there is always a positive probability of making a transition

to any state irrespective of the starting position. O

The symmetric random walk along a straight line can easily be generalized to n-
dimensional Euclidian spaces: In the plane, the particle jumps one unit to the West,
South, East, or North, respectively, each with probability 1/4. In the 3-dimensional
Euclidian space, the particle jumps one unit to the West, South, East, North, upward,
or downward, respectively, each with probability 1/6. When analyzing these random
walks analogously to the one-dimensional case, an interesting phenomenon becomes
visible: the symmetric two-dimensional random walk (more exactly, the underlying
Markov chain) is recurrent like the one-dimensional symmetric random walk, but all
n-dimensional symmetric random walks with n > 2 are transient. Thus, there is a pos-
itive probability that somebody who randomly chooses one of the six possibilities in
a 3-dimensional labyrinth, each with probability 1/6, will never return to its starting
position.

Example 4.14 A particle jumps from x =i to x =0 with probability p; or to i+1
with probability 1-p;; 0<p; <1, i=0,1,... The jumps are independent of each
other. Let X denote the position of the particle after the nth jump. Then the transi-
tion matrix of the Markov chain {X(), X1, ...} is

(po 1-py 0 0 0« 0 0 - )
pr 0O 1-p; 0 0-- 0 0 -
p_| P2 0 0 1-py 0 -~ 0 0 -
L
pi 0 o 0 - 1=p; 0 -

The Markov chain {X,X],...} is irreducible and aperiodic. Hence, for finding the
conditions under which this Markov chain is recurrent or transient it is sufficient to

).

consider state 0, say. It is not difficult to determine fo(gl :
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1
fo(o)—poa
m
£ - [H(l p,)jpm 5 om=23,..

If p,,—1 isreplaced with (1 —(1-p,,_1)), then fogl) becomes

—1
il - (H(l p,}—(m_r%(l—p,aj; m=2,3,..
1=

Hence,
(n) _ i
i=0
Thus, state 0 is recurrent if and only if

m
am, I =pp)=0

Proposition Condition (4.19) is true if and only if
Tigpi=c°.

To prove this proposition, note that

1-p; <ePi;i=0,1,..
Hence,

m m
ITi=p(1-p;) <exp (_Zizo Pi) :

Letting m — oo proves that (4.19) follows from (4.20).

225

(4.19)

(4.20)

The converse direction is proved indirectly: The assumption that (4.19) is true and

(4.20) is wrong implies the existence of a positive integer & satisfying

0<Xipi<l.

By induction,

m m
o (1-p)>1=pr—ppy1 = —pm=1-Zizg p; -

Therefore,

mli_II)looH;ik(l -Pi)> mli_n}w(l -Zi pi) >0.

This contradicts the assumption that condition (4.19) is true, and, hence, completes

the proof of the proposition.

Thus, state 0 and with it the Markov chain are recurrent if and only if condition

(4.20) is true. This is the case, for instance, if p; =p>0; i=0,1,...
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4.3 LIMIT THEOREMS AND STATIONARY DISTRIBUTION

Theorem 4.7 Let state i and j communicate, i.e. i < j. Then,

1§ m_ 1
lim mz:‘,l Pij =T @21

Proof Analogously to the proof of theorem 4.5 it can be shown that, given the Mar-
kov chain is in state i at time =0, the sum

St Py

is equal to the mean number of transitions into state j in the time interval (0, n]. The
theorem is, therefore, a direct consequence of the elementary renewal theorem

(theorem 3.11). (If i #, the corresponding renewal process is delayed.) u
Theorem 4.7 even holds if the sequence {pfj ), =1,2,...; has no limit. This is, for
instance, the case if

1) _ 2 _ 3 _

pjj =1, P,-j =0, Pl-j =1,..
However,
L m 1
nlgrionmélpu 2
But, if the limits
(m)
i )]

exist, then they coincide with the right hand side of (4.21) (indirect proof). Since it
can be shown that in case of an irreducible Markov chain these limits exist for all
i,j € Z, theorem 4.7 implies theorem 4.8:

Theorem 4.8 Let pg.n) be the m-step transition probabilities of an irreducible, aperi-

odic Markov chain. Then, for all i,j € Z,

im - _L
B Pij = M

If state j is transient or null-recurrent, then

Corollary For an irreducible Markov chain with period d,

. (md) _ d_
mlgloopij T
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Theorem 4.9 For any irreducible, aperiodic Markov chain, there are two possibili-
ties:

(1) The Markov chain is transient or null-recurrent. Then a stationary distribution
does not exist.

(2) The Markov chain is positive recurrent. Then there exists a unique stationary
distribution {nj ,J € Z},which for any i € Z is given by

_ 1 (m) _ 1
th—mlgnmpl.j T

Proof Without loss of generality, let Z = {0, 1,...}.

(1) By (4.10), a stationary distribution {pj; j=0,1,...} satisfies forany m = 1,2, ...
the system of linear algebraic equations

m
pjzz_oplp( ), m=1,2,... (4.22)

If

then there is no probability distribution { p;; i=0,1,...}, which is solution of (4.22).

(2) Next the existence of a stationary distribution is shown. For M <o, any i € Z,
andanym=1,2,...,

M (m)
Zjoplj <Zj_ p =1.
Passing to the limit as m — oo yields for all M
M

Zj:() ;< 1
Therefore,

ZJ —o ;< 1. (4.23)
Analogously, it follows from

(m+1) o (m) M (m)
Pij  =Xp0 P Pkj> Zk=0Pig Phj
that
T >Z =0 TPk - (4.24)

If there exists at least one state j for which (4.24) is a proper inequality, then, by
summing up the inequalities (4.24) over all j,

2o > Yo Ljmo TP kj = 2k=0 Tk 2j=0 Phkj

=20 T
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But this is a contradiction to the fact that, by (4.23), the sum of the «t; is finite. There-
fore

T =2k=0 TDkjs j=0,1,..

Thus, at least one stationary distribution exists, namely { p s J = 0,1,...} where

Pi=<s —., JEL
7 Xom
From theorem 4.8, letting m — o in (4.22) for any stationary distribution of the Mar-
kov chain {pj; j=0,1,...}
pj=Xiopin=mZigp; =T, j€Z.
Thus, {nj ;7=0,1,...} with m; = l/ujj is the only stationary distribution. |

Example 4.15 A particle moves along the real axis. Starting from a position (state) i
it jumps to state i+ 1 with probability p and to state i — 1 with probability ¢ =1—p,
i=1,2,... When the particle arrives at state 0, it remains there for a further time unit
with probability ¢ or jumps to state 1 with probability p. Let X5 denote the position
of the particle after the nth jump (time unit). Under which condition has the Markov
chain {X),X1,...} astationary distribution?

Since pgg =9, pjir1 =p and p;;_1 =q=1-p; i=1,2,..., the system (4.9) is
Tg=Nggqg+T|¢q
T; =Tl:l-_1p+7'cl-+1q; i:1,2,...

By recursively solving this system of equations,

AL
ni:(g) s i=0,1,..
To ensure that 2;0 7; =1, condition p < g or, equivalently, p <1/2, must hold. In
this case,

ni=¥(§)i; i=0,1,.. (4.25)

The necessary condition p < 1/2 for the existence of a stationary distribution is intui-
tive, since otherwise the particle would tend to drift to infinity. But then no time-
invariant behaviour of the Markov chain can be expected. O

Theorem 4.10 Let {X(, X, ...} be an irreducible, recurrent Markov chain with state
space Z and stationary state probabilities ©t;, i € Z. If g is any bounded function on
Z., then

7 2 2= Z mig). .

lim
H—>o0
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For example, if ¢; = g(i) is the profit which accrues from the Markov chain by mak-
ing a transition to state 7, then

YiezT;c;

is the mean profit resulting from a state change of the Markov chain. Thus, theorem
4.10 is the analogue to the renewal reward theorem (3.170) for compound stochastic
processes. In particular, let

1 fori=k

D=0 for izk

If, as generally assumed in this chapter, changes of state of the Markov chain occur
after unit time intervals, then the limit

. 1 «n
A, 7 2j=0 (X))
is equal to the mean percentage of time the system is in state k. By theorem 4.10, this
percentage coincides with 1 . This property of the stationary state distribution illus-

trates once more that it refers to an equilibrium state of the Markov chain. A proof of
theorem 4.10 under weaker assumptions can be found in [81].

Example 4.16 A system can be in one of the three states 1, 2, and 3: In state 1 it
operates most efficiently. In state 2 it is still working but its efficiency is lower than
in state 1. State 3 is the down state, the system is no longer operating and has to be
maintained. State changes can only occur after a fixed time unit of length 1. Transi-
tions into the same state are allowed. If Xj; denotes the state of the system at time »,
then {X(,Xq,...} is assumed to be a Markov chain with transition matrix

1 2 3

1 (08 0.1 0.1

P= 2 0 06 04
3108 0 0.2

Note that from state 3 the system most likely makes a transition to state 1, but it may
also stay in state 3 for one or more time units (for example, if a maintenance action
has not been successful). The corresponding stationary state probabilities satisfy the
system of linear equations

my =0.8m +0.875
Ty ZO.ITEI +0.67132
3 =0.ITI:1 +O.4Tl:2 +0.2TE3

Only two of these equations are linearly independent. Together with the normalizing
constraint

Ttl+752+T|:3=1,
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the unique solution is
Ttl:%, n2=n3=%. (4.26)
The profits the system makes per unit time in states 1 and 2 are
g(1)=$1000, g(2)=$600,
whereas, when in state 3, the system generates a loss of
g(3)= —-$100

per unit time. According to theorem 4.10, after an infinite (sufficiently long) running
time, the mean profit per unit time is

>3 | 7 g() =1000- % +600 - % ~100- % =250 [$ per unit time].

Now, let ¥ be the random time in which the system is in the profitable states 1 and 2.
According to the structure of the transition matrix, such a time period must begin
with state 1. Further, let Z be the random time in which the system is in the unprofit-
able state 3. The mean values E(Y) and E(Z) are to be determined. The random vec-
tor (Y, Z) characterizes the typical cycle of an alternating renewal process. Therefore,
by (3.163), the ratio

EM)/I[E(Y) + E(2))

is equal to the mean percentage of time the system is in states 1 or 2. As pointed out
after theorem 4.10, this percentage must be equal to 7t + 75 :

E)
———— =T + 7). 4.27
En+EZ) T *27
Since the mean time between transitions into state 3 is equal to E(Y) + E(Z), the ratio
VIE(Y)+E(2)]

is equal to the rate of transitions to state 3. On the other hand, this rate is

T1P13+ 2 p23-

Hence,
1
—_—— =T +T . 4.28
EN+E@Z) ~ 1P13+T2r3 (4.28)
From (4.27) and (4.28),
T +Ty
EY)= ———F7—,
( T1P13 T P23
T
EQ2) = :

T1P13+ P23
Substituting the numerical values (4.26) gives

E(Y)=625 and E(Z)=1.25. O
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4.4 BIRTH- AND DEATH PROCESSES

In some of the examples considered so far only direct transitions to 'neighbouring'
states were possible. More exactly, if starting in state i and not staying there, only
transitions to states i — 1 or i+ 1 could be made in one step. In these cases, the posi-
tive one-step transition probabilities have structure (Figure 4.2)

Piitl =Pi» Pii-1=94;» Pii=1; With pj+q;+r;=1. (4.29)

A discrete Markov chain with state space Z = {0, 1, ...,n}, n <o, and transition prob-
abilities (4.29) is called a birth- and death process. (The state space implies that
go =0.) The random walk considered in example 4.9 is a special birth- and death

process with
p;=p fori=0,1,..
g;=q and ;=0 for i=1,2,...,
q0=0,rg=q=1-p
The unbounded random walk in example 4.7 also makes direct transitions only to
neighbouring states, but its state space is Z = {0,%1,£2,...}.

Pg P1 Pn=2 Pn-1
Lo ’

7o Tpol Q n
q1 q2 dn—1 qn

Figure 4.2 Transition graph of a birth- and death process with finite state space

Example 4.17 (random walk with absorbing barriers) A random walk with absorb-
ing barriers 0 and s can be modeled by a birth- and death process. In addition to
(4.29), its transition probabilities satisfy conditions

ro=rs=1, p;>0and ¢;>0 for i=1,2,...s—1. (4.30)

Let p(k) be the probability that the random walk arrives at state 0 when starting from
state k; k=1,2,...,5s — 1. (Since s is absorbing, the Markov chain cannot have been in
this state before arriving at 0.) In view of the total probability rule,

pk)=pg pl+ D) +qg plk=1) +ry p(k) ,
or, replacing r;, withrp=1-pr—qy,
q
P =plk+ 1) = 5E[pk= D) =p(R)]: k=1.2,05- 1.
Repeated application of this difference equation yields

p(N=pG+1)=0;[p(0)-p(D)]; j=0.1,...s=1, (4.31)
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where p(0) =1, p(s) =0 and
97 9j-141

Summing the equations (4.31) from j=k to j=s—1 yields
Py =E4 pG)-pG+ D= O -p()] 4 0;.
In particular, for k=0,
1= [p©) -p(D] =5 0;.-

By combining the last two equations,

5o,
p(k)zLQj; k=0,1,..,s—1; p(s)=0. (4.32)

Yo
Besides the interpretation of this birth- and death process as a random walk with ab-
sorbing barriers, the following application may be more interesting: Two gamblers
begin a game with stakes of $ & and $ (s — k), respectively; k, s integers. After each
move a gambler either wins or loses $1 or the gambler's stake remains constant.
These possibilities are governed by transition probabilities satisfying (4.29) and
(4.30). The game is finished if a gambler has won the entire stake of the other one or,
equivalently, if one gambler has lost her/his entire stake. Hence this birth- and death
process is also called gambler's ruin problem. O

To ensure that a birth- and death process is irreducible, assumptions (4.29) have to
be supplemented by

p;>0 for i=0,1,.. and ¢;>0 for i=1,2,... (4.33)

Theorem 4.11 Under the additional assumptions (4.33) on its transition probabili-

ties, a birth- and death process is recurrent if and only if
Q 99191

=oo 4.34

Proof It is sufficient to show that state 0 is recurrent. This can be established by
using the result (4.32) of example 4.17, since

Sli)nolop(k) =fro; k=12,..,

where the first-passage time probabilities f; are given by (4.16). If state 0 is recur-
rent, then, from the irreducibility of the Markov chain

f00: 1 and ka =1.
However, f1o =1 if and only if (4.34) is valid.
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Conversely, let (4.34) be true. Then, by the total probability rule,
foo=roo tPo1f10=ro+po-1=1.

This result completes the proof of the theorem. u

The notation birth- and death process results from the application of these processes
to describing the development in time of biological populations. In this context, Xy is
the number of individuals of a population at time n assuming that the population
does not increase or decrease by more than one individual per unit time. Correspond-
ingly, the p; are called birth- and the q; death probabilities.

Discrete-time birth- and death processes may serve as approximations to continuous-
time birth- and death processes, which are dealt with in section 5.6.

4.5 EXERCISES

4.1) A Markov chain {X;,X;,...} has state space Z={0,1,2} and transition matrix

05 0 05
P=| 04 02 04
0 04 0.6
(1) Determine P( X, =2| X; =0, Xy =1 and P(X;=2,X;=0|Xy=1]
(2) Determine P(Xz =2,X;= 0| Xo =0 and, forn>1,
P(Xy41 =2, Xn=0|X,_1 =0)
(3) Assuming the initial distribution
PXy=0)=0.4; P(Xg=1)=P(Xy=2)=023,
determine P(X] =2) and P(X| =1,X, =2).

4.2) A Markov chain {X(,X],...} has state space Z={0,1,2} and transition ma-
trix
0.2 0.3 0.5
P=| 08 02 0
06 0 04

(1) Determine the matrix of the 2-step transition probabilities P,
(2) Given the initial distribution
PXg=0)=1/3; i=0,1,2;
determine the probabilities
P(X5=0) and P(X(=0,X| =1,X, =2).

© 2006 by Taylor & Francis Group, LLC



234 STOCHASTIC PROCESSES

4.3) A Markov chain {X;,X7,...} has state space Z={0,1,2} and transition matrix

0 04 0.6
P=| 08 0 02
0505 0

(1) Given the initial distribution

PXyp=0)=P(Xy=1)=04 and P(X;=2)=0.2,
determine P(X3 =2).
(2) Draw the corresponding transition graph.

(3) Determine the stationary distribution.

4.4) Let {Y(,Yq,...} be a sequence of independent, identically distributed binary
random variables with

P(Y;=0)=P(Y;=1)=1/2; i=0,1,...
Define a sequence of random variables {X{,X>,...} by

Xn :%(Yn ~Y,q); n=12,..
Check whether the random sequence {X{,X>, ...} has the Markov property.

4.5) A Markov chain {X(), X1, ...} has state space Z={0,1,2,3} and transition ma-
trix
(0.1 0204 03 )
0.2 0.3 0.1 04
04 0.1 03 0.2
0.3 04 0.2 0.1

(1) Draw the corresponding transition graph.
(2) Determine the stationary distribution of this Markov chain.

4.6) Let {X, X1, ...} be an irreducible Markov chain with state space
Z={1,2,...n}, n<eo,
and with the doubly stochastic transition matrix P = ((p l-j)), ie.

X pjj=1forallie Z and X p;;=1 forall je Z
JjeZ ieZ

(1) Prove that the stationary distribution of { X, X1,...} is given by

nj=ﬁ’ jGZ.

(2) Can {X{;,X7,...} be a transient Markov chain?
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4.7) A source emits symbols 0 and 1 for transmission to a sink. Random noises
S1,87,... successively and independently affect the transmission process of a sym-
bol in the following way: if a '0' ('l') is to be transmitted, then S; distorts it to a 1’
('0") with probability p (¢); i=1,2,... Let Xy=0 or X;=1 denote whether the
source has emitted a '0' or a 'l for transmission. Further, let X; =0 or X; =1 denote
whether the attack of noise S; implies the transmission of a'0'ora 'l'; i=1,2,... The
random sequence {X(,X{,...} is an irreducible Markov chain with state space
Z ={0,1} and transition matrix

P:(l_p P j
g l-¢q

(1) Verify: On condition 0 < p+¢ < 1, the m-step transition matrix is given by

P(m):L(quJr(l—p—q)’”(p —pj
Prq\q p ptq -q q )

(2) Let p=¢q=0.1. The transmission of the symbols 0 and 1 is affected by the ran-
dom noises Sy, S, ..., S5.

Determine the probability that a '0' emitted by the source is actually received.

4.8) Weather is classified as (predominantly) sunny (S) and (predominantly) cloudy
(C), where C includes rain. For the town of Musi, a fairly reliable prediction of
tomorrow's weather can only be made on the basis of today's and yesterday's
weather. Let (C,S) indicate that the weather yesterday was cloudy and today's
weather is sunny and so on. Based on historical observations it is known that, given
the constellation (S,S) today, the weather tomorrow will be sunny with probability
0.8 and cloudy with probability 0.2; given (S,C) today, the weather tomorrow will be
sunny with probability 0.4 and cloudy with probability 0.6; given (C,S) today, the
weather tomorrow will be sunny with probability 0.6 and cloudy with probability
0.4; given (C,C) today, the weather tomorrow will be cloudy with probability 0.8 and
sunny with probability 0.2.

(1) Ilustrate graphically the transitions between the states
1=(S,S),2=(5,C), 3=(C,S), and 4 = (C,C).

(2) Determine the matrix of the transition probabilities of the corresponding discrete-
time Markov chain and its stationary state distribution.

4.9)* An area (e.g. a stiffy disc) is partitioned into n segments S;,S5,...,8n, and a
collection of n objects O, O,,...,On (e.g. pieces of information) are stored in these
segments so that each segment contains exactly one object. At time points 1 =1,2, ...
one of the objects is needed. Since its location is assumed to be unknown, it has to be
searched for. This is done in the following way: The segments are checked in increas-
ing order of their indices. When the desired object O is found at segment S, then O
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will be moved to segment S and the objects originally located at 7,55, ...,S_; will
be moved in this order to S5, S3, ..., Sj.
Let p; be the probability that at a time point ¢ object O; is needed; i =1,2,...,n. Itis
assumed that these probabilities do not depend on ¢.
(1) Describe the successive location of object O; by a homogeneous discrete-time
Markov chain, i.e. determine the transition probabilities

Pij= P(O atsegment Sj at time ¢+ 1|01 at segment S; at time ¢).

(2) What is the stationary distribution of the location of O; given that

-0,

pr=0 and py=p3=---=pp=- 7"

4.10) A supplier of toner cartridges of a certain brand checks his stock every Mon-
day. If the stock is less than or equal to s cartridges, he orders an amount of S-s
cartridges, which will be available the following Monday, 0 <s < S. The weekly
demands of cartridges D are independent and identically distributed according to

p;=PMD=1i); i=0,1,..
Let X5 be the number of cartridges on stock on the n th Sunday (no business over
weekends) given that the supplier starts his business on a Monday.
(1) Is {X;,X5,...} aMarkov chain?

(2) If yes, obtain the matrix of the transition probabilities.
4.11) A Markov chain has state space Z = {0, 1,2,3,4} and transition matrix

(050104 0 0 )
08 02 0 0

P=| 0 1 0 0
0 0 0 09 0.1

0 0 0 1 0

0
0

(1) Determine the minimal closed sets.
(2) Check, whether inessential states exist.

4.12) A Markov chain has state space Z = {0,1,2,3} and transition matrix

(0 0 1 0)
po| 1 0 0 0

04 06 0 0

0.1 0.4 02 0.3

Determine the classes of essential and inessential states.
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4.13) A Markov chain has state space Z = {0, 1,2,3,4} and transition matrix
(00208 0 0 )

0 0 0 09 0.1
P=|0 0 0 01 09
1 0 0 0 O
1 0 0 0 O

(1) Draw the transition graph.
(2) Verify that this Markov chain is irreducible with period 3.
(3) Determine the stationary distribution.

4.14) A Markov chain has state space Z = {0, 1,2,3,4} and transition matrix

(0 1 0 0 0)

1 0 0 0 0

P=| 02 02 02 04 0
0208 0 0 0

04 01 01 0 04

(1) Find the essential and inessential states.

(2) Find the recurrent and transient states.

4.15) Determine the stationary distribution of the random walk considered in exam-
ple 4.8 on condition p; =p, 0<p<1.

4.16) Let the transition probabilities of a birth- and death process be given by

_ 1

=——  an
1+ il + 1)]?

Show that the process is transient.

Pi d gi=1-p;; i=12,..; pg=1.

4.17) Let i and j be two different states with f; T =J;'i = 1. Show that both i and j are
recurrent.

4.18) The respective transition probabilities of two irreducible Markov chains (1)
and (2) with common state space Z = {0, 1,...} are

1 i+l . )

i+2, P10—1+2, l—o,l,...,
i+1 1. .

@) pin1=75 Pi0=755 =01

(M piip1=

Check whether these Markov chains are transient, null recurrent or positive recur-
rent.
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4.19) Let N; be the random number of time periods a discrete-time Markov chain
stays in state i (sojourn time of the Markov chain in state ).

Determine E(N;) and Var(N;).

4.20) A haulier operates a fleet of trucks. His contract with an insurance company
covers his whole fleet and has the following structure (‘bonus malus system' in car
insurance): The haulier has to pay his premium at the beginning of each year. There
are 3 premium levels: A1, Ay and A3 with A3 <A, <A;. If no claim had been made
in the previous year and the premium level was A;, then the premium level in the
current year is A, or A3 if A; =A3. If a claim had been made in the previous year,
the premium level in the current year is Aq . The haulier will claim only then if the
total damage a year exceeds an amount of ¢; given the premium level A; in that year;
i=1,2,3. In case of a claim, the insurance company will cover the full amount
minus a profitincreasing amount of a;, 0 <a; <c;. The total damages a year are
independent random variables, identically distributed as M.

Given a vector of claim limits (c,cp,c3), determine the haulier's long-run mean
loss cost a year.

Hint Introduce the Markov chain {X, X5, ...}, where X, =i if the premium level at
the beginning of year n is A; and make use of theorem 4.10.

(Loss cost = premium plus total damage not refunded by the insurance company.)
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CHAPTER 5

Continuous-Time Markov Chains

5.1 BASIC CONCEPTS AND EXAMPLES

This chapter deals with Markov processes which have parameter set T = [0, ) and
state space Z = {0,+1,+2, ...} or subsets of it. According to the terminology introduc-
ed in section 2.3, for having a discrete parameter space, this class of Markov proces-
ses are called Markov chains.

Definition 5.1 A stochastic process {X(#), # =0} with parameter set T and discrete
state space Z is called a continuous-time Markov chain or a Markov chain in contin-
uous time if, for any n > 1 and arbitrary sequences

{20,111} With 2g <ty <---<t,. 1 and {ig,i|, ...,iy41 i € Z,
the following relationship holds:
PX(ty41) =iyt [ X(tn) =in, ..., X(t1) =1, X(tg) =i¢) (5.1)
=P(X(ty41) = iy | X(tn) = in). °
The intuitive interpretation of the Markov property (5.1) is the same as for discrete-
time Markov chains:

The future development of a continuous-time Markov chain depends only on
its present state and not on its evolution in the past.

The conditional probabilities
pij(s,)=PX(0) =j|X(s)=1); s<t ije ZL;

are the transition probabilities of the Markov chain. A Markov chain is said to be
homogeneous if for all s,te T and i,j € Z the transition probabilities p; j(s, f) de-

pend only on the difference ¢ —s :
pl-j(s, 1) =pl-j(0, t—9).
In this case the transition probabilities depend only on one variable:
Pij(®=p;;0,0).
Note This chapter only considers homogeneous Markov chains. Hence no confusion

can arise if only Markov chains is referred to.

The transition probabilities are comprised in the matrix of transition probabilities P
(simply: transition matrix):
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PO =((p;j®); ijeZ
Besides the trivial property p; j (9) 2 0, transition probabilities are generally assumed
to satisfy the conditions

.ZZpl-j(t)z 1; t20,ie Z (5.2)
JE

Comment It is theoretically possible that, for some i € Z,

JjeZ
In this case, unboundedly many transitions between the states occur in any finite time
interval [0, #) with positive probability

1= 2 p;.
jezZ

This situation approximately applies to nuclear chain reactions and population explo-
sions of certain species of insects (e.g. locusts). In the sequel it is assumed that

lim p;; (=1 54
t—+0
By (5.2), this assumption is equivalent to
Py © = lim pi0=8;; ijeZ. (5.5)
The Kronecker symbol d; i is defined by (4.4).
Analogously to (4.5), the Chapman-Kolmogorov equations are
pijt+0= 2 pi()py;(v) (5.6)
kel

for any t=20, 120, and i, j € Z. By making use of the total probability rule, the
homogeneity and the Markov property, (5.6) is proved as follows:

PX(t+71)=j, X(0)=1i)

pij(t+7) = POX(+7) = LX(0) = i) =

P(X(0) =1)
_ y PXHD =), X =k X(O0) =)
ke Z P(X(0)=1)
_ y Pty = J1X(0) = k, X(0) = i) PX(0) = k, X(0) = i)
ke Z PX(0)=1)
_ y PG = Jj1X(0) = k) PX(0) = k| X(0) = i) P(X(0) = i)
keZ PX(0) =1)
= kEZZ P(X(1) = j|X(0) = k) P(X(1) = k| X(0) = i)

=X ikl i(T).
pyOe
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Absolute and Stationary Distributions Let p;(r) = P(X(f) =i) be the probability
that the Markov chain is in state i at time ¢. p;(?) is called absolute state probability
(of the Markov chain) at time 7. Hence, { p;(¥), i € Z} is said to be the absolute (one-
dimensional) probability distribution of the Markov chain at time ¢ In particular,
{p;(0); i € Z} is called an initial (probability) distribution of the Markov chain. By
the total probability rule, given an initial distribution, the absolute probability distri-
bution of the Markov chain at time ¢ is

pi= % pi0)p;;(t), jeZ. (5.7)
ieZ

For determining the multidimensional distribution of the Markov chain at time points
t9st1s--rtn With 0<t#g <t <--- <ty <eco, only its absolute probability distribution
at time ¢y and its transition probabilities need to be known. This can be proved by re-
peated application of the formula of the conditional probability (1.6) and by making
use of homogeneity of the Markov chain;

P(X(tg) =i, X(t1)=11,...., X(tn) = in)

=Pi(t0)Piyi, (1 = 10)Pi iy, (02 =11) P _yip(In—1p-1)- (5.8)

Definition 5.2 An initial distribution {7t; = p;(0), i € Z} is said to be stationary if

n;=p;() forall 120 and ie Z. (5.9)
[ J

Thus, if at time #=0 the initial state is determined by a stationary initial distribution,
then the absolute state probabilities p (1) do not depend on ¢ and are equal to & 7z
Consequently, the stationary initial probabilities T; are the absolute state probabil-
ities p j(t) for all j e Z and ¢t = 0. Moreover, it follows from (5.8) that in this case all

n-dimensional distributions of the Markov chain, namely
{P(X(ll +h)= i1, X(lz +h)= (9,0 X(itn+h)=in}, ij eZ (5.10)

do not depend on 4, i.e. if the process starts with a stationary initial distribution, then
the Markov chain is strictly stationary. (This result verifies the more general state-
ment of theorem 2.1.) Moreover, it is justified to call {r;,i € Z} a stationary (prob-
ability) distribution of the Markov chain.

Example 5.1 A homogeneous Poisson process {N(¢), ¢ = 0} with intensity A is a ho-
mogeneous Markov chain with state space Z = {0, 1, ...} and transition probabilities
A
G-
The sample paths of the process {N(?), #= 0} are nondecreasing step-functions. Its
trend function is linearly increasing:

m(t) = E(N(t)) = ht.

pij)= i<].
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Thus, a stationary initial distribution cannot exist. (However, according to the corol-
lary following definition 3.1 in section 3.1, the homogeneous Poisson process is a
stationary point process. ) O

Example 5.2 At time =0, exactly n systems start operating. Their lifetimes are in-
dependent, identically distributed exponential random variables with parameter A. If
X(t) denotes the number of systems still operating at time ¢, then {X(¥), # =0} is a
Markov chain with state space Z = {0, 1,...,n}, transition probabilities

i = (lij) (1—eMyide M p>i>j>0.

and initial distribution P(X(0) = n) = 1. The structure of these transition probabilities
is based on the memoryless property of the exponential distribution (example 1.14).
Of course, this Markov chain cannot be stationary. O

Example 5.3 Let Z= {0, 1) be the state space and

1t
1 1
PO= 7,
1+

the transition matrix of a stochastic process {X(#), = 0}. It is to check whether this
process is a Markov chain. Assuming the initial distribution

Po(0)=PX(0)=0) = 1
and applying formula (5.7) yields the absolute probability of state 0 at time ¢ =3:
PoB3)=po(0)pooB3) =1/4.
On the other hand, applying (5.6) with /=2 and Tt =1 yields the (wrong) result
P03 =proo2)poo(1) +po1(2)p1o(1) =1/2.
Therefore, Chapman-Kolmogorov's equations (5.6) are not valid so that {X(¢), t> 0}

cannot be a Markov chain. O

Classification of States The classification concepts already introduced for discrete-
time Markov chains can analogously be defined for continuous-time Markov chains.
In what follows, some concepts are defined, but not discussed in detail.

A state set C c Z is called closed if
pl-j(t)=0 forallt>0,ie C and j ¢ C.

If, in particular, {7} is a closed set, then i is called an absorbing state. The state j is
accessible from i if there exists a ¢ with pl-j(t) > 0. Ifi and j are accessible from each

other, then they are said to communicate. Thus, equivalence classes, essential and
inessential states as well as irreducible and reducible Markov chains can be defined
as in section 4.2 for discrete Markov chains.
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State i is recurrent (transient) if

A recurrent state i is positive recurrent if the mean value of its recurrence time (time
between two successive occurences of state i) is finite. Since it can easily be shown
that p; j(to) >0 implies p; j(t) >0 for all #> 1, introducing the concept of a period

analogously to section 4.3.3 makes no sense.

5.2 TRANSITION PROBABILITIES AND RATES

This section discusses some structural properties of continuous-time Markov chains
which are fundamental to mathematically modeling real systems.

Theorem 5.1 On condition (5.4), the transition probabilities p; j(t) are differentiable
in [0, o) forall i,j € Z.

Proof For any /> 0, the Chapman-Kolmogorov equations (5.6) yield

pjt+h)—p;(t)= kEZZp,-k(h)pkj(t) —pii(®)

:—1— ”h ii E i l’l (1) .
A=pipy)+, Z  pih)py®)

Thus,
—(1=p;i(M) <=1 =p;;(M) pi(6) < pyi(t+h) = p (1)
<Y puWprd< X pih
kEZplk( )Pk () kEZplk( )
k#i k#i
=1-p;ih).
Hence,

piit+h) =p )| <1=p;(h).

The uniform continuity of the transition probabilities and, therefore, their differentia-
bility for all #> 0 is now a consequence of assumption (5.4). u

Transition Rates The following limits play an important role in all future deriva-
tions. For any i,j € Z, let

. 1=pjih)
;= lim —1—, 5.11
. pyty
=1 . 5.12
qyj = Jim ==, % (5.12)
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These limits exist, since, by (5.5),
p;;(0)=1 and pij(O) =0 fori#j
so that, by theorem 5.1,

dp;;(1)
PO === ==, (5.13)
=0
dpj;(1)
PO = ——| =qy. i#). (5.14)
=0

For 4 — 0, relationships (5.13) and (5.14) are equivalent to
pii(h)=1-q;h+o(h) (5.15)
pij(h):qijh+0(h)’ i#], (516)

respectively. The parameters g; and g; j are the transition rates of the Markov chain.
More exactly, q; is the unconditional transition rate of leaving state i for any other
state, and q;j is the conditional transition rate of making a transition from state i to
state j. According to (5.2),

{/.J#i}

Kolmogorov's Differential Equations In what follows, systems of differential
equations for the transition probabilities and the absolute state probabilities of a
Markov chain are derived. For this purpose, the system of Chapman-Kolmogorov
equations is written in the form

pijt+h) = X pip(h)py;(®).
ke Z
It follows that

pijt+h)—p;;Q@ Pirh) 1—p;i(h)
A :kgi Zh pkj(t)—+pij(t).

By (5.13) and (5.14), letting & — 0 yields Kolmogorov's backward equations for the
transition probabilities:

Py =T ayepii=a;p0, 120. (5.18)
k#i

Analogously, starting with
pijt+h) = X pipy;h),
ke Z

yields Kolmogorov's forward equations for the transition probabilities:

Py =T pirag—a;pij, 120. (5.19)
k#j
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Let {p;(0), i€ Z} be any initial distribution. Multiplying Kolmogorov's forward
equations (5.19) by p;(0) and summing with respect to i yields
3 pi0)pl) =
ieZ

e

O i~ = pi0)qipit

Zp,( )kijp,k()qk, ieZpl( )4;pi;t)

=3 a1 2 piOpin—q; T pi0)p D).
jqkjieZpl( )plk() q]iezpl( )PU()

Thus, in view of (5.7), the absolute state probabilities satisfy the system of linear
differential equations

P = Z akpi0) —4jpj), 120, jEZ. (5.20)
J

In future, the absolute state probabilities are assumed to satisfy

2z pi=1. (5.21)
ieZ
This normalizing condition is always fulfilled if Z is finite.

Note If the initial distribution has structure
pi(0)=1,p;(0)=0 for j =1,
then the absolute state probabilities are equal to the transition probabilities
pj)=pij@), je Z

Transition Times and Transition Rates It is only possible to exactly model real
systems by continuous-time Markov chains if the lengths of the time periods between
changes of states are exponentially distributed, since in this case the 'memoryless
property' of the exponential distribution (example 1.14) implies the Markov property.
If the times between transitions have known exponential distributions, then it is no
problem to determine the transition rates. For instance, if the sojourn time of a
Markov chain in state 0 has an exponential distribution with parameter Ay, then,
according to (5.11), the unconditional rate of leaving this state is given by

1 — Y
4o = lim poo) _ . 1=e7*0
h—0 h h—0 h
Aoh + o(h
= im 202 EOW) i 2O
h—0 h h—0 h

Hence,
go=no- (5.22)
Now let the sojourn time of a Markov chain in state 0 have structure
Yo =min (Yy1,Y02),

where Y| and Yy, are independent exponential random variables with respective
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parameters A and A,. If Y(5| < Y55, the Markov chain makes a transition to state 1
and if Y > Y, to state 2. Thus, by (5.12), the conditional transition rate from state
0 to state 1 is,

Ak —hoh
po1(h) . (1—e MMy e ™2 4 o(h)
= lim = lim
701 h—0 h h—0 h
Ah(1=Ah
_ fim A=) o)
h—0 h h—0 h

= lim (A —=A{Arh)=A;.
hglo(l 1A h) =2

Hence, since the roles of Yy and Y, can be interchanged,
q01 :7\,1, qOZZ?\,z, q0:7\,1+7L2. (523)
The results (5.22) and (5.23) will be generalized in section 5.4.

Transition Graphs Establishing the Kolmogorov equations can be facilitated by
transition graphs. These graphs are constructed analogously to the transition graphs
for discrete-time Markov chains: The nodes of a transition graph represent the states
of the Markov chain. A (directed) edge from node 7 to node j exists if and only if
qij> 0. The edges are weighted by their corresponding transition rates. Thus, two
sets of states (possibly empty ones) can be assigned to each node i: firstly edges with
initial node i and secondly edges with end node ;, that is, edges which leave node i
and edges which end in node i. The unconditional transition rate g; equals the sum of
the weights of all those edges leaving node i. If there is an edge ending in state i and
no edge leaving state i, then i is an absorbing state.

Example 5.4 (system with renewal) The lifetime L of a system has an exponential
distribution with parameter A. After a failure the system is replaced by an equivalent
new one. A replacement takes a random time Z, which is exponentially distributed
with parameter . All life- and replacement times are assumed to be independent.
Thus, the operation of the system can be described by an alternating renewal process
(section 3.3.6) with 'typical renewal cycle' (L,Z). Consider the Markov chain
{X(?), t 2 0} defined by

1 if the system is operating

X(H)= . o .
0 0  if the system is being replaced
Its state space is Z = {0, 1}. The absolute state probability

p1()=PX(H=1)

of this Markov chain is the point availability of the system. In this simple example,
only state changes from 0 to 1 and from 1 to 0 are possible. Hence, by (5.22),

q0=qo1 =M and g1 =q19=A.
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CX )

n

Figure 5.1 Transition graph of an alternating renewal process (example 5.4)

The corresponding Kolmogorov differential equations (5.20) are
Py =—1po(®)+Apy (1),
Pll (O =+upo() —Ap1(D.

These two equations are linearly dependent. (The sums of the left hand sides and the
right hand sides are equal to 0.) Replacing p((?) in the second equation by 1—p(¢)
yields a first-order nonhomogeneous differential equation with constant coefficients
for p1(9):

PlO+A+pp (=4,

Given the initial condition p (O) =1, the solution is

P DL
pi= X+u X+u 120.
The corresponding stationary availability is
: [
ny = lim H=+——.
1 Ho0191() 1
In example 3.17, the same results have been obtained by applying the Laplace trans-
form. (There the notation L =Y, A=2A and 1 =2A( had been used.) O

Example 5.5 (two-unit redundant system, standby redundancy) A system consists
of two identical units. The system is available if and only if at least one of its units is
available. If both units are available, then one of them is in standby redundancy (cold
redundancy), that is, in this state it does not age and cannot fail. After the failure of a
unit, the other one (if available) is immediately switched from the redundancy state
to the operating state and the replacement of the failed unit begins. The replaced unit
becomes the standby unit if the other unit is still operating. Otherwise it immediately
resumes its work. The lifetimes and replacement times of the units are independent
random variables, identically distributed as L and Z, respectively. L and Z are assum-
ed to be exponentially distributed with respective parameters A and . Let Ly denote
the system lifetime, i.e. the random time to a system failure. A system failure occurs,
when a unit fails whilst the other unit is being replaced. A Markov chain
{X(®), t>0} with state space Z=1{0,1,2} is introduced in the following way:
X(t) =1 if i units are unavailable at time ¢ Let Y; be the unconditional sojourn time
of the system in state i and Y; 5 be the conditional sojourn time of the system in state i

given that the system makes a transition from state i into state j. From state 0, the
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O O S

Figure 5.2 Transition graph for example 5.5 a)

system can only make a transition to state 1. Hence, Y=Yy =L. According to
(5.22), the corresponding transition rate is given by

q0=901 =M

If the system makes a transition from state 1 to state 2, then its conditional sojourn
time in state 1 is Y5 =L, whereas in case of a transition to state 0, it stays a time
Yo = Z in state 1. The unconditional sojourn time of the system in state 1 is

Y| =min (L,Z).
Hence, according to (5.23), the corresponding transition rates are
q12 =, qi0=H and q1 =7L+|.L.

When the system returns from state 1 to state 0, then it again spends time L in state 0,
since the operating unit is 'as good as new' in view of the memoryless property of
the exponential distribution.

a) Survival probability In this case, only the time to entering state 2 (system failure)
is of interest. Hence, state 2 must be considered absorbing (Figure 5.2) so that

420 =921 =0
The survival probability of the system has the structure
Fs(t)=P(Ls > 1) = po() +p1 (1)
The corresponding system of differential equations (5.20) is
P& ==Apo(t) +1py (0),
PO =+hpo(t) ~ M+ p1 (1), (5.24)
Ph) =+1p (.

This system of differential equations will be solved on condition that both units are
available at time /= 0. Combining the first two differential equations in (5.24) yields
a homogeneous differential equation of the second order with constant coefficients

for po():
V4 / 2 —
P @)+ @A+ pl ) + 22 po (5 =0.
The corresponding characteristic equation is
2+ A+ W x+A2=0.

Its solutions are
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X1 =—(k+%) * 1/7¢L+u2/4 .

Hence, since py(0) =1, for =0,

— ; ¢ : _ 2
po®=a s1nh5t with ¢= J4Au+p” .

Since p1(0) =0, the first differential equation in (5.24) yields a = 2A/c and

27L+ut u
—_ 2oinh € 4
piH=e 2 (Csmh2t+cosh2t), t>0.

Thus, the survival probability of the system is

2A+U

Fay=e 2 2h+U

Cc

{cosh§t+ sinh%t] t=>0.

(For a definition of the hyperbolic functions sinh and cosh, see section 3.2.1.) The
mean value of the system lifetime Ly is most easily obtained from formula (1.12):

BLs) =3+ (5.25)

For the sake of comparison, in case of no replacement (U = 0), the system lifetime

Ls has an Erlang distribution with parameters 2 and A:

Fs(t)=(1+A0)e M, ELg)=2/\.

b) Availability If the replacement of failed units is continued after system failures,
then the point availability

A =po()+p1(0)

of the system is of particular interest. In this case, the transition rate g, from state 2
to state 1 is positive. However, g,; depends on the number r=1 or r=2 of
mechanics which are in charge of the replacement of failed units. Assuming that a
mechanic cannot replace two failed units at the same time, then (Figure 5.3)

421 =92 ="l
For =2, the sojourn time of the system in state 2 is given by Y, =min(Zy, Z5),
where Z; and Z, are independent and identically as Z distributed. Analogously, the
sojourn time in state 1 is given by Y| = min(L, Z).

CX (@) O,

u ru

Figure 5.3 Transition graph for example 5.5 b)
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Hence, the transition rates ¢ and ¢, have the same values as under a). The cor-
responding system of differential equations (5.20) becomes, when replacing the last
differential equation by the normalizing condition (5.21),

PO ==Apo(t)+1py (0,
Py =+hpo() = A+ W p () +ripy(0),
l=po®+ p1(O+ pr(0).

The solution is left as an exercise to the reader. O
2\
() (D)
n

Figure 5.4 Transition graph for example 5.6 a)

Example 5.6 (two-unit system, parallel redundancy) Now assume that both units of
the system operate at the same time when they are available. All other assumptions
and the notation of the previous example are retained. In particular, the system is
available if and only if at least one unit is available. In view of the initial condition
p(0) =1, the system spends

YO = min (LI’LZ)

time units in state 0. ¥y has an exponential distribution with parameter 2A and from
state 0 only a transition to state 1 is possible. Therefore, Yy = Y| and

90 =401 =2
When the system is in state 1, then it behaves as in example 5.5:

g10=M q12=XA, q1=r+p

a) Survival probability As in the previous example, state 2 has to be thought of as
absorbing: g5y = g51 =0 (Figure 5.4). Hence, from (5.20) and (5.21),

Pp(B)==2hpo(D) +1p (@),
PO =+2hpo(0) ~ A+ py (1),
1= po)+ p1@)+ pad).

Combining the first two differential equations yields a homogeneous differential
equation of the second order with constant coefficients for p(?) :

P )+ B+ po(0) +24%po() = 0.
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The solution is

(3 7»+u)
— t _ 7\1
- 2 c B inh £
polt)=e [cosh 5 {+—;— sinh 3 t}
where
c= 1/7»2+6M,L+;,L2 .
Furthermore,
3+
=)t
pl(t)z%e ( 2 ) sinh %t.
The survival probability of the system is
Fs(t)=P(Ls >0 =po(t) +p1 ()
Hence,
3AHL

= - t 3+ .

Fs()=e ( 2 ) {cosh%t+ = llsmh%t} , t=20. (5.26)
The mean system lifetime is

-3, K
E(Ly) = o + a2
For the sake of comparison, in the case without replacement (1L = 0)),
Fiy=2eM—e2M | pLg=.
27\’ N N\ 7\‘ N,
OO ©
[ ru

Figure 5.5 Transition graph for example 5.6 b)

b) Availability 1If r (r =1 or r =2) mechanics replace failed units, then

42 =921 =TH.
The other transition rates are the same as those under a) (Figure 5.5b). The absolute
state probabilities satisfy the system of differential equations

Pt ==2Apo(0) +1p (@),
PO =+2Apo(0) — A+Wp () +rpy (1),
1=pog@®+p1()+pr).

Solving this system of linear differential equations is left to the reader. O
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5.3 STATIONARY STATE PROBABILITIES

If {n s j € Z} is a stationary distribution of the Markov chain {X(#), > 0}, then this

special absolute distribution must satisfy Kolmogorov's equations (5.20). Since the

T;are constant, all the left-hand sides of these equations are equal to 0. Therefore, the

system of linear differential equations (5.20) simplifies to a system of linear algeb-
raic equations in the unknowns [

0= X gqp;®.—q;n;, jeZ. (5.27)
ke Zoks KT

This system of equations is frequently written in the form

qgimi= X qpi%, jE€Z. (5.28)
T keins K

This form clearly illustrates that the stationary state probabilities refer to an equilib-
rium state of the Markov chain:
I The mean intensity per unit time of leaving state j, which is ¢ T is equal to

the mean intensity per unit time of arriving in state ;.

According to assumption (5.21), only those solutions {nj, j€ Z} of (5.27) which

satisfy the normalizing condition are of interest:

2 mi=1. (5.29)

JjeZ
It is now assumed that the Markov chain is irreducible and positive recurrent. (Recall
that an irreducible Markov chain with finite state space Z is always positive recur-
rent.) Then it can be shown that a unique stationary distribution {n;, j € Z} exists

which satisfies (5.27) and (5.29). Moreover, in this case the limits
p;= [1_1>1110P,'j(f)
exist and are independent of i. Hence, for any initial distribution, there exist the
limits of the absolute state probabilities lim p ;(0) and they are equal to p IE
=00
;= lim p;(¢), je Z. 5.30
pj= lim p;@0). Jj (5.30)
Furthermore, for all j e Z,
. /
lim p’(¢#)=0.
im p3(2)

Otherwise, p j(t) would unboundedly increase as ¢ — oo, contradictory to p j(t) <1

Hence, when passing to the limit as t — oo in (5.20) and (5.21), the limits (5.30) are
seen to satisfy the system of equations (5.27) and (5.29). Since this system has a

unique solution, the limits p i and the stationary probabilities 7 [; must coincide:
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pj:nj’ jG 7.

For a detailed discussion of the relationship between the solvability of (5.27) and the
existence of a stationary distribution, see Feller [27].

Continuation of example 5.5 (two-unit system, standby redundancy) Since the sys-
tem is available if at least one unit is available, its stationary availability is

A= To+7g.
Substituting the transition rates from Figure 5.3 into (5.27) and (5.29), the T; are
seen to satisfy the following system of algebraic equations:

—7\,7504‘ Wy =0,
+7\.TE()—(7L+M)751+V7T,2=0,
T+ T+ Tl:2=1.
Caser=1
2
u Ap A2
o= 2 . Ty o T2E e
A+~ —2Ap A+w=—Ap A+~ —Ap
2
A=T50+TC1=L2XM.
A+w*—Au
Caser=2
2p? 2 A2
To=o o 2 Mt o T 2
(A+W*~+u A+~ +u A+~ +p
2
AZTC()-F‘[HZ—Zu £2hu .
(htw? +p?

Continuation of example 5.6 (two-unit system, parallel redundancy) Given the
transition rates in Figure 5.5, the 7t; are solutions of

J
—2Amg + nwmy =0,
2Ang—A+Wny +rumy =0,
T + T+ Top=1.
Caser=1
u? 25 o2

ny=—""m———"""=, T, = N My=—"->"7>>
0 A+w2+A2 ! A+w?2 +2A2 2 A+w?2 +A2

w2 +2au

A=mg+m=— A0
0T A+w?2 +2A2
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Caser=2
2 20 2
n0=u—2’ n1=—li2, n2=u—2’
A+W A+ A+
( )2
A=‘[E0+TE1=I—KF}LM) .

Figure 5.6 shows a) the mean lifetimes and b) the stationary availabilities of the two-
unit system for =1 as functions of p=A/l. As anticipated, standby redundancy
yields better results if switching a unit from a standby redundancy state to the operat-
ing state is absolutely reliable. With parallel redundancy, this switching problem

does not exist since an available spare unit is also operating. O
A A
0 o e | ~~— """~~~ """~ 7i
| standby b)i
AE(Ls) ! A |
i i i
‘ 0.8 l
| arallel
5+ 1 P l
|
| |
parallel } |
l 0.6+ ‘
‘ ‘ l
| Ly ‘ | Ly
0 0.5 1P 0 0.5 P

Figure 5.6 Mean lifetime a) and stationary availability b

Example 5.7 A system has two different failure types: type 1 and type 2. After a
type i-failure the system is said to be in failure state i; i = 1,2. The time L; to a type
i-failure is assumed to have an exponential distribution with parameter A; and the
random variables L{and L, are assumed to be independent. Thus, if at time =0 a
new system starts working, the time to its first failure is Y =min (L{,L;). After a
type 1-failure, the system is switched from failure state 1 into failure state 2. The
time required for this is exponentially distributed with parameter v. After entering
failure state 2, the renewal of the system begins. A renewed system immediately
starts working. The renewal time is exponentially distributed with parameter p. This
process continues to infinity. All life- and renewal times as well as switching times
are assumed to be independent. This model is, for example, of importance in traffic
safety engineering: When the red signal in a traffic light fails (type 1-failure), then
the whole traffic light is switched off (type 2-failure). That is, a dangerous failure
state is removed by inducing a blocking failure state.
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0 ) 12

Figure 5.7 Transition graph for example 5.7

Consider the following system states:

0 system is operating
1 type 1-failure state
2 type 2-failure state

If X(#) denotes the state of the system at time ¢, then {X(¢), =0} is a homogeneous
Markov chain with state space Z = {0, 1,2}. Its transition rates are (Figure 5.7)

901 =*1> g2 =22, q0=r1+h2, q12=91 =V, 420=92= 1.
Hence, the stationary state probabilities satisfy the system of algebraic equations
—(A +Ay) Ty +umy =0,
AMmg—-vm; =0,
To+T + Ty =1.

The solution is

_ uv
TO= A A v+ h +V)0
T Ajp
LT+ ) v+ +v)p°
Ap+A
) (Apt+Ag)v 0

T AV VI

5.4 SOJOURN TIMES IN PROCESS STATES

So far the fact has been used that independent, exponentially distributed times bet-
ween changes of system states allow for modeling system behaviour by homoge-
neous Markov chains. Conversely, it can be shown that for any i € Z the sojourn
time Y; of a homogeneous Markov chain {X(#), =0} in state i also has an exponen-
tial distribution: By properties (5.8) and (5.15) of a homogeneous Markov chain,
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P(Y; > t|X(0) = i) = P(X(s) =i, 0 <s < #| X(0) =)
~ k L
:nh_r){}QP(X(ﬁt) =i k=1,2,...,n
. 1 B
= tim | pil i) |

T t 11"
—nlgréo[l—qiﬁ+o(ﬁ)] .

P(Y; > t|X(0)=i)=e 9!, >0, (5.31)

X(0) = i)

It follows that

since e can be represented by the limit
. l) *
e—xh_r;go(lnL)C . (5.32)
Thus, Y; has an exponential distribution with parameter ¢;.

Given X(0)=i, X(Y;)= X(Y;+0) is the state to which the Markov chain makes a
transition on leaving state i. Let m(nf) denote the greatest integer m satisfying the
inequality m/n <t or, equivalently,

nt—1 <m(nt) < nt.

By making use of the geometric series, the joint probability distribution of the ran-
dom vector (¥;, X(Y;)), i #j, can be obtained as follows:

PX(Y)) =j, Y;> 1| X(0)=1)
= P(X(Y;) =], X(s)=i for 0<s<1]X(0)=1)

i £ A5 < e 5.5 [ro-)

m=m(nt)
= lim ng(m) P2 ) =, x{E) =i for 1 <k<m|x0) =)

i 5, [orkeo bl

o B

1_qiﬁ+0 n

Hence, by (5.32),
qii
PX(Y;) =], Y,->t|X(O)=i)=%e_qit; i#j; i,je L. (5.33)
l
Passing to the marginal distribution of Y; (i.e. summing the equations (5.33) with

respect to j € Z) verifies (5.31). Two other important conclusions are:
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1) Letting in (5.33) =0 yields the one-step transition probability from state i into
state j:
. N L7
pij=PX(Y;+0)=jIX(O0) =) =5, jeZ. (5.34)
2) The state following state i is independent of Y; (and, of course, independent of the
history of the Markov chain before arriving at state 7).

Knowledge of the transition probabilities p jj suggests to observe a continuous-time

Markov chain {X(¢), >0} only at those discrete time points at which state changes
take place. Let X, be the state of the Markov chain immediately after the nth change
of state and Xy = X(0). Then {X(,Xq,...} is a discrete-time homogeneous Markov
chain with transition probabilities given by (5.34):

pl-j:P(Xn:j|X_1:i):qq—lj, ijeZ; n=12,.. (5.35)
In this sense, the discrete-time Markov chain {X,X1,...} is embedded in the con-
tinuous-time Markov chain {X(¢), t>0}. Embedded Markov chains can also be
found in non-Markov processes. In these cases, they may facilitate the investigation
of non-Markov processes. Actually, discrete-time Markov chains, which are embed-
ded in arbitrary continuous-time stochastic processes, are frequently an efficient (if
not the only) tool for analyzing these processes. Examples for the application of the
method of embedded Markov chains to analyzing queueing systems are given in sec-
tions 5.7.3.2 and 5.7.3.3. Section 5.8 deals with semi-Markov chains, the framework
of which is an embedded Markov chain.

5.5 CONSTRUCTION OF MARKOYV SYSTEMS

In a Markov system, state changes are controlled by a Markov process. Markov sys-
tems, in which the underlying Markov process is a homogeneous, continuous-time
Markov chain with state space Z, are frequently special cases of the following basic
model: The sojourn time of the system in state i is given by
Yi = min (Yil’ Yi2’ ceey Yin,-)s

where the Y; j are independent, exponentially distributed random variables with param-
eters 7”1'1'; j=1,2,..,n; i,j€ Z. A transition from state i to state j is made if and
onlyif ¥; =Y; - If X(#) as usual denotes the state of the system at time ¢, then, by the

memoryless property of the exponential distribution, {X(#), >0} is a homogene-
ous Markov chain with transition rates

pii(h)
lim —2—~
h—0 h

nj

qij = =hij. 4i=2j=1 by
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This representation of g; results from (5.12) and (5.17). It reflects the fact that ¥; as
the minimum of independent, exponentially distributed random variables Y; ' also

has an exponential distribution, the parameter of which is obtained by summing the
parameters of the ¥; .

Example 5.8 (repairman problem) n machines with lifetimes L, L,,...,L, start
operating at time t=0. The L; are assumed to be independent, exponential random
variables with parameter A. Failed machines are repaired. A repaired machine is 'as
good as new'. There is one mechanic who can only handle one failed machine at a
time. Thus, when there are k > 1 failed machines, k— 1 have to wait for repair. The
repair times are assumed to be mutually independent and identically distributed as an
exponential random variable Z with parameter p. Life- and repair times are independ-
ent. Immediately after completion of its repair, a machine resumes its work.

Let X(¢) denote the number of machines which are in the failed state at time ¢. Then

{X(?), t 2 0} is a Markov chain with state space Z={0,1,...,n}. The system stays in
state 0 for a random time

Yo=min (L{, Ly, ...,Ln)
and then it makes a transition to state 1. The corresponding transition rate is
40 =901 =nh.
The system stays in state 1 for a random time
Yy=min (Ly, Ly, ....L,_1,2).
From state 1 it makes a transition to state 2 if Y; =L, forke {1,2,..,n—1},and a
transition to state 0 if Y| = Z. Hence,
q10=H qi2=m-DA and gj=(m-Dr+p.
In general (Figure 5.8),
qj1,;=m—j+DA; j=1,2,...n,
gjy1,;=M; j=0,1,...,n—1,

q;;=0; li-jl=2,

q; =(nm—-HrA+u; j=12,..,n,
qo=nh.

ni (n—1DA A
*o m o m . z}i )
Figure 5.8 Transition graph for the repairman problem (example 5.8)
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The corresponding system of equations (5.28) is
um; = nimn
(n—j+ l)lnj_l U = (n=pr+wm;; j=1,2,..,n—1
HTtp = AT,
Beginning with the first equation, the stationary state probabilities are obtained by

successively solving for the ;:

|

n
= -

pimy; j=0,1,..,n;

where p = A/\. From the normalizing condition (5.29),

L  pl i -1
nOZLEO(n—f)!p} . .

Erlang's Phase Method Systems with Erlang distributed sojourn times in their
states can be transformed into Markov systems by introducing dummy states. This is
due to the fact that a random variable, which is Erlang distributed with parameters n
and L, can be represented as a sum of n independent exponential random variables
with parameter L (example 1.23, section 1.7.2). Hence, if the time interval, which the
system stays in state 7, is Erlang distributed with parameters n; and {;, then this in-
terval is partitioned into n; disjoint subintervals (phases), the lengths of which are
independent, identically distributed exponential random variables with parameter ;.
By introducing the new states /|, /2, ....jn; to label these phases, the original non-
Markov system becomes a Markov system. In what follows, instead of presenting a
general treatment of this approach, the application of Erlang's phase method is
demonstrated by an example.

Example 5.9 (¢wo-unit system, parallel redundancy) As in example 5.6, a two-unit
system with parallel redundancy is considered. The lifetimes of the units are identi-
cally distributed as an exponential random variable L with parameter A. The replace-
ment times of the units are identically distributed as Z, where Z has an Erlang distri-
bution with parameters n =2 and p. There is only one mechanic in charge of the
replacement of failed units. All other assumptions and model specifications are as in
example 5.6. The following system states are introduced:

both units are operating
one unit is operating, the replacement of the other one is in phase 1
one unit is operating, the replacement of the other one is in phase 2

no unit is operating, the replacement of the one being maintained is in phase 1

AW N = O

no unit is operating, the replacement of the one being maintained is in phase 2

The transition rates are (Figure 5.9):

© 2006 by Taylor & Francis Group, LLC



260 STOCHASTIC PROCESSES

Figure 5.9 Transition graph for example 5.9

qo01 =2\, g =2A,
q12=W q13=A, g1 =h+p
920 =K, 923 =X, g2 =A+p
934 =MW, q3=H1
ga41 =M, q4=H
Hence the stationary state probabilities satisfy the following system of equations:
umy =247
2Amy + Uy = (A+ )Ty
HTy = A+
ATy +ATy =UTy
UT3 =HTy
l=Ty+T| +Ty +T3+Ty
Let n;.k denote the stationary probability that 7 units are failed. Then,
TC6 =Ty, TET =Ty +7y, n§ =T3 +T4.
The probabilities n; are the ones of interest. Letting p = E(Z)/E(L) = 2A/l, they are
né = [1 +2p+%p2 +%p3]_1,
= [2p+%p2J_lnS , W= [ p2 +%p3T1n8.
The stationary system availability is given by 4 = TES + TCT O

Unfortunately, applying Erlang's phase method to structurally complicated systems
leads to rather complex Markov systems.
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5.6 BIRTH- AND DEATH PROCESSES

In this section, continuous-time Markov chains with property that only transitions to
'neighbouring' states are possible, are discussed in more detail. These processes,
called (continuous-time) birth- and death processes, have proved to be an important
tool for modeling queueing, reliability and inventory systems. In the economical
sciences, birth- and death processes are among other things used for describing the
development of the number of enterprises in a particular area and manpower fluctua-
tions. In physics, flows of radioactive, cosmic and other particles are modeled by
birth- and death processes. Their name, however, comes from applications in biolo-
gy, where they have been used to stochastically model the development in time of
the number of individuals in populations of organisms.

5.6.1 Birth Processes

A continuous-time Markov chain with state space Z={0,1,...,n} is called a (pure)
birth process if, for all i=0,1,...,n—1, only a transition from state i to i+ 1 is
possible. State n is absorbing if 7 < eo.

Thus, the positive transition rates of a birth process are given by ¢; ;. In what
follows, they will be called birth rates and denoted as
A; =q;i41> i=0,1,...n—1,
n=0 for n <oo.

The sample paths of birth processes are nondecreasing step functions with jump
height 1. The homogeneous Poisson process with intensity A is the simplest example
of a birth process. In this case, A; =\, i=0,1,... Given the initial distribution

pm(0) = P(X(0) =m) =1

(i.e. in the beginning the 'population’ consists of m individuals), the absolute state
probabilities p j(t) are equal to the transition probabilities p mj(t). The p j(t) are iden-
tically equal to 0 for j < m and, according to (5.20), for j = m they satisfy the system
of linear differential equations

P{n(f) =~Ampm(?),
/ .
pj(t) = +7Lj_1pj_1 (- ijj(t) ;o jEm+1l,m+2, ... (5.36)
PRO=+hyy Py (0, n<oo.
From the first differential equation,
pmf)=ePmt >0, (5.37)

For j=m+1, m+2, ..., the differential equations (5.36) are equivalent to
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M (Pl + 0 py0)) =1 by 1

or
d At
L)) =21 0.
By integration,
-\t
pj= Ai_je Ioe J* Pj-1(x)dx. (5.38)

Formulas (5.37) and (5.38) allow the successive calculation of the probabilities p ;(0)
for j=m+1,m+2,... For instance, on conditions p(0) =1 and Ay # A,

1O =2 e_}‘ltj.f) MY A0 X gy

=1y e_Klt.[g e~ Mo=h gy

=—x0 (e_klt—e_kot), t20.
Ao—Aq

If all the birth rates are different from each other, then this result and (5.38) yields by
induction:

L -\t .
pj(t)= 2()C1J7\.le LN ]=O,1,...,
1=l

1 Mg . 1
C.=-1 TII , 0<i<j, Cpo==—.
YN k=0, ki MmN 072

Linear Birth Process A birth process is called a linear birth process or a Yule-Furry
process if its birth rates are given by
Ai=ik; i=0,1,2,...

Since state 0 is absorbing, an initial distribution should not concentrate probability 1
on state 0. Linear birth processes occur, for instance, if in the interval [z, £+ /] each
member of a population (bacterium, physical particle) independently of each other
splits with probability Ak +o(h) as h — 0.

Assuming p| = P(X(0) = 1) =1, the system of differential equations (5.36) becomes
IO =M= G=Dpjg @15 j=1,2,.. (5.39)
with
p1(O)=1, pi0)=0; j=2,3,.. (5.40)
The solution of (5.39) under the initial distribution (5.40) is

pi=eMA—eMyiFl =12
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A

Thus, X(¢) has a geometric distribution with parameter p =e¢™. Hence, the trend

function of the linear birth process is
mt)=eM, t>0.
If Z is finite, then there always exists a solution of (5.36) which satisfies
2 pin=1. (5.41)
ieZ

In case of an infinite state space Z = {0, 1, ...}, the following theorem gives a neces-
sary and sufficient condition for the existence of a solution of (5.36) with property
(5.41). Without loss of generality, the theorem is proved on condition (5.40).

Theorem 5.2 (Feller-Lundberg) A solution {p(?), p1(), ... } of the system of dif-
ferential equations (5.36) satisfies condition (5.41) if and only if the series

o)

1
4 (5.42
i=0 Mi )

diverges.
Proof Let
sk =poO+p (O +---+pp).
Summing the middle equation of (5.36) from j =1 to k yields
sh(0) == py(d).
By integration, taking into account s;(0) =1,
1= s(0) =My o predx . (5.43)

Since s(f) is monotonically increasing as k — oo, the following limit exists:

) = klgr:o(l —55(0).
From (5.43),

xkji) prx)dx = r(f).
Dividing by A;, and summing the arising inequalities from 0 to £,

t L S U
IO Sp(x) dx = r(t)(ko + » +--- 7»1() .

Since sz () <1 forall >0,
1 1 1
tZr(t)(—+—+---+—j.
Ao A A

If the series (5.42) diverges, then this inequality implies that #(f) = 0 for all > 0. But
this result is equivalent to (5.41).
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Conversely, from (5.43),
kkj.gpk(x)dx <1

so that
t 1 1 1
Sp(X)dx < =+ =+ + .
Jo sk A M A
By passing to the limit as £ — oo,
t 3z 1
[o( =r()dr< E e

If 7(r) = 0, the left-hand side of this inequality is equal to ¢. Since ¢ can be arbitrarily
large, the series (5.42) must diverge. This result completes the proof. u

According to this theorem, it is theoretically possible that within a finite interval
[0,7] the population grows beyond all finite bounds. The probability of such an ex-
plosive growth is
1-X20 pi(d).
This probability is positive if the birth rates grow so fast that the series (5.42) con-
verges. For example, an explosive growth would occur if
A =i2h; i=1,2,.

since

$L_1$1_n2

Sk RS2 6
It is remarkable that an explosive growth occurs in an arbitrarily small time interval,
since the convergence of the series (5.42) does not depend on ¢.

5.6.2 Death Processes

A continuous-time Markov chain with state space Z={0,1,...} is called a (pure)
death process if, for all i=1,2,... only transitions from state i to i— 1 are possible.
State 0 is absorbing.

Thus, the positive transition rates of pure death processes are given by ¢, ; 1, i 1.
In what follows, they will be called death rates and denoted as

Wo =0, W =qi,i—1; i=1,2,..

The sample paths of such processes are non-increasing step functions. For pure death
processes, on condition

pn(0) = P(X(0)=n) =1,

the system of differential equations (5.20) becomes
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() =—tn p0)
PJ/-(t) =—WipiO+Wiy1 P (05 j=0,1,.,n—1. (5.44)
The solution of the first differential equation is
pn(t)y=eHnl >0,
Integrating (5.44) yields
—] l‘ . .
piO =g e [ pidy: j=n—1,.,1,0. (5.45)
Starting with p,(f), the probabilities

pj(t)a j:n_lan_za‘”aoa

can be recursively determined from (5.45). For instance, assuming [, # W,_1,

Pu—1@®=Un e Mn-1 t.[l() o~ (Hn =y 1)X gy

= l-lntt—ﬁn—l (e‘lln—l L _ oM f) .

More generally, if all the death rates are different from each other, then

n
pj)=2X DypeMit, 0<j<n, (5.46)
=
where
1 & Mg .. 1
L= — P m— <i< = —
Dl] ”jkzj”k_“i’ j<is<n, Dun in

ki

Linear Death Process A death process {X(¢), t > 0} is called a linear death process
if it has death rates

w,=ik; i=0,1,..
Under the initial distribution
pn(0) = PX(0)=n) =1
the process stays in state n an exponentially with parameter nA distributed time:

pn(ty=eM >0,
Starting with pj(f), one obtains inductively from (5.45) or simply from (5.46):
(A=) —iAt (1 _ At
pl(t)—(l.)e (1=, i=0,1,..,n.

Hence, X(¢) has a binomial distribution with parameters » and p = e™M o that the
trend function of a linear death process is

m(t)zne_m, t=>0.
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Example 5.10 A system consisting of n subsystems starts operating at time t=0.
The lifetimes of the subsystems are independent, exponentially with parameter A dis-
tributed random variables. If X(f) denotes the number of subsystems still working at
time ¢, then {X(f), t 2 0} is a linear death process with death rates

Hl:ll, i:O,l,... O

5.6.3 Birth- and Death Processes

5.6.3.1 Time-Dependent State Probabilities
A continuous-time Markov chain {X(f),7 > 0} with state space

Z={0,1,...,n}, n<oo,

is called a birth- and death process if from any state i only a transition to i—1 or
i+1 is possible, provided that i— 1 € Z and i+ 1 € Z, respectively.

Therefore, the transition rates of a birth- and death process have property
qi,j =0 for |l-]| > 1.

The transition rates A; =g, ;1 and W; =q; ;| are called birth rates and death rates,
respectively. According to the restrictions given by the state space, Ay =0 for n < oo
and pg = 0 (Figure 5.10). Hence, a birth process (death process) is a birth- and death
process the death rates (birth rates) of which are equal to 0. If a birth- and death
process describes the number of individuals in a population of organisms, then, when
arriving in state 0, the population is extinguished. Thus, without the possibility of
immigration, state 0 is absorbing (Ag = 0).

Lo Moo Aicq A
.ﬂ | 231 .n 1%] M : Mt

Figure 5.10 Transition graph of the birth- and death process
According to (5.20), the absolute state probabilities p j(t) =PX(®)=)), je Z, of a
birth- and death process satisfy the system of linear differential equations

Po&=-Ropo(®)+111p1(0),
P]{(l) =+hi 121 ()= + 1) p; )+ pj (0, j=1,2,.,  (5.47)

PO =Myt Pyt (D —Hnpn(d), n<o.
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In the following two examples, the state probabilities (p(?), p1(?), ...} of two impor-
tant birth- and death processes are determined via their respective z-transforms

M(t,2) =X p(D7
under initial conditions of type
pn(0) =PX(0)=n)=1.
In terms of the z-transform, this condition is equivalent to
M0,2)=z", n=0,1,...
Furthermore, partial derivatives of the z-transforms will be needed:

M(t,2) 2
oz

M(,2) _ S Y ipi(nzil. (5.48)
1

/oo i
> IE) pi(z' and

=

Partial differential equations for M(¢,z) will be established and solved by applying
the characteristic method.

Example 5.11 (linear birth- and death process) {X(¢), t > 0} is called a linear birth-
and death process if it has transition rates

Aj=ik, u;=ip, i=0,1,..
In what follows, this process is analyzed on condition that
p1(0)=PXO)=1)=1.
Assuming p((0) =1 would make no sense since state 0 is absorbing. The system of
differential equations (5.20) becomes

PO =up @),
IO == DApjy ()= A+ WP+ G+ Dipi1 (05 j=1,2,...  (5.49)

Multiplying the jth differential equation by z/ and summing from j =0 to j = e, tak-
ing into account (5.48), yields the following linear homogeneous partial differential
equation in M(t, z):

oM oM
(—g;’Z)_(Z_l)()\‘Z_H)¥:O' (550)

The corresponding (ordinary) characteristic differential equation is a Riccati differ-
ential equation with constant coefficients:

%:—(z—l)az—u) = A2+ Wz, (5.51)
a) A# W By separation of variables, (5.51) can be written in the form
dz
——— =
(z=DAz-p)
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Integration on both sides of this relationship yields

1 n(%z—u

B ! z—1

" ):—t+C.

The general solution z=z(#) of the characteristic differential equation in implicit
form is, therefore, given by

P M)
c=(A—Wt ln(z_1 s

where ¢ is an arbitrary constant. Thus, the general solution M(¢,z) of (5.50) has

structure
M(t,2)=f ((x ~wr—In (%D :

where f can be any function with a continuous derivative. f can be determined by
making use of the initial condition p{(0) =1 or, equivalently, M(0,z) =z. Since

o= (o)
f must have structure
Ue —1

-

S =
Thus, M(t,z) is
LLexp {(l Wt —In (_H
Aexp {(k Wz —In (ﬂ) } -1 .
After simplification, M(t,z) becomes
“Ll - e(k—u)tj - L;_ LLeO»—lu)th
|:“ — ke(k_u)t] - }\,I:] - ue(k_u)th

This representation of M(z,z) allows its expansion as a power series in z. The coeffi-
cient of z/ is the desired absolute state probability p j(t). Letting p = A/u yields

M(t,z) =

M(t,z) =

_ 1- eO"—H)t

[1- G-t
[1-pe®i}/H

10 DL T

B

pj(ty=(1-p)p/!

Since state 0 is absorbing, p((?) is the probability that the population is extinguish-
ed at time ¢. Moreover,
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Thus, if A > W, the population will survive to infinity with positive probability /. If
A < U, the population sooner or later will disappear with probability 1. In the latter
case, the distribution function of the lifetime L of the population is

1 - e(k_u)t

P(Lﬁt)=po(t)=m,

Hence, the population will survive interval [0, {] with probability
PL>1t)=1-py@).

From this, applying (1.17),

uik ln(2—%).

The trend function m(f) = E(X(?)) is principally given by

E(L)=

m(t) =22 jpj(1).
By (1.23), m(¢) can also be obtained from the z-transform:

M1, z)

m(t) = oz

Z=1.

If only the trend function of the process is of interest, then here as in many other ca-
ses knowledge of the z-transform or the absolute state distribution is not necessary,
since m(#) can be determined from the respective system of differential equations
(5.47). In this example, multiplying the jth differential equation of (5.49) by j and
summing from j =0 to oo yields the following first-order differential equation:

m’ () = (L — wWm(o). (5.52)
Taking into account the initial condition p(0) = 1, its solution is
m(t) = e M1

By multiplying the j-th differential equation of (5.47) by j2 and summing from j=0
to oo, a second order differential equation in Var(X(f)) is obtained. Its solution is

Var(X(?)) = %ﬁ [ 1— e~ AW t] 20—t
Of course, since M(t,z) is known, Var(X(f)) can be obtained from (1.23), t0o.

If the linear birth- and death process starts in states s = 2,3, ..., no principal addition-
al problems arise up to the determination of M(¢,z). But it will be more complicated
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to expand M(¢,z) as a power series in z. The corresponding trend function, however,
is easily obtained as solution of (5.52) with the initial condition ps(0) =1:

mt)=sePWt >0,

b) A = In this case, the characteristic differential equation (5.51) simplifies to

_dz __

A(z—1)2
Integration yields

1
=A\t—
¢ z—1’
where c¢ is an arbitrary constant. Therefore, M(¢,z) has structure
M(t,z) f( t——) ,

where f is a continuously differentiable function. Since p(0) =1, f satisfies

r-5) ==

Hence, the desired function f is given by

f(x)—l—— x#0.
The corresponding z-transform is
A+ -ADz
M= o hez
Expanding M(t,z) as a power series in z yields the absolute state probabilities:
_ _ ( ) A S

An equivalent form of the absolute state probablhtles is
2 i—1 .
po0=72= pi=[1-po0 ] [po0}™"; j=1.2,... 120,

Mean value and variance of X(7) are
EX@®)=1, Var(X())=2At.

This example shows that the analysis of apparently simple birth- and death processes
requires some effort. O

Example 5.12 Consider a birth- and death process with transition rates
7\41':7\,, ul:lu, i=0,1,...

and initial distribution and p(0) = P(X(0) =0) = 1.
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The corresponding system of linear differential equations (5.47) is
P6(f) =up1(®—Arpo),

Pl =Api 1=+ m)pj O+ + DUpjy (0 =12, (5.53)
Multiplying the jth equation by z/ and summing from j =0 to c yields a homoge-
neous linear partial differential equation for the moment generating function:

m+u(z—l)m=k(z—l)M(t,z). (5.54)
ot 0z
The corresponding system of characteristic differential equations is

d_ o dMtz) .,
C=ui-1, = =M= DM

After separation of variables and subsequent integration, the first differential equa-
tion yields
ci=In(z-1)—ut
with an arbitrary constant c¢{. By combining both differential equations and letting
p =My,
dM(t,z)
M,z)
Integration yields
cr=InM(t,z)-pz,

where ¢, is an arbitrary constant. As a solution of (5.54), M(z,z) satisfies

cy=flcy)
with an arbitrary continuous function f; i.e. M(t,z) satisfies
InM(t,z)—pz=f(In(z—1)— o).
Therefore,
Mt,z)=exp{f(Inz—1)—u)+pz}.

Since condition p(0) =1 is equivalent to M(0,z) =1, f is implicitely given by

flnGz—1)=—pz.
Hence, the explicit representation of f'is

f@)=—p (e +1).
Thus,

M(t,z) = exp {—p (eln(z—l)—pt+ 1) + pz}.

Equivalently,
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M(t,z) = e—PI=e™H) ptp(1—e™Hh)z

Now it is easy to expand M(z, z) as a power series in z. The coefficients of z/ are

(p a _e—ut))J —ut
pj(l‘)Zj—!e_p(l_e ). j=0,1,.. (5.55)

This is a Poisson distribution with intensity function p (1 —e M?) . Therefore, this
birth- and death process has trend function

m(f) =p (1 —e M),

For ¢ — oo the absolute state probabilities p j(t) converge to the stationary state prob-
abilities:

. ol o
nj=t1i>I£1°Pj(t)=j—!€ Py j=0,1,..

If the process starts in a state s > 0, the absolute state probability distribution is not
Poisson. In this case this distribution has a rather complicated structure, which will
not be presented here. Instead, the system of linear differential equations (5.53) can
be used to establish ordinary differential equations for the trend function m(f) and the
variance of X(#). Given the initial distribution ps(0) =1, s=1,2,..., their respective
solutions are

m)=p(l—e M) +se™M,
Var (X(t)) = (1 —e—Hf)(p +se—W).

The birth- and death process considered in this example is of some importance in
queueing theory (section 5.7). |

Example 5.13 ( birth- and death process with immigration) For positive parame-
ters A, WL and v, let transition rates be given by

Aj=ik+v, w;=ip; i=0,1,..

If this model is used to describe the development in time of a population, then each
individual will produce a new individual in [¢, £+ Af] with probability A Az + o(Af) or
leave the population in this interval with probability wAf¢+ o(Af). Moreover, due to
immigration from outside, the population will increase by one individual in [z, £+ Af]
with probability v ¢+ o(Af). Thus, if X(#) =i, the probability that the population will
increase or decrease by one individual in the interval [¢, ¢+ Af] is

(iA+V)At+0(AD) or ipAt+o(AD),

respectively. These probabilities do not depend on ¢ and refer to A — 0. As in the
previous example, state 0 is not absorbing. The differential equations (5.47) become
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Po(0)=1p1(0)~Vpo(.
P (0= 0= 1)+ V) pj () F G+ Dy (0= (u+V-+18) (0.

Analogously to the previous examples, the z-transformation M(z,z) of the probability
distribution {p((#),p1(9), ...} is seen to satisfy the partial differential equation

M M
WMD) _ 2y 1) 24D

V- D)M(,z2). (5.56)
The system of the characteristic differential equations belonging to (5.56) is
L (-1,

dM(t,z)

dt

From this, with the initial condition p(0) =1 or, equivalently, M(0,z) =1, the solu-
tion is obtained analogously to the previous example

A—p1 V/A
M(t,z) = {Xz+k(l—z)e(7‘_“)t—u} for AzU,

viz—1)M(t,z).

-/
M(t,z):(1+7»t)V/7‘{l—%} ) for A=.

Generally it is not possible to expand M(¢,z) as a power series in z. But the absolute
state probabilities p;(#) can be obtained by differentiation of M(z,z):

i
piy= LMED i,
z z=0

The trend function

m(n = EGxy = L2

z=1

of this birth- and death process is

__V A

m(t)—}b_u[e( Wi_1] for A=, (5.57)

m@)=vt for A=L.
If A < W, the limit as ¢ — o of the z-transform exists:

tiﬂgoM(t,Z) _ (1 ~ %) v/k(l ~ %) —v/?».

For A <, the trend function (5.57) tends to a positive limit as t — oo :

tli}rgom(t)zﬁ for A<pu. O
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5.6.3.2 Stationary State Probabilities
By (5.27), in case of their existence the stationary distribution {mg,®,...} of a birth-
and death process satisfies the following system of linear algebraic equations

Moo -y =0
Momp g =+ )T+ Ty =0, j=1,2,. (5.58)
ATy —MnTn =0, n<eo.
This system is equivalent to the following one:
Hymy =%oT
Hip T +kj_1n~_1 = (kj+uj)n~; j=1,2,.. (5.59)
WnTtn =AWy, H<eco.
Provided its existence, it is possible to obtain the general solution of (5.58): Let
hj==Nm;+ W Ty s j=0,1,...

Then the system (5.58) simplifies to

hj—/’lj_l =0, j= 1,2,...
hn—l =0, n<oo.

Starting with j = 0, one successively obtains

b it .
nj_l-l;[l w; o>/

=1,2,..n. (5.60)

1) If n < oo, then the stationary state probabilities satisfy the normalizing condition
Tiomi=1.
Solving for 7y yields

- -1
n J A
mo=| 1+ [T=2L] . 561

’ { A=l “f} e

2) If n = oo, then equation (5.61) shows that the convergence of the series

2 i
]El l:l_Il o (5.62)

is necessary for the existence of a stationary distribution. A sufficient condition for
the convergence of this series is the existence of a positive integer N such that

i
~Ch <<l foralli>N. (5.63)
1
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Intuitively, this condition is not surprising: If the birth rates are greater than the cor-
responding death rates, the process will drift to infinity with probability 1. But this
exludes the existence of a stationary distribution of the process. For a proof of the
following theorem see Karlin and Taylor [45].

Theorem 5.3 The convergence of the series (5.62) and the divergence of the series
o .
ZH% (5.64)
j=li=1 %i

is sufficient for the existence of a stationary state distribution. The divergence of
(5.64) is, moreover, sufficient for the existence of such a time-dependent solution
o), p1(®).... } of (5.47) which satisfies the normalizing condition (5.21). u

Example 5.14 (repairman problem) The repairman problem introduced in example
5.8 is considered once more. However, it is now assumed that there are » mechanics
for repairing failed » machines, 1| <» <n. A failed machine can be attended only by
one mechanic. (For a modification of this assumption see example 5.14.) All the
other assumptions as well as the notation are as in example 5.8.

n\ (n—1DA (n—r+1)A (n—rh A
P O adban O
u 2u i i i

Figure 5.11 Transition graph of the general repairman problem

Let X(¢) denote the number of failed machines at time ¢. Then {X(¢),#> 0} is a birth-
and death process with state space Z = {0, 1, ...,n}. Its transition rates are

ljz(n—j)l, 0<j<n,
B {ju, 0<j<r
Hj= ru, r<j<n
(Figure 5.11). Note that in this example the terminology 'birth- and death rates' does

not reflect the technological situation. If the service rate p =AM/ is introduced, for-
mulas (5.57) and (5.58) yield the stationary state probabilities

(7)p1n0; 1<j<r
m=1 70 . : (5.65)

—oiny; r<j<n

7 (n—j)!

-1
i (n) J4 i n! pj

Ty = . —_
0 i=0 \J P J=r+1 P (n)!
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Table 5.1 Stationary state probabilities for example 5.14

Policy 1: n=10, r=2 Policy 2: n=5r=1
J i1 J L7)
0 0.0341 0 0.1450
1 0.1022 1 0.2175
2 0.1379 2 0.2611
3 0.1655 3 0.2350
4 0.1737 4 0.1410
5 0.1564 5 0.0004
6 0.1173
7 0.0704
8 0.0316
9 0.0095

10 0.0014

A practical application of the stationary state probabilities (5.65) is illustrated by a
numerical example: Let n =10, p =0.3, and » = 2. The efficiencies of the following
two maintenance policies will be compared:

1) Both mechanics are in charge of the repair of any of the 10 machines.

2) The mechanics are assigned 5 machines each for the repair of which they alone
are responsible.

Let Xy be the random number of failed machines and Z; ;- the random number of
mechanics which are busy with repairing failed machines, dependent on the number
n of machines and the number r of available mechanics. From table 5.1, for policy 1,

10 .
E(X102)=Xj=1/m; 1 =3.902
EZygp)=1-11 1 +2 5% 7 = 1.8296.
For policy 2,
5 .
E(X51) =Zj:1]TCj72 =2.011

5
E(Zs))=1-m5+X ) ;5 =0.855.

Hence, when applying policy 2, the average number of failed machines out of 10 and
the average number of busy mechanics out of 2 are

2E(X51)=4.022 and 2E(Zs)=1.710.

Thus, on the one hand, the mean number of failed machines under policy 1 is smaller
than under policy 2, and, on the other hand, the mechanics are less busy under policy
2 than under policy 1. Hence, policy 1 should be preferred if there are no other rel-
evant performance criteria. O
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Example 5.15 The repairman problem of example 5.14 is modified in the following
way: The available maintenance capacity of » units (which need not necessarily be
human) is always fully used for repairing failed machines. Thus, if only one machine
has failed, then all  units are busy with repairing this machine. If several machines
are down, the full maintenance capacity of » units is uniformly distributed to the fail-
ed machines. This adaptation is repeated after each failure of a machine and after
each completion of a repair. In this case, no machines have to wait for repair.

If j machines have failed, then the repair rate of each failed machine is

ru/jy.
Therefore, the death rates of the corresponding birth- and death process are constant,
i.e. they do not depend on the system state:

W =j'j’-7u =r; j=1,2,..
The birth rates are the same as in example 5.14:
7»j=(n—j)7»; j=0,1,..
Thus, the stationary state probabilities are according to (5.60) and (5.61):

-1
o =L§1 e %)J} ’

o nl (AN
nj_(n—j)! (ru) Tg; j=1,2,..

Comparing this result with the stationary state probabilities (5.65), it is apparent that
in case » = 1 the uniform distribution of the repair capacity to the failed machines has
no influence on the stationary state probabilities. This fact is not surprising, since in
this case the available maintenance capacity of one unit (if required) is always fully
used. O

Many of the results presented so far in section 5.6 are due to Kendall [47].

5.6.3.3 Nonhomogeneous Birth- and Death Processes
Up till now, chapter 5 has been restricted to homogeneous Markov chains. They are
characterized by transition rates which do not depend on time.

Nonhomogeneous Birth Processes 1) Nonhomogeneous Poisson process The most
simple representative of a nonhomogeneous birth process is the nonhomogeneous
Poisson process (section 3.2.2). Its birth rates are

A (0 =MD); i=0,1,...

Thus, the process makes a transition from state i at time ¢ to state i+ 1 in [z, ¢+ Af]
with probability A(f) At + o(A?).
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2) Mixed Poisson process If certain conditions are fulfilled, mixed Poisson processes
(section 3.2.3) belong to the class of nonhomogeneous birth processes.

Lundberg [56] proved that a birth process is a mixed Poisson process if and only if
its birth rates A;(f) have properties

dInk(t
A1 () =Li(0)— t() i=0,1,..

Equivalently, a pure birth process {X(#),7 > 0} with transition rates A;(f) and with ab-
solute state distribution

pi(=PX(1)=1); i=0,1,..}
is a mixed Poisson process if and only if
Pid)= A (Opi (05 i=1.2..
(see also Grandel [35]).
Nonhomogeneous Linear Birth- and Death Process In generalizing the birth- and

death process of example 5.11, now a birth- and death process {X(¢),> 0} is consi-
dered which has transition rates

M= DI, WO =p0i; i=0,1,..
and 1nitial distribution
p1(0) = PX(0)=1)= 1.

Thus, A(f) can be interpreted as the transition rate from state 1 into state 2 at time ¢,
and L(¢) is the transition rate from state 1 into the absorbing state 0 at time 7. Ac-
cording to (5.47), the absolute state probabilities p (1) satisfy

Po(0) =) py (1),
PO = G= DM 1 (=] (MO +RO) 0+ G+ DROPj1 (0 = 1,2,
Hence, the corresponding z-transform M(¢,z) of
{p;(t)=PX(H)=1i); i=0,1,..}
is given by the partial differential equation (5.50) with time-dependent A and W :
aM(t z) E)M(t z)

—E-DMO)z-p0] ——=0. (5.66)

The corresponding characteristic differential equation is a differential equation of
Riccati type with time-dependent coefficients (compare with (5.51)):

E =Mt 22 + MO + (D] z— .

A property of this differential equation is that there exist functions
0;(x; i=1,2,3,4
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so that its general solution z = z(¢) can be implicitely written in the form
2910 -02(0)
03(D—z@4) "

Hence, for all differentiable functions g(-), the general solution of (5.66) has the
form

Z(P1(t)—(Pz(f))

M“”:iﬁywﬂmﬂn

From this and the initial condition M(0,z) =z it follows that there exist two func-
tions a(f) and b(f) so that

a(t) +[1—a(t) - b()] z

M(t,z)= 1=b()z (5.67)
By expanding M(¢,z) as a powers series in z,
Po(0) = a(v),
p;0)=[1-a®][1- b i=1,2,... (5.68)

Inserting (5.67) in (5.66) and comparing the coefficients of z yields a system of differ-
ential equations for a(¢) and b(?) :

@b-ab"y+b" =11 -a)(1-b)
d =p(1-a)(1-b).
The transformations 4 =1—a and B =1-b simplify this system to
B/ =(u-\)B—uB? (5.69)
A’ =—nuA4B. (5.70)
The first differential equation is of Bernoulli type. Substituting in (5.69)
y(0) = UB(1)
gives a linear differential equation in y:
YH@-ny=p. (5.71)
Since
a(0) = b(0) =0,
y satisfies y(0) = 1. Hence the solution of (5.71) is
y(t) = e_(”(t)“f) @O (x) dx + 1},
where

() = [ [u(r) — () dx.
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From (5.70) and (5.71),

VS S .
=—-UuB= y="7% o' .

Therefore, the desired functions ¢ and b are
_ 1l @
a)=1——<e
O=130
1
b(t)y=1-—=, t20.
® y(0)
With a(¢) and b(f) known, the one-dimensional probability distribution (5.68) of the
nonhomogeneous birth- and death process {X(f),#> 0} is completely characterized.
In particular, the probability that the process is in the absorbing state 0 at time ¢ is

jé @@ p(x) dx
-[6 @@ (x)dx + 1 .

po) =

Hence, the process {X(¢),z > 0} will reach state 0 with probability 1 if the integral
[6e®Ou() dx. (5.72)

diverges as ¢ — oo.
Let L denote the first passage time of the process with regard to state 0, i.e.

L=inf {#, X(t)=0}.
t

Since state 0 is absorbing, it is justified to call L the lifetime of the process. On con-
dition that the integral (5.72) diverges as ¢t — oo, L has distribution function

Fr()=P(L<1)=py), t>0.
Mean value and variance of X(¢) are

EX() =e @0, (5.73)

Var(X(1)) = e—zw(f)jg @A (x) + p(x)] dx. (5.74)

If the process {X(#),t > 0} starts at s =2,3, ... i.c. it has the initial distribution
ps(0)=PX(0)=s)=1 forans=2,3,...
then the corresponding z-transform is

_(a®+0-a@®-b®]z\* .

M, 2) 1—b(1)z

In this case, mean value and variance of X(#) are obtained by multiplying (5.73) and
(5.74), respectively, by s.
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5.7 APPLICATIONS TO QUEUEING MODELS

5.7.1 Basic Concepts

One of the most important applications of continuous-time Markov chains is stochas-
tic modeling of service facilities. The basic situation is the following: Customers
arrive at a service system (queueing system) according to a random point process. If
all servers are busy, an arriving customer either waits for service or leaves the system
without having been served. Otherwise, an available server takes care of the custom-
er. After random service times customers leave the system. The arriving customers
constitute the input (input flow, traffic, flow of demands) and the leaving customers
the output (output flow) of the queueing system. A queueing system is called a loss
system if it has no waiting capacity for customers which do not find an available
server on arriving at the system. These customers leave the system immediately after
arrival and are said to be lost. A waiting system has unlimited waiting capacity for
those customers who do not immediately find an available server and are willing to
wait any length of time for service. A waiting-loss system has only limited waiting
capacity for customers. An arriving customer is lost if it finds all servers busy and the
waiting capacity fully occupied. A multi-server queueing system has s > 1 servers. A
single-server queueing system has only one server. Of course, 'customers' or 'servers'
need not be persons.

input
p S 1 1
? 2 output
loss
m s
waiting service

Figure 5.12 Scheme of a standard queueing system

Supermarkets are simple examples of queueing systems. Their customers are served
at checkout counters. Filling stations also can be thought of as queueing systems
with petrol pumps being the servers. Even a car park has the typical features of a
waiting system. In this case, the parking lots are the 'servers' and the 'service times'
are generated by the customers themselves. An anti-aircraft battery is a queueing sys-
tem in the sense that it 'serves' the enemy aircraft. During recent years the stochastic
modeling of communication systems, in particular computer networks, has stimulated
the application of standard queueing models and the creation of new, more sophistic-
ated ones. But the investigation of queueing systems goes back to the Danish
engineer 4. K. Erlang in the early 1900s, when he was in charge of designing tele-
phone exchanges to meet criteria such as 'what is the mean waiting time of a customer
before being connected' or 'how many lines (servers) are necessary to guarantee that
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with a given probability a customer can immediately be connected' ? The repairman
problem considered in example 5.14 also fits into the framework of a queueing sys-
tem. The failed machines constitute the input and the mechanics are the servers. This
example is distinguished by a particular feature: each demand (customer) is produced
by one of a finite number n of different sources 'inside the system', namely by one of
the n machines. Classes of queueing systems having this particular feature are called
closed queueing systems.

The global objective of queueing theory is to provide theoretical tools for the design
and the quantitative analysis of service systems. Designers of service systems need to
make sure that the required service can be reliably delivered at minimal expense.
Managers of service systems do not want to 'employ' more servers than necessary for
meeting given performance criteria. Important criteria are:

1) The probability that an arriving customer finds an available server.

2) The mean waiting time of a customer for service.

It is common practice to characterize the structure of standard queueing systems by
Kendall's notation A /B /s /m. In this code, 4 characterizes the input and B the
ser-vice, s is the number of servers, and waiting capacity is available for m
customers. Using this notation, standard classes of queueing systems are:

A =M (Markov): Customers arrive in accordance with a homogeneous Poisson
process (Poisson input).

A = GI (general independent): Customers arrive in accordance with an ordinary
renewal process (recurrent input).

A = D (deterministic): The distances between the arrivals of neighbouring customers
are constant (deterministic input).

B=M (Markov) The service times are independent, identically distributed
exponential random variables.

B =G (general) The service times are independent, identically distributed random
variables with arbitrary probability distribution.

For instance, M/M/1/0 is a loss system with Poisson input, one server, and
exponential service times. GI/M/3/~ is a waiting system with recurrent input,
exponential service times, and 3 servers. For queueing systems with an infinite
number of servers, no waiting capacity is necessary. Hence their code is A/B/eo.

In waiting systems and waiting-loss systems there are several ways of choosing wait-
ing customers for service. These possibilities are called service disciplines (queueing
disciplines). The most important ones are:

1) FCFS (first come-first served) Waiting customers are served in accordance with
their order of arrival. This discipline is also called FIFO (first in-first out), although
'first in' does not necessarily imply 'first out'.

2) LCFS (last come-first served) The customer which arrived last is served first. This
discipline is also called LIFO (last in-first ouf).
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3) SIRO (service in random order) A server, when having finished with a customer,
randomly picks one of the waiting customers for service.

There is a close relationship between service disciplines and priority (queueing) sys-
tems: In a priority system arriving customers have different priorities of being served.
A customer with higher priority is served before a customer with lower priority, but
no interruption of service takes place (head of the line priority discipline). When a
customer with absolute priority arrives and finds all servers busy, then the service of
a customer with lower priority has to be interrupted (preemptive priority discipline).

System Parameter The intensity of the input flow (mean number of arriving custom-
ers per unit time) is denoted as A and referred to as arrival rate or arrival intensity.
The service times of all servers are assumed to be independent and identically
distributed. The service intensity or service rate of the servers is denoted as \.. Thus,
if ¥ denotes the random times between the arrival of two neighbouring customers
and Z the random service time of a customer, then
E(Y)=1/A and E(Z) = 1/p.
The traffic intensity of a queueing system is defined as the ratio

p=Mu,

and the degree of server utilisation is | = E(S) /s, where S is the random number of
busy servers in the steady state. Thus, in the steady state, the coefficient n can be
interpreted as the proportion of time a server is busy. Note that here and in what
follows in the steady state refers to stationarity. More precisely, a (queueing) system
is in the steady state if the underlying stochastic process {X(¢),# > 0} is stationary. In
what follows, if not stated otherwise, X(#) denotes the total number of customers at a
service station (either wait- ing or being served) at time ¢ If X is the corresponding
number in the steady state and «t j the stationary probability of state j, then

;= lim p(f) = lim P(X() = j) = P(X =)
S et/ —o0

with j=0,1,...,s+m; s,m < oo,

5.7.2 Loss Systems

5.7.2.1 M/M/e~- System

Strictly speaking, this system is neither a loss nor a waiting system. In this model,
{X(?), t 2 0} is a homogeneous birth-and death process with state space Z = {0, 1, ...}
and transition rates (example 5.12)

7\4127\,, “’lzl“" l=0,1,

The corresponding time-dependent state probabilities p j(t) of this queueing system
are given by (5.55). The stationary state probabilities are obtained by passing to the
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limit as ¢ — e in these p;(#) or by inserting the transition rates Aj=MAand p;=ip
with n = oo into (5.60) and (5.61):
Pl o
thzj—!e P, j=0,1,.. (5.75)

This is a Poisson distribution with parameter p. Hence, in the steady state the mean
number of busy servers is equal to the traffic intensity of the system: E(X) =p.

5.7.2.2 M/M/s/) - System
In this case, {X(#),#= 0} is a birth- and death process with Z = {0, 1, ...,s} and

Aj=A; i=0,1,..,5-1,
A;j=0forizs,
w;=iu; i=0,1,..,s.

Inserting these transition rates into the stationary state probabilities (5.60) and (5.61)
with n =5 yields

-1
S
_ B NP A R N S
nO—LEOi!p } ; nj—j!p Tg; j=0,1,..,s. (5.76)
The probability 7 is called vacant probability. The loss probability, i.e. the proba-
bility that an arriving customer does not find an idle server, and, hence, leaves the
system immediately, is

ms = % : (5.77)
1 Ji

Eo irP

This is the famous Erlang loss formula. The following recursive formula for the loss

probability as a function of s can easily be verified:

mo=1for s=0; g =5 z—+15 s=12..

The mean number of busy servers is
EX) = Ezn—Zz—n _Zp—,

By comparing to (5.77),
EX) =p(1 -ms).

Hence, the degree of server utilization is

n=20-ny.
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Single-Server Loss System In case s =1, vacant and loss probability are
p

TEOZW and T ZE. (5.78)
Since p = E(Z2)/E(Y),
BN 1
N=Emrez ™ MTENED

Hence, m(y (1) is formally equal to the stationary availability (nonavailability) of a
system with mean lifetime £(Y) and mean renewal time E(Z) the operation of which
is governed by an alternating renewal process (section 3.3.6, formula (3.123)).

Example 5.16 A 'classical' application of loss models of type M/M/s/0 is a telephone
exchange. Assume that the input (calls of subscribers wishing to be connected) has
intensity A =2 [min_1 ]. Thus, the mean time between successive calls is
E(Y)=1/A=0.5 [min].
On average, each subscriber occupies a line for E(Z) = 1/u =3 [min].
1) What is the loss probability in case of s=7 lines? The corresponding traffic
intensity is p = A/ = 6. Thus, the loss probability equals
L 67
Ty = =0.185.
& .66 0.6
1+6+_+§+?+_+5+

Hence, the mean number of occupied lines is

E(X) =p(1-77) =6(1—0.185) = 4.89

and the degree of server (line) utilization is
N =n(7)=4.89/7=0.698.

2) What is the minimal number of lines which have to be provided in order to make
sure that at least 95% of the desired connections can be made? The respective loss
probabilities for s = 9and s = 10 are

g =0.075 and 1w (= 0.043.
Hence, the minimal number of lines required is
Smin = 10.
However, in this case the degree of server utilization is smaller than with s =7 lines:
n=n(10)=0.574. O

It is interesting and practically important that the stationary state probabilities of the
queueing system M/G/s/0 also have the structure (5.76). That is, if the respective
traffic intensities p of the systems M/M/s/0 and M/G/s/0 are equal, then their station-
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ary state probabilities coincide: for both systems they are given by (5.76). A
corresponding result holds for the queueing systems M/M/eo and M/G/e. (Compare
the stationary state probabilities (5.75) with the stationary state probabilities (3.37)
deriv- ed in example 3.5 for the M/G/e-system.) Queueing systems having this
property are said to be insensitive with respect to the probability distribution of the
servicetimes. An analogous property can be defined with regard to the input. In view
of (5.78), the M/M/1/0- system is insensitive both with regard to arrival and service
time distributions ( full insensitivity). A comprehensive treatment of the insensitivity
of queueing systems and other stochastic models is given in [33].

5.7.2.3 Engset's Loss System

Assume that n sources generate n independent Poisson inputs with common intensity
A which are served by s servers, s < n. The service times are independent, exponen-
tially distributed random variables with parameter p. As long as a customer from a
particular source is being served, this source cannot produce another customer (Com-
pare to the repairman problem, example 5.14: during the repair of a machine, this
machine cannot produce another demand for repair.) A customer which does not find
an available server is lost. Let X(#) denote the number of customers being served at
time ¢. Then {X(7), > 0} is a birth- and death process with state space

Z=10,1,..,s}.

In case X(f) =j, only n—j sources are active, that is they are able to generate custom-
ers. Therefore, the transition rates of this birth- and death process are

Aj=(—pr; j=0,1,2,..,5-1;
Wi=ju; j= 1,2,...,s.

sources servers
1 1
2 2
(-
A
n-1 s-1
n s
L ju
N

Figure 5.13 Engset's loss system in state X(z)=j

© 2006 by Taylor & Francis Group, LLC



5 CONTINUOUS-TIME MARKOV CHAINS 287

Inserting these transition rates into (5.60) and (5.61) with n = yields the stationary
state distribution for Engset's loss system:

(1)

n,=———; j=0,1,...,s.
T
i=0 "
In particular, 7t(y and the loss probability 7y are

| (4)p*

W=%5 /N .°0 W5 N .-
2 (7)o 2 (7)o’
=0 ! i=0 !
Engset's loss system is, just as the repairman problem considered in example 5.14, a
closed queueing system. O

5.7.3 Waiting Systems

5.7.3.1 M/M/s/> - System

The Markov chain {X(#),#= 0} which models this system is defined as follows: If
X(t) =j with 0 <j <s, then j servers are busy at time ¢ If X(¢f) =j with s >, then s
servers are busy and j —s customers are waiting for service. In either case, X(¢) is the
total number of customers in the queueing system at time ¢. {X(¢),#>0} is a birth-
and death process with state space Z = {0, 1,...} and transition rates

7\.j=7\,, j=0,1,...,
H=ju forj=0,1,...,s; Hj=sp forj>s. (5.79)

In what follows it is assumed that
p=AU<s.

If p > s, then the arrival intensity A of customers is greater than the maximum service
rate s of the system so that, at least in the long-run, the system cannot cope with the
input and the length of the waiting queue will tend to infinity as ¢ — e. Hence, no
equilibrium state between arriving and leaving customers is possible. On the other
hand, the condition p < s is necessary and sufficient for the existence of a stationary
state distribution, since in this case the corresponding series (5.62) converges and
condition (5.63) is fulfilled. Inserting the transition rates (5.79) into (5.60) yields

J

nj:%no for j=0,1,...,s—1
p/ -
m;= —mng for j=s. (5.80)
sls/™S
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The normalizing condition and the geometric series yields the vacant probability 7 :
s—1 N -1
1 p
no=| X Lpivr—P |
0 LO 1P TGP }
The probability mt,y, that an arriving customer finds all servers busy is
Ty = Z;S TEI' .

myw is called waiting probability, since it is the probability that an arriving customer
must wait for service. Making again use of the geometrical series yields a simple
formula for m,y:

Ts

Ty = =i (5.81)
In what follows, all derivations refer to the system in the steady state.
If S denotes the random number of busy servers, then its mean value is
ES) =250 imj+ 5T (5.82)
From this,
E(S) =p. (5.83)

(The details of the derivation of (5.83) are left as an exercise to the reader.) Also
without proof: Formula (5.83) holds for any GI/G/s/~-system. Hence the degree of
server utilization in the M/M/s/eo-system is 1 = p/s. By making use of (5.83), the
mean value of the total number X of customers in the system is seen to be

EX) =X, ini=p{1+ 2 214. (5.84)
(s=p)

Let L denote the random number of customers waiting for service (queue length).
Then the mean queue length is

E(L) =X (i—8)T;= Yy iT;—STy.
Combining this formula with (5.82)-(5.84) yields
ps

E(L) =
(s—p)°

Tis . (5.85)

Waiting Time Distribution Let /7 be the random time a customer has to wait for
service if the service discipline F'CFS is in effect. By the total probability rule,

PW>t)=X_ PW>tlX=i)m,. (5.86)

If a customer enters the system when it is in state X =i > s, then all servers are busy
so that the current output is a Poisson process with intensity spt. The random event
”W > t” occurs if within ¢ time units after the arrival of a customer the service of at
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most i —s customers has been finished. Therefore, the probability that the service of
precisely & customers, 0 < k£ <i—s, will be finished in this interval of length ¢ is

: ;vt)_k eSHE

i=s k
Hence, PW>tlX=i)=eSHl ¥ (spo)
=0 K

and, by (5.86),

— k i s k
) i=s f ) i=s§ t
P(W>l)= e—sutzni Z (SM') :noe—sutz p (Su') )
i=s k=0 K i=s 51575 k=0 k!
By performing the index transformation j=i—s, changing the order of summation
according to formula (1.25), and making use of both the power series of e* and the
geometrical series yields

P e (p) & Gupk
PW>tH=mnpg—eSH Y (2] ¥ ——
01 j:O(S) = K

=nge M X Gl > (2
S e K jzk(S)

_ —sut (M) Py _ —spt a1
w3 8 B (8) mem M

Hence, the distribution function of W is

Fp(t)=1- 25 mseH6PN >0,

Note that P(W > 0) is the waiting probability (5.81):

Tw =P(W>0)=1-Fp(0) = =575,

The mean waiting time of a customer is

E(W) =[5 P(W> dt= %ns. (5.87)
nis —p)
A comparison of (5.85) and (5.87) yields Little's formula or Little's law:
E(L)=LE(W). (5.88)

Little's formula can be motivated as follows: The mean value of the sum of the wait-
ing times arising in an interval of length T is TE(L). On the other hand, the same
mean value is given by At E(W), since the mean number of customers arriving in an
interval of length T is At. Hence,

TE(L) = MTE(W),
which is Little's formula.
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With E(X) given by (5.84), an equivalent representation of Little's formula is

EX)=\E), (5.89)
where T is the total sojourn time of a customer in the system, i.e. waiting plus service
time: 7= W+ Z. Hence, the mean value of T is

E(T)=EW)+ /.

Little's formula holds for any GI/G/s/e=-system. For a proof of this proposition and
other 'Little type formulas' see Franken et al. [29].

5.7.3.2 M/G/1/> - System

In this single-server system, the service time Z is assumed to have an arbitrary
probability density g(f) and a finite mean E(Z)=1/u. Hence, the corresponding
stochastic process {X(¢), £ >0} describing the development in time of the number of
customers in the system need no longer be a homogeneous Markov chain as in the
previous queuing models. However, there exists an embedded homogeneous
discrete-time Markov chain, which can be used to analyze this system (see section
5.4).

The system starts operating at time ¢ =0. Customers arrive according to a homoge-
neous Poisson process with positive intensity A. Let 4 be the random number of cus-
tomers, which arrive whilst a customer is being served, and

{a;=PA=1i); i=0,1,..}
be its probability distribution. To determine the a;, note that the conditional proba-
bility that during a service time of length Z = ¢ exactly i new customers arrive is

D'
il '

Hence,
a;= o(j: (kl—?l e Mg(hdt, i=0,1,..
This and the power series representation of e* yield the z-transform M 4(z) of 4:
My(z)=X7pa;z' = J-Bo WA o(py gy

Consequently, if g(-) denotes the Laplace transform of g(¢), then

My(z)=gA—Az). (5.90)
By (1.23), letting as usual p = A/iL, the mean value of 4 is
_dM 4(2) 3 dg(r)
E(d)=— | =1 = -A | (5.91)
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Embedded Markov chain Let Ty be the random time point at which the nth custom-
er leaves the system. If X} denotes the number of customers in the system immedi-
ately after 7, then {X|,X5,...} is a homogeneous, discrete-time Markov chain with
state space Z = {0, 1,...} and one-step transition probabilities

a; if i=0 and j=0,1,2,...

J
le=P(Xn+1 =j|Xn=i)= aj_l'+1 1fl—l£jand i:1,2,... (592)
0 otherwise

foralln=0,1,...; Xy =0. This Markov chain is embedded in {X(#),# =0} since
Xn=X(Tn+0);, n=0,1,...

The discrete-time Markov chain {X(, X1, ...} is irreducible and aperiodic. Hence, on
condition p =AM <1 it has a stationary state distribution {m(,7{,...} which can be
obtained by solving the corresponding system of algebraic equations (4.9): Inserting
the transition probabilities p; 5 given by (5.92) into (4.9) gives

Ty = ao(TEO +1131),
i+1
T =Toa;+ 2= Tidjys j=1,2,.. (5.93)
Let M y(z) be the z-transform of the state X of the system in the steady state:
My(z) = 0 T, 2/
Then, multiplying (5.93) by z/ and summing up from j =0 to o yields
My@ =ngZiga;z/ + X722/ oAl i j+]

=T MA(Z)+MA(Z) 2;;1 TEiZi_laj_i+1

X() T
=T M 4(2)+ M 4(2) =229
Solving this equation for M y(z) yields
My(z) =g M z—, lz| < 1. 5.94
) =T MA@ 37,5 (5:94)

To determine (), note that
My(1)= My(z) =1
and

lim
1 1=z

Myz)-z . ( MA(Z)—I) _dMA(Z) .
—_ilTr?l <=1 - | =1 =1-p.

1-z
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Therefore, by letting z T 1 in (5.94),
ny=1-p. (5.95)

Combining (5.90), (5.94) and (5.95) yields the Formula of Pollaczek-Khinchin:

My(2)=(1 —p)l_l—‘j, |zl <1. (5.96)
gA—2z)

According to its derivation, this formula gives the z-transform of the stationary
distribution of the random number X of customers in the system immediately after
the completion of a customer's service. However, in view of the homogeneous
Poisson input, it is even the stationary probability distribution of the 'original'
Markov chain {X(7),t >0} itself. Thus, X is the random number of customers at the
system in its steady state. Its probability distribution {mg,7(,...} exists and is a
solution of (5.93). Hence, numerical parameters as mean value and variance of the
number of customers in the system in the steady state can be determined by (5.96)
via (1.23). For instance, the mean number of customers in the system is

dM x(z) i —p+ M [E(Z2)? + Var(2)]
dz 171 2(1-p) '
Sojourn time Let T be the time a customer spends in the system (sojourn time) if the
FCFS-queueing discipline is in effect. Then 7T has structure
T=W+Z2,
where W is the time a customer has to wait for service (waiting time). Let () and
Fyy(f) be the respective distribution functions of 7" and W and f7(f) and fyp(¢) the

corresponding densities with Laplace transforms jA"T(r) and }W(r). Since W and Z
are independent,

EX) = (5.97)

70 =T &0r). (5.98)

The number of customers in the system after the departure of a served one is equal to
the number of customers which arrived during the sojourn time of this customer.
Hence, analogously to the structure of the a;, the probabilities 7t; are given by

oo i
= 0:_—?e_7”th(t)dt; i=0,1,..
o i

The corresponding z-transform M y(z) of X or, equivalently, the z-transform of the
stationary distribution {1, (,...} is (compare to the derivation of (5.90))

My()=f7(h-Lz2).
Thus, by (5.98),

My(2) = iy (h=A2) g(h—2).
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This formula and (5.96) yields the Laplace transform of fy(r) :

y 1 v
fwm=0Q1 P)—kg(r)+r_x~

By (1.19) and (1.28), E(W) and Var(W) can be determined from JA{W (s):

ME@)* +Var(2)]
0= , (5.99)
M E@)* +Var@))® | LEZ?)
4(1-p)2 3A-p)°
The random number of busy servers S has the stationary distribution
PS=0)=np=1-p, PS=1)=1-my=p.

EW) =

Var(W) =

Thus,
E(S) =p.
The queue length is L = X—S. Hence, by (5.97),
M [E(Z2)* + Var(2)]
E(L)= 2(0=p) . (5.100)
Comparing (5.97) and (5.100) verifies Little's formula (5.88):
E(L)=NEW).

5.7.3.3 GI/M/1/= - System

In this single-server system, the interarrival times are given by an ordinary renewal
process {Y{,Y5,...}, where the Y; are identically distributed as ¥ with probability
density fy(f) and finite mean value E(Y)=1/A. The service times are identically
exponential distributed with parameter (L. A customer leaves the system immediately
after completion of its service. If an arriving customer finds the server busy, it joins
the queue. The stochastic process {X(¢), £=0} describing the development of the
number of customers in the system in time, need not be a homogeneous Markov
chain. However, as in the previous section, an embedded homogeneous discrete-time
Markov chain can be identified: The nth customer arrives at time

Tn:Z?ZI Yi; n=1,2,..

Let X; denote the number of customers in the station immediately before arrival of
the (n+1)th customer (being served or waiting). Then, 0 <X, <n; n=0,1,... The
discrete-time stochastic process {X(, X1, ...} is a Markov chain with parameter space
T=1{0,1,...} and state space Z={0, 1,...}. Given that the system starts operating at
time ¢ =0, the initial distribution of this discrete-time Markov chain is

P(Xy=0)=1.
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For obtaining the transition probabilities of { X, X, ...}, let D be the number of cus-
tomers leaving the station in the interval [Ty, T}, 1) of length Y., {. Then,

Xn =Xn_1 —Dn +1 with 0 SDn SXn, n= 1,2,...,
By theorem 3.2, on condition Y, =t the random variable D, has a Poisson

distribution with parameter @t if the server is busy throughout the interval
[Tn,T,41)-Hence, fori=0 and 1 <j<i+1,

(M t) i+1—j

PXn=j|X,_1 =17 zt)—
( n=J]|4p-1=bLp4 (l+1—])'e

ML =12,

Consequently, the one-step transition probabilities
pij=PUn=j1X,_1=0); ije Z; n=1,2,...
of the Markov chain {X(, X1, ...} are
T (ot

= —ur . <ic:
0(i+l—j)!e Syde; 1<j<i+1.

Pij

The normalizing condition yields p; :
i+1
pio=1-2jz1 pij-
The transition probabilities p; i do not depend on 7 so that {X(), X1, ...} is a homoge-
neous Markov chain. It is embedded in the original state process {X(¢), t > 0} since
Xn=XTpp—0); n=0,1,..

Based on the embedded Markov chain {X(;, X|,...}, a detailed analysis of the queue-
ing system GI/M/1/e= can be carried out analogously to the one of system M/G/1/eo.

5.7.4 Waiting-Loss Systems

5.7.4.1 M/M/s/m - System

This system has s servers and waiting capacity for m customers, m = 1. A customer
which at arrival finds no idle server and the waiting capacity occupied is lost, that is
it leaves the system immediately after arrival. The number of customers X(7) in the
system at time ¢ generates a birth- and death process {X(¢), t>0} with state space
Z.=1{0,1,...,s+m} and transition rates

Kj=7», 0<j<s+m-1,

W= ju for 1<j<s
J spu for s<j<s+m
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According to (5.60) and (5.61), the stationary state probabilities are

jl,pfno for 1<j<s—1
Ti=9 7 . ,
7| === pimg for s<j<stm

Sis

sclp . st -1

j=0] Jj=s slgJ™S

The second series in 7Ty can be summed up to obtain

s—1 m+l |~
1.1 s 1-(p/s)
L’EO TP R 1p/s for p#s
To = -
s—1 1 . SS 1
Z‘E)]—‘pj-l‘(m-f—l)v—‘ for p=s
=0 /" s!

The vacant probability T is the probability that there is no customer in the system
and g4, is the loss probability, i.e. the probability that an arriving customer is lost
(rejected). The respective probabilities U and my that an arriving customer finds a

free (idle) server or waits for service are
np= Zf:_(; T, Tw= Zf:sm_l ;.
Analogously to the loss system M/M/s/0, the mean number of busy servers is
E(S) =p (I =Tsim) -
Thus, the degree of server utilisation is
N=pU=Tgpm)/s.
In the following example, the probabilities 7 and Ts,,, which refer to a queueing

system with s servers and waiting capacity for m customers are denoted as (s, m)
and Tgy,,(s, m), respectively.

Example 5.17 A filling station has s = 8 petrol pumps and waiting capacity for m =6
cars. On average, 1.2 cars arrive at the filling station per minute. The mean time a car
occupies a petrol pump is 5 minutes. It is assumed that the filling station behaves like
an M/M/s/m-queueing system. Since A = 1.2 and p = 0.2, the traffic intensity is p = 6.

The corresponding loss probability (g =1{4(6, 10) is

1 14
8,6)=——6 8,6)=0.0167.
714(8,6) 2156 (8, 6)
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with

7
76(8,6) =LZ Ly LagLoOBT 050005,
Z s

8! 1-6/8
Consequently, the average number of occupied petrol pumps is
ES)=6-(1-0.0167)=5.9.

After having obtained these figures, the owner of the filling station considers 2 out of
the 8 petrol pumps superfluous and has them pulled down. It is assumed that this
change does not influence the input flow so that cars continue to arrive with traffic
intensity of p = 6. The corresponding loss probability ;5 = 1 5(6,6) becomes

66
T12(6,6) = 11:0(6 6)=0.1023.

Thus, about 10% of all arriving cars leave the station without having filled up. To
counter this drop, the owner provides waiting capacity for another 4 cars so that
m = 10. The corresponding loss probability |5 =T 4(6,10) is

6
7166, 10)_ 7 (6, 10) =0.0726.

Formula

-1
60 & 1 66
T|:6+m(6,m)=a ;01—'6J+(m+1)a

yields that additional waiting capacity for 51 cars has to be provided to equalize the
loss caused by reducing the number of pumps from 8§ to 6. a

5.7.4.2 M/M/s/=-System with Impatient Customers

Even if there is waiting capacity for arbitrarily many customers, some customers
might leave the system without having been served. This happens when customers
can only spend a finite time, their patience time, in the queue. If the service of a
customer does not begin before its patience time expires, the customer leaves system.
For example, if somebody, whose long-distance train will depart in 10 minutes, has
to wait 15 minutes to buy a ticket, then this person will leave the counter without a
ticket. Real time monitoring and control systems have memories for data to be pro-
cessed. But these data 'wait' only as long as they are up to date. Bounded waiting
times are also typical for packed switching systems, for instance in computer-aided
booking systems. Generally one expects that 'intelligent' customers adapt their beha-
viour to the actual state of the queueing system. Of the many available models deal-
ing with such situations, the following one is considered in some detail: Customers
arriving at an M/M/s/e-system have independent, exponentially with parameter v
distributed patience times. If X(#) as usual denotes the number of customers in the
system at time ¢, then {X(¢), £ > 0} is a birth- and death process with transition rates
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7\7:7\,, j=0,l,...,

;= Ju for j=1,2,...,s
J su+(G—s)v for j=s,s+1,..°

If j — oo, then u Lj = o0, whereas the birth rate remains constant. Hence the sufficient

condition for the existence of a stationary distribution stated in theorem 5.3 (section
5.6.3.2) is fulfilled. Once the queue length exceeds a certain level, the number of cus-
tomers leaving the system is on average greater than the number of arriving custom-
ers per unit time. That is, the system is self-regulating, aiming at reaching the equili-
brium state. Now formulas (5.60) and (5.61) yield the corresponding stationary state
probabilities:

1 . .
j_!Pjno for j=1,2,...,s
- Vi -
T ST s ) for j=s+1,5+2,..
IlGp+iv)

i=1
-1

S S e f—.
1 j, P N7
mo=| X 5P+ X o
j=07" ©j=s+l .
I1Gsu+iv)
i=1

Let L denote the random length of the queue in the steady state. Then,
E(L) =X 0 (=97,

Inserting the © j yields after some algebra

J
=

-1
E(L) =Tg .ij{ (su+iv)] .

j=1 1

In this model, the loss probability wy is not strictly associated with the number of cus-
tomers in the system. It is the probability that a customer leaves the system without
having been served, because its patience time has expired. Therefore, 1 —my is the
probability that a customer leaves the system after having been served. By applying
the total probability rule with the exhaustive and mutually exclusive set of events
{"X=j7";, j=s,s+1,...} one obtains

E(L) = %ﬂ:v.

Thus, the mean queue length is directly proportional to the loss probability. (Com-
pare to Little's formula (5.88).)
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Variable Arrival Intensity Finite waiting capacities and patience times imply that
in the end only a 'thinned flow' of potential customers will be served. Thus, it seems
to be appropriate to investigate queueing systems whose arrival (input) intensities
depend on the state of the system. However, those customers which actually enter the
system do not leave it without service. Since the tendency of customers to leave the
system immediately after arrival increases with the number of customers in the sys-
tem, the birth rates should decrease for j > s as j tends to infinity. For example, the
following birth rates have this property:

A for j=0,1,...,5—1
Kj: SN for j=s,5+1,... ;20
JHo

5.7.5 Special Single-Server Queueing Systems

5.7.5.1 System with Priorities

A single-server queueing system with waiting capacity for m =1 customer is subject
to two independent Poisson inputs 1 and 2 with respective intensities A; and A,. The
corresponding customers are called type 1 and type 2-customers. Type 1-customers
have absolute (preemptive) priority, i.e. when a type 1 and a type 2-customer are in
the system, the type 1-customer is being served. Thus, the service of a type 2-custom-
er is interrupted as soon as a type 1-customer arrives. The displaced customer will
occupy the waiting facility if it is empty. Otherwise it leaves the system. A waiting
type 2-customer also has to leave the system when a type 1-customer arrives, since
the newcomer will occupy the waiting facility. (Such a situation can only happen
when a type 1-customer is being served.) An arriving type l-customer is lost only
when both server and waiting facility are occupied by other type 1-customers. Thus,
if only the number of type 1-customers in the system is of interest, then this priority
queueing system becomes the waiting-loss-system M/M/s/1 with s =1, since type
2-customers have no impact on the service of type 1-customers at all.

The service times of type 1- and type 2- customers are assumed to have exponential
distributions with respective parameters |1 and W, . The state space of the system is
represented in the form

Z.={(,)); i,j=0,1,2},

where i denotes the number of type 1-customers and ;j the number of type 2-custom-
ers in the system. Note that if X(#) denotes the system state at time ¢, the stochastic
process {X(¢), t =2 0} can be treated as a one-dimensional Markov chain, since scalars
can be assigned to the six possible system states, which are given as two-component
vectors. However, {X(¢), =0} is not a birth- and death process. Figure 5.14 shows
the transition graph of this Markov chain.

According to (5.28), the stationary state probabilities satisfy the system of equations
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Figure 5.14 Transition graph for a single-server priority queueing system withm =1

(A1 +A2) 70,0y =H1T(1,0) + H2T(0,1)
(A +ho + R T(10) =AT0,0) +H1T(2,0)
(A +hg +U2) (0, 1) = AT 0) +M1T(1,1) F H2 T(0,2)
(A +up 1) =20y + A T(0,1) T A1 T(0,2)
M1 2,00 = AT 1,0y F AT
(A +u2)T0,2) =Moo, 1)
T0,0) T T(1,0) T T0,1) T T(1,1) + T(2,0) T T(0,2) = 1
m =0 Since there is no waiting capacity, each customer, notwithstanding its type, is

lost if the server is busy with a type 1-customer. In addition, a type 2-customer is lost
if, while being served, a type 1-customer arrives. The state space is

Z={(0,0), (0,1), (1,0)}.

Figure 5.15 shows the transition rates. The corresponding system (4.9) for the station-
ary state probabilities is

(A +22) 70,0y = H1T(1,0) t M2 (0, 1)
R T(1,0) = A1 T0,0) + A1 0,1)
1= 7‘(0,0) +‘[E(1’0) +‘[E(0’1)

The solution is
S Hi(hy+1p)
OO= A +upRy +2p +1p)”
TC = }\‘2“1 TT :L
0,1) (7L1+M1)(7L1+7L2+M2)’ (1,0) 7L1+l,l1 ’

T(1,0) is the loss probability for type 1-customers. It is simply the probability that the
service time of type 1-customers is greater than their interarrival time. On condition
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Figure 5.15 Transition graph for a 1-server priority loss system

that at the arrival time of a type 2-customer the server is idle, this customer is lost if
and only if during its service a type 1-customer arrives. The conditional probability
of this event is
o Mty At g [~y g M
joeuz 7\,16 1dt—7u1j0€(1u2)dt—m.
Therefore, the (total) loss probability for type 2-customers is
A
T = Ry 0,0 T, T (1,0

Example 5.18 Let A; =0.1,A, =0.2, and i} =y =0.2. Then the stationary state
probabilities are
T(,0) = 0.2105, m( 1) =0.3073, m( o) =0.0085,

1,1y =0.1765, w2y =0.2048, m(; ) =0.0924.

In case m = 0, with the same numerical values for the transition rates,
TI:(0,0) =0.4000 , n(l,O) =0.3333 , TC(O,]) =0.2667.
The loss probability for type 2-customers is 7; = 0.7333. O

5.7.5.2 M/M/1/m - System with Unreliable Server

If the implications of server failures on the system performance are not negligible,
server failures have to be taken into account when building up a mathematical model.
In what follows, the principal approach is illustrated by a single-server queuing
system with waiting capacity for m customers, Poisson input, and independent, iden-
tically distributed exponential service times with parameter p. The lifetime of the
server is assumed to have an exponential distribution with parameter o, both in its
busy phase and in its idle phase, and the subsequent renewal time of the server is
assumed to be exponentially distributed with parameter (. It is further assumed that
the sequence of life and renewal times of the server can be described by an alternat-
ing renewal process. When the server fails, all customers leave the system, i.e., the
custom- er being served and the waiting customers if there are any are lost. Custom-
ers arriving during a renewal phase of the server are rejected, i.e. they are lost, too.
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Figure 5.16 Transition graph of a queueing system with unreliable server

The stochastic process {X(¢), t =0} describing the behaviour of the system is charac-
terized as follows:

X() = j  if there are j customers in the system at time ¢; j=0,1,...,m+1
+2 if the server is being renewed at time ¢
Its transition rates are (Figure 5.16):
qj,j+1:)\'; j=0,1,...,m
gjj-1=K j=12,...m+1 (5.101)
Gm2=0% j=0,1,..m+1
Im+2,0 =P
According to (5.28), the stationary state probabilities satisfy the system of equations

((X+7\.)TEO =umy +BTCm+2
(a+7»+u)nj=knj_1+unj+1; j=12,....m (5.102)
(L+W) Ty =ATm

Bnm+2=0cn0+(xn1+---+(xnm+1

The last equation is equivalent to
Bty =0(l=T,0).
Hence,

o
n’”+2=0c+[3'

Now, starting with the first equation in (5.102), the stationary state probabilities of
the system 7, Ty, ..., M, can be successively determined. The probability 7y is as
usual obtained from the normalizing condition

T =1, (5.103)
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For the corresponding loss system (m = 0), the stationary state probabilities are

o PO+W o BA
07 (@+B)o+A+w)’ 17 (0+B)a+r+p)’
__a
TCz—OH_B.

Modification of the Model It makes sense to assume that the server can only fail
when it is busy. In this case,

qjm+2 = O for j=1,2,....m+1.

The other transition rates given by (5.101) remain valid. Thus, the corresponding
transition graph is again given by Figure 5.1¢ with the arrow from node 0 to node
m+ 2 deleted. The stationary state probabilities satisfy the system of equations

Ay =pumy +B 1,
(0c+7»+u)nj=7mj_1+unj+1; j=12,...,m (5.104)
(U+W) T,y =ATn
Br, o =0m)+omy +- +0m,,,
The last equation is equivalent to

Brtyin = 01 =T = Tp12)
It follows

o
T2 = gap (1= 70)-

Starting with the first equation in (5.104), the solution g, 7, %y,..., 7,41 can be
obtained as above. In case m = 0 the stationary state probabilities are

— Blo+ )
07 Bla+w+Ma+p)’
_ AB
"= Bla+w)+Ma+p)’
oA

2= Blo+w + Ma+p)

Comment It is interesting that this queueing system with unreliable server can be in-
terpreted as a queueing system with priorities and absolutely reliable server. To see
this, a failure of the server has to be declared as the arrival of a 'customer' with abso-
lute priority. The service provided to this 'customer' consists in the renewal of the
server. Such a 'customer' pushes away any other customer from the server, in this
model even from the waiting facility. Hence it is not surprising that the theory of
queueing systems with priorities also provides solutions for more complicated queu-
ing systems with unreliable servers than the one considered in this section.
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5.7.6  Networks of Queueing Systems

5.7.6.1 Introduction

Customers frequently need several kinds of service so that, after leaving one service
station, they have to visit one or more other service stations in a fixed or random
order. Each of these service stations is assumed to behave like the basic queueing
sys- tem sketched in Figure 5.1Z. A set of queueing systems together with rules of
their interactions is called a network of queueing systems or a queueing network.
Typical examples are technological processes for manufacturing (semi-) finished
products. In such a case the order of service by different queueing systems is usually
fixed. Queuing systems are frequently subject to several inputs, i.e. customers with
different service requirements have to be attended. In this case they may visit the ser-
vice stations in different orders. Examples of such situations are computer- and com-
munication networks. Depending on whether and how data are to be provided, pro-
cessed, or transmitted, the terminals (service stations) will be used in differen orders.
If technical systems have to be repaired, then, depending on the nature and the extent
of the damage, service of different production departments in a workshop is needed.
Transport and loading systems also fit into the scheme of queueing networks.

Using a concept from graph theory, the service stations of a queueing network are
called nodes. In an open queueing network customers arrive from 'outside' at the sys-
tem (external input). Each node may have its own external input. Once in the system,
customers visit other nodes in a deterministic or random order before leaving the net-
work. Thus, in an open network, each node may have to serve external and internal
customers, where internal customers are the ones which arrive from other nodes. In
closed queueing networks there are no external inputs into the nodes and the total
number of customers in the network is constant. Consequently, no customer departs
from the network. Queueing networks can be represented by directed graphs. The
directed edges between the nodes symbolize the possible transitions of customers
from one node to another. The nodes in the network are denoted by 1,2, ...,n. Node i
is assumed to have s; servers; 1 <5; < oo,

5.7.6.2 Open Queueing Networks

A mathematically exact analysis of queueing systems becomes extremely difficult or
even impossible when dropping the assumptions of Poisson input and/or exponen-
tially distributed service times. Hence, this section is restricted to a rather simple
class of queueing networks, the Jackson queueing networks. They are characterized
by four properties:

1) Each node has an unbounded waiting capacity.

2) The service times of all servers at node i are independent, identically distributed
exponential random variables with parameter (intensity) u;. They are also independ-
ent of the service times at other nodes.
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3) External customers arrive at node i in accordance with a homogeneous Poisson
process with intensity A;. All external inputs are independent of each other and of all
service times.

4) When the service of a customer at node ¢ has been finished, the customer makes a
transition to node j with probability p; j or leaves the network with probability a;.
The transition or routing matrix P = ((p; j)) is independent of the current state of the

network and of its past. Let I be the identity matrix. The matrix I - P is assumed to
be nonsingular so that the inverse matrix (I— P)_1 exists.

According to the definition of the ; and p; >
ai+2}l=1pij=1~ (5.105)

In a Jackson queueing network, each node is principally subjected to both external
and internal input. Let o i be the total input (arrival) intensity at node j. In the steady

state, o; must be equal to the total output intensity from node j. The portion of inter-

nal input intensity to node j, which is due to customers from node i, is o; p; iz Thus,
n
21 0; P, j
is the total internal input intensity to node j. Consequently, in the steady state,

By introducing vectors the &= (01,09, ..., 0z) and A= (A1, Ay, ..., Ay), the relation-
ship (5.106) can be written as

aIl-P)=A.
Since I - P is assumed to be nonsingular, the vector of the total input intensities o is
a=A1-P)°l. (5.107)

Even under the assumptions stated, the total inputs at the nodes and the outputs from
the nodes are generally nonhomogeneous Poisson processes.

Let X;(#) be the random number of customers at node 7 at time ¢. Its realizations are
denoted as x;; x; =0, 1,... The random state of the network at time ¢ is characterized
by the vector

X(0) = (X1 (0, X5(D), ..., Xn (D))

with realizations X = (x,x,,...,xn). The set of all these vectors x forms the state
space of the Markov chain {X(#), # > 0}. Using set-theory notation, the state space is
denoted as Z=10,1,...}", i.e. Z is the set of all those n-dimensional vectors the
components of which assume nonnegative integers. Since Z is countably infinite, this
at first glance n-dimensional Markov chain becomes one-dimensional by arranging
the states as a sequence.
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To determine the transition rates of {X(#), =0}, the n-dimensional vector e; is in-
troduced. Its ith component is a 1 and the other components are zeros:

e; =(0,0,...,0,1,0,...,0). (5.108)

12 ««- § - n
Thus, e; is the ith row of the identity matrix I. Since the components of any state
vector X are nonnegative integers, each x can be represented as a linear combination
of all or some of the e[, ey, ..., e, . In particular, x+e; (x—e;) is the vector which

arises from x by increasing (decreasing) the ith component by 1. Starting from state
x, the Markov chain {X(f), t > 0} can make the following one-step transitions:

1) When a customer arrives at node i, the Markov chain makes a transition to state
X+e i

2) When a service at node i is finished, x; > 0, and the served customer leaves the
network, the Markov chain makes a transition to state x—e;.

3) When a service at node i with x; >0 is finished and the served customer leaves

node i for node j, the Markov chain makes a transition to state X —e; +e;.

Therefore, starting from state x = (x{,x5,...,xn) , the transition rates are
ax,xt+e; = ki
gx,x—e; =min(x;,s;)L;a;
Ix,x—e;+e; = min(x;, ;) W;pij,  P#)

In view of (5.105),

Z pij=l-pi=a;.

_],]751
Hence, the rate of leaving state x is

n n .
gx = 2=y A+ 2imy By (1= py) min(x;,s;).
According to (5.28), the stationary state probabilities
nx = lim P(X(f)=x), x€ Z,
f—>o0

provided they exist, satisfy the system of equations
n n .
gxTx = Xjm] A;Tox—e; + 2= a; U; min(x; +1,5;) Txte;

n n .
+2j:1 lel (ll'l.ll' mln(xi+ 1’Sl)plj Tl:x+e[._e]. . (5109)
i#] '

In order to be able to present the solution of this system in a convenient form, recall
that the stationary state probabilities of the waiting system M/M/s;/~ with parame-
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ters o;, U; and p; = o;/lu; denoting the intensity of the Poisson input, the service in-

tensities of all servers, and the traffic intensity of the system, respectively, are given
by (see formula (5.80)),

jl!p{ 0;(0) for j=1,2,...,5;—1

. / = j .< .
DTN L —plo0) forj=spspt. P
sits; !
. -1
Si—l ; A?l
1 Jj Pi
.(0) = T R T T 7Y > | <Si:
9;(0) JEE) Jj! Pi (s=D(s=py) Pist

(In the context queueing networks, the notation @;(-) for the stationary state probabil-
ities is common practice.) The stationary state probabilities of the queueing network
are simply obtained by multiplying the corresponding state probabilities of the queu-
ing systems M/M/s;/>; i=1,2,..n:

If the vector of the total input intensities o= (0t{, 0.y, ..., 0p) given by (5.73)
satisfies the conditions

o <s;Uy i=1,2,..,n;

then the stationary probability of state x = (x,x5,...,xn) is

nx=T17, 9,(x;), x€ Z. (5.110)

Thus, the stationary state distribution of a Jackson queueing system is given in prod-
uct form. This implies that each node of the network behaves like an M/M/s;/oo-sys-
tem. However, the nodes need not be a queueing system of this type because the
process {X;(#), = 0} is usually not a birth- and death process. In particular, the total
input into a node need not be a homogeneous Poisson process. But the product form
(5.110) of the stationary state probabilities proves that the queue lengths at the nodes
in the steady state are independent random variables. There is a vast amount of litera-
ture dealing with assumptions under which the stationary distribution of a queueing
network has the product form (see, for instance, van Dijk [84]).

To verify that the stationary state distribution indeed has the product form (5.110),
one has to substitute (5.110) into the system of equations (5.109). Using (5.105) and
(5.106), one obtains an identity after some tedious algebra.

Example 5.19 The simplest Jackson queueing network arises if n=1. The only
difference from the queueing system M/M/s/> is that now a positve proportion of
customers who have departed from the network after having been served will return
and require further service. This leads to a queueing system with feedback.
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5

Y

waiting capacity

server

Figure 5.17 Queueing system with feedback

For instance, when servers have done a bad job, then the affected customers will
soon return to exercise possible guarantee claims. Formally, these customers remain
in the network. Roughly speaking, a single-node Jackson queueing network is a mix-
ture between an open and a closed waiting system (Figure 5.17). A customer leaves
the system with probability a or reenters the system with probability p;; =1—a. If
there is an idle server, then, clearly, the service of a customer starts immediately.
From (5.105) and (5.106), the total input rate o into the system satisfies

a=A+0o(l—a).
(The index 1 is deleted from all system parameters.) Thus,
o=Ma.

Hence there exists a stationary distribution if
Ma < sy or, equivalently, if p<as

with p = A/l In this case the stationary state probabilities are

J
L (B) ng  forj=1,2,..,5—1

j_g a
j j ’
'lj_? (%) oy for j=s,5+1,..
sls/t
where
| . (E)S -1
S— J a
mo- T L) —2 |
j=17" (s—1)!(s—5)

This is the stationary state distribution of the queueing system M/M/s/e> (without
feedback), the input of which has intensity A/a. O
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Example 5.20 In technological processes, the sequence of service is usually fixed.
For example, a 'customer' may be a car being manufactured on an assembly line.
Therefore, queueing systems switched in series, called sequential queueing networks
or tandem queueing networks, are of considerable practical interest: External custom-
ers arrive only at node 1 (arrival intensity: A1 ). They subsequently visit in this order
the nodes 1, 2, ..., n and then leave the network (Figure 5.18).

7\.1 =OCl 0(2 (13 Oy an=1

Ly 125} Un

Figure 5.18 Sequential queueing network

The corresponding parameters are
A;=0; i=2,3,...,n
Piirl = 1, i=1,2,..,n—1
ay=ap=--=a, 1=0, ap=1
According to (5.106), the (total) input intensities of all nodes in the steady state must
be the same:
AM=0]=0y=-=0n.
Hence, for single-server nodes (s; =1; i=1,2,...,n), a stationary state distribution
exists if
pi=A/;<1; i=1,2,...,n
or, equivalently, if
Aq <min(y, Uy, ..., han).

Thus, it is the slowest server which determines the efficiency of a sequential net-
work. The stationary probability of state x = (x,x5,...,xpn) is

4] xl.
TCx:_l_Il p, 1-p;); xeZ.
=

Of course, the sequential network can be generalized by taking feedback into ac-
count. This is left as an exercise to the reader. O

Example 5.21 Defective robots arrive at the admission's department of a mainte-
nance workshop in accordance with a homogeneous Poisson process with intensity
A=0.2 [A~1]. In the admissions department (denoted as (1)) a first failure diagnosis
is done. Depending on the result, the robots will have to visit other departments of
the workshop. These are departments for checking and repairing the mechanics (2),
electronics (3), and software (4) of the robots, respectively. The failure diagnosis in
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Figure 5.19 Maintenance workshop as a queueing network

the admissions department results in 60% of the arriving robots being sent to depart-
ment (2) and 20% each to the departments (3) and (4). After having being maintained
in department (2), 60% of the robots leave the workshop, 30% are sent to department
(3), and 10% to department (4). After having being served by department (3), 70% of
the robots leave the workshop, 20% are sent to department (2), and 10% are sent to
department (4). After elimination of possible software failures all robots leave the
workshop. Naturally, a robot can be sent several times to one and the same depart-
ment.

The following transition probabilities result from the transfer of robots between the
departments:

P12=06, p13=02, p13=02, py3=03,
pP24=0.1, p33=02, p3u=0.1.
a1=0,a7=0.6, a3=0.7, ag=1.
The service intensities are assumed to be
Wy =1,y =045, u3 =04, 14 =01 [A71].
The graph plotted in Figure 5.19 illustrates the possible transitions between the

departments. The edges of the graph are weighted by the corresponding transition
probabilities. The system of equations (5.106) in the total input intensities is

oy =02

oy =0.60 +0.2053
03=0201+030,
04=020;+0.10,+0.1073

The solution is (after rounding)
o) =020, 0y=0.135, o3=0.08, 0y=0.06.
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The corresponding traffic intensities p; = o;/L; are
P1= 0.2, P = 0.3, pP3 = 0.2, Pg = 0.6.

From (5.110), the stationary probability of state x = (x,x5,x3,x4) for single-server
nodes is

nx=TIE, p*il-p))
or
Tx =0.1792 (0.2)°1 (0.3)*2 (0.2)"3 (0.6)"4; xe Z={0,1,..}*.
In particular, the stationary probability that there is no robot in the workshop is
Tixo = 0.1792,

where x5 =(0,0,0,0). Let X; denote the random number of robots at node i in the
steady state. Then the probability that, in the steady state, there is at least one robot
in the admissions department, is

P(X]>0)=0822(0.2) =0.2.
Analogously,
P(X,>0)=0.3, P(X3>0)=0.2, and P(X4>0)=0.6.

Thus, when there is a delay in servicing defective robots, the cause is most probably
department (4) in view of the comparatively high amount of time necessary for find-
ing and removing software failures. O

5.7.6.3 Closed Queueing Networks

Analogously to the closed queueing system, customers cannot enter a closed queue-
ing network 'from outside'. Customers which have been served at a node do not leave
the network, but move to another node for further service. Hence, the number of cus-
tomers in a closed queueing network is a constant N. Practical examples for closed
queueing networks are multiprogrammed computer and communication systems.
When the service of a customer at node i is finished, then the customer moves with
probability p; j to node j for further service. Since the customers do not leave the

network,

D

j=1Pij=1: i=12,....n, (5.111)

where as usual 7 is the number of nodes. Provided the discrete Markov chain given
by transition matrix P = ((p; j)) and state space Z =(1,2,...,n} is irreducible, it has a

stationary state distribution {m{,y,..., Ty} which according to (4.9) is the unique
solution of the system of equations
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ni= X pi s J= 12, (5.112)

n

1 = ZiZl ;.
Let X;(#) be the random number of customers at node i at time # and
X =X 10, X0, ..., Xn(2)) .
The state space of the Markov chain {X(¢), >0} is
Z={x=([,x,...xp) with Xj_jx;=Nand 0<x; <N},  (5.113)
where the x; are nonnegative integers. The number of elements (states) in Z is
(n +N-1 )
N .
Let u; =u; (x;) be the service intensity of all servers at node i if there are x; custom-
ers at this node, 1;(0) = 0. Then {X(#), t = 0} has the positive transition rates

ax,x—ep+e; =H(X)pijs X2 1, i#],
qx—e;te; x =W+ Dpjj5 i#], X—ej+e; e Z,
where the e; are given by (5.108). From (5.111), the rate of leaving state x is
gx = Z?:l Wi =py).
Hence, according to (5.28), the stationary distribution {mx, x € Z} of the Markov

chain {X(?), t 2 0} satisfies

n
_ Z .Hj(xj+1)l7jinx—el-+e/~» (5.114)
ij=1,i#j ’

where X = (x1,X9,...,xn) € Z. In these equations, all Tx—e te; with X-e;te; & Z
are 0. Let ¢;(0)=1 and

n
Zl W) =p;)mx =
=

0) ﬁ( “ij = 1.2,n; j= 12N
(7)) = ;o i=1,2,..,n; j=1,2,...,N.
P k=1 \L; (k) /

Then the stationary probability of state X = (x1,x,,...,xn) € Z is

-1
nx=h I1;(x)), h={ 2 H‘Pi()’i)} (5.115)
i=1 yeZ i=1

withy = (y1,¥2,...,¥n) . By substituting (5.115) into (5.114) one readily verifies that
{nx, x € Z} is indeed a stationary distribution of the Markov chain {X(¢), t > 0}.
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A

D) A DAD)
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Figure 5.20 Closed sequential queueing network

Example 5.22 A closed sequential queueing network has a single server at each of
its n nodes. There is only N =1 customer in the system. When this customer is being
served at a certain node, the other nodes are empty. Hence, with vectors e; as defin-
ed by (5.108), the state space of the corresponding Markov chain {X(f), >0} is
Z={e|,e,,...,eu}. The transition probabilities are

Pi i+l = 1, i=1,2,...,n—1; Pnl = 1.
The corresponding solution of (5.114) is a uniform distribution:
Ty =Tp=--=Np=1/n.
Let u; = p;(1) be the service rate at node i. Then

¢;(0)=1 and (pl-(l)=n%ti; i=1,2,...n:

n 171
n=nlZhig]
Hence, the stationary state probabilities are (5.115) are
1/,
TCei = n—l

In particular, if w; =u; i=1,2,...,n, then the states have a uniform distribution:

s i=1,2,..,n.

Te; =1/n; i=1,2,..,n.
If there are N =1 customers in the system and the 1; do not depend on x;, then the
stationary state probabilities are
(Vi) \Vg) o (M)
B e ) Vi
z 11 (Mi

yeZ i=1

Tx
where x = (x1,Xp,...,xn) € Z. Given u;=W; i=1,2,...,n; the states have again a

uniform distribution:

-—L ., xeZ. O
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Example 5.23 A computer system consists of two central processors 2 and 3, a disc
drive 1, and a printer 4. A new program starts in the central processor 2. When this
processor has finished its computing job, the computing phase continues in central
processor 3 with probability o or the program goes to the disc drive with probability
1 —o. From the disc drive the program goes to central processor 3 with probability 1.
From central processor 3 it goes to the central processor 2 with probability B or to
the printer with probability 1 — . Here it terminates or goes back to central proces-
sor 2. When a program terminates, then another program (from outside) immediately
joins the queue of central processor 2 so that there is always a fixed number of pro-
grams in the system. Hence, a program formally goes from the printer to the central
processor 2 with probability 1. If N denotes the constant number of programs in the
system, this situation represents a simple case of multiprogramming with N as the
level of multiprogramming. The state space Z of this system and the matrix P of the
transition probabilities pjjare

Z={y=01,y2,73:74) ¥; =0, 1,..,N; | +y3+¥3 +y4 =N}

and
(0 01 0 )

P -0 0 oo O
0 Bo1-PB
0 10 0

(Figure 5.21). The corresponding solution of (5.114) is

- 1 1-B

nl:4—a—B’ nZ:n3:4—a—B’ n4:4—a—B‘

Let the service intensities of the nodes |1, Ly, L3 and By be independent of the
number of programs at the nodes. Then,

Il
—
N~
N

Q;(x;)= (ﬁ—z) xja i

Figure 5.21 Computer system as a closed queueing network
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Hence, the stationary probability of state x = (x,x7,x3,x4) with

X1 +xp+x3+xy =N
et (1) () () ()
_ “4-o-p¥ .
ygz(t_?)yl(%)yz(ﬁjy3(%)y4

Application-oriented treatments of queueing networks are, for instance, Gelenbe and
Pujolle [32], Walrand [86].

is given by

with

5.8 SEMI-MARKOV CHAINS

Transitions between the states of a continuous-time homogeneous Markov chain are
controlled by its transition probabilities. According to section 5.4, the sojourn time in
a state has an exponential distribution and depends on the current state, but not on
the history of the process. Since in most applications the sojourn times in system
states are non-exponential random variables, an obvious generalization is to allow ar-
bitrarily distributed sojourn times whilst retaining the transition mechanism between
the states. This approach leads to the semi-Markov chains.

A semi-Markov chain with state space

7={0,1,..}
evolves in the following way: Transitions between the states are governed by a dis-
crete-time homogeneous Markov chain {X(), X1, ...} with state space Z and matrix of
transition probabilities

P= ((P,'j))-

If the process starts at time ¢ =0 in state i, then the subsequent state i is determin-
ed according to the transition matrix P, while the process stays in state iy a random
time ¥;;, . After that the state 7y following state 7 is determined. The process stays

in state i{ a random time Y; and so on. The random variables Y;; are the con-

112 tj

ditional sojourn times of the process in state 7 given that the process makes a transi-
tion from i to j. They are assumed to be independent. Hence, immediately after enter-
ing a state at a time ¢, the further evolvement of a semi-Markov chain depends only
on its state at this time point, but not on the evolvement of the process before 7. The

sample paths of a semi-Markov chain are piecewise constant functions which, by con-
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vention, are continuous on the right. In contrast to homogeneous continuous-time
Markov chains, for predicting the development of a semi-Markov chain from a time
point 7 it is not only necessary to know its state i € Z, but also the 'age' of i at time ¢

Let T, Tq,... denote the sequence of time points at which the semi-Markov chain
makes a transition from one state to another (or to the same state). Then
Xn=X(Tn); n=0,1,..., (5.1106)

where X =X(0) is the initial state (X, = X(T» +0)). Hence, the transition probabi-
lities can be written in the following form:

pij=PX(Ty 1) =jlX(Tn)=1); n=0,1,..

In view of (5.116), the discrete-time stochastic process {X(, X7, ... } is embedded in
the (continuous-time) semi-Markov chain {X(¢), > 0} (see section 5.4).

As already pointed out, the future development of a semi-Markov chain from a jump
point Ty is independent of the entire history of the process before 7. Let

denote the distribution function of the conditional sojourn time Y; j of a semi-Mar-
kov chain in state i if the subsequent state is j. By the total probability rule, the un-
conditional sojourn time Y; of the chain in state i is

Special cases 1) An alternating renewal process is a semi-Markov chain with state
space Z = {0, 1} and transition probabilities

poo=p11=0and pg; =pjo=1.
The states 0 and 1 indicate that the system is under renewal or operating, respective-
ly. In this case, Fg1(-) and F|o(-) are in this order the distribution functions of the
renewal time and the system lifetime.

2) A homogeneous Markov chain in continuous time with state space Z = {0, 1, ...} is
a semi-Markov chain with the same state space and transition probabilities (5.34):
q4ij . .
Pij= q_l » L#],
where g; 5 (g;) are the conditional transition rates (unconditional transition rates) of

the Markov chain. By (5.31), the distribution function of the unconditional sojourn
time in state i is

Fi=1-e1 ¢>0.

In what follows, semi-Markov processes are considered under the following three
assumptions:
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1) The embedded homogeneous Markov chain {X(,X|,...} has a unique stationary
state distribution {7¢, Ty, ....}. By (4.9), this distribution is a solution of
Tl:j=‘2 pl-jTEl-, Z Tl:l' =1. (5118)
ieZ ieZ
As pointed out in section 4.3, a unique stationary state distribution exists if the Mar-
kov chain {X(, X1, ...} is aperiodic, irreducible and positive recurrent.

2) The distribution functions F';(f) = P(Y; <) are nonarithmetic. (As defined in sec-
tion 3.3.3, a distribution function F(?) is called arithmetic if there is a constant a with
property that all points of increase of F(¢) have structure t=an; n=0,1,... Other-
wise, the distribution function is nonarithmetic.)

3) The mean sojourn times of the process in all states are finite:
W =E(Y)=[ 1l -Fi0]di<eo, i€ L.

Note |; denotes no longer an intensity, but a mean sojourn time.

In what follows, a transition of the semi-Markov chain into state & is called a k-tran-
sition. Let Ny(f) be the random number of k-transitions occuring in [0, ] and

Hp(1) = E(Ni(0)).
Then, for any > 0,

Jlim [+ )~ Hy(0)] = , ke Z. (5.119)
—>00

T
IR
ieZ
This relationship implies that after a sufficiently long time period the number of -
transitions in a given time interval no longer depends on the position of this interval,
but only on its length. Strictly speaking, the right-hand side of (5.119) gives the
mean number of A-transitions in an interval of length T once the process hasreached
its stationary regime, or, in other words, if it is in the steady state. The following
formulas and the analysis of examples is based on (5.119), but the definition and
properties of stationary semi-Markov chains will not be discussed in detail.

From (5.119), when the process is in the steady state, the mean number of k-transi-
tions per unit time is
Tk
Upy=~——".
k PR
ieZ
Hence the portion of time the chain is in state & is
T Mk

Ap= ="
Y
ieZ

(5.120)

Consequently, in the long run, the fraction of time the chain is in a set of states Z),
ZO c Z, is
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2 mpy
A _kEZO
Zo~ Y muy;
ieZ

(5.121)

In other words, Ay, 0 is the probability that a visitor, who arrives at a random time
from 'outside’, finds the semi-Markov chain in a state belonging to Z.
Let ¢; denote the cost which is caused by a k-transition of the system. Then the
mean total (transition) cost per unit time is
X mck
C= keZ

2o
ieZ

(5.122)

Note that the formulas (5.119) to (5.122) depend only on the unconditional sojourn
times of a semi-Markov chain in its states. This property facilitates their application.

Fy _ Fm
1 1 0 | 2

Figure 5.22 Transition graph for example 5.24

Example 5.24 (age renewal policy) The system is renewed upon failure by an emer-
gency renewal or at age T by a preventive renewal, whichever occurs first.

To determine the stationary system availability, system states have to be introduced:

0  operating
1  emergency renewal
2 preventive renewal

Let L be the random system lifetime, F(¢) = P(L <¢) its distribution function, and
F()=1-F(@t)=P(L>1)

its survival probability. Then the positive transition probabilities between the states
are (Figure 5.22)

po1 =F(), pop =F1), pro=pap=1.

Let Ze and Zp be the random times for emergency renewals and preventive renewals,
respectively. Then the conditional sojourn times of the system in the states are

Y()l =L, Y02 =T, YIO =Ze, Y20 ZZp.
The unconditional sojourn times are

Yo=min(L,7), Y| =Zc, Yo=2Zp.
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The system behaviour can be described by a semi-Markov chain {X(#), >0} with
state space Z ={0, 1,2} and the transition probabilities and sojourn times given. The
corresponding equations (5.118) in the stationary probabilities of the embedded Mar-
kov chain are

Ty = T +T)y
T =F(T) 1
1 = Ty +T +Tp

The solution is
ng=1/2, mn;=F1)/2, my=F1)/2.
The mean sojourn times are
Lo =I8F(t)dt, Wy =de, Wp=dp.
According to (5.120), the stationary availability 4 =A(t) of the system is
HoTo
0T TH Ty +HLT)

A(T) = m
or
_ | 8 F(r) dt
[o Fydt+de Ft)+d p F(t)

A(t) (5.123)

It is important that this result does not depend on the probability distributions of the
renewal times Z¢ and Zp, but only on their mean values (see also example 3.21).

If the renewal times are negligibly small, but the mean costs ce and ¢, for emergen-
cy and preventive renewals are relevant, then, from (5.122), the mean renewal cost
per unit time in the steady state is

el +cply  ceF(T) +cpF(T)

K(t)= Loy jf)f?(t)dt

Analogously to the corresponding renewal times, ce and cp can be thought of as
mean values of arbitrarily distributed renewal costs.

If A(¢) is the failure rate of the system, a cost-optimal renewal interval T = 1" satisfies
the necessary condition

M) [§ F(od—F(1) = 1fc

with ¢ =cp/ce. A unique solution T = " exists if ¢ < 1 and A(7) strictly increases to
infinity. Since K(t) has the same functional structure as

1/A(T) - 1,
maximizing A(t) and minimizing K(t) leads to the same equation type for determin-
ing the corresponding optimal renewal intervals. O
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Example 5.25 A series system consists of # subsystems ey, es,...,en. The lifetimes
of the subsystems L, Ly, ..., L, are independent exponential random variables with
parameters Aq,As,...,An. Let

Gi()=PL;<t=1-eM g(y=hie™! 120,i=1,2,.n

When a subsystem fails, the system interrupts its work. As soon as the renewal of the
failed subsystem is finished, the system continues operating. Let ; be the average
renewal time of subsystem e;. As long as a subsystem is being renewed, the other
subsystems cannot fail, i.e. during such a time period they are in the cold-standby
mode. The following system states are introduced:

X(t) =0 if the system is operating,
X()=1i ife; isunderrenewal,i=1,2,..,n.

Then {X(¢), t 2 0} is a semi-Markov chain with state space Z = {0, 1,...,n}. The con-
ditional sojourn times in state 0 of this semi-Markov chain are

YOZ =Ll" = 1,2,...,7’1,
and its unconditional sojourn time in state 0 is
YO = min{Ll,Lz, ,Ln}.
Thus, Yy has distribution function
Fo)=1-G1(t)- Go(t) - Gnl(d).
LettingA=A; + Ay +--+ + Ay implies
Fot)=1-e M, >0,
Ko ZE(Y()) =1/A.
The system makes a transition from state 0 into state i with probability
poi=P¥o=L;)
=[5 G1() - Ga(x)+ G 11 () - G 131 (x)-+-Gn(x) g(x) dx
:jso e—(7»1+7x2+---+7»,-_1+7»,-+1+---+7»n)x xie—xix dx
= J-BO e M A;dx.
Hence,
A ,
Poi=75> Pi0= 1, i=12,..,n.
Thus, the system of equations (5.118) becomes

Mog=T1+Tp+---+Tp,

A
ni:ﬁﬂo; i=1,2,..,n.
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In view of T +7y +---+7p =1 -7, the solution is
A
1 NITES — 5
2 2A
With these ingredients, formula (5.20) yields the stationary system availability

Ty = i=1,2,..,n.

1
P yp— E— O
1+ X Al

Example 5.26 Consider the loss system M/G/1/0 on condition that the server is sub-
jected to failures: Customers arrive according to a homogenecous Poisson process
with rate A. Hence, their interarrival times are identically distributed as an exponen-
tial random variable ¥ with parameter A. The server has random lifetime L when
being idle, and random lifetime L when being busy. Ly is exponential with parame-
ter Ao and L is exponential with parameter A ;. The service time Z has distribution
function B(#) with density b(f). When at the time point of server failure a customer is
being served, then this customer is lost, i.e. it has to leave the system. All occurring
random variables are assumed to be independent (section 5.7.5.2). To describe the
behaviour of this system by a semi-Markov chain, three states are introduced:

State 0 The server is idle, but available.

State 1 The server is busy.

State 2 The server is under repair (not available).

To determine the steady state probabilities of the states 0, 1 and 2, the transition prob-
abilities p;; are needed:

Po0=P11=P22=r21=0, ppo=1

o Aoty ,— A
po1 =P(Ly>V) =[5 e 0le “dtzhko

Ao
Po2=1-po1=PLo <)) =75=
P10 ZP(LI >Z)=j60 e_xltb(l‘)df
pra=1-pig=PL; <2)=[311-e M Ib)dr.

With these transition probabilities, the stationary state probabilities of the embedded
Markov chain {X(), X1, ...} can be obtained from (5.118):

7\+7x0 A 7\,0+7\,p12

n0:2(7u+7k0)+7kp12’ n1:2(7\.+7\.0)+7\,p12’ n2:2(7u+7k0)+7\,p12‘

The sojourn times in state 0, 1 and 2 are:

Y0=min (Lo,Y), Yl = min (LI,Z), Y2=Z.
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Hence, the mean sojourn times are
Mo = ﬁxo Wy = -B@ye ™M, py = E2).

With these parameters, the stationary state probabilities of the semi-Markov process
are given by (5.120). O

The time-dependent behaviour of semi-Markov chains is discussed, for instance, in
Kulkarni [52].

5.9 EXERCISES

5.1) Let Z={0, 1} be the state space and

et l—e_t)
P() =
® (1—e_t et

the transition matrix of a continuous-time stochastic process {X(¢), = 0}. Check
whether {X(f), t >0} is a homogeneous Markov chain.

5.2) A system fails after a random lifetime L. Then it waits a random time W for
renewal. A renewal takes another random time Z. The random variables L, W and Z
have exponential distributions with parameters A, v and |, respectively. On comple-
tion of a renewal, the system immediately resumes its work. This process continues
indefinitely. All life, waiting, and renewal times are assumed to be independent. Let
the system be in states 0, 1 and 2 when it is operating, waiting or being renewed..

(1) Draw the transition graph of the corresponding Markov chain {X(?), ¢ = 0}.
(2) Determine the point and the stationary availability of the system on condition
PX(0)=0)=1.

5.3) Consider a 1-out-of-2-system, i.e. the system is operating when at least one of
its two subsystems is operating. When a subsystem fails, the other one continues to
work. On its failure, the joint renewal of both subsystems begins. On its completion,
both subsystems resume their work at the same time. The lifetimes of the subsystems
are identically exponential with parameter A. The joint renewal time is exponential
with parameter p. All life and renewal times are independent of each other. Let X(¢)
be the number of subsystems operating at time ¢.

(1) Draw the transition graph of the corresponding Markov chain {X(#), 1> 0}.
(2) Given P(X(0)=2) =1, determine the time-dependent state probabilities
p;6)=PX(H)=1); i=0,1,2.

(3) Determine the stationary state distribution.
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Hint Consider separately the cases
A+ 1+V)2@E)(QE) 4L+ AV + ).

5.4) A launderette has 10 washing machines which are in constant use. The times
between two successive failures of a washing machine have an exponential distribu-
tion with mean value 100 Zours. There are two mechanics who repair failed ma-
chines. A defective machine is repaired by only one mechanic. During this time,
the second mechanic is busy repairing another failed machine, if there is any, or this
mechanic is idle. All repair times have an exponential distribution with mean value 4
hours. All random variables involved are independent. Consider the steady state.

1) What is the average percentage of operating machines?

2) What is the average percentage of idle mechanics?

5.5) Consider the two-unit system with standby redundancy discussed in example 5.5
a) on condition that the lifetimes of the units are exponential with respective parame-
ters A1 and A,.The other model assumptions listed in example 5.5 remain valid.
Describe the behaviour of the system by a Markov chain and draw the transition
graph.

5.6) Consider the two-unit system with parallel redundancy discussed in example 5.6
on condition that the lifetimes of the units are exponential with parameters A and
Ay, respectively. The other model assumptions listed in example 5.6 remain valid.

Describe the behaviour of the system by a Markov chain and draw the transition
graph.

5.7) The system considered in example 5.7 is generalized as follows: If the system
makes a direct transition from state 0 to the blocking state 2, then the subsequent re-
newal time is exponential with parameter (. If the system makes a transition from
state 1 to state 2, then the subsequent renewal time is exponential with parameter 11 .
(1) Describe the behaviour of the system by a Markov chain and draw the transition
graph.

(2) What is the stationary probability that the system is blocked?

5.8) Consider a two-unit system with standby redundancy and one mechanic. All re-
pair times of failed units have an Erlang distribution with parameters n =2 and .
Apart from this, the other model assumptions listed in example 5.5 remain valid.

(1) Describe the behaviour of the system by a Markov chain and draw the transition
graph.

(2) Determine the stationary state probabilities of the system.

(3) Sketch the stationary availability of the system as a function of

p =A/\.
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5.9) When being in states 0, 1, and 2 a (pure) birth process {X(¢), t >0} with state
space Z ={0,1,2,...} has birth rates

=2, A =3, Ay=1
Given X(0) =0, determine the time-dependent state probabilities
pi(0)=P(X(¢) = i) for the states i =0, 1,2.

5.10) Consider a linear birth process with birth rates
}szj?\,, j=0,1,...,
and state space Z=1{0,1,2,...}.
(1) Given X(0) =1, determine the distribution function of the random time point 7’3
at which the process enters state 3.

(2) Given X(0) =1, determine the mean value of the random time point 7, at which
the process enters state n, n> 1.

5.11) The number of physical particles of a particular type in a closed container
evolves as follows: There is one particle at time ¢ =0. Its splits into two particles of
the same type after an exponential random time ¥ with parameter A (its lifetime).
These two particles behave in the same way as the original one, i.e. after random
times, which are identically distributed as Y, they split into 2 particles each, and so
on. All lifetimes of the particles are assumed to be independent. Let X(¢) denote the
number of particles in the container at time ¢.

Determine the absolute state probabilities
pi(=PX(t)=j); j=1,2,...

of the stochastic process {X(¢), t = 0}.

5.12) A death process with state space Z = {0, 1,2, ...} has death rates
}.l0=0, o8 =2, and Wy =U3 = 1.
Given X(0) =3, determine pj(t) =PX(®)=j) for j=0,1,2,3.

5.13) A linear death process {X(#), > 0} has death rates
Wi=jns j=0, 1.

(1) Given X(0) =2, determine the distribution function of the time to entering state 0
('lifetime' of the process).

(2) Given X(0) =n, n> 1, determine the mean value of the time at which the process
enters state 0.

5.14) Attime ¢ =0 there are an infinite number of molecules of type ¢ and 2n mole-
cules of type b in a two-component gas mixture. After an exponential random time
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with parameter p any molecule of type b combines, independently of the others, with
a molecule of type a to form a molecule ab.

(1) What is the probability that at time ¢ there are still j free molecules of type b in
the container?

(2) What is the mean time till there are left only n free molecules of type b in the
container?

5.15) At time =0 a cable consists of 5 identical, intact wires. The cable is subject to
a constant load of 100 kp such that in the beginning each wire bears a load of 20 ip.
Given a load of wkp per wire, the time to breakage of a wire (its lifetime) is expo-
nential with mean value

1000
- [weeks].

When one or more wires are broken, the load of 100 kp is uniformly distributed over
the remaining intact ones. For any fixed number of wires, their lifetimes are assumed
to be independent and identically distributed.

(1) What is the probability that all wires are broken at time ¢ = 50 [weeks] ?
(2) What is the mean time until the cable breaks completely?

5.16)* Let {X(?), t =2 0} be a death process with X(0) =#n and positive death rates

Hl’ HZ’ (AR un
Prove: If Y is an exponential random variable with parameter A and independent of
the death process, then

PX(Y) =0y =TT
i Wi+

5.17) Let a birth- and death process have state space Z={0,1,...,n} and transition
rates

Aj=(m-j)k andp;=jn; j=0,1,..n.

Determine its stationary state probabilities.

5.18) Check whether or under what restrictions a birth- and death process with tran-
sition rates

_itl e
7\’]_]'_’_27\’ and NJ—H, ]_0913"-9

has a stationary state distribution.

5.19) A birth- and death process has transition rates
kj:(/'+l)k and uj:jzu;j:O,l,...; O<A<p.

Confirm that this process has a stationary state distribution and determine it.
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5.20) A computer is connected to three terminals (for example, measuring devices).
It can simultaneously evaluate data records from only two terminals. When the com-
puter is processing two data records and in the meantime another data record has
been produced, then this new data record has to wait in a buffer when the buffer is
empty. Otherwise the new data record is lost. (The buffer can store only one data rec-
ord.) The data records are processed according to the FCFS-queueing discipline. The
terminals produce data records independently according to a homogeneous Poisson
process with intensity A. The processing times of data records from all terminals are
independent (even if the computer is busy with two data records at the same time)
and have an exponential distribution with parameter p. They are assumed to be in-
dependent of the input. Let X(¢) be the number of data records in computer and buf-
fer at time ¢.

(1) Verify that {X(7), £ = 0} is a birth- and death process, determine its transition rates
and draw the transition graph.

(2) Determine the stationary loss probability, i.e. the probability that, in the steady
state, a data record is lost.

5.21) Under otherwise the same assumptions as in exercise 5.20, it is assumed that a
data record which has been waiting in the buffer a random patience time, will be de-
leted as being no longer up to date. The patience times of all data records are
assumed to be independent, exponential random variables with parameter v. They
are also independent of all arrival and processing times of the data records.

Determine the stationary loss probability.

5.22) Under otherwise the same assumptions as in exercise 5.21, it is assumed that a
data record will be deleted when its total sojourn time in the buffer and computer ex-
ceeds a random time Z, where Z has an exponential distribution with parameter o.
Thus, the interruption of a current service of a data record is possible.

Determine the stationary loss probability.

5.23) A small filling station in a rural area provides diesel for agricultural machines.
It has one diesel pump and waiting capacity for 5 machines. On average, 8 machines
per hour arrive for diesel. An arriving machine immediately leaves the station with-
out fuel if pump and all waiting places are occupied. The mean time a machine oc-
cupies the pump is 5 minutes. It is assumed that the station behaves like an M/M/s/m-
queueing system.

(1) Determine the stationary loss probability.
(2) Determine the stationary probability that an arriving machine waits for diesel.

5.24) Consider a two-server loss system. Customers arrive according to a homogene-

ous Poisson process with intensity A. A customer is always served by server 1 when
this server is idle, i.e. an arriving customer goes only then to server 2, when server 1
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is busy. The service times of both servers are idd exponential random variables with
parameter L. Let X(#) be the number of customers in the system at time ¢.

Determine the stationary state probabilities of the stochastic process {X(¢), t = 0}.

5.25) A 2-server loss system is subject to a homogeneous Poisson input with inten-
sity A. The situation considered in the previous exercise is generalized as follows: If
both servers are idle, a customer goes to server 1 with probability p and to server 2
with probability 1 —p. Otherwise, a customer goes to the idle server (if there is any).
The service times of the servers 1 and 2 are independent, exponential random varia-
bles with parameters ] and [y, respectively. All arrival and service times are inde-
pendent.

Describe the behaviour of the system by a suitable homogeneous Markov chain and
draw the transition graph.

5.26) A single-server waiting system is subject to a homogeneous Poisson input with
intensity

A=30[A"1].

If there are not more than 3 customers in the system, the service times have an expo-
nential distribution with mean 1/i =2 [min]. If there are more than 3 customers in
the system, the service times are exponential with mean 1/u=1 [min]. All arrival
and service times are independent.

(1) Show that there exists a stationary state distribution and determine it.
(2) Determine the mean length of the waiting queue in the steady state.

5.27) Taxis and customers arrive at a taxi rank in accordance with two independent
homogeneous Poisson processes with intensities A; =4 an hour and A, =3 an hour,
respectively. Potential customers who find two waiting customers do not wait for
service, but leave the rank immediately. (Groups of customers who will use the same
taxi are considered to be one customer.) On the other hand, arriving taxis who find
two taxis waiting leave the rank as well.

What is the average number of customers waiting at the rank?

5.28) A transport company has 4 trucks of the same type. There are 2 maintenance
teams for repairing the trucks after a failure. Each team can repair only one truck at a
time and each failed truck is handled by only one team. The times between failures
of a truck (lifetime) is exponential with parameter A. The repair times are exponen-
tial with parameter . All life and repair times are assumed to be independent. Let

p=AMu=0.2.

What is the most efficient way of organizing the work: 1) to make both maintenance
teams responsible for the maintenance of all 4 trucks so that any team which is free
can repair any failed truck, or 2) to assign 2 definite trucks to each team?
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5.29) Ferry boats and customers arrive at a ferry station in accordance with two inde-
pendent homogeneous Poisson processes with intensities A and u, respectively. If
there are k customers at the ferry station, when a boat arrives, then it departs with
min(k,n) passengers (n is the capacity of each boat). If £>n, then the remaining
k—n customers wait for the next boat. The sojourn times of the boats at the station
are assumed to be negligibly small.

Model the situation by a suitable homogeneous Markov chain {X(¢), t 20} and draw
the transition graph.

5.30) The life cycle of an organism is controlled by shocks (e.g. virus attacks, acci-
dents) in the following way: A healthy organism has an exponential lifetime L with
parameter Aj,. If a shock occurs, the organism falls sick and, when being in this state,
its (residual) lifetime S is exponential with parameter

}\.s, 7\.s > }\.h

However, a sick organism may recover and return to the healthy state. This occurs in
an exponential time R with parameter . If during a period of sickness another shock
occurs, the organism cannot recover and will die a random time D after the occur-
rence of the second shock. D is assumed to be exponential with parameter

kd’ }\’d > 7\,5.

The random variables L, S, R, and D are assumed to be independent.

(1) Describe the evolvement in time of the states the organism may be in by a Mar-
kov chain.

(2) Determine the mean lifetime of the organism.

5.31) Customers arrive at a waiting system of type M/M/1/~ with intensity A. As
long as there are less than n customers in the system, the server remains idle. As soon
as the nth customer arrives, the server resumes its work and stops working only then,
when all customers (including newcomers) have been served. After that the server
again waits until the waiting queue has reached length » and so on. Let 1/u be the
mean service time of a customer and X(¢) be the number of customers in the system
at time ¢.

(1) Draw the transition graph of the Markov chain {X(¢), 1> 0}.

(2) Given that n =2, compute the stationary state probabilities. (Make sure that they
exist.)

5.32) At time =0 a computer system consists of n operating computers. As soon as
a computer fails, it is separated from the system by an automatic switching device
with probability 1 —p. If a failed computer is not separated from the system (this
happens with probability p), then the entire system fails. The lifetimes of the comput-
ers are independent and have an exponential distribution with parameter A. Thus, this
distribution does not depend on the system state. Provided the switching device has
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operated properly when required, the system is available as long as there is at least
one computer available. Let X(¢) be the number of computers which are available at
time . By convention, if, due to the switching device, the entire system has failed in
[0, £), then X(¢) = 0.

(1) Draw the transition graph of the Markov chain {X(¥), ¢ = 0}.
(2) Given n =2, determine the mean lifetime E(X) of the system.

5.33) A waiting-loss system of type M/M/1/2 is subject to two independent Poisson
inputs 1 and 2 with respective intensities A1 and A, (type 1- and type 2-customers).
An arriving type 1-customer who finds the server busy and the waiting places occu-
pied displaces a possible type 2-customer from its waiting place (such a type
2-customer is lost), but ongoing service of a type 2-customer is not interrupted.
When a type 1-customer and a type 2-customer are waiting, then the type 1-customer
will always be served first, regardless of the order of their arrivals. The service times
of type 1- and type 2-customers are independent and have exponential distributions
with respective parameters (L] and [y .

Describe the behaviour of the system by a homogeneous Markov chain, determine
the transition rates, and draw the transition graph.

5.34) A queucing network consists of two servers 1 and 2 in series. Server 1 is sub-
ject to a homogeneous Poisson input with intensity A =5 an hour. A customer is lost
if server 1 is busy. From server 1 a customer goes to server 2 for further service. If
server 2 is busy, the customer is lost. The service times of servers 1 and 2 are expo-
nential with respective mean values

1/uy =6 minutes and 1/\y = 12 minutes.

All arrival and service times are independent.

What percentage of customers (with respect to the total input at server 1) is served by
both servers?

5.35) A queueing network consists of three nodes (queueing systems) 1, 2 and 3,
each of type M/M/1/e-. The external inputs into the nodes have respective intensities

?\,1:4, 7\,2:8, and 7L3=12

customers an hour. The respective mean service times at the nodes are 4, 2 and 1
[min]. After having been served by node 1, a customer goes to nodes 2 or 3 with
equal probabilities 0.4 or leaves the system with probability 0.2. From node 2, a cus-
tomer goes to node 3 with probability 0.9 or leaves the system with probability 0.1.
From node 3, a customer goes to node 1 with probability 0.2 or leaves the system
with probability 0.8. The external inputs and the service times are independent.

(1) Check whether this queueing network is a Jackson network.

(2) Determine the stationary state probabilities of the network.
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5.36) A closed queueing network consists of 3 nodes. Each one has 2 servers. There
are 2 customers in the network. After having been served at a node, a customer goes
to one of the others with equal probability. All service times are independent random
variables and have an exponential distribution with parameter .

What is the stationary probability to find both customers at the same node?

5.37) Depending on demand, a conveyor belt operates at 3 different speed levels 1, 2,
and 3. A transition from level i to level j is made with probability p; T with

p12=0.8, P13 20.2,
P21 =r23 =05,
P31 20.4, p32=0.6.

The respective mean times the conveyor belt operates at levels 1, 2, or 3 between
transitions are

wp =45, wp =30, and w3 =12 [hours].

Determine the stationary percentages of time in which the conveyor belt operates at
levels 1, 2, and 3 by modeling the situation as a semi-Markov chain.

5.38) The mean lifetime of a system is 620 hours. There are two failure types: Repair-
ing the system after a type 1-failure requires 20 hours on average and after a type
2-failure 40 hours on average. 20% of all failures are type 2- failures. There is no
dependence between the system lifetime and the subsequent failure type. Upon each
repair the system is 'as good as new'. The repaired system immediately resumes its
work. This process is continued indefinitely. All life and repair times are independ-
ent.

(1) Describe the situation by a semi-Markov chain with 3 states and draw the transi-
tion graph of the underlying discrete-time Markov chain.

(2) Determine the stationary state probabilities of the system.

5.39) A system has two different failure types: type 1 and type 2. After a type i-
failure the system is said to be in failure state i; i=1,2. The time L; to a type i-
failure has an exponential distribution with parameter

Apy i=1,2.
Thus, if at time 7= 0 a new system starts working, the time to its first failure is

YO = min (L17L2)'

is

The random variables L; and L, are assumed to be independent. After a type 1-fai-
lure, the system is switched from failure state 1 into failure state 2. The respective
mean sojourn times of the system in states 1 and 2 are p; and L. When in state 2,
the system is being renewed. Thus, |1 is the mean switching time and |1, the mean
renewal time. A renewed system immediately starts working, i.e. the system makes a
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transition from state 2 to state 0 with probability 1. This process continues to infinity.
(For motivation, see example 5.7).

(1) Describe the system behaviour by a semi-Markov chain and draw the transition
graph of the embedded discrete-time Markov chain.

(2) Determine the stationary probabilities of the system in the states 0, 1, and 2.

5.40) Under otherwise the same model assumptions as in example 5.26, determine
the stationary probabilities of the states 0, 1, and 2 introduced there on condition that
the service time B is a constant |; i.e. determine the stationary state probabilities of
the loss system M/D/1/0 with unreliable server.
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CHAPTER 6

Martingales

6.1 DISCRETE-TIME MARTINGALES

6.1.1 Definition and Examples

Martingales are important tools for solving prestigious problems in probability
theory and its applications. Such problems occur in areas like random walks, point
processes, mathematical statistics, actuarial risk analysis, and mathematics of finance.
Heuristically, martingales are stochastic models for 'fair games' in a wider sense, i.e.
games in which each 'participant' has the same chance to win and to lose. In particu-
lar, martingale is the French word for that fair game in which a gambler doubles his
bet on every loss until he wins. Martingales were introduced as a special class of sto-
chastic processes by J. Ville und P. Levy. However, it was J. L. Doob (1953) who
began with their systematic investigation and who recognized their large theoretical
and practical potential. Martingales as stochastic processes are defined for discrete
and continuous parameter spaces T. Analogously to Markov processes, the terminol-
ogy discrete-time martingale and continuous-time martingale is adopted. The defini-
tion of a martingale relies heavily on the concept of the conditional mean value of a
random variable given values of other random variables or, more generally, on the
concept of the (random) conditional mean value of a random variable given other
random variables (section 1.6).

Definition 6.1 A stochastic process in discrete time { X, X[, ...} with state space Z,
which satisfies E(|Xn|) <o, n=0,1, 2, ..., is called a (discrete-time) martingale if
for all vectors (xg,x{,...,xn) Withx; € Z andn=0,1, ...

E(X i1 1 Xn =xn, ... X1 =x1, Xg=x0) =xn. (6.1)
Under the same assumptions, { Xg, Xy, ...} is a (discrete-time) supermartingale if
EXppp1 | Xn =xn,.... X1 =x1, Xo =x0) S xn, (6.2)
and a (discrete-time) submartingale if
E(X 11 Xn =xn, ..y X1 =x1, Xg =X0) 2 Xn. (6.3)
[ J

If, for instance, the Xj are continuous random variables, then, in view of (1.75),
multiplying both sides of the (in-) equalities (6.1) to (6.3) by the joint density of the
random vector (X, X1, ...,Xn) and integrating over its range yields:
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Martingale: EX,11)=EXn); n=0,1,...
Supermartingale:  E(X,,1) <EXn); n=0,1,...
Submartingale: EX,41) 2 EXp); n=0,1,...
Thus, the trend function of a martingale is constant:
m= EXn)=EXy); n=0,1,... (6.4)

However, despite this property, a martingale need not be a stationary process. The
trend function of a supermartingale (submartingale) is nonincreasing (nondecreas-
ing). Conditions (6.1) to (6.3) are obviously equivalent to

E(X,11 = XnlXn=xn,... X| =x1, Xg =x(¢) =0 (6.5)
E(X,i1 = XnlXn =xn, ... X] =x1, X9 =x0) <0 (6.6)
E(Xyp1 —XnlXn =xn, ... X] =x1, X9 =x0) 20 (6.7)

In particular, a stochastic process { X(,X|,...} with finite absolute first moments
E(|Xn|), n=0,1,... is a martingale if and only if it satisfies condition (6.5).

If {Xgy,X1,...} is a martingale and Xj is interpreted as the random fortune of a
gambler at time #, then, on condition Xy =x5, the conditional mean fortune of the
gambler at time n+ 1 is also x5, and this is independent on the development in time
of the fortune of the gambler before n ( fair game).

Note In what follows, for notational convenience, martingales are sometimes denoted
as {Xl ,Xz, }

Example 6.1 (sum martingale) Let {Y,Y{,...} be a sequence of independent ran-
dom variables with E(Y;)=0 for n=1,2,... Then the sequence { X, X1,...} defin-
ed by

Xn=Yg+Y +---+¥y; n=0,1,..
is a martingale. The proof is easily established:

E(X,111Xn =xn, ... X| =x1,X9 =x0)

=EXn+ Y41 1 Xn =xn,...X] =x1,X9 =x¢)
=xn+EY,41)
=Xn.

The sum martingale { X(,X],...} can be interpreted as a random walk on the real
axis: Xy is the position of a particles after its nth jump or its position at time 7.

The constant trend function m = E(X), n=0,1,... of this martingale is

m=E(Y,). O
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Example 6.2 (product martingale) Let {Y(,Yq,...} be a sequence of independent,
positive random variables with E(Y()) <eo, uw=E(Y;) < fori=1,2,..., and
Then, forn=1,2, ...
E(X )41 ‘Xn =xn, ... X =x1,X0 =x0
=E(Xn Y,y ‘Xn =xn, ... X =x1,X0 =x0 )
=xn E(Y 11 |Xn =xn, ... X1 =x1,X0 =%
=xnE(Y, 1)=xnl.

Thus, {X(, X1, ...} is a supermartingale for L < 1 and a submartingale for u > 1.

For w=1, the random sequence {X(,X7,...} is a martingale with constant trend
function:

m= E(Xn)=E(Yy); n=0,1,..

This martingale seems to be a realistic model for describing the development in time
of share prices or derivates from these, since, from historical experience, the share
price at a time point in future is usually proportional to the present share price level.
With this interpretation, Y5 — 1 is the relative change in the share price over the inter-
val [n, n+ 1] with regard to Xy :

X"%;X’%Yn—l; n=0,1,..
Important special cases are:
1) Discrete Black-Scholes Model:
Y;=eYi with U;=N@u,62), i=1,2,.. (6.8)

2) Binomial model.:

Y, =

1

{ r  with probability o P22, >0, r £

1/r with probability 1 — o
In this case, with a random integer N, |N| < n, the share price at time # has structure
Xn=YyrN; n=0,1,2,..

If o=1/(r+1), then E(Y;)=1 so that under this condition {X,X7,...} is a martin-
gale. O

Specifications of the product martingale are the exponential martingale and the like-
lihood ratios, which are considered in the following examples.
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Example 6.3 (exponential martingale) Let {Z|,Z;, ...} be a sequence of independ-
ent, identically as Z distributed random variables and 6 be a real number with
m(0) = E(e®Z) < .
With Yy given, a sequence of random variables { Y, Yy, ...} is defined by
Yn=Yy+Z+--+Zpn; n=1,2,..
Then the sequence of random variables {X(, X|,...} given by

XO =e9 YO

and

__ 1 ev, _ oY, GZJ
= o) Hﬂmm n=1,2,.. (6.9)

is a martingale. The proof is easily established, since, in view of the independence of
the Zl’

EX 41 1Xn =x0, X, 1 =31, . Xg =)

_ eeZI‘lJrlj _ (eez] _ m(e)
‘X”E( m® ) = Eiu®) = (o)

=Xn.

In particular, if Z is a binary random variable with probability distribution
7= 1 with probability p
—1 with probability 1—-p

then {Y,Y(,...} can be interpreted as a random walk, which starts at Yy, and pro-
ceeds with steps of size | to the right or to the left, each with probability p and 1 —p,
respectively, 0 < p < 1. In this case,

m(6) = E(e%)=ped+(1-p)e™®
Specifically, if

6=In[(1-p)/p], (6.10)
then m(8) =1 so that the exponential martingale has structure
_(L=p\
=)
and trend function
e et ARC P
m—E(Xn)—E[k 7 ) ; n=0,1,... O
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Example 6.4 (likelihood ratios) Suppose the null hypothesis has to be tested that
the random variables Yy, Y1, ... are independent and identically distributed with prob-
ability density @ via the hypothesis that these variables are independent and identi-
cally distributed with density .

On condition {y, ¢ () >0} ={y, w(y) >0}, the ratio
/ s >0
o) = { 00) W0 ¥0)>
0, y() =0
is introduced. Then, if y is the true density, the random sequence {X, X1, ...} with
Xn=r(Yp)r(Y1) --r(¥Yn)

is a martingale. In view of example 6.2, it is sufficient to show that the factors (Y;)
have mean value 1: For ¢ being a probability density,

o)
E(r(Y)) = ——=Vy()dy
. w(fy)>0} vO)
= | o) dy=1. O
W, w(»)>0}

Example 6.5 (branching process) Consider a population with the property that each
individual of any generation gives birth to a random number of 'children'. These
numbers are independent and have mean value . Let X, be the total number of
children produced by the nth generation. Since each of those children will have on
average W children of its own,

E(X, 111 Xn =xn, ... X1 =x1, Xo=X0) =Wxn. (6.11)

Hence, {Xy, X|,...} is a martingale if uw =1, a supermartingale if 0 <1, and a sub-
martingale if @ > 1. Moreover, for any positive [, the sequence {Z(,Zy,...} with

is a martingale. This is proved as follows:

E(Zp1 ‘Z” =zZn,. L1 =21, 20 =2,

X1
p_n+1

Xo _xn Xl_x_lﬁ_x_oj
T T Y B )

1 \
= WE(XH-H Xn =xn,...,X1 =x1,X0 =XO/

1 X
=ﬁuxn=“—2 =Zn. O
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6.1.2 Doob-Martingales

In this section, the concept of a (super-, sub-) martingale {X,X|,...} as introduced
in definition 6.1 is generalized by conditioning with regard to another sequence of
random variables {Y(, Yy,...}, which is usually related to {X(,X1,...}. The follow-

ing definition refers to the characterization of (super-, sub-) martingales by proper-
ties (6.5) to (6.7).

Definition 6.2 Let {X(,X|,...} and {Y(,Y],...} be two discrete-time stochastic pro-
cesses. If

E(|Xn|) <o foralln=0,1,...,

then the random sequence {X(), X1, ...} is a martingale with regard to {Y,Y1,...} or
a Doob-type martingale if for all (n + 1)- dimensional vectors (y(,y1,...,yn) With y;
elements of the state space of {Yy, Yq,...}, and forany n=0,1, ...,

EXyi1 = XnlYn=yn,... Y1 =y1,Y9=y¢) = 0. (6.12)

Under otherwise the same assumptions, {X(,X1,...} is a supermartingale with re-
gardto {Yy,Yq,..} if

E(Xn+1 _X}’llYI’l =Yns .o Yl ZJ’13Y0:)’0)509
and a submartingale with regard to {Y, Y1,...} if
EXy1 = XnlYn=yn,... Y1 =y1,Yp=¢) 2 0. °

In what follows, under rather strong additional conditions, a criterion is derived,
which ensures that a Doob-type martingale is a martingale in the sense of definition
6.1. This requires the introduction of a new concept.

Definition 6.3 Let {Y(,Yq,...} be a discrete-time Markov chain (not necessarily ho-
mogeneous) with state space Z={---,—1,0,+1,---} and transition probabilities

pn(,2)=P(Y 41 :z|Yn:y); vze Z; n=0,1,..

A function h(y,n); y € Z; n=0,1,... is said to be concordant with {Y, Y1, ...} ifit
satisfies forall y € Z
h(y,n)= X pn(,z)h(z,n+1). (6.13)
zelZ

Theorem 6.1 Let {Y(),Y,...} be a discrete-time Markov chain with state space
Z={-,-1,0,+1,---}.
Then, for any function A(y,n) which is concordant with { ¥, Yy, ...},
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a) the sequence of random variables {X(, X|,...} generated by
Xn=h(Yn,n); n=0,1,... (6.14)
is a martingale with regard to {¥¢, Yy, ...}, and
b) the sequence {X(,X7,...} isa martingale.
Proof a) By the Markov property and the concordance of & with { ¥, Y, ...},
EX 41 —Xn|Yn =yn,- Y1 =y1,Y9 =0,
= EXy1 [Yn=yn, .., Y1 =1, Yo =0 ) = EXn ‘ Yn=yn,... Y1 =y1,Y9=y¢
= E(h(Y 1,0+ D)|Yn = yn) = E(Yn, )| Yn = yn)

= 2 pnn,2) h(z,n+1) = h(yn,n)
zel

= /’l()/n,n)—/’l()/n,n) = 0
This result shows that {X(, X|,...} is a martingale with regard to {Y¢, Yy, ...}.

b) Let, for given x(,x1,...,Xn , the random event 4 be defined as the 'martingale con-
dition'
A= {Xn =Xn, ....,Xl = XI,XO = Xo}.
Since the Xy, are fully determined by the random variables Y7, there exists a set Y
of vectors y = (Vn, ...,y 1,»o) With property that the occurrence of any of the mutual-
ly disjoint random events
A; = {Yn Zyn,...,Yl :y17Y0 Zyo}, j/ € Y,

implies the occurrence of event 4:

A=\U 4

yeY Y

Now the martingale property of {X(), X1, ...} is easily established:
EXppy1 1 Xn =xn,..., X1 =x1, Xo =x0)

B P43)
= EXp1l4) :;EYE(XM |45 ) P(4)
P(43)
=h(yn, n)}eZY P(/f)
=h(yn,n)
=Xn.
Hence, {X(,X,...} is a martingale according to definition 6.1. |
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Example 6.6 (variance martingale ) Let {Z{,Z,, ...} be a sequence of independent,
integer-valued random variables with probability distributions

¢ =PZy=i), i€ Z={--1,0,41,--},
and numerical parameters
EZ)=0 and EZH=0%i=12,..

With an integer-valued constant z(), a discrete-time Markov chain {Y(, Yy, ...} with
state space Z={---,—1,0,+1,---} is introduced as follows:

Yn=z0+Z1+--+Zy.
Then,

E(Yn)=z( for n=0,1,... and Var(Yp)=Xi| 67 for n=1,2,..

The function

hy.m=y? -2 o (6.15)
is concordant with {Y(, Y1, ...}. To verify this, let pn(y,z) be the transition probabil-

ities of {Y), Yq,...} at time n. These transition probabilities are fully determined by
the probability distribution of Z,, | :

+1)

pn(,2)=P(Y ) =2|Yn=y) = P(Z,) =2—y) = qzy ; yze Z.

Therefore,

T paw bz )= = g Ve n+1)
zel zelZ

- % o228 o)

1

1 1
=X qgfyr )[(Z—y+y)2—2?=+1 Gﬂ

ze L

= L 22y £ ol ens £ a2 o}
zel zel

2 ) n+l 2
=0, +2-0+1-y°-3%,| o7

=) _Zl IG =h(y,n).

Hence, the function A(y,n) is concordant with {Y,Yy,...}. Thus, by theorem 6.1,
the random sequence {X(, X, ...} with X;; generated by

Xp=Y2—Var(Yn) (6.16)

is a martingale. |
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Example 6.7 Let Y; be the random price of a share at time i and S; be the random
amount of share an investor holds in the interval
[i,i+1); i=0,1,..., S;20.
Thus, at time =0 the total value of the investor's shares is Xy =Y;Sq and in the
interval [i, i+ 1) the investor makes a 'profit' of
Si (Yip = Y)).
Hence, his total profit up to time ¢ =n is
-1
Xn=2i10 S; (Y =Y); n=12,.. (6.17)

It makes sense to assume that the investor's choice, what amount of share to hold in
[n,n+1) does not depend on the profit made in this and later intervals, but only on
the profits made in the previous intervals. Hence, Sy is assumed to be fully determin-
ed by the Y, Y,..., Yn. Under this assumption, the sequence {X|,X,,...} is a su-
permartingale with regard to {Y, Y|,...}if {¥(, Y[,...} is a supermartingale. This is
proved as follows:
EXpy1 = XnlYn=yn, ... Y1 =31, Yy =)
=ESn(Yye1 =Y Yn=yn,... Y1 =1, Y9 =¥0)
=SnE(Y,41 = YnlYn=yn,... Y1 =1,Y)=1() 0.
The last line of this derivation makes use of the assumptions that on condition
Yn=yn,..Y1=y1.Y9=y0'

the share amount Sy, is constant and that {Y(, Yy,...} is a supermartingale. Hence,
no matter how well-considered the investor fixes the amount of share to be held in an

interval, in the long-run he cannot expect to make positive profit if the share price
develops unfavourably. (A supermartingale has a decreasing trend function.) O

Example 6.8 The structure of X given by (6.17) includes as a special case the net
profit development when applying the 'doubling strategy': A gambler bets $ 1 on the
first game. If he wins, he makes a net profit of $ 1. But if he loses, he suffers a loss of
$-1 and will bet $ 2 on the next play. If he wins, he will get $ 4 and, hence, will have
made a net profit of $ 1. But if he loses he will bet $4 on the next game and so on.
The following table shows the net profit development of the gambler if he loses 5
times in a row and then wins:

play 1 2 3 4 5 6
result loss loss loss loss loss win
bet 1 2 4 8 16 32
winnings -1 -3 -7 -15 -31 +1

If the gambler loses the first N— 1 games and wins the Nth game, then
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S, =21 i=1,2,..,N,
Y.+1 —le—l’ i=0,1,...,N_2,

1

YN—YN_lzl.

Hence, when assuming a win occurs with probability p and a loss with probability
1-p, the Y|, Y5,... have structure

Yl'ZZI+Zz+“-+Zl-, YOZO, (618)

where the Z{, Z,, ... are independent, identically as Z distributed binary random var-
iables:

_ 1 with probability p
—1 with probability 1—p.

With the Y; given by (6.18), the net winnings of the gambler at time n, 1 <n <N, are
given by (6.17). Now, on condition that after every win the game starts anew and the
S; are adjusted accordingly, (6.17) describes the net winning development of the
gambler for all n=1,2, ... Note, if the gambler loses at time N+ 1, his total winnings
become 0. Since N is random, the S; in (6.17) are random as well. In case the gamb-
ler makes up his mind to stop playing the doubling strategy at a fixed time point #,
then, as shown in the previous example, he cannot expect to have made positive net
winnings if {¥, Y5, ...} is a supermartingale. (Obviously, {Y{, Y5, ...} is a supermar-
tingale if p <1/2.) Hence, the gambler should not stop playing the doubling strat-
egy at any time point, but at a winning time point. (If p >0, then P(N <eo)=1.)
However, to be able to maintain the doubling strategy in this way, the gambler must
have an unlimited amount of initial capital, since each bet size 21 ;i=1,2,...; hasa
positive probability to occur and the casino must allow arbitrarily large bets. Since
these prerequisites are not realistic, on average no money can be made by pursuing
the doubling strategy when betting on a supermartingale. O

6.1.3 Martingale Stopping Theorem and Applications

As pointed out in the beginning of this chapter, martingales are suitable stochastic
models for fair games, i.e. the chances to win or to lose are equal. If one bets on a
martingale, is it, nevertheless, possible to make money by finishing the game at the
'right time' ? The decision, when to finish a game can, of course, only be made on the
past development of the martingale and not on its future. Hence, a proper time for
finishing a game seems to be a stopping time N for {X(),X1,...}, where Xj is the
gambler's net profit after the nth game. According to definition 1.2, a stopping time
for {X(,X1,...} is a positive, integer-valued random variable N with property that the
occurrence of the random event 'N=n" is fully determined by the random variables
X0,X1,....Xn and, hence, does not depend on the X, {,X,.7,... However, the
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martingale stopping theorem (also called optional stopping theorem or optional sam-
pling theorem) excludes the possibility of winning in the long-run if finishing the
game is controlled by a stopping time (see also examples 6.7 and 6.8).

Theorem 6.2 (martingale stopping theorem for discrete-time Markov chains) Let
N be a stopping time for the martingale {X,X],...}. Then

E(Xy) = E(Xg) (6.19)
if at least one of the following three conditions is fulfilled:
1) N is finite and there exists a finite constant C; with

|Xrnin(N,n)| <C foralln=0,1,..

2) The stopping time N is bounded, i.e. there exists a finite constant C, so that, with
probability 1,
NGy

3) E(N) is finite and there exists a finite constant C3 so that
E(| X1 =Xn || X1,X2,..s Xn) < C35 n=0,1,... n

Hint When comparing formulas (6.4) and (6.19), note that in (6.19) N is a random
variable.

Example 6.9 (Wald's identity) Theorem 6.2 implies Wald's identity (1.125) on con-
dition that N with E(N) < o is a stopping time for a sequence of independent, identi-
cally as Y with E(Y) < oo distributed random variables Y1, Y5, ... To see this, let

Xn=Xi (Y;—E(Y); n=1,2,...

By example 6.1, the sequence {X,X>5,...} is a martingale. Hence, theorem 6.2 is ap-
plicable (condition 3):

EXn)=EX)=0.
On the other hand,

E(Xy) = E(Zf\il Y; —E(Y)))
= E(Zﬁl Y; —NE(Y))

_ E(Zfil Y,-) _EN)E(Y).
This proves Wald's identity:
E(Eﬁ\il Yi) =EN)E(Y). (6.20)
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Example 6.10 ( fair game) Let {Z{,Z,,...} be a sequence of independent, identical-
ly as Z distributed random variables:

7= 1 with probability P(Z=1) =1/2
—1 with probability P(Z=-1)=1/2
Since E(Z;) =0, the sequence {Y,Y>,...} defined by
Yn=Z|+Zy+---+Zn; n=1,2,..

is a martingale (example 6.1). Yy is interpreted as the cumulative net profit of a
gambler after the n th play if he bets one dollar on each play. The gambler finishes
the game as soon he has won $a or lost $ 5. Thus, the game will be finished at time

N=min{n; Y, =a oder Y, =-b}. (6.21)

Obviously, N is a stopping time for the martingale {Y, Y5, ...}. Since E(N) is finite,
by theorem 6.2 (condition 3),

0=E(Y|)=EXyN)=aP(Yy=a)+(-b)P(Yn=-D).
Combining this relationship with
P(Yy=a)+P(Yy=-b)=1,
yields the desired probabilities

P(YN=a)=ﬁ, P(Yy=-b) =~

For determining the mean duration E(N) of such a game, the 'variance martingale'
{X1,Xp,...} with

Xpn=Y2—Var(Yp)=Y2—n
is used (example 6.6). By theorem 6.2,
0=E(X1)=E(Xy) = E(Y3) — E(N) = 0.
Therefore,
E(V) = E(Y) = a?P(Yy = @)+ b2P(¥y = =b).

Thus, the mean duration of this fair game is

_2_b 2_a _
EWN)=a a+b+b +b ab. O

Example 6.11 (unfair game) Under otherwise the same assumptions as in the pre-
vious example, let

7. = { 1 with probability p CpE1 (6.22)

i) =1 with probability 1 —p

Thus, the win and loss probabilities on a play are different.
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The mean value of Z; is
E(Z;)=2p—1.
Let the martingale {X|,X»,...} be defined as in example 6.9:
Xn=20 (Z;—EZ)); n=1,2,..

By introducing Y, =Z; +Z5 +---+Zy, the random variable X, can be written in
the form

Xn =Yn—(2p—l)n
If this martingale is stopped at time N given by (6.21), theorem 6.2 yields

0=EXy)=EYN) -(2p-1DEWDN), (6.23)
or, equivalently,

0=aP(Yy=a)+(=b)P(Yy=-b)—(2p—-1)EN).
For establishing another equation in the three unknowns
P(Yp=a), P(Yy=-b),and E(N),
the exponential martingale (example 6.3) is used. Let 6 be given by

0=1In [(1-p)/p].
Then,

E(eezi) =pP+(1-pe =1
Hence, the sequence {U1, Uj,...} with

n n .
Up =11 e%i =eezi=1 Zi 2 ¢8%n. = 1,2,...
i=1

is a martingale. Now, by applying theorem 6.2,
1=E(U;)=EUy) =9 P(Yy=a)+e90P(Yy =-b). (6.24)
Equations (6.23) and (6.24) together with P(Y = a)+P(Yp =—b) =1 yield the 'hit-

ting' probabilities
(2)" (B2) -
Lp P(Yy =—b) = —

(5)"-(&)" (5)- ()

and the mean duration of a game

P(YNZCI)Z

aP(Yy=a)—-bP(Yy=-Db)

EWN) = 2p—1
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6.1.4 Inequalities for Discrete-Time Martingales

In what follows, some important limit properties and inequalities for discrete-time
martingales {X, X|,...} are listed.

1) Let E(JXu|) < C< e for n=0,1,... Then there exists a random variable X with

property that the random sequence X, X1,... converges both with probability one
and in mean towards Xe (see section 1.9.1 for convergence criteria):

P(lim Xn=Xe)=1, lim E(Xn—Xeo|)=0.

2) Let sup E(X; %) < oo, Then there exists a random variable Xe with property that the
n

random sequence X, Xq,... converges in mean square towards Xeo:
. _ 2 _
nlgr})oE((Xn X)) =0.

3) (Azuma's inequality) Let W= E(X)); i=1,2,... and X = . If there exist nonneg-
ative numbers o; and 3; with

—0; <X —X; <P i=0,1, ..

then, for foralln=1,2,... and € > 0,

P(Xyn —n=+e) <exp {—282/2;1:1 (O‘i + Bi) ’ }’

P(Xn—un<—€)<exp {—282/2?=1 (O‘i + Bi) ’ }

Hence, if the increments X;,| —X; of the martingale {X;,X,,...} only vary within
given finite intervals, then bounds for useful probabilities can be given.

4) (Doob's inequalities) Foralln=1,2,..., as well as forevery .= 1 and A > 0, as-
suming the existence of the occurring mean values,

E(Xa®)

P[ max |Xi| ij < 20

i=0,1,...,n

Moreover, forall oo > 1,

E(IXnIO‘)SE( max |X,-|°‘js(i)aE(|Xn|°‘).
i=0,1,....,n o-1

PY PYPRYS

In particular, for square-mean integrable martingales (o = 2)

E(X,%) SE( max Xl.zj s4E(X,%).

i=0,1,....n
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6.2 CONTINUOUS-TIME MARTINGALES

This section summarizes some results on continuous-time martingales. For simplicity
and with regard to applications to Brownian motion processes in the subsequent
chapter, their parameter space is restricted to T = [0, o). The following definition of
continuous-time martingales is based on the concept of the conditional mean value of
a random variable given one or more other random variables (section 1.6.3).

Definition 6.4 A stochastic process {X(?), t= 0} with E(|X(f)|) <o for all £=0 is
called a martingale if for all integers n =0, 1, ..., for every sequence t(,?1, ..., tn With
0<ty<t;<---<tp aswell as for any # with ¢ > ¢, , with probability 1,

EXO|X(tn), -, X(t1), X(tg)) = X(tn). (6.25)
[ ]

Thus, to predict the mean value of a martingale at a time ¢, only the last observation
point before 7 is relevant. The development of the process before ¢, contains no ad-
ditional information with respect to its mean value at time ¢, ¢ > t,. Hence, regard-
less how large the difference #—¢; is, on average no increase/decrease of the process
{X(#), t= 0} can be expected in [¢5,]. The characteristic property (6.25) of a martin-
gale under the assumptions made is frequently written in the form

EX(0)|X(), y <5) =X(s), s<t. (6.26)

{X(®), t =0} is a supermartingale (submartingale) if in (6.26) the sign ' = ' is replac-
edwith'<' (' 2"). If Z is the state space of {X(¢), #= 0}, then, as a consequence of
(6.25), a continuous-time martingale {X(#), >0} has property

EXO\X(tn) = xn, ... X(11) =x1, X(tg) =x0) = Xn

for all (xq,xq,...,xn) with x; € Z, and this property, under otherwise the same as-
sumptions as in definition 6.4, can be used to define continuous-time martingales
analogously to discrete-time martingales. The trend function of a continuous-time
martingale is constant:

m(t) = E(X(¢)) = m(0).

Definition 6.5 (stopping time) A random variable L is a stopping time with regard to
an (arbitrary) stochastic process {X(¢), >0} if for all s >0 the occurrence of the
random event 'L <s' is fully determined by the evolvement of this process to time
point s. Therefore, the occurrence of the random event 'L <s' is independent of all
X(f) with t>s. [ )

Let I}, denote the indicator function for the occurrence of the event 'L > ¢'.

I = 1 if L >t occurs,
>~ 19 otherwise
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Theorem 6.3 (martingale stopping theorem) 1f {X(¢), >0} is a continuous-time
martingale and L a stopping time for this martingale, then

E(X(L)) = E(X(0)) (6.27)
if at least one of the following two conditions is fulfilled:
1) L is bounded.
2) PL<e)=1, E(XW]) <o, and lim E(XO|I15)=0. m

The interpretation of this theorem is the same as in case of the martingale stopping
theorem for discrete-time martingales. For proofs of theorems 6.2 and 6.3 see, for in-
stance, Kannan [43] and Rolski et al. [67].

Example 6.12 As an application of theorem 6.3, a proof of Lundberg's inequality
(3.161) in actuarial risk analysis is given: Let {R(?), =0} be the risk process under
the assumptions of section 3.4.2, i.e. R(¢) =x+ «t— C(¢), where x is the initial capital
of an insurance company, K the premium rate and {C(?), = 0} the compound claim
size process defined by

C@t) = Zﬁ\i((;) M;, My=0,

where {N(f), t >0} is a homogeneous Poisson process with parameter A = 1/u. The
claim sizes M, M5, ... are assumed to be independent and identically as M distribut-
ed random variables with finite mean E(M) and distribution function and density
B(@t)=P(M <), b(t)y=dB(H)/dt, t=0.
Let
Y0y = RO and h(r)= Ee"™M)= [ e b(n)dt

for any positive » with property

h(r) <oo. (6.28)

Then

E(Y(t) = e—r(x+l<t) E(e-H’C(l))

_ o@D S Bt COING) = ) PINE) = )
i=0
ekt B ey POL ghe o) A lh()-1

i=0 n!

Let

__ YO rco-ntlh()-1]
X0 =Fvy =¢ :

Since {C(?), t= 0} has independent increments, the process {X(¢), >0} has inde-
pendent increments, too. Hence, for s <z, since E(X(¢)) =1 forall >0,
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E(X(0)|X(), y <5)= EX(s) +X(1) = X(5)| X(), y < 9)
= X(s) + E(X(1) = X()|X(r), y < 9)
= X(s) + E(X(1) — X(5)) = X(s) + 1 = 1 = X(s) .

Thus, {X(#), t =0} is a martingale. Now, let
L=inf{t, R(t)<0}. (6.29)
t

Obviously, L is a stopping time for the martingale {X(#), > 0}. Therefore, for any
finite z > 0,

LAz=min (L, z)

is a bounded stopping time for {X(7), >0} (exercise 6.11). Hence, theorem 6.3 is
applicable with the stopping time L Az:

EX(0))=1=EX(L Az2))
=EX(L Az|IL<z)P(L<z)+EXL Az|L 22))P(L>7)
>EX(L Az|L<z)P(L<z)
=EX(L|L<z)P(L<z)
= E(e" COALIN)| [ < 2) P(L < z).
By (6.29), x+ kL < C(L) . Thus, from the first and the last line of this derivation,
1> E(e" WD =AL(()-D|L < ) P(L < 2),
or, equivalently,
1> " ¥E(elr =AM -DIL|L < 2y p(L < z). (6.30)
If the parameter r is chosen in such away that
rk — Ah@(r)-1]1=0, (6.31)
then the inequality (6.30) simplifies to
P(L<z)<e™X,
Since this inequality holds for all finite z > 0, it follows that
P(L <o)< e™X, (6.32)

By (3.143), the probability P(L < o) is nothing but the ruin probability p(x). On the
other hand, in view of A =1/, equation (6.31) is equivalent to equation (3.202),
which defines the Lundberg coefficient . To verify this by partial integration of

E(e™) = [ " b(o)dt,
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note that condition (6.28) implies

lim ¢’ ! B(#) = 0.
(=0
Thus, (6.32) is indeed the Lundberg inequality (3.161) for the ruin probability. |

Finally, some limit properties and inequalities for continuous-time martingales
{X(?), t 2 0}, the samples paths of which are continuous from the right, are listed.
They are quite analogous to the corresponding ones for discrete-time martingales.
The existence of all occurring mean values is assumed.

1) If sup E(|X;|) <o, then there exists a random variable Xo with property that
t
X(#) converges both with probability one and in mean towards Xoo as f — oo

P(lim X;=Xe)=1, lim E(JX; - Xe|) = 0.
[—>o0 {—o0

2) If sup E(X% ) < oo, then there exists a random variable Xe with property that X(7)
converzges in square mean towards Xeo ast — oo :

lim E((X; — Xe0)2) =0.

f—>o0
3) Let [a,b] < [0,0). Then, for any A >0,

AP( sup X(#) =M\ < E(X(a)) + E(max{(0,-X(b)}),
te[a,b]

AP( inf X()<-\) <E(Xb))).
tela,b]

4) (Doob's inequalities) Let [a,b] < [0, o). Then, for every A>0 and o> 1,

AP sup |X(1)| 2 1) < E(|X(B)|*).
te [a,b]

Foro>1,

o o (0] o o
E(X®)| 9 < EC sup X% < (2 1) E(1X(B)| ).
tea,b] o

In particular, for oo =2,

EX(b)2) <E( sup X(9]?) <4EX(b)?).

te[a,b]

For proofs and a more prestigious treatment of martingales see, for instance, Rolski
et al. [67] and Williams [88].
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6.3 EXERCISES

6.1) Let Y, Yy, ... be a sequence of independent random variables, which are identi-
cally distributed as N(0, 1). Is the discrete-time stochastic process { X, Xy, ...} gener-

ated by the sums X = Z?:O Yi2 ; n=0,1,... amartingale?

6.2) Let Y, Yy,... be a sequence of independent random variables with finite mean
values E(Y;). Is the discrete-time stochastic process {X(,X|,...} generated by the

sums X, = X o(¥; — E(Y;)) a martingale.

6.3) Let a discrete-time stochastic process {X(, X1, ...} be defined by

where the random variables Y; are independent and have a uniform distribution over
the interval [0, 7. Under which condition is {X,X1,...} (1) a martingale, (2) a sub-
martingale, (3) a supermartingale?

6.4) Let {X(,Xq,...} be the discrete Black-Scholes model defined by

where Yy is an arbitrary positive random variable with finite mean, and Y; = eZi with
independent Z; = N(u,cz); i=1,2,... Under which condition is {X,X7,...} a mar-

tingale?

6.5) Starting at value 0, the profit of an investor increases per week by one unit with
probability p, p > 1/2, or decreases per week by one unit with probability 1 —p. The
weekly increments of the investor's profit are assumed to be independent.

Let N be the random number of weeks until the investor's profit reaches for the first
time a given positive integer n. By means of Wald's equation, determine E(N).

6.6) Let Z1,Z5,...,Zn be a sequence of independent, identically as Z distributed ran-
dom variables with
1 with probability p
Z= <1
0 with probability 1—p ° 0 <P <1
Yn=2Z1+Zy+---+Zy and Xy = h(Yn); n=1,2,...; where, for any real y,
h(y)=[(1-p)/p}.

Prove that {X|,X>, ...} is a martingale with regard to {Y{, Y»,...}.
6.7) Starting at value 0, the fortune of an investor increases per week by $200 with

probability 3/8, remains constant with probability 3/8 and decreases by $ 200 with
probability 2/8. The weekly increments of the investor's fortune are assumed to be
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independent. The investor stops the 'game' as soon as he has made a total fortune of
$2000 or a loss of $1000, whichever occurs first.

By using suitable martingales and applying the optional stopping theorem, determine
(1) the probability p5( that the investor finishes the 'game' with a profit of $2000,
(2) the probability p_1go that the investor finishes the 'game' with a loss of $1000,
(3) the mean duration E(N) of the 'game’'.

6.8) Let Xy be uniformly distributed over [0, T], X| be uniformly distributed over
[0,Xp], and, generally, X;,; be uniformly distributed over [0, X;], i=0,1,...

(1) Prove that the sequence {X(, X,...} is a supermartingale.

T

(2) Show that E(X}) = ZkT; k=0,1,..
6.9) Let {X,X,,...} be a homogeneous discrete-time Markov chain with state space
Z.={0,1,...,n} and transition probabilities

Pij = P&y =Xy =1) = Clj (%)1(%) ez,

Show that {X,X>5,...} is a martingale. (In genetics, this martingale is known as the
Wright-Fisher model without mutation.)

6.10) Prove that every stochastic process {X(?), € T} with a constant trend function
and independent increments which satisfies E(|X(#)|) <, t€ T, is a martingale.

6.11) Let L be a stopping time for a stochastic process {X(¢), t € T} in discrete or
continuous time and z a positive constant. Verify that L Az=min(L,z) is a stopping
time for {X(¢), t e T}.

6.12)* The ruin problem described in section 3.4.1 is modified in the following way:
The risk reserve process {R(f), t 20} is only observed at the end of each year. The
total capital of the insurance company at the end of year # is

Rn)=x+xn-XigM;; n=1,2,..,
where x is the initial capital, k is the constant premium income per year, and M; is
the total claim size the insurance company has to cover in year i, M =0. The ran-
dom variables M, M, ... are assumed to be independent and identically distributed
as M= N(u, 02) with kx> > 30. Let p(x) be the ruin probability of the company,
i.e. the probability that there is an n with property R(n) < 0:
p(x) = P(there is an n = 1,2, ... so that R(n) < 0).
Show that
px) < 6_2(K_”)x/02 , x20.
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CHAPTER 7

Brownian Motion

7.1 INTRODUCTION

Tiny organic and inorganic particles when immersed in fluids move randomly along
zigzag paths. In 1828, the English botanist Robert Brown published a paper, in which
he summarized his observations on this motion and tried to find its physical explana-
tion. (Originally, he was only interested in the behaviour of pollen in liquids in order
to investigate the fructification process of phanerogams.) However, at that time
Brown could only speculate on the causes of this phenomenon and was at an early
stage of his research even convinced that he had found an elementary form of life
which is common to all particles. Other early explanations refer to attraction and
repulsion forces between particles, unstable conditions in the fluids in which they are
suspended, capillary actions and so on. Although the ceaseless, seemingly chaotic
zigzag movement of microscopically small particles in fluids had already been detect-
ed before Brown, it is generally called Brownian motion.

The first approaches to mathematically modeling the Brownian motion were made by
L. Bachelier (1900) and 4. Einstein (1905). Both found the normal distribution to be
an appropriate model for describing the Brownian motion and gave a physical expla-
nation of the observed phenomenon: The chaotic movement of sufficiently small par-
ticles in fluids and in gases is due to the huge number of impacts with the surround-
ing molecules, even in small time intervals. (Assuming average physical conditions,
there are about 102! collisions per second between a particle and the surrounding
molecules in a fluid.) More precisely, Einstein showed that water molecules could
momentarily form a compact conglomerate which has sufficient energy to move a
particle, when banging into it. (Note that the tiny particles are 'giants' compared with
a molecule.) These bunches of molecules would hit the 'giant' particles from random
directions at random times, causing its apparently irregular zigzag motion. Einstein
managed to experimentially verify his theoretical findings by just a ruler and a stop-
watch. As a 'byproduct, his theory of the Brownian motion and its experimental con-
firmation yielded another argument for the existence of atoms. Strangely, Einstein
was obviously not aware of the considerable efforts, which had been made before
him, to understand the phenomenon 'Brownian motion'. N. Wiener (1918), better
known as the creator of the science of cybernetics, was the first to present a general
mathematical treatment of the Brownian motion. He defined and analysed a stochas-
tic process, which has served up till now as a stochastic model of Brownian motion.
In what follows, this process is called Brownian motion process or, if no misunder-
standings are possible, simply Brownian motion. Frequently, this process is also re-
ferred to as the Wiener process. Nowadays the enormous importance of the Brown-
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ian motion process is above all due to the fact that it is one of the most powerful
tools in theory and applications of stochastic modeling, whose role can be compared
with that of the normal distribution in probability theory. The Brownian motion pro-
cess is an essential ingredient in stochastic calculus, plays a crucial role in mathema-
tics of finance, is basic for defining one of the most important classes of Markov
processes, the diffusion processes, and for solving large sample estimation problems
in mathematical statistics. Brownian motion has fruitful applications in disciplines as
time series analysis, operations research, communication theory (modeling signals
and noise), and reliability theory (wear modeling, maintenance cost rate modeling).
This chapter only deals with the one-dimensional Brownian motion.

Definition 7.1 (Brownian motion) A continuous-time stochastic process {B(?), >0}
with state space Z = (—oo, + o) is called (one-dimensional) Brownian motion process
or simply Brownian motion if it has the following properties:

1) B(0)=0.
2) {B(?), t 2 0} has homogeneous and independent increments.

3) B(?) has a normal distribution with

E(B(1)=0 and Var(B(t)) =021, t>0. °

Note that condition 1, namely B(0) =0, is only a normalization and as an assumption
not really necessary. Actually, in what follows situations will arise in which a Brown-
ian motion is required to start at B(0) = u # 0. In such a case, the process retains prop-
erty 2, but in property 3 assumption E(B(f)) = 0 has to be replaced with E(B(?)) = u.
The process {By(f), t =2 0} with By (f) = u+ B(¢) is called a shifted Brownian motion.
In view of properties 2 and 3, the increment B(f) — B(s) has a normal distribution
with mean value 0 and variance 62|t—s| :

B(H)— B(s) = N(0,062|t—s]), s,620. (7.1)

In applications of the Brownian motion to finance, the parameter ¢ is called volatil-
ity. Note that

62 = Var(B(1)). (7.2)

b(t)

(=
~

Figure 7.1 Sample path of the Brownian motion
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Standard Brownian Motion If 6 = 1, then {B(¢), t > 0} is called a standard Brown-
ian motion and will be denoted as {S(¢), > 0}. For any Brownian motion with para-
meter O,

B(H)=6S(0). (7.3)

Laplace Transform Since B(?) =N(O,(52t), the Laplace transform of B(f) is (see
example 1.12, section 1.3.2)

L1y252
E(emB0) = 13970, (7.4)

7.2 PROPERTIES OF THE BROWNIAN MOTION

The first problem which has to be addressed is whether there exists a stochastic pro-
cess having properties 1 to 3. An affirmative answer was already given by N. Wiener
in 1923. In what follows, a constructive proof of the existence of the Brownian
motion is given. This is done by showing that Brownian motion can be represented
as the limit of a discrete-time random walk, where the size of the steps tends to 0 and
the number of steps per unit time is speeded up.

Brownian Motion and Random Walk With respect to the physical background of
the Brownian motion, it is not surprising that there is a close relationship between
Brownian motion and the random walk of a particle along the real axis. Modifying
the random walk described in example 4.1, it is now assumed that after every A time
units the particle jumps Ax length units to the right or to the left, each with probabili-
ty 1/2. Thus, if X(7) is the position of the particle at time ¢ and X(0) =0,

X([)Z (Xl +X2+~-'+X[I/Az])Ax, (75)
where

_ | +1 if the ith jump goes to the right

X =
—1 if the ith jump goes to the left

i
and [#/Af] denotes the greatest integer less than or equal to #/A¢. The random varia-
bles X; are independent of each other and have probability distribution
PX;=1)=PX;=-1)=1/2 with EX;)=0, Var(X;)=1.
Formula (1.105) applied to (7.5) yields
EX(1))=0, Var(X(1)) = (Ax)? [t/Ad].
With a positive constant ¢, let Ax = 6,/Az . Then, taking the limit as Az — 0 in (7.5),

a stochastic process in continuous time {X(#), >0} arises which has trend and var-
iance function

EX())=0, Var(X(t))=oct.
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Due to its construction, {X(#),#>0} has independent and homogeneous increments.
Moreover, by the central limit theorem, X(f) has a normal distribution for all ¢> 0.
Therefore, the stochastic process of the 'infinitesimal random walk' {X(¢),£>0} is a
Brownian motion.

Even after Norbert Wiener, many amazing properties of the Brownian motion have
been detected. Some of them will be considered in this chapter. The following theo-
rem summarizes key properties of the Brownian motion.
Theorem 7.1 A Brownian motion {B(f), t =0} has the following properties:
a) {B(?), t 20} is mean-square continuous.
b) {B(f), t 20} is a martingale.
c) {B(t), t =0} is a Markov process.
d) {B(?), t= 0} is a Gaussian process.
Proof a) From (7.1),
E((B(1)— B(s))?) = Var(B(t) - B(s)) = 62|t —s] . (7.6)
Hence,

lim E([B(t+ h) —B(t)]Z) = lim 62|h| =0.
h—0 h—0
Thus, the limit exists with regard to the convergence in mean-square (section 1.9.1).

b) Since a Brownian motion {B(f), t = 0} has independent increments, for s < £,
E(B®)|B(), y<s)= EB(s)+B(t)~B(s)| By), y <))
= B(s)+E(B(t) - B(s)| B(»), y < 5))
= B(s) + E(B(1) - B(s))
=B(s)+0-0=B(s).
Therefore, {B(f), t =2 0} is a martingale.

¢) Any stochastic process with independent increments is a Markov process.

d) Let ¢y, 1y, ...,tn be any sequence of real numbers with 0 < ¢ <ty <--- <ty <oo. It
has to be shown that for all » =1, 2, ... the random vector

(B(t1),B(t2), ..., B(tn))

has an n-dimensional normal distribution. This is an immediate consequence of theo-
rem 1.2 (section 1.6.3), since each B(¢;) can be represented as a sum of independent,

normally distributed random variables (increments) in the following way:

B(t;) =B(t))+(B(ty)—B(t) +---+(B(;)—B(t;_1)); i=2,3,...,n. |
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Theorem 7.2 Let {S(¢), 1> 0} be the standardized Brownian motion. Then, for any
constant o0 # 0, the stochastic processes {Y(¢), >0} defined as follows are martin-
gales:

2
a) Y(f) = e S(-07/2 (exponential martingale),
b) Y(¢) = 52 -1t (variance martingale).
Proof a) Fors<t¢,

E(SO-02112[§(y) < ) = E(eOUSE+SO-S©)1-02112] 511 ) < )
= OSE)-07 12 (0 [SO-SO)]|5(), y < s)

_ o0S(s)-021/2 E(eoc [S(t)—S(s)]) .
From (7.4) witho =1,

E(ea [S(t)—S(s)]) _ )
Hence,

E(eocS(t)—(xzt/2|S(y)’ y<s)= eocS(s)—oczs/Z ) (7.7

b) For s < ¢, since S(s) and S(¢) — S(s) are independent and E(S(x)) =0 for all x > 0,
E(S2(t) = 1]S@), y < 5) = E([S(s) + S(t) - S(s)]* = |S(), y < 5)
= 52(s) + E{2.8(5) [S(t) — S(5)] + [S(t) = S()1% ~ 1| S(), y < 5}
=52(s)+ 0+ E{[S() - S(s)1%} ¢
=S2(s)+ (1—5)—1
=5%(s) s,
which proves the assertion. |

There is an obvious analogy between the exponential and the variance martingale
defined in theorem 7.2 and corresponding discrete-time martingales considered in
examples 6.3 and 6.6.

The relationship (7.7) can be used to generate further martingales: Differentiating
(7.7) with regard to o once and twice, respectively, and letting oo =0, 'proves' once

more that {S(¢), >0} and {Sz(t) —t,t>0} are martingales. The same procedure,
when differentiating (7.7) three and four times, generates the martingales

183(t)=3tS(t), t>0} and {S*(#)-6¢S2(H)+32,t>0}.

This algorithm produces martingales when differentiating £ =2, 3, ... times.
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Properties of the Sample Paths Since a Brownian motion is mean-square continu-
ous, it is not surprising that its sample paths b = b(¢) are continuous functions in ¢.
More exactly, the probability that a sample path of a Brownian motion is continuous
is equal to 1. Or, equivalently, 'almost all sample paths of a Brownian motion are
continuous.' In view of this, it may surprise that the sample paths of a Brownian
motion are nowhere differentiable. This is here not proved either, but it is made
plausible by using (7.6): For any sample path b = b(¢) and any sufficiently small, but
positive At, the difference

Ab = b(t+ Af) — b(f)
is approximately equal to 6./Ar . Therefore,

Ab _bt+A)-b(t) ©JA

At~ At AT A
Hence, for At — 0, the difference quotient Ab/At is likely to tend to infinity for any

nonnegative ¢. Thus, it can be anticipated that the sample paths of a Brownian motion
are nowhere differentiable. (For proofs, see e.g. Kannan [43].)

The variation of a sample path (as well as of any real function) b = b(¢) in an inter-
val [0,s] with s > 0 is defined as the limit

m 3 ‘b(é‘—ﬁ) —b(@) .

Jim % i (7.8)

A consequence of the non-differentiability of the sample paths is that this limit, no
matter how small s is, cannot be finite. Hence, any sample path of a Brownian mo-
tion is of unbounded variation. This property in its turn implies that the 'length' of a
sample path over the finite interval [0, s], and, hence, over any finite interval [s, 7], is
infinite. What geometric structure is such a sample path supposed to have? The most
intuitive explanation is that the sample paths of any Brownian motion are strongly
dentate (in the sense of the structure of leaves), but this structure must continue to
the infinitesimal. This explanation corresponds to the physical interpretation of the
Brownian motion. The numerous and rapid bombardments of particles in liquids or
gases by the surrounding molecules cannot lead to a smooth sample path. Unfortuna-
tely, the unbounded variation of the sample paths implies that particles move with an
infinitely large velocity when dispersed in liquids or gases. Hence, the Brownian mo-
tion process cannot be a mathematically exact model for describing the movement of
particles in these media. But it is definitely a good approximation. (For modeling the
velocity of particles in liquids or gases the Ornstein-Uhlenbeck process has been
developed, see section /7.5.2.) However, as pointed out in the introduction, nowadays
the enormous theoretical and practical importance of the Brownian motion within the
theory of stochastic processes and their applications goes far beyond its being a
mathematical model for describing the movement of microscopically small particles
in liquids or gases.
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7.3 MULTIDIMENSIONAL AND CONDITIONAL DISTRIBUTIONS

Let {B(?), t=0} be a Brownian motion and f;(x) the density of B(¢), > 0. From

property 3 of definition 7.1,
2

L. 202, >0, (7.9)

2nt G

Ji(x) =

Since the Brownian motion is a Gaussian process, its multidimensional distributions
are multidimensional normal distributions. To determine the parameters of this distri-
bution, next the joint density fs (x1,x5) of (B(s), B(f)) will be derived.

Because of the independence of the increments of the Brownian motion and in view
of B(f) — B(s) having probability density f;—s (x), for small Ax; and Axj,

Ss,t (x1,X0) Ax1Axy = P(x| < B(s) <x1 +Axq, xp < B(f) Sxp +Axp)
=P <B(s)<x;+Axq, x9—x1 SB(®)—B(s)<xy—x1+Axy —Axq)
=fs(1) felvg —x1) Ax  Axy .
Hence,
Ss,p (x1,x2) =fs(x1) f1—s(x2 —x1). (7.10)

(This derivation can easily be made rigorously.) Substituting (7.9) into (7.10) yields
after some simple algebra

fs,,(xl,x2)=+ exp{—é(tx%—stlxz +sx%)}. (7.11)
2162 [s(t—s) 2625 (t—s)

Comparing this density with the density of the bivariate normal distribution (1.66)
shows that { B(s), B(f)} has a joint normal distribution with correlation coefficient

p= +m , O<s<t.
Therefore, if 0 <s <t the covariance function of the Brownian motion is
C(s,t) = Cov (B(s), B(1)) = 62 .
Since the roles of s and ¢ can be changed,
C(s,©) = 6% min (s, ?). (7.12)

However, in view of the independence of the increments of the Brownian motion, it
is easier to directly determine the covariance function of {B(#), t20}: For0<s<t¢,

C(s,t) = Cov (B(s), B(?)) = Cov (B(s), B(s) + B(¢) — B(s))
= Cov (B(s), B(s)) + Cov (B(s), B(t) — B(s))
= Cov(B(s), B(s)).
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Hence,
C(s,t) = Var(B(s)) =02s, 0<s<t.
Let 0 <s<t. According to (1.59), the conditional density of B(s) given B(f) =b is

fS t (x7 b)
x|B(H) =b) =—"——. 7.13
IB(s)x|B(t)=b) 0 (7.13)
Substituting (7.9) and (7.11) into (7.13) yields
1 1 s.)?
Iy *x|B()=b) = ———expy———(x—-3b . (7.14)
© IZTt%(t—s)cs 262§(t—s)< t )

This is the density of a normally distributed random variable with parameters

E(B(s)|B(t) = b) = %b, Var(B(s)| B(t) = b) = 62 % (t-s5). (7.15)

Obviously, the conditional variance assumes its maximum at s = ¢/2.

Let ftl,tz,...,tn (x1,x7,...,xn) be the n-dimensional density of the random vector
(B(t1),B(ty),...,B(tn)) with 0<t] <ty <---<tp<oo
From (7.10), by induction,
Jt1stgeetn X 15%25 sXn) = [1, (1) fry—t; 62 =X 1)+ fin—1,_, kn =X 1) -

With f;(x) given by (7.9), the n-dimensional joint density becomes

ffl,l‘z,...,ln(xla-xZa‘“7x7’l) (716)

2 2 2
1| X1 (oxy) (n=Xp_1)
exp{ 2(52[” + 11 +-+ tty |

@m"2 6" [ty =11 (n—1tp_1)

Transforming this density analogously to the two-dimensional case shows that (7.16)
has the form (1.89). This proves once more that the Brownian motion is a Gaussian
process.

The Brownian motion, as any Gaussian process, is completely determined by its
trend and covariance function. Actually, since the trend function of a Brownian
motion is identically zero, the Brownian motion is completely characterized by its
covariance function. In other words, given 02, there is exactly one Brownian motion
process with covariance function

C(s, ) = 62min (s, ).
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Example 7.1 (Brownian bridge) The Brownian bridge {B(?), t € [0,1]} is a stochas-
tic process, which is given by the Brownian motion in the time interval [0, 1] on con-
dition that B(1) =0 :

B({t)=B(1), 0<t<1; B(1)=0.
Letting in (7.14) 5 =0 and ¢ =1 yields the probability density of B(®)

2
X }, 0<t<l.

- _ 1 _
T30 ™ /2nt(1—t)cexp{ 262 (1 -1)

Mean value and variance of B(¢) are

EB(0)=0, Var(B(t)=02t(1-1), 0<t<1.

The two-dimensional probability density of (B(s), B(#)) can be obtained from

ﬁ] t2 t3(x17-x2’0)
. (x1,Xp) =—=
fl‘],tz 142 ft3(0)

with#; =s, tp =t and 3 =1. Hence, for 0<s<t<1,

1 (2 2 p s 2
/, (x1,x2) e Y R e M I A G (U
5 5 X1,X = :
(B(s).B(t) " 1°*2 2no2 [s(t—s)(1—1)

A comparison with (1.66) shows that correlation and covariance function of the
Brownian bridge are

0(s, 1) = % . Cs.h=02s(1—1), O<s<t<l.
The Brownian bridge is a Gaussian process whose trend function is identically O.
Hence, it is uniquely determined by its covariance function. O

7.4 FIRST PASSAGE TIMES

By definition, the Brownian motion {B(%), t > 0} starts at B(0) = 0. The random time
point L(x) at which the process {B(f),¢ = 0} reaches a given level x for the first time
is called the first passage time or the first hitting time of {B(f), t 2 0} with respect to
level x. Since the sample paths of the Brownian motion are continuous functions,
L(x) is uniquely characterized by B(L(x)) = x and can, therefore, be defined as

L(x)= mtin {t, B(f) =x}, x € (—oo,+00).
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b@)

Figure 7.2 Illustration of the first passage time and the reflection principle

Next the probability distribution of L(x) is derived on condition x > 0: Application
of the the total probability rule yields

P(B(f) = x) = P(B(?) = x|L(x) < ) P(L(x) < #) (7.17)
+ P(B(t) = x|L(x) > £) P(L(x) > ).

The second term on the right hand side of this formula vanishes, since, by definition
of the first passage time,

P(B(H) 2 x|L(x)>1) =0

for all > 0. For symmetry reasons and in view of B(L(x)) =x,
P@@aﬂﬁ@sg:%. (7.18)

This situation is illustrated in Figure 7.2: Two sample paths of the Brownian motion,
which coincide up to reaching level x and which after L(x) are mirror symmetric
with respect to the straight line b(f) =x, have the same chance of occurring. (The
probability of this event is, nevertheless, zero.) This heuristic argument is known as
the reflection principle. Thus, from (7.9), (7.17) and (7.18),

2

oo u

_[e 2621 gy
2MtOC X

Fru(®)=PLx)<t)=2PB(0) 2x) =

For symmetry reasons, the probability distributions of L(x) and L(—x) are identical
for any x. Therefore,
2

co __U”
Je 2021du, t>0.

2
10~ Tz |
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The probability distribution determined by this distribution function is a special case
of the inverse Gaussian distribution (section 1.2.3.2). Its relationship to the normal
distribution (Gaussian distribution) becomes visible after substituting u? = 62ty2 in
the integral of the distribution function of L(x):

FL(X)(Z‘)=L J. e—yz/Zdy’ t>0.

J2n

|x|

o/t
Hence, the distribution function of the first passage time L(x) can be written as
x| j
F Hn=2/1-0|——=||, t>0, 7.19
L) { (G i (7.19)

where as usual ®(-) is the distribution function the standard normal distribution. Dif-
ferentiation with respect to ¢ yields the probability density of L(x) :

— |x| _ x2

The parameters E(L(x)) and Var(L(x)) do not exist, i.e. they are infinite.

Maximum Let M(?) be the maximal value of the Brownian motion in [0, #] :
M() =max {B(s), 0 <s <t} (7.21)
In view of (7.19), the probability distribution of M(?) is obtained as follows:
1= F g0 () = P(M(1) 2 x) = P(L(x) < 7).

Hence, by (7.19), distribution function and probability density of M(?) are for ¢ > 0,

F =2® Lj -1, x20, 7.22
M(5)(%) (cﬁ x (7.22)
2 260 i, (7.23)

Tm ™) =
M) J2nto
As a consequence from (7.22): For all finite x,

lim P(M() <x)=0. (7.24)
f—>o0

Example 7.2 A sensor for measuring high temperatures gives an unbiased indication
of the true temperature during its operating time. At the start, the measurement is ab-
solutely correct. In the course of time, its accuracy deteriorates, but on average no
systematic errors occur. Let B(¢) be the random deviation of the temperature indicat-
ed by the sensor at time ¢ from the true temperature. Historical observations justify
the assumption that {B(¢), > 0} is a Brownian motion with parameter
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6= Var(X(1)) = 0.1 (in [OC/MD.

What is the probability that within a year (365 days) B(f) exceeds the critical level
x=-59C, i.e. the sensor indicates at least once in a year 5°C degrees less than the
true temperature? The desired probability is

F(5)(365) = P(L(-5) < 365) = P(L(5) < 365)

— _ —5 = — =
—2{1 (D(O.l\/%j} 2[1-®(2.617)] =0.009.

If the accuracy of the sensor is allowed to exceed the critical value of -5°C with
probability 0.05 during its operating time, then the sensor has to be exchanged by a
new one after a time T 5 given by

P(L(-5) < T g5) = 0.05.

According to (7.19), T( o5 satisfies equation

5
2| 1-®| ————| | =0.05
[0~1,/ 0.0 ”
or, equivalently,
5 -1

— 2 =9 1(0.975)=1.96.

0.1./70.05
Thus, T0.05 = 651 [days]. O

The following example presents another, more prestigious application of the proba-
bility distribution of M(?).

Example 7.3 Let P(1,d] be the probability that the Brownian motion {B(¢), > 0}
crosses the t-axis at least once in the interval (1,d], 1 <d. To determine P(1,d) hote
that for symmetry reasons and in view of (7.22), for any b > 0,
P(B(1)=0 foratwith 1<¢<d|B(l)=b)
=P(B(t)=0 foratwith 1<t<d|B(1)=-b)
=PB{)<-b foratwith 0<t<d-1)
=PB({)=2b foratwith 0<t<d-1)
=PM(d—-1)=b)
2

u

=—2 [ 25%@ D gy, (7.25)

[2nd-1)0 }
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where M(d—1) is the maximum of the Brownian motion in the interval [0, d—1].
Since b is a value the random variable B(1) can assume, the mean value of the ran-
dom probability

P(B(H)=0 foratwith 1<t<d|B(1))

is the desired probability P(1,d- Taking into account negative values of B(1) by the
factor 2, (7.25) and (7.9) yield

Pa.d =2 [ P(B(t)=0 fora ¢ with 1 <t<d|B(1) = b)fp(1)(b)db

o oo __ U b2
-2 J _[ e 2026 gy ¢ 202 gp.
(V)

By substituting
u=x6,d-1 andy=>b/c

in the inner and outer integral, respectively,

x2+y2

27 T 5
PLd =T l e 2 dxdy.

O3

d-1

The integration can be simplified by transition to polar coordinates (,®). Then the
domain of the (x, ) -integration has to be transformed as follows:

— Ja-1

y 1 T
0<y<oo, ———<x<oo; —>70<r<oo, arctan <QO< .

Since
oo 2
JO re "2 dr= 1,

the desired probability becomes
oo /2
2
Pldl== f I
0 arctan _d]T

2
e 72 rdodr

2|z 1 T 212
= | & —arctan re dr
’{2 d—lh

1

2
=1-Z=arctan
T d—1
1

_2
= parccos .

By
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By introducing the time unit ¢, 0 <c¢<d, i.e. replacing d with d/c, this formula
yields the probability P(c,d] that the Brownian motion crosses the z-axis at least once

_2 C
p(c,d] =T arccos \/g

Hence, the probability that the Brownian motion does not cross the x-axis in (c,d] is

2 . ¢
1- P(c,d) = 7 arcsin ‘/g (7.26)

in the interval (¢, d] :

Now, let
1= m?x{t, t<d, B(t) =0},

i.e. T is the largest time point less than or equal to d with property B(t) = 0. Then the
random event 't < ¢' with ¢ < d occurs if and only if there is no time point ¢ in (c,d]
satisfying B(f) = 0. Hence, as a corollary from (7.26), for 0 < ¢ < d,

2 . c
P(t<c¢) =7 arcsin ‘/g O

The next example considers a first passage time problem with regard to the Brown-
ian motion leaving an interval.

Example 7.4 Let L(a,b) be the random time at which {B(?), t > 0} for the first time
hits either value a or value b :

L(a,b):mtin {t, B(f)=a or B(t)=b}; b<0< a.

Then the probability p ab that {B(¢), t = 0} assumes value a before value b is
Pap =PL(a) <L(b)) = P(L(a,b) = L(a))
(Figure 7.3) or
Pap =PB(L(a,b))=a).
To determine p a,b» ote that L(a,b) is a stopping time for {B(¢), = 0}. In view of
formula (7.24), E(L(a, b)) is finite. Hence, theorem 6.3 is applicable and yields
0=EB(L(@,b) =apyp+b(1-pap).
Therefore, the probability that the Brownian motion hits value a before value b is

|b]
a+|b|’

Pap= (7.27)

For determining the mean value of L(a,b), the martingale {Y(?), >0} with

Y() = B2(1)—t
(o}
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Figure 7.3 First-passage times with regard to an interval

is used (theorem 7.2 b). In this case, theorem 6.3 yields
0= E(iz B2(L(a, b))) — E(L(a,b)).
c

Hence,

E(L(a.b)) = E(G% B%(L(a, b)))

= é[pa’baz +(1 —pa’b)bz]

Thus, by (7.27),
E(L) = é albl. (7.28)

As an application of the situation considered in this example, assume that the total
profit which a speculator makes with a certain investment develops according to a
Brownian motion process {B(f), t > 0}, i.e. B(f) is the cumulative 'profit', the specu-
lator has achieved at time ¢ (possibly negative). If the speculator stops investing after
having achieved a profit of a or after having suffered a loss of b, then p, 4, is the

probability that he finishes with a profit of a. With reference to example 7.2: The
probability that the sensor reads 8 °C high before it reads 4°C low is equal to

4/(84+4)=1/3.

Or, if in the same example the tolerance region for B(f) is
[-5°C, 5°C],

then B(#) on average leaves this region for the first time after

E(L) =25/0.01 =2500 days.
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7.5 TRANSFORMATIONS OF THE BROWNIAN MOTION

7.5.1 Identical Transformations

Transforming the Brownian motion leads to stochastic processes which are important
in their own right, both from the theoretical and practical point of view. Some trans-
formations again lead to the Brownian motion. Theorem 7.3 compiles three transfor-
mations of this type.

Theorem 7.3 If {S(¢), >0} is the standard Brownian motion, then each of the fol-
lowing stochastic processes is also the standard Brownian motion:

(1) {X(0), t = 0} with X(1) = ¢ S(t/c?), ¢>0,

(2) {Y(¢), t =20} with Y(¢) =S(t+h)—S(h), h>0,

tS(1/f) fort>0

(3) {Z(#), t 2 0} with Z(¢) = 0 fort=0"

Proof The theorem is proved by verifying properties 1) to 3) in definition 7.1. Ob-
viously, the processes (1) to (3) start at the origin: X(0) = ¥(0) = Z(0) = 0. Since the
Brownian motion has independent, normally distributed increments, the processes
(1) to (3) have the same property. Their trend functions are identically zero. There-
fore, it remains to show that the increments of the processes (1) to (3) are homoge-
neous. In view of (7.1), it suffices to prove that the variances of the increments of the
processes (1) to (3) in any interval [s,¢] with s < ¢ are equal to t—s. The following
derivations make use of E(Sz(t)) =t and (7.12).

(D Var(X() — X(s)) = E(IX(t) - X(5)]?)
= E(X2(#)) - 2Cov (X(s), X(©)) + E(X2(s))
= c2[ E(S%(t/c2)) ~2Cov (S(s /c?), S2(t/c?)) + E(S X(s/c?)) |

_ 2[r s s}_
=ct| 525+ |=t-s.
C2 02 C2

) Var (Y(t) - Y(s)) = E((S(t + h) — S(s + h)]?)
= E(S2(t+ h)) — 2 Cov(S(s + h) St + h)) + E(S% (s + h))
=({t+h)-2(s+h)+(s+h)=t—>=.

3) Var(Z(t) — Z(s)) = E([t S(1/f) — s S(1/5)]%)
= 2E(S2(1/1)) =2 st Cov (S(1/5) S(1/0)) + s2E(S2(1/s))
2.1 5,1, 2 1_
=t r 2st ; tst g =t-s.
Thus, the theorem is proved. u
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For any Brownian motion {B(?), t > 0}, with probability 1,
lim 1 B(7) = 0. (7.29)
t—>o0

(For a proof, see, for example, Lawler [54].) If ¢ is replaced with 1/¢, then taking the
limit as # — oo, is equivalent to taking the limit as # — 0. Hence, with probability 1,

lim tB(1/f)=0. (7.30)
t—0

A consequence of (7.29) is that any Brownian motion {B(?), 2 0} crosses the #-axis
with probability 1 at least once in the interval [s, ), s >0, and, therefore, even
countably infinite times. Since

{tB(1/t), t=0}
is also a Brownian motion, it must have the same property. Therefore, for any s > 0,

no matter how small s is, a Brownian motion {B(f),¢ > 0} crosses the f-axis in (0, s]
countably infinite times with probability 1.

7.5.2 Reflected Brownian Motion

A stochastic process {X(?), ¢ > 0} defined by X(¢) = | B(?)| is called a reflected Brown-
ian motion (reflected at the f-axis). Its trend and variance function are

2 xe 26%dx=c 2t

V2Tt G i

Var (X() = EXX2 (1)) — [E(X(£)]? = 62t — 62 % =(1-2/m)ct.

m(t) = E(X(1)) =

=0,

The reflected Brownian motion is a homogeneous Markov process with state space
Z =10, ). This can be seen as follows: For

0t <t)<---<tp<oo, x;€Z,

taking into account the Markov property of the Brownian motion and its symmetric
stochastic evolvement with regard to the #-axis,

P(X(?) Sy|X(t1) =x1,X(tp) =xp,...X(tn) =xn
=P(—y<B(1) < +y|B(t1) =xy,B(ty) =+x), ..., B(tn) = +xn
= P(-y S B(t) S +|B(tn) = xn)
= P(—y < B(t) < +y|B(tn) = xn) .
Hence, for 0 < s < ¢, the transition probabilities

P(X(1) < ylX(s) =x)
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of the reflected Brownian motion are determined by the increment of the Brownian
motion in [s,¢] if it starts at time s at state x. Because such an increment has an
N(x,6271)-distribution with T=17—s,

_(w)?

PX(t) < y|X(s) =x) = J%G [ e 207t du.
v

Equivalently,

(3 ) _of o)

PO <y =x) =@ T2 | @075 1 wy20: Tt

Since the transition probabilities depend on s and ¢ only via T=1¢—s, the reflected
Brownian motion is a homogeneous Markov process.

7.5.3 Geometric Brownian Motion

A stochastic process {X(¢), =0} with
X(#) = BO (7.31)
is called geometric Brownian motion.

Unlike the Brownian motion, the sample paths of a geometric Brownian motion can-
not become negative. Therefore and for analytical convenience, the geometric Brown-
ian motion is a favourite tool in mathematics of finance for modeling share prices,
interest rates and so on.

According to (7.4), the Laplace transform of B(f) is

+1 0262

B(o) = E(e™®B0)=¢"2 (7.32)

Substituting in (7.32) the parameter oo with an integer » yields all the moments of
X(0):

+ln262t

EX"(t)=e 2 ;o n=1,2,.. (7.33)
In particular, mean value and second moment of X(#) are

1.2
EX®)=e 2%, Ex2) =207, (7.34)
From (7.34) and (1.19):

Var(X(6)) = 'S (1% — 1.

Although the trend function of the Brownian motion is constant, the trend function of
the geometric Brownian motion is increasing:

2
mt)=eC 12 ¢>0. (7.35)
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7.5.4 Ornstein-Uhlenbeck Process

As mentioned before, if the Brownian motion process would be the absolutely cor-
rect model for describing the movements of particles in liquids or gases, the particles
had to move with an infinitely large velocity. To overcome this unrealistic situation,
Ornstein and Uhlenbeck developed a stochastic process for modeling the velocity of
tiny particles in liquids and gases.

Definition 7.2 Let {B(¢), =0} be a Brownian motion with parameter 6. Then the
stochastic process {U(f), t € (—oo,+00)} defined by

U(t) = e~ B(e2 1) (7.36)
is said to be an Ornstein-Uhlenbeck process with parameters ¢ and o, o > 0. ®

The density of U(¥) is easily derived from (7.9):

L ~=%20%)

@) = o

Thus, U(f) has a normal distribution with parameters

EU®) =0, Var(U(t)=02.

—oo < x< 0o,

In particular, the trend function of the Ornstein-Uhlenbeck process is identically 0
and U(¢) is standard normal if {B(f), t 2 0} is the standard Brownian motion.

Since {B(?), t=0} is a Gaussian process, the Ornstein-Uhlenbeck process has the
same property. (This is a corollary from theorem 1.2.) Hence, the multidimensional
distributions of the Ornstein-Uhlenbeck process are multidimensional normal dis-
tributions. Moreover, there is a unique correspondence between the sample paths of
the Brownian motion and the sample paths of the corresponding Ornstein-Uhlenbeck
process. Thus, the Ornstein-Uhlenbeck process, like the Brownian motion, is a Mar-
kov process. Its covariance function is

Cls,f) = 02e~M=8) | s<y¢. (7.37)
This is proved as follows: For s < ¢, in view of (7.12),
C(s, t) = Cov (U(s), U(%)) = E(U(s)U(¥))
— e—oc(s+t)E(B(620cs )B(eZ(Xt )
= e~ Coy (B(e? ), B(e?*))

— e—oc(s+t) 0262 os — G2e_a(t_s).

Corollary The Ornstein-Uhlenbeck process is weakly stationary. Therefore, as a
Gaussian process, it is also strongly stationary.

© 2006 by Taylor & Francis Group, LLC



370 STOCHASTIC PROCESSES

The stationary Ornstein-Uhlenbeck process arises from the nonstationary Brownian
motion by time transformation and standardization. In contrast to the Brownian mo-
tion, the Ornstein-Uhlenbeck process has the following properties:

1) The increments of the Ornstein-Uhlenbeck process are not independent.

2) The Ornstein-Uhlenbeck process is mean-square differentiable.

7.5.5 Brownian Motion with Drift

7.5.5.1 Definitions and First Passage Times

Definition 7.3 A stochastic process {D(%), ¢ = 0} is called Brownian motion with drift
if it has the following properties:

1) D(0)=0.

2) {D(f), t 2 0} has homogeneous, independent increments.

3) Every increment D(f) — D(s) has a normal distribution with mean value [ (¢—s)
and variance 62|t—s]|. °

An equivalent definition of the Brownian motion with drift is: {D(f), t>0} is a
Brownian motion with drift if and only if D(¢) has structure

D(t) = nt+ B(1), (7.38)

where {B(f), t 20} is the Brownian motion. The constant p is called drift parameter
or simply drift. Thus, a Brownian motion with drift arises by superimposing a Brown-
ian motion on a deterministic function. This deterministic function is a straight line
and coincides with the trend function of the Brownian motion with drift:

m(t) = E(D(¢)) = ut.
If properties 2) and 3) are fulfilled, but the process starts at time =0 at level u,

u# 0, then the resulting stochastic process {Dy(?), t > 0} is called a shifted Brown-
ian motion with drift. Dy/(f) has structure

Dy(t)=u+D().
The one-dimensional density functions of the Brownian motion with drift are

Gpn?
S =—m=—e 2021 ; —eco<x<oe, 1>0. (7.39)
J2nt ©

Brownian motion processes with drift are, amongst other applications, used for mod-
eling wear parameters, maintenance cost rates, productivity criteria and capital incre-
ments over given time periods as well as for modeling physical noise. Generally
speaking, Brownian motion with drift can successfully be applied to modeling situa-
tions in which causally linear processes are permanently disturbed by random in-
fluences.
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A
d(®)
m(f) =\t
0 T vw'v'v T >t

Figure 7.4 Sample path of a Brownian motion with positive drift

Let L(x) be the first passage time of {D(f), t 2 0} with regard to level x. Then,
L(x)= mtin {t, D(t) =x}, x € (—oo,40c0).

Since every Brownian motion with drift has independent increments and is a Gaus-
sian process, the following relationship between the probability densities of D(¢) and
L(x) holds:

TL(® = )ffD(t)(x), x>0, u>0.

(For more general assumptions guaranteeing the validity of this formula, see Franz
[30].) Hence, the probability density of L(x) is

_ 2
p —M}, >0, (7.40)

X
— < €X
J2T o3 { 20621

(See Scheike [71] for a direct proof of this result.) For symmetry reasons, the proba-
bility density of the first passage time L(x) of a Brownian motion with drift starting
at u can be obtained from (7.40) by replacing there x with x — u.

freo@® =

The probability distribution given by the density (7.40) is the inverse Gaussian dis-
tribution with parameters L, 62 and x (section 1.2.3.2). Contrary to the first passage
time of the Brownian motion, now mean value and variance of L(x) exist:

E(L(x)) = ﬁ Var(L(x)) = xu%z . (7.41)

For u =0, the density (7.40) simplifies to the first passage time density (7.20) of the
Brownian motion. If x <0 and W < 0, formula (7.40) yields the density of the corres-
ponding first passage time L(x) by substituting |x| and |u| for x and p, respectively.

Let
FL(X)(t) =P(L(x)<¢) and ?L(x)(t) =1 _FL(x)(t) , t=20.
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Assuming x > 0 and 1 > 0, integration of (7.40) yields

Fr®= q{x\/_?“tj _ o2 q)[— %’“j >0, (7.42)
o (¢}

If the second term on the right-hand side of (7.42) is sufficiently small, then one
obtains an interesting result: The Birnbaum-Saunders distribution (3.179) as a limit
distribution of first passage times of compound renewal processes (theorem 3.20)
approximately coincides with the inverse Gaussian distribution.

After some tedious algebra, the Laplace transform of f; L(x)(t) is seen to be

(—sL(X)) =[5 e fL(x)(t)dt=exp{——“/20 s+ p? —u)} (7.43)

Theorem 7.4 Let M be the absolute maximum of the Brownian motion with drift on
the positive semiaxis (0, o) :

M= max D(?).
1€ (0,00)
Then,
1 forx>0and u>0
P(M>x) = 22 | x /o2 (7.44)
e #IMX/0" forx>0and u<0

Proof In view of (7.24), it is sufficient to prove (7.44) for u < 0. The exponential
martingale {¥(?), t =2 0} with

Y(t) = 0 SO-02i/2
(theorem 7.2) is stopped at time L(x). Since
D(L(x)) = uL(x) + 6 S(L(x)) = x,
Y(L(x)) can be represented as
Y(L() = exp { & [x— L L()] - 02L()/2} = exp {Ex— [% + oc2/2]L(x)}.
Hence,
L(x)

E(Y(L(x)) =G XE(exp{ ol 2 L(x) < o) P(L(x) < o)

+eng(eXP{ “B a2 L(x) | L(x) = o) P(L(x) = o°).

Assume o, > 2|u|/c. Then the second term disappears and theorem 6.3 yields

o
| = eEXE(exp {% - oc2/2}L(x)

L(x) < 00) P(L(x) < o0).

Since P(M > x) = P(L(x) < o), letting o | 2|u|/c yields the desired result. [
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Corollary The maximal value a Brownian motion with negative drift assumes on the
positive semiaxis (0,+e0) has an exponential distribution with parameter

r=2l (7.45)
[¢)

Example 7.5 (Leaving an interval ) Analogously to example 7.4, let L(a,b) denote
the first time point at which the Brownian motion with drift {D(¢), £ > 0} hits either
value a or value b, b<0<a, u#0, and

Pap =P(L(a) <L(b)) = P(L(a,b) = a).

Thus, p ab is the probability that {D(¢), t > 0} hits level a before level b. For estab-
lishing an equation in p,, 5, the exponential martingale in theorem 7.2 with

S(6) = D(t) D(t) —ut

is stopped at time L(a, b). From theorem 6.3,

I:E(exp{ (D(L(a, b)) -1t L(a b))—w})

Equivalently,

1=E(exp{%(D(L(a,b))—[% %}L(a b)D

LetOL——Zu/G. Then,
| =E D(L(a,b — 2 2 2
= (60( ( ( » ))) =p ’ e 2“61/(7 (] p ) )2 lJb/(S .

Solving this equation for p,, ; yields

—Zub/(s2

l—e
= : 7.46
Pab o—2ualc? _ ~2ublc? (7:46)

If L <0 and b tends to —ee in (7.46), then the probability p, ;, becomes P(L(a) <),
which proves once more formula (7.44) with x = a.
Generally, for a shifted Brownian motion with drift {Dy,(f), t = 0},
Dy®)=u+D({), b<u<a, W#0,
formula (7.46) yields the corresponding probability p, ; by replacing a and b with
a—u and b—u, respectively (u can be negative):
uu/o —2ub/cs2

P(L(a) < L(b)|Dy(0)) = . O
Pap =P(L(a) < L(B)| Dyu(0) = ezw/cz_e_mb/cz
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Geometric Brownian Motion with Drift Let {D(¢),t>0} be a Brownian motion
with drift. Then the stochastic process {X(¢), > 0} with

X(1) = PO (7.47)

is called geometric Brownian motion with drift. If the drift W is 0, then {X(#), 1> 0} is
simply the geometric Brownian motion as defined by (7.31).

The Laplace transform of D(#) is obtained by multiplying (7.4) by e M ¢ :

152402
E(e=0D()y = o~ IHOF07I07 (7.48)
Letting oo =—1 and o = -2 yields the first two moments of X(¢):
2 2
EX(0) = ! WF072) | B(X2 (1) = 2142071 (7.49)

Therefore, by (1.19),
Var(X(1)) = ! @H+07) (o107 _ 1y
Since the inequalities
ePW >y and D(H)=Inx

are equivalent, the first passage time results obtained for the Brownian motion with
drift can immediately be used for characterizing the first passage time behavior of
the geometric Brownian motion with drift with In x instead of x, x > 0.

7.5.5.2 Application to Option Pricing

In finance, Brownian motion and its transformations are used to model the evolve-
ment in time of prices of risky securities and combinations of them. The concept of a
risky security comprises all risky assets, e.g. shares and precious metals. An option is
a contract, which entitles (but not obliges) its holder (owner) to either buy or sell a
risky security at a fixed, predetermined price, called strike price or exercise price. A
call (put) option gives its holder the right to buy (to sell). An option has a finite or an
infinite expiration or maturity date. An American option can be exercised at any time
point to its expiration, a European option can only be exercised at the time point of
its expiration.

A basic problem in option trading is: What amount of money should a speculator pay
to the writer (seller) of an option at the time of signing the contract? Common sense
tells that the writer will fix the option price at a level which is somewhat higher than
the mean payoff (profit) the speculator will achieve by acquiring this option. Hence,
the following examples focus on determining the mean (expected) payoff of a holder.
For instance, if a European call option has the finite expiration date 1, a strike price
xs and the random price (value) of the underlying risky security at time T is X(7),

then the holder will achieve a positive random payoff of X(1) —xg if X(1) >xs. If
X(1) <xg, then the owner will not exercise because this would make no financial
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sense. In case of a European put option, the owner will exercise at time T if X(T) < xs
and make a random profit of x5 — X(1). Thus, owners of European call or put options
will achieve the respective random payoffs (notation: z; = max(z, 0))

(X(1) —x5)+ and (x5 —X(1))+.
Another basic aspect in finance is discounting. Due to interest and inflation rates, the
value which a certain amount of money has today, will not be the value which the

same amount of money has tomorrow. In financial calculations, in particular in
option pricing, this phenomenon is taken into account by a discount factor.

The following examples deal with option pricing under rather simplistic assump-
tions. For detailed and more general expositions, see, e.g. Bouchaud and Potters [12],
Shafer and Vovk [74].

x(f) 4
x

Xs

X

S

WAV W\w o
>t

Figure 7.5 Payoff from random share price fluctuations

Example 7.6 The price of a share at time ¢ is given by a shifted Brownian motion
{X(8) = Dx( (1), t 2 0} with negative drift i and volatility 02 = Var(B(1)):

X(t)=x0 +D(t) =xp +ut+B(1). (7.50)
Thus, x(y is the initial price of the share: x = X(0). Based on this share, a speculator
holds an American call option with strike price xs, xs 2 x(. The option has no finite
expiry date. Although the price of the share is on average decreasing, the speculator
hopes to profit from random share price fluctuations. He makes up his mind to exer-
cise the option at that time point, when the share price for the first time reaches value
x with x > x;. Thus, if the holder exercises, his payoff will be x —xy (Figure 7.5). By
following this policy, the holder's mean payoff (gain) is

G(x) = (x =x5) p(x) +0 - (1 = p(x)) = (x —xs5) p(x),

where p(x) is the probability that the share price will ever reach level x. Equivalently,
p(x) is the probability that the Brownian motion with drift {D(#), 1> 0} will ever
reach level x —x. Since the option has no finite expiration date, this probability is
given by (7.44) if there x is replaced with x —x(. Hence the holder's mean payoff is
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G(x) = (x—xs) e *¥X0) with A =2|u|/02. (7.51)
The condition dG(x)/dx = 0 yields the optimal value of x: The holder will exercise as
soon as the share price hits level
x* =xg+ /M. (7.52)
The corresponding maximal mean payoff is

1

Gl') = 2 oM s—xQ)Hl

(7.53)

Discounted Payoff Let the constant (risk free) discount rate o be positive. The dis-
counted payoff from exercising the option at time ¢ on condition that the share has at
time ¢ price x with x > xg is e ot (x—xs). Since under the policy considered the hol-

der exercises the option at the random time Lp(x—xg) (= first passage time of
{D(1), t = 0} with respect to level x —x(), his random discounted payoff is

e OLDOx0) ( _xy) .
Hence, the holder's mean discounted payoff is
Ga(x) = (x—xs)[ ) p(x-xg) (Dl 5 (7.54)

where the density f7 D(x_xO)(t) is given by (7.40) with x replaced by x —x(. The
integral in (7.54) is equal to the Laplace transform of fj D(x_x())(t) with parameter
s = o.. Thus, from (7.43),

Go(x) = (x—xs) exp {—x_;o (,/2(52& +u2 —uj } (1.55)
(¢}

The functional structures of the mean undiscounted payoff and the mean discounted
payoff as given by (7.51) and (7.55), respectively, are identical. Hence the optimal
parameters with respect to Gg(x) are again given by (7.52) and (7.53) with A replac-

ed by
_1([ =2 2 )
7—62\ 260+ U . (7.56)
Note that minimizing G, (x) also makes sense for a positive drift parameter L. O

Example 7.7 Since for a negative drift parameter i the sample paths of a stochastic
process {X(f), t 20} of structure (7.50) eventually become negative with probability
one, the share price model (7.50) is only limitedly applicable, in particular in case of
finite expiration dates. In such a situation it seems to be more realistic to model the
share price development, apart from a constant factor, by a geometric Brownian
motion with drift:

X(t)=x¢ePD, >0.
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The other assumptions as well as the formulation of the problem and the notation in-
troduced in the previous example remain valid. In particular, the price of the share at
time ¢ = 0 is again equal to x.

The random event 'X(¢) > x' with x > x( is equivalent to
D(t) 2 In(x/xg) .
Therefore, by (7.44), the probability that the share price will ever reach level x is

px)= e~ In(x/xg) _ ()%) 7».

If the holder exercises the option as soon as the share price is x, his mean payoff is

A
X
G(x) = (x —xs) (70) . (7.57)
The optimal level x = x™ is
X = ﬁxs. (7.58)
To ensure that x™ > xg > 0, an additional assumption has to be made:
A=2uj/e2 > 1.

The corresponding maximal mean payoff is
" -1 A1 /xo\ A
oy =(21) (70) . (7.59)

Discounted Payoff The undiscounted payoff x—xg is made when { D(¢), t 2 0} hits
level In(x/x() for the first time, i.e. at time L p (In(x/x()). Using this and processing
as in the previous example, the mean discounted payoff is seen to be

Galx) = (x—xs)(xTO) ! (7.60)

with y given by (7.56). The functional forms of the mean undiscounted payoff (7.57)
and the mean discounted payoff (7.60) are identical. Hence, the corresponding opti-
mal values x* and G, (x*) are given by (7.58) and (7.59) if in these formulas A is re-
placed with y. Note that condition y > 1 is equivalent to

2(oe—p) > c2.

As in the previous example, a positive drift parameter p need not be excluded. O

Example 7.8 (Formula of Black-Scholes-Merton) A European call option is consid-
ered with strike price xs and expiration date T. The option is based on a risky secur-
ity the price of which, apart from a constant factor x, develops according to a geo-
metric Brownian motion with drift {X{(¢), 1> 0}:

X(t) =xpeP®, t>0.
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The holder will buy if X(t) > xs. Given a constant discount factor o, his random dis-
counted payoff is

[e T (X(T) —xg)]4 = max [e"*T(X(1) —xy), 0].
The holder's mean discounted profit is denoted as
Ga(T,1,0) = E([e”* T (X(1) —xs5)]4). (7.61)
In view of D(t) = N(ut, 621),

oo

—ut) 2
Ga(tp.o)=e % [ (xge ) === exp{‘%(y—c”) }dy
26T

In(xs/x)
- In(xg/xg) — Ut
Substituting uz); ‘/;T and letting c¢= [(%‘/OF)M yields
ey — —ayt_ L[ uc T -ut ot 1T —u?n
Ga(T; 1, 0) =xg e 0T —— [ ¢ e du—xse ¥'—— | e du.
0 J2r 'i * J2r l

By substituting in the first integral u =y +0c /7,

2 ~0°1T 2
je”cﬂ e W2y =2 J eV 2qy.
¢ c—0.J7T

Hence,

2 n 2 T 2
Ga(T;1L,6) =x¢ eu—ot+c-/2)t 1 J eV 2y —xge 0T 1 J e U2y
C

P oo o
=X cH-0tc?/2)T D6 )T —c)—xse AT (D(=c)).

At time ¢, the discounted price of the risky security is
X(x(l) —e O IX([) =X( e—(oc—u) t+GS(t)’
where {S(?), t > 0} is the standard Brownian motion. In view of theorem 7.2, the sto-
chastic process {Xo.(?), = 0} is a martingale (exponential martingale) if and only if
o—-U= c2/2.
Under this condition, the mean discounted payoff of the holder is given by the For-
mula of Black-Scholes-Merton

Go(1,0) = x) @(G T —¢)—x5e *TdD(~c). (7.62)

(Black and Scholes [10], Merton [61]). In this formula, the influence of the drift pa-
rameter L on the price development is eliminated by the assumption that the discount-
ed price of the risky security develops according to a martingale. The formula of
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Black-Scholes-Merton gives the fair price of the option. This is motivated by the fact
that a martingale has a constant trend function and that, on average, holder and writer
of this option will neither lose nor win. Of course, this statement is only theory, since
the price development of the underlying risky security will never strictly follow a
geometric Brownian motion with drift. Hence, other stochastic models have been
proposed for the price development of risky securities [12, 50, 64, 74]. O

7.5.5.3 Application to Maintenance

In examples 7.9 and 7.10, functionals of the Brownian motion will be used to model
the cumulative repair cost arising over a time period and to model the cumulative
repair cost rate. It is a formal disadvantage of this model assumption that cumulative
repair costs modeled in this way do not have nondecreasing sample paths. However,
the problem to be analyzed is not directly based on sample paths generated by the
process, but on its trend function and its mean first passage times. Both have 'reason-
able' properties with respect to the application considered. Moreover, the results
obtained are relevant for all those stochastic maintenance cost developments, where
the pair 'trend function and mean first passage time' approximately exhibit the same
behaviour as the corresponding pair resulting from the Brownian motion model.

In all examples, the following basic situation is considered: A system starts working
at time = 0. The random repair cost accumulating over the time interval [0, ] is de-
noted as X(f). The sample paths of the stochastic process {X(f), t >0} are assumed to
be continuous and its trend function m(¢) = E(X(¢)), ¢ = 0, to be progressively (faster
than linear) increasing. The cost of each replacement is ¢, a replacement takes negli-
gibly small time, and after a replacement a system is 'as good as new'. With regard to
cost and length, all replacement cycles are independent of each other. In each case,
the optimal scheduling of replacements is based on the long-run total maintenance
cost per unit time, in what follows referred to as maintenance cost rate.

In this section, replacement policies based on limiting the cumulative repair cost X(#)
and the cumulative repair cost per unit time (in what follows called repair cost rate)
R(f) = X(#) /t are considered. These replacement policies need the same basic input as
the already classic 'economic lifetime policy', which is introduced next for serving as
standard of comparison. The repair-replacement process continues to infinity.

Policy 1 The system is replaced by a new one after reaching its economic lifetime.

Let K(t) be the maintenance cost rate if the system is always replaced after T time
units. Then, by (3.79),
m(t)+c

Kjm="

(7.63)

That value of T minimizing K (1) is called the economic lifetime of the underlying
system and denoted as ©*. If T* exists, then

K(t*)=m'(t*).
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Policy 2 The system is replaced by a new one as soon as the cumulative repair cost
X(¢) reaches a given positive level x.

When scheduling replacements according to this policy, a 'typical replacement cycle'
has random length L y(x), where L y(x) is the first passage time of {X(#),# =0} with
regard to level x. Under policy 2, the maintenance cost rate has structure

Ko(x)=2Xt+t¢ 7.64
20=T1 ) (7.64)
Policy 3 The system is replaced by a new one as soon as the repair cost rate
R(H=X()/t
reaches a given positive level 7.

Under policy 3, the maintenance cost rate has structure
KA(r)=r+—5 s 7.65
3(r) 200 (7.65)
where Lp(r) is the first passage time of the stochastic process {R(¥), =0} with re-
gard to level ». Formulas (7.65) and (7.64) follow from the strong law of the large
numbers (theorem 1.8).

Example 7.9 The cumulative repair cost X(¢) is assumed to have structure
X0y =xq| PO -1], (7.66)

where {D(f), t 20} is a Brownian motion with positive drift L and variance parame-
ter 62. Since for a level x with 0 < xp <Xxq,

X(t)=x ifand only if D) =In| 0]
(r)=x ifand only i (t)—nk X0 )’

by (7.41), the mean value of L y(x) is

E(Ly(x) = ﬁ In (x :go) .

Therefore, under policy 2,
X +c
Ko (x)= W M
In 0

A limit x being optimal with respect to K, (x) satisfies the condition dK, (x)/dx =0:

(X+X0)  x+c¢

ln\ X0 ) Tx+xg

A unique solution x =x" exists and the corresponding maintenance cost rate is

Ky(x™) =" +xg) .
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Comparison to policy 1 Making use of (7.49) yields
2
m(t) = E(X() = xg (e(“+0 2)t _ 1), t>0.
Hence, the corresponding maintenance cost rate (7.63) is

xote(”'mz/z)T — IJ +c
T

K1) = (7.67)

There exists a unique T=1" mimimizing K| (t). By introducing the notation
K{(1,06), m(t,0) and t*(c) for Kj(t), m(t), and ¥,

K1 () on condition 6 =0 is

xoleMT=1]+c¢

K{(1,0) = -

Since m(t,G) > m(t,0) for all ¢, there holds
Ki(1,0) 2K/ (t,0).

One readily verifies that minimizing K, (x) with respect to x =x( (e —1) and min-
imizing K (1,0) with respect to T are equivalent problems. Hence,

K1(t*(0),0) 2 K{(t%(0),0) = K5 (x™).

Therefore, applying the economic lifetime on condition that the cumulative repair
cost evolves deterministically according to function m(¢,0) is equivalent to applying
the optimal total repair cost limit x*. Thus, policy 2 equalizes the cost-increasing in-
fluence of random fluctuations of individual repair costs, which are ignored under
policy 1. As a consequence, under the assumptions stated, applying policy 2 leads
to a lower maintenance cost rate than applying the economic lifetime. Moreover, the
efficiency of policy 2 relative to policy 1 increases with increasing G. O

Example 7.10 Let the repair cost rate R(f) = X(¢) /¢t be given by
R(t) =rgB*(t); r9>0, 120,

where {B(f), t = 0} is the Brownian motion with parameter 6. For r > r(),
_ . 2 14
R(f)=r ifand only if B(¢) = i(%)
Hence, the mean value of the first passage time of the stochastic process {R(?), t = 0}
with regard to level r is given by (7.28) with a = |b| = (r/r() 4.

_ 1 jr
E(LR(r))—62 7o

Thus, when applying policy 3, the corresponding maintenance cost rate (7.65) is
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Ky(r)=r+

cﬂcz
—— (7.68)

The necessary condition dK5(r)/dr =0 yields the optimal repair cost rate limit and
the corresponding maintenance cost rate:
1/3 ) 1/3

r* = (% c2roc4) , K3(r*)=1.89 (czroc“) . (7.69)
Comparison to policy 1 Since B(¢) = N(0, Gzt), the trend function of the cumulative
repair cost process {X(f), t = 0} with X(¢) =r tB4(t) is

m(t) = rot EB*(1) = 3r¢6*13, 120.
The corresponding maintenance cost rate (7.63) is
Ki(m=3rgctt?+£. (7.70)

Minimizing (7.70) with regard to T gives

. ( 1/3
¥ = L ¢ J . Ki(t)=273 (02r064) . (7.71)
61’064
With K3 (™) given by (7.69) and K{(t™) given by (7.71),
K %k
3 69,
Ki(t)

Hence, applying the optimal repair cost rate limit 7* instead of the economic lifetime
7" reduces the total maintenance cost on average by 31%. O

The next example illustrates that optimizing replacement intervals on the basis of
limits on the cumulative repair cost (rate) does not need full information on the un-
derlying stochastic process {X(f), t =0} of the cumulative repair cost development if
making use of the fact that this process actually has nondecreasing sample paths.

Example 7.11 It is assumed that the sample paths of the cumulative repair cost pro-
cess {X(#), t =2 0} are nondecreasing. Then,
PX(H) <x)=P(L x(x) = 1).
Thus, if the one-dimensional probability distribution of {X(¢), ¢ > 0} is given by
Fi(x)=P(X(t) <x) forallt=0,

trend function and mean first passage time with respect to level x of the cumulative
repair cost process {X(f), t 20} are

m() = [ (1= F(x)dx,
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E(L y(x)) = j‘(’)" Fy(x)dt.

In what follows, policy 2 is applied on condition that X(#) has a Rayleigh distribu-
tion with probability density

2
2x —(i) © x>0, y>1, A>0

filx) =
Then,
ELx(x) =[g [o frwydude=[3 [§ fuydtdu.
Integration yields
E(L y(x)) = (%) l/yr(l - %)xl/y = k1.

Minimizing the corresponding long-run total maintenance cost rate (7.64) yields the
optimal limit x ™ and the corresponding maintenance cost rate Ko (x™) :

J/( c ‘\(y—l)/y
E\y—l] '

x*:yfla KZ(XX):

Comparison to policy 1 The trend function of {X(¥), > 0} is
m(t) = gxzy =kyt?, t20.

Minimizing the corresponding maintenance cost rate (7.63) yields

1y o-Dly
# _ c o (e )
K _(kz(y—l)j K=y o) '

Forall y> 1, the inequality K,(x™)<K{(t*) is equivalent to

2 Uw), 05<x<l, (1.72)

JT

where
1
Ulx) = [[(x)] 2179,
The function U(x) is decreasing in [0.5 < x < 1] with

U(0.5) = /T >2/JT and 1im1 Ux) =2 52/ /w,
x—

where E = 0.5772 is the Euler number. Hence, inequality (7.72) holds for all y > 1 so
that, as in example 7.9, policy 2 is superior to policy 1. In particular, if 1.1 <y <5,
then average cost savings between 25 and 9% are achieved by applying the optimal
cumulative repair cost limit x™ instead of the economic lifetime t*. O

© 2006 by Taylor & Francis Group, LLC



384 STOCHASTIC PROCESSES

The examples analyzed indicate that policies 2 and 3 belong to the most cost efficient
replacement policies. Moreover, in spite of the terminology applied, in practice X(¢)
will not only include pure repair costs, but also costs due to monitoring, servicing,
stockkeeping as well as personnel costs. A great advantage to the 'repair cost limit
replacement policy' considered in section 3.2.6.4 is that knowledge on the lifetime
distribution of the system is not required. Hence, from the modeling point of view
and with regard to their applicability, policies 2 and 3 are superior to the 'repair cost
limit replacement policy'. Finally it should be mentioned that the maintenance cost
rate criterion can be readily replaced with a discounted cost criterion.

7.5.5.4 Point Estimation for the Brownian Motion with Drift

The parameters of a probability distribution are generally estimated from samples
taken from this distribution. But if a random variable X is the first passage time of a
Brownian motion process with drift, then X has an inverse Gaussian distribution and
the parameters of this distribution can also be estimated on the basis of samples
generated by scanning sample paths of the underlying process. Therefore, the maxi-
mum-likelihood estimators {i and 62 for the parameters | and 62 of a Brownian
motion with drift, which will be constructed in what follows, are also point estimates
of the parameters \ and o2 of the corresponding inverse Gaussian distribution.

Let {Dy(?), t 20} be a shifted Brownian motion with drift which starts at value
Dy(0)=u
and let
d;=d;(t); i=1,2,..,n
be n of its sample paths, which have been observed in » independent random experi-

ments. The sample path d; = d;(¢) is scanned at time points

tilatin“"timi with 0 < tll < t12 <0< tml- and m; 22, i= 1,2,...,71.

The outcomes are
le =d(tl])’ j= 1,2,...,ml-; = 1,2,...,}1.

The total number m of observations is

m= er‘ll m;.
Further, let
Adl-j =d;—d

jdij-1s Aty =t

with j=2,3,..,m;; i=1,2,..,n. Ifthe initial value u is a constant, then

u=d;0); i=1,2,..,n

© 2006 by Taylor & Francis Group, LLC



7 BROWNIAN MOTION 385

In this case, the maximum-likelihood estimators of W and o2 are

Z?zl dim,—nu
=
n b

izt tim,

A . “ 2
s2-L1% (dil—ufil—”)2+ $ ”i’ (Adjj —LAL)
“m ). t: A~ At -

i=l1 il i=1j=2 ij

Unfortunately, these estimators are biased. The structure of the estimator [i confirms
the intuitively obvious fact that for estimating p only the initial value u and the last
tuples tim,» dimi) of each sample path are relevant.

If u is random, then the maximum-likelihood estimator of its mean value is

1
n —1 n n
o Ximdintyy Xz dip, (Zizl timi)
= . (1.73)

-1
n -1 ofyn
Xt —n (Eizl timi)

The following maximum-likelihood estimators were derived on condition that u is a
random variable.

Special case » =1 In this case only one sample path is available for estimating. Let
the time points at which the sample path is scanned and the corresponding outcomes
be t1,t9,...tm and d{,d,...,dm , respectively. With the notation

Ad] =dj_dj—1’ AI‘J = tj—tj_l,
the bias-corrected maximum-likelihood estimators of i and 02 are

dm —1u
tm

(=

>

A a A 2
s2o L=y -i)? w (Ad-Ay)

Special case m; =1; i=1,2,...,n In this case the estimation is based on n sample
paths, but each sample path is only scanned at one time point. This requires to drop
the assumption m; =2 stated above. Hence, m =n. The bias-corrected maximum-
likelihood estimators of p and 62 are
m A A A
Eizldi—mu ~o 1 (dl'—].ltl'—u)z

: )
M:—’ o =
MRS m=2 =1

(7.74)
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Example 7.12 Pieper (1988) measured the mechanical wear of 35 identical items
(cylinder running bushes) used in diesel engines of ships over a time span of 11,355
hours, each at one time point. He assumed that the stochastic wear process develops
according to a Brownian motion with drift starting at u:

Dy(@®)=u+D(), t=0.
The point estimates of u, p and 62 obtained from (7.73) and (7.74) are

A

=36.145 [um], [0 =0.0029[um/h], &% =0.137 [um?/h].
The point estimate of the wear at time ¢ can be written in the form
Du(f)=36.145+0.0029 £+ 0.137 S(¢) , (7.75)

where {S(7), t > 0} is the standard Brownian motion.

Hint If the model (7.75) is correct, then the test function
Dy(£)—0.0029¢—36.145

JO0.137 ¢

has a standard normal distribution for all # (according to property 3 of definition 7.1).
In particular, this must hold for all measurement points ;. Hence, model (7.75) can
be supported or rejected by a chi-square goodness of fit test.

() =

Let w=1000 [um] be an upper critical wear level with property that a cylinder run-
ning bush will experience a drift failure when the wear reaches this level. Then the
lifetime of such a wear part is the first passage time Lp (w) of the stochastic pro-

cess {Dy(f),t =0} with regard to level w=1000. By (7.41), estimates for mean val-
ue, variance and standard deviation of the first passage time Lp, = Lp, (1000) are

1000 — 36.145
ELp,) =g 005~ =332.364 hl,

(1000 — 36.145) - 0.137
(0.0029)3

[Var(Lp,) =73,581 [h].

Let #=1¢ be that time point at which a wear part must be preventively replaced in
order to avoid drift failures with a given probability €. With the survival function
given by (7.42), a point estimate of T¢ of Te satisfies

Var(Lp,) = =5.41425-10° [ 2],

F(te)=¢. (7.76)
Since
e~ 20w=i)L _ ,=5.6,
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the second term in (7.42) can be neglected. Therefore, equation (7.76) becomes
-u (1 -u—-(1
‘D[WJ —g or YU RTE_ o (7.77)
O /T O | Te

where z¢ is the e—percentile of the standard normal distribution. The relevant solu-
tion of (7.77) is

R AN 2 A R AN 2
%a=—w_”+l(2’icj -2 WT”+(Z£?) :
ao20q [t 20

In particular, if € =0.95, then z( g5 = 1.65 so that T g5 =231,121 [k]. Thus, with
probability 0.95, the wear remains below the critical level of 1000 um within an oper-
ating time of 231,121 hours . O

The Brownian motion with drift was firstly investigated by Schrodinger [72] and
Smoluchowski [75]. Both found the first passage time distribution of this process.
Folks and Chhikara [18] give a survey of the theory and discuss numerous applica-
tions: distribution of the water level of dams, duration of strikes, length of employ-
ment times of people in a company, wind velocity, and cost caused by system break-
downs. Moreover, they were the first to publish tables of the percentiles of the
inverse Gaussian distribution. As a distribution of first passage times, the inverse
Gaussian distribution naturally plays a significant role as a statistical model for life-
times of systems which are subject to drift failures, see Kahle and Lehmann [42].
Seshadri [73] presents an up to date and comprehensive treatment of the inverse
Gaussian distribution.

7.5.6 Integral Transformations

7.5.6.1 Integrated Brownian Motion

If {B(#), t =0} is a Brownian motion, then its sample paths b = b(¢) are continuous.
Hence, the integrals

b(t)= [ b(y)dy.

exist for all sample paths. They are realizations of the random integral

U(n = [, Be)dy. (7.78)

The stochastic process {U(¢), t 2 0} is called integrated Brownian motion. This pro-
cess can be a suitable model for situations in which the observed sample paths seem
to be 'smoother' than those of the Brownian motion. Analogously to the definition of
the Riemann integral, for any n-dimensional vector (¢1,¢7,...,tn) with
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O:t0<t1 <~-~<l‘n=tand Ati:ti+l_ti; iZO,l,Z,...,l’l—l,

the random integral U(¢) is defined as the limit

—1
Uu@) = nh_rféo {HZ [B(t; + At;) — B(¢;)] Atl}. (7.79)
At;—0 -

(Note that passing to the limit refers here and in what follows to mean-square con-
vergence.) The random variable U(f), being the limit of a sum of independent, nor-
mally distributed random variables, is itself normally distributed. More generally, by
theorem 1.2, the integrated Brownian motion is a Gaussian process. Therefore, the
integrated Brownian motion is uniquely characterized by its trend and covariance
function. In view of

(]! Boyay) =1 BB dy =0 dy =0,
the trend function of the integrated Brownian motion {U(¢), ¢ > 0}is 0:
m(t) = E(U(t)) =0.
Its covariance function of {U(?), t > 0},
C(s, ) = Cov(U(s), U(t)) = E(U(s)U(1)), s<t,
is obtained as follows:
C(s.0) = E{[3 Bo) dy [ Bz2) dz)

= E{[0 [} B0) B(2) dy dz|

= [0 [3 EBG) B@)dydz.
Since
E(B(),B(z)) = Cov(B(y),B(z)) = 62min 0,2),
it follows that
C(s, ) = (52.[6 _[f) min(y,z) dydz

= 62_[8 jf) min(y,z) dy dz + 02_[; Jg min(y,z) dy dz

= szf) U(Z)ydy + ji z dy] dz + sz‘i jf) ydydz

3 2
— 28 287
=0 3 +0 2(t s).
Thus,

2
C(s,z)z%@z—s)sz, s<t.
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Letting s = ¢ yields
2
Var(U(t)) = % .

The structure of the covariance function implies that the integrated Brownian motion
is nonstationary. But it can be shown that for any T the process {V(¢), ¢ = 0} with

V(1) = Ut +1) - U(t)

is stationary. (Recall that for a Gaussian process strong and weak stationarity are
equivalent.)

7.5.6.2 White Noise
Since the sample paths of a Brownian motion are nowhere differentiable with proba-
bility 1, a stochastic process of the form {X(¢), >0} with

X(t) = % =B/(1) or dB(t)=X()dt

cannot be introduced by taking the limit in a difference quotient. However, a defini-
tion via an integral is possible. To establish an approach to this definition, let g(f) be
any function with a continuous derivative g/ (#) in the interval [a, b] and ¢, f{,...,tn
any sequence of numbers satisfying

a=t0<f1<"'<tn=b and Ati=ti+1—ll'; i=0,1,2,...,n—1.

Then the stochastic integral IZ g(f)dB(¢) is defined as the limit

b —1
J. 2(H)dB(f) = nli_r)noo {HE g(tl-) [B(tl- + Atl-) —B(tl-)]} . (7.80)
a __fnzax At;—0 =0

The sum in (7.80) can be written as follows:

X g(t;) (B(t; + At) - B(t;))

i=
= 2(b) Bb) - g(a) B(@) - g By ST
Taking the limit on both sides as in (7.80) yields
[7 g(tydB () = g(b0) Bb) - g(a) Ba) - [ B1) g/ vy dir. (7.81)
This explanation of the stochastic integral is usually preferred to (7.80). As a limit of

a sum of normally distributed random variables, the stochastic integral also has a
normal distribution. From (7.81),
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E(jz o(0) dB(t)) =0. (7.82)
By making use of
Var(B(1)— B(s)) = 62|t —s|,

the variance of the following sum is seen to have a simple structure:

—1
Var(nzo gt [B(t; +At)) —B(t,-)]}

n—1
=Y g%(t;) Var (B(t; + At;) - B(1;))
=0

1=
n=1
1=

Passing in this equation to the limit as in (7.80) yields the variance of the stochastic
integral:

b b
Var(ja g(t) dB(t)) =o?[" g?(n)dt. (7.83)
The relationship (7.81) motivates the following definition.

Definition 7.3 (White noise) Let {B(¢), t 20} be the Brownian motion. A stochastic
process {X(?), t =0} is called white noise if it satisfies for any function g(¢) with a
continuous derivative g/ (¢) in [a,b], a < b, the relationship

7 (0 X0y dt = g(b) Bb) ~ g(a) B@) - [ By g’ (1)t (7.84)
[ J

If B() had a first derivative, then X(¢) = dB(f)/dt would satisfy (7.84) anyway. Thus,
X(?) as introduced in definition 7.3 can be interpreted as a 'generalized derivative' of
B(f), because it exists although the differential quotient does not exist. However, this
interpretation of the white noise does not facilitate its intuitive understanding. To get
an idea of the nature of the white noise process {X(#), = 0}, a heuristic argument is
presented by 'deriving' the covariance function of {X(), = 0} : Assuming that the or-
der of 'generalized differentiation' and integration can be exchanged, one obtains for
all s and ¢ with s # ¢,

C(s,t) = Cov(X(s), X() = Cov(

_99
" ds ot

JB(s) @)
ds > ot

Cov(B(s), B(1))

= % 8% min(s, ) .
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Thus, if s < ¢, then

C(s,t)z%%sz%OzO.
If s > ¢, then
C(s,t)=%%t=%1=0.
Hence,
C(s,)=0 for s#t¢. (7.85)

Therefore, for s #¢, there is no correlation between X(s) and X(¢), no matter how
small the absolute difference |s—¢| may be. Thus, white noise can be interpreted as
the 'most random stochastic process', and this property explains its favourite role as a
process for modeling random noise, which is superimposed on a useful signal. How-
ever, in view of its key property (7.85), white noise cannot exist in the real world.
Nevertheless, the white noise process is of great importance for approximately mod-
eling various phenomena in electronics, electrical engineering, communication, eco-
nometrics, time series analysis et alia. Its role can be compared with the concept of
the "point mass' in mechanics, which also only exists in theory.

Intuitively, white noise can be thought of as a sequence of extremely sharp pulses,
which occur after extremely short time intervals, and which have independent, iden-
tically distributed amplitudes. The times in which the pulses rise and fall are so short
that they cannot be registered by measuring instruments. Moreover, the response
times of the measuring instruments are so large that during any response time a huge
number of pulses occur which cannot be registered.

In practice, a weakly stationary stochastic process {X(¢),# >0} can approximately be
considered white noise if the covariance between X(¢) and X(¢#+ 1) tends extremely
fast to 0 with increasing T. For example, if X(¢) denotes the absolute value of the
force which particles in a liquid are subjected to at time ¢ (causing their Brownian
motion), then this force arises from the about 1021 collisions per second between the
particles and the surrounding molecules. The process {X(¢), t=0} is known to be
weakly stationary with a covariance function of type

Cry=ebltl,
where
b>101sec!.
Hence, X(¢) and X(z+ 1) are practically uncorrelated if
It > 10718,

A similar fast drop of the covariance function can be observed if {X(f), >0} des-
cribes the electromotive force in a conductor, which is caused by the thermal move-
ment of electrons.
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7.6 EXERCISES
Note In all exercises, {B(f), t =2 0} is the Brownian motion with Var(B(1)) = o2.
7.1) Verify that the probability density f¢(x) of B(?),

fil) = —— 2070 50,

J2nt o

satisfies the thermal conduction equation

ofitx) _  92fil)

ot ax2

7.2) Determine the conditional probability density of B(¥) given B(s) =y, 0<s<t.

7.3)* Prove that the stochastic process {B(f), 0 << 1} given by
B(t) = B(t)—tB(1)

is the Brownian bridge.

7.4) Let {B(7), 0<¢<1} be the Brownian bridge. Prove that the stochastic process
{S(),t= 0} defined by

S = (t+ 1)E(L)

t+1
is the standard Brownian motion.

7.5) Determine the probability density of B(s) + B(f).

7.6) Let n be any positive integer. Determine mean value and variance of
X(n)=B(1)+B(2)+---+B(n).

Hint Make use of formula (1.100).

7.7) Prove that for any positve % the stochastic process { ¥(¢), t 2 0} defined by
V(#) = B(t+h)—B(?)
is weakly stationary.

7.8) Prove that the stochastic process {X(?), =0} with X(¢) =S3(t)—3tS(t) is a
continuous-time martingale, i.e show that

EX(®)|Xp), y<s)=X(s), s<t.

7.9) Prove that the increments of the Ornstein-Uhlenbeck process are not independ-
ent.
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7.10)* Starting from x = 0, a particle makes independent jumps of length

Ax=0JAt

to the right or to the left every Az time units. The respective probabilities of jumps to
the right and to the left are

1B _
p_2(1+cm) and 1-p,
where, for 6> 0,

= sg)

Show that as At — 0 the position of the particle at time # is governed by a Brownian
motion with drift with parameters p and .

7.11) Let {D(?), t=0} be a Brownian motion with drift with parameters |l and G.
Determine

E(J-S(D(s))2 ds) .

7.12) Show that for¢c>0 and d >0
P(B(t) < ct+d forall 1> 0)=1—¢—2¢d/0?,
Hint Make use of formula (7.29).

7.13) (1) What is the mean value of the first passage time of the reflected Brownian
motion {|B(5)|,¢> 0} with regard to a positive level x?

(2) Determine the distribution function of |B(?)|.

7.14) At time =0 a speculator acquires an American call option with infinite expira-
tion time and strike price xs. The price X(¢) of the underlying risky security at time ¢
is given by

X(t) = xpeBD,
The speculator makes up his mind to exercise this option at that time point, when the
price of the risky security hits a level x with

X>Xs 2X

for the first time,.

1) What is the speculator's mean discounted payoff G (x) under a constant discount
rate oU?

2) What is the speculator's payoff G(x) without discounting?

In both cases, cost of acquiring the option is not included in the speculator's payoff.
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7.15) The price X(f) of a risky security at time ¢ is
X(t) =x MHBOABOl >0, 0<as<1,

with a negative drift parameter p. At time =0 a speculator acquires an American
call option with strike price xs on this risky security. The option has no finite expira-
tion date. The speculator makes up his mind to exercise this option at that time point,
when the price of the risky security hits a level x with x >xg > x( for the first time.
Otherwise, i.e. if the price of the risky security never reaches level x, the speculator
will never exercise.

Determine the level x = x* at which the speculator should schedule to exercise this
option to achieve

1) maximal mean payoff without discounting and
2) maximal mean discounted payoff (constant discount rate o).

7.16) The value of a share at time ¢ is
X(t) =xg +D(2),

where x> 0 and {D(¢), t= 0} is a Brownian motion with positive drift parameter
and variance parameter o2. At time point =0 a speculator acquires an American
call option on this share with finite expiry date T. Assume that

xo+ut>30/t, 0<t<t

(1) Why does the assumption make sense?
(2) When should the speculator exercise to make maximal mean undiscounted profit?

7.17) At time =0, a speculator acquires a European call option with strike price xs
and finite expiration time T. Thus, the option can only be exercised at time T at price
xs, independently of its market value at time T. The price X(¢) of the underlying
risky security at time ¢ is

X()=xog+D(1),
where {D(f), t 2 0} is the Brownian motion with positive drift parameter W and vola-

tility o2 If X(T) > x5, the speculator will exercise the option. Otherwise, he will
not. As in example 7.16, assume that

xp+ue>30t, 0<t<t.

1) What will be the mean undiscounted payoff of the speculator (cost of acquiring
the option not included)?

2) Under otherwise the same assumptions, what is the investor's mean undiscounted
profit if

X(@t)=xo+B(#) and xg =xs7?
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7.18) Let X(¢) be the cumulative repair cost of a system arising in the interval (0, 7]
(excluding replacement costs) and

R() =X()/t
the corresponding cumulative repair cost rate. Assume
R(t)=ryB2(t), ro>0.
The system is replaced by an equivalent new one as soon as R(¢) reaches level r.

(1) Given a constant replacement cost ¢, determine a level »=r" which is optimal
with respect to the long-run total maintenance cost per unit time K(r). (Make sure
that an optimal level r* exists.)

(2) Compare K(r*) to the minimal long-run total maintenance cost per unit time
K(t™) which arises by applying the corresponding economic lifetime T*.
7.19)* Let {S(¢), t = 0} be the standard Brownian motion and
X(t) = [{ S(s) ds.
(1) Determine the covariance between S(¢) and X(z).

(2) Verify that

3
EX@IS)=x)=5" and Var(X(0)lS@) =)= 5.

Hint Make use of the fact that the random vector (S(7), X(¢)) has a two-dimensional
normal distribution.

7.20) Show that for any constant o
E(eO(,X(l‘)) — e(X2t3/6

where X(7) is defined as in exercise 7.19.

Hint Make use of the moment generating function of the normal distribution.
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ANSWERS TO SELECTED EXERCISES

Chapter 1

1.2) (2) Let 1 and O indicate that a person has gene g or not, respectively. Then the
sample space M consists of all the 23 =8 vectors (z1,29,23) with

; i=1,2,3.

1

{ 1 if person i has gene g

0 otherwise
A=1{(0,0,0)}, B={(1,0,0),(0,1,0), (0,0,1)}, AnB=

c={(1,1,0), (1,0,1), (0,1,1), (1,1,1H}.
BuC=MM, (AUB)NnC=AUB

1.3) 0.6, 0.3, 0.8

1.4) (1) 0.925, 0.89, 0.85. 0.965, 0.15 (2) no

1.5) 0.59, 0.61, 0.52, 0.68, 0.852, 0.881, 0.179, 0.8205

1.6) 0.0902

1.7) 13

1.8) (1)and (2): don't check (3) check

1.9) (1) 0.6475 (2) 0.9979

1.10) (1) 0.023 (2) 0.2978

1.11) (1) 2p2(1+p+p3)-5p*

1.12) (1) 0.7800 (2) 0.9744

1.13) (1) n=132. Probability distribution of X:

{p;=PX=x;)=n;n;i=12,.,10}. (2) 0.8182, 0.5

1.15) 45.18, 5.3421

1.16) 15.22, 0.0151

1.17) 0.9535

1.18) 0.1329

1.19) 0.01185

1.20) (1) 0.8701 (2) 0.0411

1.21) 0.191

1.22) 0.920

1.23) 0.4493

1.24) (1) ¢=3/64 (2)c=1/6 3) c=1

1.25) 0.6931, 0.6931, 0.0513

1.26) 0.4
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1.27) 0.54

1.28) (1) 3, 0.6 (2) 11/9, 23/81 (3) 1, 1

1.29) (1) 2)0.1009 b) 0.7364, (2) 0.9963.

130) (1) F(x)=(x-2)3[10-150-2) +6(-2)% ], 2<x<3,
(2)0.0579 (3) 2.5

1.31) 5, -1.56, 6.45, such an x does not exist, 15.3

1.32) (1) 0.0475 (2) 0.2975

1.33) (1) 0.7725 (2) 6.68%

1.34) (1) 0.1524 (2) 125.6 hours

I, 0<p<i
1.35 = .
) S ) {0, otherwise
_ [ —o/xy Aoty — _AX >
1.36) G(x) IO e Ae Mdo T x 20 (Pareto distribution)
1.37) 0.7165
1.38) [0,<0)

1.41) (1) {pg=02, p; =0.5, p; =03}, {g9 =02, 1 =0.6, g, =02} , (2) no
(3) EX|Y=1)=17/6, E(Y|X=0)=1/2.

1.42) (1) no (2) f(z)=2(1-2z), 0<z<1.

1.43) (1) yes (2) f(z)=6z(1-z), 0<z<I.

1.44) (1) E(Z)=200,000, [Var(Z) =12,296 (2) 0.792

1.45) (1) 0.032, 0.406 (2) 726 kg

1.46) n,;, =43.

1.47) 0.293

2 2
1.49) (1) My (2) = W @M (Z)=(1_£_p)z) '

1_50) P1=P2=""=Df
ZIT2, 0<z<T
1.51) (Dyes, 2) f@)=4 @T-2)/T?, T<z<2T
0, otherwise

Simpson- or triangle- distribution.

A _ 7L2 _
1.52) f(s)= 22 eTHs

)

1.53) (1)ng=11,280 (2) ny=2167.
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Chapter 2
2.1) not stationary
2.2) m(t) =ut, Var(X(0) = 62t

2.3) (H)m(H)=0, C(1)= %E(Az) cos®T, p(T)=cosmt. (2)weakly stationary

2

2.5) C(1) %2?:1 a*cosot, p(t)=cosar

I, n<s,t<(n+1/2), n=0,%1,...

2.6) (2) C(s,0)= 0, elsewhere

, (3)no

2.7) The trend function of the second order stochastic process {Z(#), t >0} is iden-
tically 0 and its covariance function is C () = C(T) cos ®T.

2.8) Note that the one-dimensional distributions of {X(7), =0} depend on ¢.
2.9) Cy(s,t)=Cypls, 1) = Cx(s,t) + Cy(s, 1)

Chapter 3
3.1) (1)0.4422 (2)0.4422
3.2)  Cov(N(s), N(£)) = Cov(N(s), N(s)) + Cov(N(s), N(t) — N(s))

3.3) 0.2739
3.4) (1)0.9084 (2) E(Y)=1/4min, Var(Y)=(1/4)2
3.5) 0.1341
3.6) Ay/hg

2 (m—Itl)cos 7| +sin(m—tl) 0<lt|<m
3.8) C(r)=

0, elsewhere

3.10) E(K)=E(C) 2 (1- o)
3.11) (1)64 (2)0.89

1/
* Cp
3.13) 17 = 9[ (B—l)cm:|

3.4) (1) PV =m) =L 1-e gtk ] k=0,1,...

() ENp(0)=1/2, Var(Ny(t)=1/2+12/12

3) a=3, B=6
_LIC R(X)dx+cr—c
3.17) (1) K(c) = X© 0_ _ (2)&{1— B—‘iJcr, B>1
INGQRELE b
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3.18) (1)n* =86 (2)n* =88
_1( o _
3.19) (l)H(t)—4(e + 2 1)
3.22) 0.2642
3.25) (2) Hn )_”+p
-p
3.26) u=Jw/2, wy=1, 02:1—75/4

(1) lim jo(t x+ 1) 2 dH(x) = J_ (2) lim (H(e)— 1) =

3.27) Lr o Fl)dx

3.28) (1) PUA() >y~ ]B() = x) = LL=X D)
F(t—x)
2) PUG) < y|B(H) = x) = L3P I
F(x)

3.30) %(7\)6-{-2)@_7“

3.31) (1) 0.9841 (2) 0.9970
ceF(T) +cpF(t)
3.33) (1) K(1)= 2"
) (D) K(7) [T F0di

Q) MD)fg Fydt—F(t)=c/(1-¢) with 0<c=cplee<1-

(3)T*=1L_CL,/0(2—C) —cJ with 0 <c=cplce <1

cpt ceH(T)
T

_1
HA(e)

3.34) (1) K(1) =
(2) (14+301) e = 1-9¢/2 with 0 < c=cplee <2/9

) S

3.35) (1)0.2163 (2) p(x)<e 13.600

3.36) (1)0.1315 (2)0.1342
3.38) (1)860.5[$/h] (2) =0

Chapter 4
4.1) (1) 0.5, 0.2 (2) 0.25, 0.25 (3) 0.5, 0.072

0.58 0.12 0.3
42) (1) PO =| 032 028 04 | (2) 042, 0
036 0.18 0.46

4.3) (1) 0.2864 (3) mp=04, T; =T, =0.3
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4.4) yes
4.5)(2) ®;=0.25; i=0,1,2,3

Note that P is a doubly stochastic matrix. See exercise 4.6.

4.6) (2) no
(0802 0 0 )
0 0 04 06
4.8) 2) P = =3/8 = =1/8 =3/8
)( ) 0.6 04 0 0 >, T , My =T3 > Ty
0 0 0208

4.11) (1) minimal closed sets: {1, 2, 3}, {3,4} (2) There are no inessential states.
4.12) essential: {0, 1, 2}, inessential: {3}
4.13) (3) my =50/150, my =10/150, my =40/150, 3 =13/150, mq =37/150
4.14) (1) essential: {0, 1}, inessential: {2, 3, 4}

(2) recurrent: {0, 1}, transient: {2, 3, 4}
4.15) n;=p(1-p)}; i=0,1,...
4.18) (1) positive recurrent (2) transient

Dii Dii

419) EWNp) =12, Var(Ni)z(l_p__
1

)2
Hint N; has a geometric distribution:

-1
P(N;=n)=(1 —pl-l-)p;ll. ;s n=1,2,..

Chapter S
5.1) no

2 Lo B
2+3w T 2a+3w 2T 2a+3p

5.4) (1)96% (2)81%

5.5) state (i, j): i, j respective states of unit 1 and 2: 0 down, 1 operating

5.3) Ty =

5.7) states: 0 system operating, 1 dangerous state, 2 system blocked, 3 system block-
ed after dangerous failure
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_M _M2 M S
T =v T T2=m, T T3=E T T0= "7 % &,
1+T+E+E
P(systemblocked) =1y + 13
5.9) pohy=e, p1(9=2(e2-e73), pyny=3e7(1-e?
_ A2 LN S S
5.10) (1) (1-e)> (2) x(1+2+ +n_1)
511) pin=eMa-eMJl j=1.2,..
2n) —jutgq _ —U\2n—j rr, t ., 1
5.14) (1)(j)e (1—eHH2n - (2) u(2n+2n-1+ +n+1),n21

5.15) (1) 0.56 (2) 50 weeks
(Hint: po(t) = P(cable completely broken at time #) is given by an Erlang distribu-
tion with parameters n =5 and A =0.1.)

5.17) see example 5.14

5.18) A<
5.20)
3L 3L 3L
o O -l
i 2u 2u
6.75p3
(2) Wy =m3= ) 3° p=Mu
1+3p+4.5p~+6.75p

B 13.5p3/(2 +v/w)
1+43p+4.5p% +13.5p3/(2 + v/p)

5.23) 7,5, = 0.0311, 70, =0.6149

5.21) w0, =73

5.24) state (i, j) : i, j customers at server 1,2; i,j=0,1
p? p?
(1,00 =PT0,0)-  T(1,1) = 370,000 T(0,1)= 2(p+1)n(0,0)
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5.26) (1) Tp=T] =Ty =T3 = 1/4 (2) 1.2273
5.28) see example 5.14
5.32) (1)

2)1-Fs()=PXs>)=p1(O)+pr(1), EXs)= 7% [1.5-p]

5.34) 662 %

5.37) 0.3153, 0.4144, 0.2703

5.38) (2) states: 0 working, 1 repair after type 2 failure, 2 repair after type 1 failure
P(X=0)=360/372, P(X=1)=4/372, P(X=2)=28/372

5.39) (1)

1
L+Apy + (A +A2)H

_ Ay e (A +A2)uo
1+7\,1].L1+(7\,1+7\,2)].L2’ 2 1+7\,1u1+(7\,1+7\2)].i2

(2) 49 =

(stationary availability)

A4

5.40) The stationary state probabilities of the embedded Markov chain are:
A+ 7L0 A

= , T = ,
O Mo+ aGB—e M) 1T 2t Ao MH)
Ao +A(1 —e MM
TI:2= Yy .
2hg+A(3—e 1K)

T

The mean sojourn times L and [, are the same as in example 5.26, whereas |1 is

A

1—e MM

W =——-.:.
1 7\’1
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Chapter 6

6.1) no, since E(Yl.z) >0 (see example 6.1).

6.2) Example 6.1 is applicable with X; =Y; — E(Y;) since E(X;)=0.
63)(H)T=2, )T>2, 3)T<2.

6.4)62=-2 W (condition U < 0 is necessary)

6.5) E(N) = Zp”_ :

6.7) (1) p2goo = 0-8703, (2) p_1000 =0-1297, (3) E(N)=64.4.

6.9) Note that the transition from i to j is governed by a binomial distribution with
parameters n and p =i/n.

6.10) See example 6.12 or proof of theorem 7.1 b)

Chapter 7
7.2) fi(x|B(s) =) = ——— ex (—M] 0<s<t
J2n(t—s) o 2(t-s)o2
7.5) fB(s)+B(0)*) = — L eXp{— lL}, — 00 < x < oo
‘ [2n(t+3s) © 2 (1+3s) 02
7.6) EX(m)=0, Var(X(n))= w 2

7.11) % (2u2t+ 362)

7.13) (1) %xz (see example 7.4) (3) P(|B(1)| <x)=2®(x/c/t)—1

J2a

o

7.14) 1) Gg(x) = (x—xg) (i—(s)) ! with y= 2) G(x) = x—xg

2|
(1+a)?c?
(2) Optimal level x* given by formula (7.42) with A replaced by

1 22002 )
_(1+a)202K‘/2(1+a) oo+ _“}

Hint Note that {X(#), >0} hits a positive level x with x > x(y at the same time point

7.15) (1) Optimal level x* given by formula (7.42) with A =

as the geometric Brownian motion with drift {xyeH+(1+a)BWO) ;> o1,
7.16) attime T

XO'HJ,T—XS _ i
Toit 2)G=0

1.2
= | T o 2¢ =
717 1) G=6 JT cP(c)+0 e ¢ , where ¢ 7
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