
INSTITUTE OF PHYSICS PUBLISHING PHYSIOLOGICAL MEASUREMENT

Physiol. Meas. 25 (2004) 905–920 PII: S0967-3334(04)80244-2

Nonlinear model predictive control of glucose
concentration in subjects with type 1 diabetes

Roman Hovorka1, Valentina Canonico3, Ludovic J Chassin1,
Ulrich Haueter2, Massimo Massi-Benedetti3, Marco Orsini Federici3,
Thomas R Pieber4, Helga C Schaller4, Lukas Schaupp4, Thomas Vering2

and Malgorzata E Wilinska1

1 Diabetes Modelling Group, Department of Paediatrics, University of Cambridge, Box 116,
Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
2 Disetronic Medical Systems AG, Burgdorf, Switzerland
3 University of Perugia, Perugia, Italy
4 University of Graz, Graz, Austria

E-mail: r.hovorka@uk.avecho.com, ljc45@cam.ac.uk, mew37@medschl.cam.ac.uk,
ulrich.haueter@roche.ch, thomas.vering@roche.ch, massi@unipg.it,
orsini@dimisem.med.unipg.it, canonico@dimisem.med.unipg.it, thomas.pieber@kfunigraz.ac.at,
schaller@microperfusion.at and schaupp@microperfusion.at

Received 6 May 2004, accepted for publication 17 June 2004
Published 22 July 2004
Online at stacks.iop.org/PM/25/905
doi:10.1088/0967-3334/25/4/010

Abstract
A nonlinear model predictive controller has been developed to maintain
normoglycemia in subjects with type 1 diabetes during fasting conditions such
as during overnight fast. The controller employs a compartment model, which
represents the glucoregulatory system and includes submodels representing
absorption of subcutaneously administered short-acting insulin Lispro and gut
absorption. The controller uses Bayesian parameter estimation to determine
time-varying model parameters. Moving target trajectory facilitates slow,
controlled normalization of elevated glucose levels and faster normalization
of low glucose values. The predictive capabilities of the model have been
evaluated using data from 15 clinical experiments in subjects with type 1
diabetes. The experiments employed intravenous glucose sampling (every
15 min) and subcutaneous infusion of insulin Lispro by insulin pump (modified
also every 15 min). The model gave glucose predictions with a mean square
error proportionally related to the prediction horizon with the value of
0.2 mmol L−1 per 15 min. The assessment of clinical utility of model-based
glucose predictions using Clarke error grid analysis gave 95% of values in zone
A and the remaining 5% of values in zone B for glucose predictions up to 60 min
(n = 1674). In conclusion, adaptive nonlinear model predictive control is
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promising for the control of glucose concentration during fasting conditions in
subjects with type 1 diabetes.

Keywords: nonlinear control, compartment modeling, Bayesian estimation

1. Introduction

The ‘artificial endocrine pancreas’ has been the subject of extensive research since the 1970s.
The first generation of control approaches was designed for intravenous glucose sampling
and intravenous insulin infusion. The initial work was carried out independently by Albisser
et al (1974) and Pfeiffer et al (1974) developing the glucose controlled insulin infusion system
(GCIIS) leading to the development of ‘Biostator’ (Clemens et al 1977). In terms of titration
algorithms, insulin infusion was linked to the rate of glucose change by Albisser et al (1974).
The development of advanced algorithms followed (Fischer et al 1990, Fisher and Teo 1989,
Kienitz and Yoneyama 1993, Ollerton 1989, Salzsieder et al 1985, Shichiri et al 1983, Swan
1982). A good review of control algorithms based on intravenous insulin delivery is by Parker
et al (2001).

The subcutaneous delivery of insulin is less invasive than the intravenous insulin delivery
and suitable for use with a wearable extracorporal artificial pancreas. However, it has been
well recognized that subcutaneous insulin delivery poses problems to efficient glucose control
due to the additional delay associated with the absorption of subcutaneously infused insulin
(Cobelli and Mari 1985) and only with the availability of short-acting insulin (Howey et al
1994) could the next generation of control algorithms have been developed (Brunetti et al 1993,
Candas and Radziuk 1994, Shichiri et al 1998, Shimoda et al 1997, Trajanoski and Wach
1998).

The model predictive control (MPC) (Camacho and Bordons 1999) is an emerging
methodology to facilitate control of systems with long time delays and open loop
characteristics. When combined with adaptive capabilities, it promises to tackle successfully
problems such as the control of glucose concentrations in subjects with type 1 diabetes. Model
predictive control has been at the forefront of recent research endeavors with contributions,
for example, by Parker et al (1999) and Lynch and Bequette (2001).

It is within this context that a model predictive controller for use with subcutaneous insulin
infusion has been developed with the aim of facilitating control during fasting conditions, such
as during overnight fast, with ‘infrequent’ sampling, i.e. a sample taken every 15 min. This is
in recognition that the wearable pancreas may adopt a minimally invasive glucose sensor with
a discrete sampling technique and that a combination of a closed-loop control during fasting
conditions with open loop characteristics during meals (specifying manually meal related
insulin bolus) is a realistic way forward. The controller employs a novel nonlinear model of
glucose kinetics based on a detailed double-tracer study by Hovorka et al (2002) and adopts
Bayesian parameter estimation to facilitate adaptive behavior.

In the following sections, we first describe the underlying glucoregulatory model, then the
control strategy, and finally the evaluation focusing on the predictive accuracy of the model.

2. Model of glucose and insulin kinetics

2.1. Introduction

The glucoregulatory model represents the input–output relationship between subcutaneous
insulin infusion as input and intravenous glucose concentration as output. Meal ingestion and
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Figure 1. Compartment model of glucose–insulin system. Q1 and Q2 represent masses in accessible
(plasma) and non-accessible compartments, I represents plasma insulin, xi represent insulin action
on glucose transport, disposal and endogenous glucose production. For more details, see the text.

intravenous glucose infusion represent additional inputs (the latter applicable during clinical
studies to recover from hypoglycemia). The model outline is shown in figure 1.

The model consists of a glucose subsystem (glucose absorption, distribution and disposal),
an insulin subsystem (insulin absorption, distribution, disposal) and an insulin action
subsystem (insulin action on glucose transport, disposal and endogenous production). The
model builds on recent experimental and modeling work, which employed glucose tracers to
determine structure and parameter values of glucose kinetics in normal subjects during basal
conditions and during the intravenous glucose tolerance test (Hovorka et al 2002).

2.2. Glucose subsystem

At the heart of the model is a two-compartment representation of glucose kinetics

dQ1(t)

dt
= −

[
Fc

01

VGG(t)
+ x1(t)

]
Q1(t) + k12Q2(t) − FR + UG(t) + EGP0[1 − x3(t)]

(1)
dQ2(t)

dt
= x1(t)Q1(t) − [k12 + x2(t)]Q2(t)y(t)G(t) = Q1(t)/VG

where Q1 and Q2 represent the masses of glucose in the accessible (where measurements
are made) and non-accessible compartments, k12 represents the transfer rate constant from
the non-accessible to the accessible compartment, VG represents the distribution volume
of the accessible compartment, y and G is the (measurable) glucose concentration, and
EGP0 represents endogenous glucose production (EGP) extrapolated to the zero insulin
concentration.
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Fc
01 is the total non-insulin-dependent glucose flux corrected for the ambient glucose

concentration

Fc
01 =

{
F01 if G � 4.5 mmol L−1

F01G/4.5 otherwise.
(2)

FR is the renal glucose clearance above the glucose threshold of 9 mmol L−1

FR =
{

0.003(G − 9)VG if G � 9 mmol L−1

0 otherwise.
(3)

Glucose absorption is a fundamental process affecting postprandial glucose excursions. In our
model, the gut absorption rate UG is represented by a two-compartment chain with identical
transfer rates 1/tmax,G

UG(t) = DGAGt e−t/tmax,G

t2
max,G

(4)

where tmax,G is the time-of-maximum appearance rate of glucose in the accessible glucose
compartment, DG is the amount of carbohydrates digested, and AG is carbohydrate
bioavailability.

2.3. Insulin subsystem

Insulin absorption is described as
dS1(t)

dt
= u(t) − S1(t)

tmax,I

dS2(t)

dt
= S1(t)

tmax,I
− S2(t)

tmax,I
(5)

where S1 and S2 are a two-compartment chain representing absorption of subcutaneously
administered short-acting (e.g. Lispro) insulin, u(t) represents administration (bolus and
infusion) of insulin, and tmax,I is the time-to-maximum insulin absorption. The insulin
absorption rate (appearance of insulin in plasma) is obtained as UI = S2(t)/tmax,I.

The plasma insulin concentration I(t) is described as
dI (t)

dt
= UI (t)

VI

− keI (t) (6)

where ke is the fractional elimination rate and VI is the distribution volume.

2.4. Insulin action subsystem

The model represents three actions of insulin on glucose kinetics
dx1

dt
= −ka1x1(t) + kb1I (t)

dx2

dt
= −ka2x2(t) + kb2I (t) (7)

dx3

dt
= −ka3x3(t) + kb3I (t)

where x1, x2 and x3 represent the (remote) effects of insulin on glucose distribution/transport,
glucose disposal and endogenous glucose production (Hovorka et al 2002); kai, i = 1, . . . , 3,
represent deactivation rate constants, and kbi, i = 1, . . . , 3, represent activation rate constants.

2.5. Model constants and parameters

Model quantities were divided into model constants and model parameters with the objective
to reduce the number of parameters while retaining the ability to represent the wide range
of glucose excursions seen in subjects with type 1 diabetes during physiological conditions.
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Table 1. Model constants.

Symbol Quantity Value Source

k12 Transfer rate 0.066 min−1 Hovorka et al 2002
ka1 Deactivation rate 0.006 min−1 Hovorka et al 2002
ka2 Deactivation rate 0.06 min−1 Hovorka et al 2002
ka3 Deactivation rate 0.03 min−1 Hovorka et al 2002
ke Insulin elimination from plasma 0.138 min−1 Hovorka et al 1993
VI Insulin distribution volume 0.12 L kg−1 Hovorka et al 1993
VG Glucose distribution volume 0.16 L kg−1 Hovorka et al 2002
AG Carbohydrate (CHO) bioavailability 0.8 (unitless) Livesey et al 1998
tmax,G Time-to-maximum of CHO absorption 40 min Livesey et al 1998

Table 2. Model parameters.

Symbol Quantity Valuea Source

∗Sf

IT

b
Insulin sensitivity of distribution/ 51.2 × 10−4 min−1 per mU L−1 Hovorka et al 2002
transport

∗Sf

ID

b
Insulin sensitivity of disposal 8.2 × 10−4 min−1 per mU L−1 Hovorka et al 2002

∗Sf

IE

b
Insulin sensitivity of EGP 520 × 10−4 per mU L−1 Hovorka et al 2002

EGP0 EGP extrapolated to zero insulin 0.0161 mmol kg−1 min−1 Hovorka et al 2002
concentration

F01 Non-insulin-dependent glucose flux 0.0097 mmol kg−1 min−1 Hovorka et al 2002
tmax,I Time-to-maximum of absorption of 55 min Howey et al 1994,

subcutaneously injected short-acting insulin Rave et al 1999

a Mean value of the parameter for the purpose of Bayesian parameter estimation.
b Alternative parameterization ∗Sf

IT = kb1/ka1,
∗Sf

ID = kb2/ka2 and ∗Sf

IE = kb3/ka3.

Generally, constants were those quantities which (i) were not a priori identifiable (Carson et al
1983) or (ii) were unlikely to be identifiable from the data (a posteriori non-identifiability).

Table 1 lists model constants and table 2 model parameters.

2.6. Sources of nonlinearity

Nonlinearity of the model arises primarily due to the insulin action on parameters of glucose
production, glucose distribution/transport and glucose disposal. This is further confounded
by the zero-order glucose disposal representing insulin-independent glucose utilization.

Under fasting conditions, insulin exerts relatively little control over glucose disposal.
Model-based results from healthy subjects indicate that insulin-dependent glucose uptake is
about 13% of the total glucose turnover (Hovorka et al 2002) further supported by model-
independent measurements (Best et al 1981). At basal conditions, non-insulin-dependent
glucose uptake dominates. This is in agreement with studies showing that acute suppression
of basal insulin levels has only limited effect on whole-body glucose utilization (<20%,
Del Prato et al 1995, Edelman et al 1990). The relative ‘unimportance’ of insulin-dependent
disposal at basal insulin results in nonlinearity of insulin action in the periphery. Model-
based calculations show that raising basal insulin by 50% results in a 50% increment in
insulin-dependent glucose uptake but this increases whole body glucose disposal by only
about 7% (Hovorka et al 2002). However, when insulin-dependent disposal dominates such
as at postprandial conditions (plasma insulin >50 mU L−1) insulin has a nearly proportional
effect on whole-body glucose disposal.
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Figure 2. Strategy of model predictive control.

Another source of nonlinearity of insulin action results from the difference in the
activation/deactivation profile of the three insulin actions. Insulin activates/deactivates
peripheral disposal and EGP quickly (deactivation halftime of about 30 min) whereas
glucose distribution/transport is activated/deactivated slowly (deactivation halftime of about
200 min) (Hovorka et al 2002). Under fasting conditions, when insulin controls plasma
glucose primarily by suppressing EGP, the effect of insulin action will be faster and the action
will dissipate also faster than under postprandial conditions when the distribution/transport
pathway contributes to glucose control and the attainment/dissipation of the action will take
longer.

3. Nonlinear model predictive control with parameter estimation

3.1. Overview

The strategy of model predictive control is shown in figure 2 (Camacho and Bordons 1999).
Based on a model, the output trajectory �

y(t + k|t), k = 1, . . . , N, is estimated for any given
control sequence u(t +k|t) over a prediction horizon N. The model primary use is to determine
the optimum control sequence, which results in a desired (target) trajectory.

The MPC controller used the nonlinear model specified by (1)–(7). Linearization around
the operating point was considered undesirable, see discussion about the sources and the extent
of nonlinearity. The full model was retained.

The block diagram of the controller is shown in figure 3. The controller includes the
following components: parameter optimizer, target projector, dose optimizer and safety
schemes 1–4.

It is known that parameters of the glucoregulatory system differ considerably
between subjects (Bergman et al 1989) and also exhibit diurnal variations (Lee et al 1992,
Van Cauter et al 1992) although exact quantification of the variation (amplitude and frequency)
within a subject is yet to be determined.

In recognition of the variation between and within subjects, the controller adapts itself
to the changing environment. This is carried out by re-estimating parameters at each control
step, see section on Bayesian parameter estimation.

The parameter optimizer estimates model parameters employing glucose measurements
from a ‘learning window’, i.e. a time period immediately preceding the control time. Three
lengths of the learning window are predefined, short, medium and long, to be able to deal
with both a time-invariant (or slowly varying) underlying system, which is best identified
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Figure 3. Block diagram of the model predictive algorithm.

over a long learning window, and a time-variant system best identified over a shorter learning
window.

The target projector calculates target trajectory, i.e. the desired glucose profile.
The dose optimizer calculates a sequence of insulin infusion rates, which gives best fit

to the target trajectory. From this sequence, the first element is returned and is suggested to
be infused by the insulin pump. The remaining elements in the sequence are discarded. The
dose optimizer adopts nonlinear function minimization as the underlying model is nonlinear.

Control systems must be able to cope with exceptional circumstances (Goriya et al 1988).
Safety schemes 1–4 protect against system failures and minimize the risk of insulin overdosing
and subsequent hypoglycemia.

The controller receives glucose measurements every 15 min and calculates the insulin
infusion rate also every 15 min although, in principle, other sampling/control frequencies,
equidistant or non-equidistant, are possible without changes to the controller design. The
calculated insulin infusion rate is administered as a constant insulin infusion over the 15 min
window.

3.2. Bayesian parameter estimation

The model parameters (see table 2) are estimated using the Bayesian approach to avoid
problems with posterior identifiability.

The prior multivariate log normal distribution for parameters ∗Sf

IT , ∗Sf

ID, ∗Sf

IE, F01

and EGP0 was obtained from the study by Hovorka et al (2002). For the sake of a
simpler implementation and numerical stability of the optimization, the multivariate normal
distribution was expressed as a linear combination of five univariate independent normal
distributions with a zero mean and a unit standard deviation, pi ∼ N(0, 1), i = 1, . . . , 5,

ln
(∗
S

f

IT

) = a11p1 + b1

ln
(∗
S

f

ID

) = a12p1 + a22p2 + b2

ln
(∗
S

f

IE

) = a13p1 + a23p2 + a33p3 + b3

ln(F 01) = a14p1 + a24p2 + a34p3 + a44p4 + b4

ln(EGP0) = a15p1 + a25p2 + a35p3 + a45p4 + a55p5 + b5.

The random variable transformation technique was adopted to derive coefficients aij and bi.
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Figure 4. Moving target trajectories associated with high and low glucose concentrations. At
glucose concentration > 8 mmol L−1, the trajectory linearly decreases at a rate of 2 mmol L−1 per
hour; at 6 mmol L−1 < glucose � 8 mmol L−1, the linear decrease is 1 mmol L−1 per hour. If
glucose < 6 mmol L−1, the trajectory exponentially increases with a halftime of 15 min.

The log normal prior of the remaining parameter tmax,I was obtained from literature
sources (Howey et al 1994, Livesey et al 1998) and was again standardized for the purposes
of numerical stability and simpler implementation.

The objective function at time t includes a weighted sum of squares of residuals and a
penalty due to the distance from prior distributions (the latter collapses into the sum of squares
of standardized parameter values due to standardization of random variables)

arg min
−2.5�p1···p6�2.5

{
NW∑
i=1

wt−i[ŷ(t − i|p1 · · ·p6) − y(t − i)]2+
6∑

k=1

p2
k

}
(8)

where wi is the weight reciprocal to the square of the measurement error (coefficient of variation
of 2–9% depending on the source of glucose sample), ŷ(i|p1 · · · p6) is model predicted glucose
concentration at time i given standardized parameters p1, . . . , p6, and NW is the length of the
learning window. A running internal assessment of predictive accuracy determines which
learning window of 2, 4, or 12 h is to be used.

3.3. Target trajectory

The target trajectory is generated at each time step (see figure 4), using as the starting point the
measured glucose concentration y(t), or if that is not available, the model estimated glucose
concentration ŷ(t |p1 · · · p6).

The target glucose concentration is 6 mmol L−1. When starting above the target value,
the target trajectory is linearly declining with a maximum decrease set to a conservative value
of 2 mmol L−1 per hour to reduce the risk of undershoot. When starting below the target
trajectory, a faster exponential normalization of glucose values is specified reflecting the need
to recover faster from low glucose values.

3.4. Calculating insulin infusion rate

The control action is the first insulin infusion rate u(t + 1) of a control sequence
u(t + 1) · · · u(t + N), which is calculated by minimizing an objective function composed
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of two components, (i) the adherence of the predicted glucose ŷ(t + i|t) to the target trajectory
y(t + i) and (ii) the variation in the control sequence

arg min
0�u(t+1)···u(t+N)�4

{
N∑

i=1

[ŷ(t + i|t) − y(t + i)]2 +
1

kagr

N∑
i=1

[u(t + i) − u(t + i − 1)]2

}
(9)

where kagr is an ‘aggressiveness’ constant balancing the contribution of the two components.
The prediction horizon N extends over 4 h representing the duration of action of

subcutaneously injected short-acting insulin Lispro. The insulin infusion rate is limited to
u(t) � 4 U h−1 due to technical limitations of insulin pumps.

The aggressiveness constant kagr was determined by assessing safety (the number of
hypoglycemia events) and efficacy (e.g. the settling time) during simulation tests with a
glucose simulator. The aim was to limit the number of hypoglycemia events while attaining
good efficacy (fasting glucose close to the target level). We selected a value of kagr which gave
hypoglycemia events (glucose < 3.3 mmol L−1) in less than 5% out of 36 simulated cases and
resulted in a mean fasting glucose of around 6 mmol L−1.

3.5. Safety schemes

Four safety schemes are implemented, which override the model-based calculations of the
insulin infusion rate. The description of these is beyond the scope of the present paper.

3.6. Implementation

The minimization of (8) and (9) was achieved using the Marquardt algorithm (Marquardt 1963)
with the maximum number of iterations set arbitrarily at 50 to limit the run time. Normally,
the convergence was achieved within 5 to 30 iterations. An informal investigation using a
higher maximum number of iterations did not document an improvement in the performance
of the controller.

The current version of MPC was implemented in Microsoft Visual C++ and runs both on
a PC (MS Windows NT/98/2000) and a PDA (MS PocketPC). The computational time for
a PC (x86 400 MHz) is <5 s and <45 s for PocketPC (iPAQ, Compaq). The PC version of
MPC was used in evaluation studies.

4. Evaluation

4.1. Simulation tests

The performance of MPC has been extensively evaluated by simulation tests using a specialized
methodology for evaluating glucose controllers (Chassin et al 2004). These tests also enabled
the system to be tuned prior to real clinical evaluation and suggested acceptable clinical
performance (Chassin and Hovorka 2001). Sample evaluation using the simulator is shown in
figure 5.

4.2. Clinical experiments

The system was evaluated in 15 clinical experiments in 10 subjects with type 1 diabetes over
an 8–10 h period during fasting conditions. Five subjects participated on two occasions.

A representative clinical experiment is shown in figure 6. Detailed evaluation of clinical
tests is outside the scope of this document. In a proof-of-concept, six type 1 diabetes subjects
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Figure 5. Sample performance of MPC during a simulation test. At time 0 min, the synthetic
type 1 diabetes subject had a meal and received insulin bolus. At 180 min (vertical bar), glucose
was artificially raised to 11 mmol L−1 and the subcutaneous insulin infusion was initiated. MPC
calculated the infusion rate every 15 min using intravenous glucose measurements taken also every
15 min.
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Figure 6. Sample performance of MPC during a clinical test in a male subject with type 1 diabetes
(age 59 yr, weight 82 kg, basal insulin dose 27 U/day, HbA1C 8.3%). At time 0 min, subject had a
standardized meal (40 g CHO) and received insulin bolus of 6 U. After 180 min of constant insulin
infusion, MPC took over the control of the insulin delivery (vertical bar) with sample/control every
15 min.

were controlled over 8 h following a 3 h monitoring period after meal ingestion. The mean
glucose concentration was 6.0, 5.8 and 6.3 mmol L−1 in the period 2–4 h, 4–6 h and 6–8 h
after the start of the control with a decreasing standard deviation of 1.0, 0.6 and
0.4 mmol L−1, respectively. The algorithm was able to achieve and maintain normoglycemia
even in the presence of a 30 min delay in glucose measurements mimicking subcutaneous
glucose sampling, presenting similar results to those obtained without the measurement delay
(Schaller et al 2002).
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Figure 7. Trace of model parameters estimated by MPC during sample performance shown
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Figure 7 demonstrates the adaptive capabilities of the controller by plotting the time-
evolving model parameters in a clinical experiment shown in figure 6. Figure 7 shows that
insulin sensitivities are increasing up to 6 1

2 h postmeal and achieve values about two-fold
higher than those at 3 h postmeal. The remaining three parameters also change but the extent
of the change is not as striking as when considering insulin sensitivities and the values depart
not more than 15% from the population mean.

An example of a study with the measurement delay is shown in figure 8. The 30 min
delay represents a ‘worst’ case scenario and is obtained by adding a physiological delay and
a technical delay. The former results from the properties of glucose transport from plasma
into the interstitial fluid and is reported to be about 10–15 min although this is still a matter of
discussion (Moberg et al 1997). The latter 5–10 min delay results from the dead space of the
cannula transporting interstitial fluid from the sampling site to the extracorporally positioned
glucose sensor. This latter delay is not present when using implantable glucose sensors such
as Continuing Glucose Monitoring System (Minimed, Slymar, CA).
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Figure 8. Sample performance of MPC during another clinical test with the same initial conditions
and in the same subject as in figure 6. On this occasion, however, glucose concentrations were
presented to MPC with a (known) 30 min delay to simulate the measurement delay between plasma
and interstitial glucose.

4.3. Model predictive accuracy

Major effort has been dedicated to assess prediction accuracy of the model. For this purpose,
data were used from 15 clinical experiments originally designed to test MPC performance.

Model-based predictions for prediction horizons from 15 to 240 min were compared with
measured glucose values and the root mean square error (RMSE) was calculated. In total 5256
measured–predicted glucose pairs were obtained.

Prediction accuracy was evaluated for glucose values starting 240 min after food ingestion
to avoid the effect of glucose absorption and to have sufficient data to learn individual
parameters.

On average, RMSE increased proportionally by 0.2 mmol L−1 per 15 min of the prediction
horizon. This means that the error associated with predicting 30 min ahead is comparable to a
measurement error with a CV of 8% (assuming a glucose concentration of 6 mmol L−1). This
implies good accuracy for up to 60–90 min prediction horizon and explains why MPC is able
to work well in the presence of the delay in glucose measurements.

Clinical utility of the predictions was further assessed using the Clarke error grid analysis
(Clarke et al 1987), which assigns pairs of estimated–true glucose concentrations into zones A
to E. Zone A implies that correct insulin treatment can be initiated using the estimated glucose
concentration. Adjacent zones have progressively lower clinical utility with zone E leading to
incorrect (opposite in trend) and potentially dangerous insulin treatment.

Figure 9 shows results for prediction horizon up to 60 min. The majority of points lie in
zone A and the remaining in zone B. Prediction horizon up to 240 min (5256 data pairs) gave
66% of pairs in zone A, 33% in zone B, 1% in zone C and 0.1% in zone E.

5. Discussion

The present study describes the development of a nonlinear model predictive controller to
achieve and maintain normoglycemia in subjects with type 1 diabetes during fasting conditions.
The aim of the controller is to control safely glucose during the night allowing a subject with
type 1 diabetes to start the day in normoglycemic conditions.
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Figure 9. The Clarke error grid analysis for prediction horizon 15–60 min. Data from 15 clinical
experiments gave 1674 data pairs with 95% of pairs in zone A and the remaining 5% in zone B.

The controller adopts a nonlinear model of the glucoregulatory system. The novelty of
the approach is that model parameters are repeatedly estimated using the Bayesian approach
avoiding problems associated with posterior identifiability. This allows adaptation both to a
particular subject and to the time-varying characteristics of the glucoregulatory system.

The underlying system is characterized by a long time delay of over 90 min between
insulin delivery and its peak action, which results from the superposition of delays associated
with insulin absorption from the subcutaneous depot and the duration of insulin action
(so-called remote insulin). These difficult conditions promote MPC to be a suitable strategy
to approach the problem. MPC also allows for open loop inputs such as meals, manual insulin
input, or exercise (after a suitable representation in the model), which could be entered by a
subject with type 1 diabetes acting in the supervisory mode.

In both simulation and clinical experiments the controller commenced its operation in
postprandial conditions, normally three hours or earlier following meal ingestion and prandial
bolus delivery. The information about the meal content in terms of grams of CHO, and the
size of the prandial bolus were presented to the controller, which utilized this information by
employing the submodel of insulin absorption, see (5), and the submodel of gut absorption, see
(4), to generate a gut absorption rate and an insulin absorption rate, respectively. The controller
uses this meal-related information as it has a considerable effect on glucose excursions for up
to 6 h postmeal.

Important for the present application is the use of informative prior distribution of
parameters. The prior distribution specifies the mean and standard deviation of and correlation
among parameters. The parameter estimation process relies on the prior distribution to achieve
posterior identifiability at situations with limited system dynamics and/or short learning
periods. Linearization would require recalculation of the prior distribution at each operating
point with an unclear effect on the parameter estimation process and subsequently on the
controller performance.
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Nonlinear MPC has become a field of intense research in response to users’
demands for higher performance. A number of approaches/applications have been
developed (Balasubramhanya and Doyle 2000, Rangaiah et al 2002, Trajanoski and Wach
1998) considering also on-line implementation (Santos et al 2001). Nonlinear control is
particularly suitable for medical applications where tolerances are small and predictive
accuracy is of fundamental importance.

Detailed evaluation of MPC performance during clinical tests is beyond the scope of the
present study. The evaluation of predictive accuracy has shown that the model is able to predict
plasma glucose up to 60 min ahead with an error comparable to the measurement error. The
results for predicting 60 min ahead are excellent with predicting 120 min ahead still clinically
good. This good predictive accuracy is a necessary condition for good performance of the
controller. The Clarke error grid analysis also supports the clinical utility of the predictions
over a wide range of glucose concentrations.

An extracorporal biomechanical portable artificial pancreas will most likely use a glucose
sensor measuring interstitial (subcutaneous) glucose, which will further extend system delays.
The predictive accuracy of the present controller appears to be sufficient to cope with this
additional obstacle to the control of glucose concentration.

The pilot tests and also simulation tests have shown that the controller has to recognize
special conditions and recover from them. For this purpose, the four safety schemes have been
implemented with the aim of preventing serious hypoglycemia events resulting from insulin
overdosing. Hypoglycemia is potentially a life-threatening condition and occurs more often
during intensified insulin therapy. Thus every means needs to be employed to facilitate the
prevention.

6. Conclusions

Nonlinear model predictive control with adaptive capabilities is well suited to control glucose
concentration during fasting conditions in subjects with type 1 diabetes mellitus. Good
predictive accuracy of the internal nonlinear model suggests that this approach is suitable for
use with subcutaneous glucose sampling and subcutaneous insulin infusion.
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