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Summary

Objective: Adaptive systems to deliver medical treatment in humans are safety-
critical systems and require particular care in both the testing and the evaluation
phase, which are time-consuming, costly, and confounded by ethical issues. The
objective of the present work is to develop a methodology to test glucose controllers
of an artificial pancreas in a simulated (virtual) environment.
Material and methods: A virtual environment comprising a model of the carbohydrate
metabolism and models of the insulin pump and the glucose sensor is employed to
simulate individual glucose excursions in subjects with type 1 diabetes. The perfor-
mance of the control algorithm within the virtual environment is evaluated by
considering treatment and operational scenarios.
Results: The developed methodology includes two dimensions: testing in relation to
specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic)
disturbances; and testing in relation to various operating conditions, i.e. expected
operating conditions, adverse operating conditions, and system failure. We define
safety and efficacy criteria and describe the measures to be taken prior to clinical
testing. The use of the methodology is exemplified by tuning and evaluating a model
predictive glucose controller being developed for a wearable artificial pancreas
focused on fasting conditions.
Conclusion: Our methodology to test glucose controllers in a virtual environment is
instrumental in anticipating the results of real clinical tests for different physiological
conditions and for different operating conditions. The thorough testing in the virtual
environment reduces costs and speeds up the development process.
# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The identifying property of adaptive systems is their
ability to perform in a changing environment. This
can be extended to another two levels to include
rved.
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adaptation to a similar setting and adaptation to a
new/unknown application as specified by the
EUNITE network of excellence on smart adaptive
systems [1].

Adaptive systems to deliver medical treatment in
humans are safety-critical systems and require par-
ticular care in both the testing and the evaluation
phase. Examples of such systems include control in
anaesthesia [2] and insulin treatment for type 1
diabetes mellitus [3].

The development, evaluation, and testing are
time-consuming, costly, and confounded by ethical
issues. The system has to be evaluated in a range of
treatment scenarios to guarantee safety and to
demonstrate adaptivity leading to acceptable treat-
ment efficacy. This is a complicated process and
only the first step in the development of commer-
cially viable medical applications of adaptive tech-
nology.

Simulation (virtual) environments offer reduc-
tions in human, time, and financial costs. Simulated
clinical tests have become an essential part of the
drug development process [4] but have yet to find
their way into the development of medical devices
beyond the trivial testing on a representative
patient, although some more elaborate examples
can be found in areas such as the control in anaes-
thesia [5,6]. The rationale is simple and appealing.
Instead of conducting trials on real subjects, a
collection of virtual subjects is tested in virtual
computer space that offers a close-to-real-life
behaviourally rich environment. The approach can
be utilised for both system development and system
evaluation.

Type 1 diabetes is characterised by an absolute
insulin deficiency. Current treatment relies on insu-
lin delivery by multiple daily insulin injections or a
continuous subcutaneous insulin infusion (CSII).
Recent technological advances in minimally inva-
sive continuous glucose measurement techniques
fuel research into the development of a technolo-
gically based artificial pancreas consisting of a glu-
cose sensor, a glucose controller, and an insulin
pump. Although the availability of a reliable, longer
term glucose sensor remains the rate limiting fac-
tor, the development of a glucose controller is
difficult. The system is subjected to long time
delays originating, for example, in the absorption
of subcutaneously injected insulin and the pro-
longed duration of insulin action, large inter-sub-
ject variability in insulin requirements and also
changes in insulin need throughout the day. It has
been shown that an adaptive control strategy is
required [7].

Diabetes simulators have already established
themselves as important educational tools [8,9].
They have been employed to gain insights into
pathophysiological conditions such as the develop-
ment of insulin resistance in type 2 diabetes [10]
and have found place in the development and per-
formance assessment of control algorithms for
automated insulin release control system [11,12].
But, to our knowledge, a complete and systematic
methodology to test glucose controllers has yet to
be developed.

The objective of the present paper is to describe
a methodology to test glucose controllers in a vir-
tual environment. The methodology includes two
dimensions, testing in relation to specific life style
conditions (for example, fasting and post-prandial),
and testing in relation to operating conditions such
as expected or adverse operating conditions. We
define safety and efficacy criteria and describe the
measures to be taken prior to clinical testing. The
use of the methodology is exemplified by tuning and
evaluating a model predictive glucose controller in
the process of being developed for a wearable
artificial pancreas [13] focusing on testing under
fasting conditions.

The testing is divided into the two aforemen-
tioned dimensions as this provides a coherent fra-
mework to carry out systematic evaluation
proceeding from simple (most common) to more
complex (less common) scenarios under which the
system is expected to perform.

The paper briefly describes the simulation envir-
onment and the model predictive controller. The
focus is on the methodology for testing glucose
controllers, which is described in detail together
with its sample application.
2. Methods

2.1. Simulation environment

The simulation environment represents the inter-
action between a virtual subject with type 1 dia-
betes, a measurement model, a glucose controller,
and an insulin pump, see Fig. 1. The simulation
environment is implemented in Matlab and Simu-
link.

The measurement model represents the mea-
surement process and includes the properties of
the glucose sensor such as the measurement error.
The insulin pump delivers the insulin into the sub-
cutaneous tissue of the virtual subject and can also
be parameterised to include an error in the insulin
delivery due to technical limitations and tissue
properties.

At present, the environment represents 18 vir-
tual subjects with type 1 diabetes. Differentiation
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Figure 1 Overview of a simulation (virtual) environment. All components except the glucose controller(s) are
implemented within the environment facilitating tuning and comprehensive testing of the controller.
among virtual subjects is achieved by assigning a
unique set of parameters to the glucoregulatory
model. The parameters were obtained by analysing
data collected overnight in real subjects with type 1
diabetes during variable intravenous insulin infusion
and 30-min plasma glucose (PG) sampling. Para-
meters not obtainable from these data, such as
gut absorption or insulin absorption from the sub-
cutaneous tissue, were drawn from informed (popu-
lation) probability distributions.

Intra-individual variability of the glucoregulatory
system is implemented in the virtual patients by
superimposing sinusoidal oscillations on model
parameters. These include fast oscillations (3-h
period) and slow oscillations (24-h period) in com-
bination with a low amplitude (5% of parameter
value) and a high amplitude (30%). The phase is also
drawn from a random (uniform) distribution for
each parameter and this provides for virtual sub-
jects with widely ranging behaviour characteristics.

The virtual subject is based on a physiologically
based compartment glucoregulatory model
described by a set of first-order differential equa-
tions following work by Hovorka et al. [14].

The glucoregulatory model represents input—
output relationship between subcutaneous insulin
infusion on input and intravenous glucose concen-
tration on output. Meal ingestion and intravenous
glucose infusion represent additional inputs. The
core of the model is outlined in Fig. 2.

The model consists of a glucose subsystem (glu-
cose absorption, distribution, and disposal), an
insulin subsystem (insulin absorption, distribution,
disposal), and an insulin action subsystem (insulin
action on glucose transport, disposal, and endogen-
ous production).

To exemplify a subsystem, glucose kinetics is
described by a set of differential equations:

dQ1ðtÞ
dt

¼ � Fc
01

VGGðtÞ þ x1ðtÞ
� �

Q1ðtÞ þ k12Q2ðtÞ � FR

þ UGðtÞ þ EGP0½1 � x3ðtÞ�

dQ2ðtÞ

dt

¼ x1ðtÞQ1ðtÞ � ½k12 þ x2ðtÞ�Q2ðtÞ

yðtÞ ¼ GðtÞ ¼ Q1ðtÞ
VG

where Q1 and Q2 represent the masses of glucose in
the accessible (where measurements are made) and
non-accessible compartments, k12 represents the
transfer rate constant from the non-accessible to
the accessible compartment, VG represents the
distribution volume of the accessible compartment,
y and G the (measurable) glucose concentration,
EGP0 represents endogenous glucose production
(EGP) extrapolated to the zero insulin concentra-
tion, Fc

01 the total non-insulin-dependent glucose
flux corrected for the ambient glucose concentra-
tion, and FR the renal glucose clearance above the
glucose threshold of 9 mmol/l.

Similar but simpler differential equations
describe gut absorption, insulin absorption from
subcutaneous depot, and insulin action.

The validity of the core of the model, i.e. the
model of glucose kinetics and insulin action, has
been demonstrated in healthy subjects during intra-
venous glucose tolerance test (IVGTT) [14]. The
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Figure 2 The core of the virtual subject with type 1
diabetes contains a compartment model of glucose—insu-
lin system. Q1 and Q2 represent glucose masses in plasma
and non-accessible compartments, I represent plasma
insulin, xi represent insulin action on glucose transport,
disposal, and endogenous glucose production.
limitation of the simulation environment is that an
extrapolation of the parameters from healthy to
type 1 diabetes subjects was required. Another
limitation is that the suppression of hepatic glucose
production was not studied during meal when insu-
lin and glucose is elevated for a considerable longer
period than during IVGTT.

We have evaluated the insulin absorption sub-
model and the insulin kinetics submodel in nine
subjects with type 1 diabetes during continuous
insulin infusion (data not shown). The submodels
were found adequate although a marginal improve-
ment was obtained by postulating a different
absorption rate for the short-acting insulin analogue
administered via continuous infusion (a slightly fas-
ter absorption rate) compared to the prandial bolus
(a slower absorption rate). The primary source for
the time-to-maximum of insulin absorption comes
from two studies assessing the kinetics of short-
acting insulin after bolus administration [15,16].

Probably, the weakest part of the model in terms
of experimental validity is the gut absorption sub-
model. Detailed investigations of the gut absorption
rate usually employ the ingestion of oral glucose or
liquid meal [17]. In the post-prandial state, appear-
ance of glucose resulting from meal/glucose inges-
tion is up to three times higher than fasting
endogenous production [17], which is simulta-
neously suppressed by more than half after meal
[18] indicating the dominating influence of exogen-
ous appearance. Glucose absorption is difficult to
quantify in in vivo conditions. It has a high intra-
individual variability [19] and a comprehensible
mathematical description relating the absorption
rate to food composition and the meal size has
yet to be established despite considerable extended
effort and advances in the field [18,20—24].

2.2. Model predictive controller of glucose
concentration

The model predictive control (MPC) [25] is an emer-
ging methodology to facilitate control of systems
with long time delays and open loop characteristics.
When combined with adaptive capabilities, it pro-
mises to tackle successfully problems such as the
control of glucose concentrations.

In this study, we evaluate an MPC-based glucose
controller [13]. The controller has been designed to
be used with an intravenous and subcutaneous glu-
cose measurement, in combination with a subcuta-
neous insulin infusion of short acting insulin such as
Lispro.

Model predictive control normally relies on the
internal ‘‘model’’ representation of the underlying
system adopting linearised version [26] of one of the
many models of the glucoregulatory system [8,27—
29]. However, our controller retains the full non-
linear model to minimise the model mis-specifica-
tion error.

The controller adopts a model with an identical
structure to that used by the virtual subject with
type 1 diabetes. Significantly, the underlying model
is parameter-rich and it is not possible to estimate
exhaustively model parameters from the observed
input (insulin infusion) — output (plasma glucose)
relationship. For the purposes of the controller,
model quantities are divided into model constants
and model parameters with the objective to reduce
the number of parameters. Model constants are
fixed and represent those quantities which (i) are
not a priori identifiable [30] or (ii) are unlikely to be
identifiable from the data (a posteriori non-iden-
tifiability). Only the remaining seven parameters
are estimated from the data, i.e. non-insulin depen-
dant glucose flux, EGP extrapolated to zero insulin
concentration, insulin sensitivity of distribution/
transport, insulin sensitivity of EGP, time-to-max-
imum of absorption of subcutaneously injected
short-acting insulin, CHO availability, and time-
to-maximum of CHO absorption.

The MPC controller includes the following com-
ponents: parameter optimiser, target projector,
dose optimiser, and safety schemes.

The parameter optimiser employs the maxi-
mum a posteriori Bayesian parameter estimation
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technique (a multivariate log prior distribution for
the seven parameters is assumed). Glucose mea-
surements from a ‘‘learning window’’, i.e. a time
period immediately preceding the control time,
are employed in the parameter estimation. Three
lengths of the learning window are predefined,
short, medium, and long, to be able to deal with
both a time-invariant (or slowly varying) underlying
system, which is best identified over a long learning
window, and a time-variant system best identified
over a shorter learning window. The target projec-
tor calculates target trajectory, i.e. the desired
glucose profile. The dose optimiser adopts non-
linear function minimisation as the underlying
model is non-linear. The control action is the first
insulin infusion rate of a control sequence, which is
calculated by minimising an objective function with
two components: (i) the adherence of the predicted
glucose to the target trajectory and (ii) the varia-
tion in the control sequence implemented as the
norm of first differences in the sequence of insulin
infusion rates.

The ‘‘aggressiveness’’ is a parameter of the MPC
controller, which quantifies the penalty associated
with the variation in the insulin infusion rate. A
large value of aggressiveness increases the risk of
hypoglycaemia whereas a low level results in a too
slow normalisation of glucose levels.

2.3. System tuning

The simulation environment represents an ideal tool
to tune the controller and also to investigate the
Figure 3 Simulation environment is instrumental in tuning t
other system components such as the insulin pump.

Figure 4 Glucose controller must be evaluate
effect of various system set-ups. We exemplify this
by finding an optimal value for the aggressiveness
parameter of the controller and by assessing the
effect of constraints in insulin infusion particularly
the maximum infusion rate, see Fig. 3.

2.4. Methodology to test blood glucose
controllers employing simulator of glucose
metabolism

The methodology evaluates the glucose controller
in three (simulated) physiological conditions: fast-
ing, post-prandial, and life style (metabolic) dis-
turbances such as exercise, see Fig. 4.

In each physiological condition, we are con-
cerned with the performance of the glucose con-
troller under three operating conditions, expected
operating conditions (EOC), adverse operating con-
ditions, and system failure, see Fig. 5.

2.4.1. Expected operating conditions
EOC represents the typical conditions in which the
controller is expected to work. These include the
expected properties of the sensing device, proper-
ties of the target population, and properties of the
insulin delivery device.

The glucose sensor is characterised by its mea-
surement error and a measurement delay asso-
ciated with subcutaneous glucose sensing (the
delay is due to, for example, the kinetic properties
of the glucose transport between plasma and the
interstitial fluid).
he controller and assisting in the evaluation of settings of

d under different physiological conditions.
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Figure 5 Overview of the validation methodology for blood glucose controllers (see text for details).
The target population is characterised by its
inter-subject and intra-subject variability. Subjects
differ in how much insulin they need (inter-subject
variability) which reflects their insulin sensitivity
and other parameters of the glucoregulatory sys-
tem. Second, insulin needs vary throughout the day
due to, for example, diurnal changes in insulin
sensitivity (intra-subject variability).

The insulin pump delivers insulin according to its
technical specification (a step-by-step motor) and
subjects to constraints such as the maximum deliv-
ery rate and the step resolution.

The set-up for early clinical testing includes
intravenous glucose sampling and subcutaneous
insulin delivery. We expect a 3—5% coefficient of
variation (CV; absolute measurement error divided
by ‘‘true’’ value � 100%) of the measurement error,
a 3-min measurement delay (representing time
needed to analyse plasma glucose on a bed-side
analyser), a intra-subject variability (oscillations)
of the parameters of the glucoregulatory system
with a 5% CV and a 3 or 24-h period, a 3-min step
delivery of insulin with a resolution 0.1 U/h and a
maximum infusion rate 4 U/h, and a 15% CV of the
error associated with insulin delivery.
The expected inter-subject variability of para-
meters of the glucoregulatory system is given by the
parameters of the virtual subjects derived from real
data.

2.4.2. Adverse operating conditions
Properties of the system components/environment
can temporarily deteriorate and it is essential to
assess the performance of glucose controllers under
these adverse conditions.

In particular, the measurement error associated
with the glucose sensor can increase or the mea-
surement delay can be prolonged. This also includes
an increased amplitude of the intra-subject varia-
bility of the parameters of the glucoregulatory
system.

Our implementation of the adverse operating
conditions increased the CV of measurement error
to 8 and 15%, the measurement delay to 40 min, and
the amplitude of the intra-subject variability to 30%
with an unaltered period of 3 or 24 h. The measure-
ment delay in the adverse operating conditions
assumes subcutaneous glucose sampling via extra-
corporal open flow microperfusion [31] and consists
of a 10-min physiological delay, a 20-min dead space
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of the sampling cannula, and an additional adverse-
conditions-related 10-min delay.

2.4.3. System failure
System failure may have catastrophic conse-
quences. Glucose controllers need to have a
built-in safety (protection) scheme to deal with
exceptional circumstances [32] with the objective
of minimising the risk of insulin overdose and sub-
sequent hypoglycaemia.

The tests we propose to execute are related to a
sensor drift and to an insulin pump occlusion. The
sensor drift represents the situation where there is a
progressively increasing bias between glucose mea-
surements and the actual glucose levels and if the
sensor overestimates actual glucose levels this may
lead to insulin overdosing. A pump/tissue occlusion
lasting several hours may lead to the creation of an
insulin reservoir in the pump/tissue, which can
abruptly enter the system. This problem can be
exacerbated by the glucose controller increasing
the insulin infusion during the occlusion period to
‘‘counteract’’ increasing glucose concentration.

2.4.4. Assessing glucose control
The glucose control is evaluated using two cri-
teria. The primary criterion is the safety of glu-
cose control. The secondary criterion is the
efficacy of glucose control. The safety criterion
is concerned with the avoidance of low plasma
glucose (hypoglycaemia), the efficacy criterion
with the avoidance of high plasma glucose (hyper-
glycaemia). The rationale behind the definitions
of the two criteria is that of an acute danger such
Table 1 Definition of safety and efficacy criteria for gluco

Grade Fasting conditions

Safety
Excellent No hypoa and no serious hypob

Good 	 5% subjects with hypo and no
subject with serious hypo

Satisfactory 	 20% subjects with hypo and no
subject with serious hypo

Unsatisfactory > 20% subjects with hypo or at
least one subject with serious hypo

Efficacy
Excellent PG 	 6 mmol/l
Good PG 	 7 mmol/l
Satisfactory PG 	 8 mmol/l
Unsatisfactory PG > 8 mmol/l

a hypo is defined as 2.0 mmol/l < PG 	 3.3 mmol/l.
b serious hypo as PG 	 2.0 mmol/l.
as unconsciousness or coma associated with hypo-
glycaemia, and that of the development and
progression of microvascular and macrovascular
complications of diabetes (limb amputations,
blindness, renal failure, etc.), which is associated
with a prolonged elevation of plasma glucose. The
criteria are defined in Table 1.

2.4.5. Safety criterion
The safety criterion assesses the safety of the
glucose control. This is achieved by evaluating
the number of virtual subjects who present hypo-
glycaemia (2.0 mmol/l < PG 	 3.3 mmol/l) and
serious hypoglycaemia (PG 	 2.0 mmol/l) during
a relatively short duration (	24 h) of virtual
tests.

‘‘Excellent’’ safety is achieved by avoiding hypo-
glycaemia and severe hypoglycaemia in all subjects.
‘‘Good’’ safety is characterised by a very low risk of
hypoglycaemia (	5% of subjects with hypoglycae-
mia) without the presence of severe hypoglycae-
mia. ‘‘Satisfactory’’ safety is aimed to reflect
incidence of hypoglycaemia with CSII (the current
‘‘gold’’ standard); there are limited comparable
data and we set the limits (	20% of subjects with
hypoglycaemia; no severe hypoglycaemia) more
stringently than those reported in a study by Renner
et al [33] (about 40% subjects experienced hypogly-
caemia in a day). ‘‘Unsatisfactory’’ safety is char-
acterised by levels of hypoglycaemia in more than
20% subjects or by the presence of severe hypogly-
caemia in one or more subjects.

The safety criterion is identical for all three
‘‘physiological’’ conditions, i.e. fasting, post-pran-
dial, and metabolic disturbances.
se controllers

Post-prandial state Metabolic disturbances
such as physical exercise,
alcohol intake, etc.

As for fasting conditions As for fasting conditions
As for fasting conditions As for fasting conditions

As for fasting conditions As for fasting conditions

As for fasting conditions As for fasting conditions

2 h PG 	 8 mmol/l As for fasting conditions
2 h PG 	 9 mmol/l As for fasting conditions
2 h PG 	 11 mmol/l As for fasting conditions
2 h PG > 11 mmol/l As for fasting conditions
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Figure 6 Example of glucose control using simulator. At
time 0 min, a synthetic type 1 diabetes subject had a meal
and received insulin bolus. At 180 min (vertical bar),
glucose was artificially raised to 11 mmol/l and the sub-
cutaneous insulin infusion was initiated. A model based
glucose controller calculated the infusion rate every
15 min using intravenous glucose measurements also
taken every 15 min.
It is important to stress that simulated clinical
trials are run for 8—24 h and thus the safety criter-
ion is defined taking into account the relatively
short duration of the trials quantifying percentage
of subjects with hypoglycaemia rather than inci-
dence of hypoglycaemia per patient year as is stan-
dard in longitudinal studies such as DCCT [33].

2.4.6. Efficacy criterion
The efficacy criterion evaluates the ability of glu-
cose controllers to achieve glucose levels, which are
known to avoid diabetes complications.

In the fasting state, ‘‘excellent’’ efficacy gives
glucose levels (	6 mmol/l) similar to those
observed in healthy subjects. ‘‘Good’’ efficacy
(PG 	 7 mmol/l) represents the WHO limit for the
diagnosis of impaired glucose tolerance [34]. The
‘‘satisfactory’’ efficacy (PG 	 8 mmol/l) corre-
sponds approximately to the best currently avail-
able management practice as documented by
intensive insulin therapy in DCCT [33]. ‘‘Unsatisfac-
tory’’ efficacy is that which is less satisfactory, i.e.
worse than the current best management practice.

In the post-prandial state, we focus on 2-h post-
prandial glucose, which is widely used for the diag-
nosis of diabetes and in the assessment of glucose
control. ‘‘Excellent’’ efficacy (2 h PG 	 8 mmol/l)
corresponds to the WHO diagnostic limit of diabetes
[34]. ‘‘Satisfactory’’ efficacy (2 h PG 	 11 mmol/l)
represents a slightlyworse control than thatobserved
with the best currently available management prac-
tice as exemplified by the intensive therapy during
DCCT [35]. ‘‘Unsatisfactory’’ efficacy represents
control worse than what is currently available.

In the conditions of life style disturbances, the
efficacy criterion is the same as during the fasting
conditions.
Table 2 Tuning controller and insulin pump settings

Safety Efficacy

Aggressiveness
1 Good Good
3 Good Good
5 Good Excellent
7 Satisfactory Excellent

1000 Satisfactory Excellent

Maximum infusion rate
4 U/h with step
size 0.2 U/h

Good Excellent

Maximum infusion
rate 2 U/h with
step size 0.1 U/h

Excellent Good

Bolus delivery Excellent Good
3. Results and discussion

3.1. Simulation environment

A sample outcome of a simulated clinical trial in a
virtual subject is shown in Fig. 6. The test included
the digestion of a meal with co-administration of a
‘‘manually’’ determined insulin bolus. The closed-
loop control commenced 3 h after the meal.

3.2. System tuning

The results of the system tuning are shown in
Table 2. The results refer to testing during fasting
conditions.

In the first instance we investigated the effect of
‘‘aggressiveness’’ on the performance of the con-
troller. The best trade-off was with aggressiveness 5
(unitless) which gave good safety and excellent
efficacy. Higher values of aggressiveness main-
tained excellent efficacy but safety was compro-
mised. Lower values of aggressiveness reduced
efficacy.

All future runs with the controller were therefore
run with the aggressiveness set to 5 (unitless).

A close inspection of the data collected during
the ‘‘aggressiveness’’ tests indicated that some
virtual subjects were temporarily infused with insu-
lin rates above the upper limit currently employed
during CSII. Clinical considerations suggested
employing an upper limit of 4 U/h and technical
considerations of an insulin pump to be employed in
real clinical trials (to facilitate a fast manual change
of the insulin pump rate) implied that a 2 U/h limit
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should also be considered. The former limit was
tested with a reduced step size of 0.2 U/h (in all
other tests a step size resolution was 0.1 U/h) again
considering a fast manual alteration of the pump
rate.

The limit of 4 U/h lead to the same results as the
limit-free testing. The 2 U/h limit improved safety.
However, efficacy was reduced due to several insu-
lin resistant subjects receiving too little insulin. We
decided to adopt the 4 U/h and not the 2 U/h limit
for future testing. The step size was set at 0.1 U/h
as this was subsequently found technically feasible.

Insulin pumps deliver insulin in microboluses
0.5—3 min apart. This quantum delivery may intro-
duce a discrepancy between the expected and truly
infused insulin at times when infusion rates change
considerably. The discrepancy can be avoided by
administering insulin not as a continuous insulin
infusion but as boluses given at the start of the
control cycle (in our system, insulin rate changes
every 15 min). The performance of bolus delivery
was evaluated and gave excellent safety and good
efficacy. The efficacy just failed to reach the excel-
lent grade. Thus, in purely performance terms,
bolus delivery of insulin every 15 min appears to
be a preferable mode of insulin delivery. We did
not, however, retain this feature as we considered
that a zero fluid flow for 15 min at the tip of the
cannula might increase the risk of occlusion.

3.3. Application of the methodology to test
blood glucose controllers on simulator

To exemplify the use of the methodology we eval-
uated the performance of the model predictive
controller under fasting conditions. The results
are shown in Table 3.

Under expected operating conditions, the con-
troller achieved excellent safety and good efficacy.
No hypoglycaemia events were observed. This pro-
vided the reassurance for a subsequent real clinical
Table 3 Summary of validation results for model predicti

Expected operating conditions

Adverse operating conditions
High measurement error
Long measurement delay
High intra-subject variability

System failure
Sensor drift
Pump occlusion
a Not determined.
testing, which gave similar results to those obtained
in the simulation study [36]. The similarity of the
two sets of results provides support for the validity
of the virtual environment.

Under adverse operating conditions, the high
measurement error reduced safety while maintain-
ing efficacy. The reduction in safety can be at least
in part attributed to ‘‘false’’ hypoglycaemia events,
i.e. plasma glucose above the hypoglycaemia
threshold can be ‘‘measured’’ below the threshold
after adding the measurement error and this situa-
tion will be exacerbated with an increased measure-
ment error. The long measurement delay reduced
efficacy but still achieved the satisfactory grade.
The high intra-subject variability was the only set of
conditions with unsatisfactory safety. This was due
to the presence of one severe hypoglycaemia (out of
36 virtual tests). This indicates that large variations
(30% of nominal values) in individual parameters are
difficult to deal with by the glucose controller.

Of the two types of system failure, only pump
occlusion was tested. The 2-h occlusion gave satis-
factory safety and good efficacy as assessed by post-
occlusion plasma glucose over a period of 5 h. This
was an important observation as pump occlusion is
not a rare event. Modern insulin pumps are
equipped with pressure sensors to detect the occlu-
sion but an additional safety margin is beneficial.
The sensor drift has not been tested, as limited
information is known about the glucose sensor being
developed for this particular version of the artificial
pancreas.

3.4. General discussion

Development and testing in a simulation environ-
ment is an appealing and worthwhile strategy to
lower costs and to reduce the development time.
The validity of the approach lies in the creation of a
virtual environment faithfully representing real
world conditions. In the medical field, the richness
ve controller during fasting conditions

Fasting conditions

Safety Efficacy

Excellent Good

Satisfactory Good
Excellent Satisfactory
Unsatisfactory Excellent

NDa ND
Satisfactory Good
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of the environment has to reflect the variability
between individuals, variability within individuals,
and characteristics of the technical components
such as measurement error.

In this paper we are concerned with the devel-
opment of a testing methodology for glucose
controllers. Several notes related to the develop-
ment and validation of the virtual environment
apply. First, the virtual development should be
based on real data. It is clear, however, that there
will be components for which our knowledge is
incomplete and/or inconsistent. This requires qua-
lified guesses to be made about underlying prob-
ability distributions of some parameters and
properties. Second, the validation of the virtual
environment is an important issue but this can
normally be resolved only after real clinical tests
have been conducted.

The methodology presented in this paper has
general applicability for other medical applications
of adaptive/hybrid techniques and could be used for
other types of clinical adaptive systems and beyond
a particular type of a controller.

The evaluation is carried out with respect to
external and internal dimensions. The former
reflects that adaptive systems work within a beha-
viour-rich environment. Normally, a set of prede-
fined scenarios could be specified, e.g. life style
conditions could be defined, and testing should
proceed from simple to more complex (or most
common to less common) scenarios. The latter
internal dimension of the evaluation is related to
settings of physiological and technical parameters
of the system (stressing that the human is part of
system) proceeding from the normal (expected)
operating conditions to less favourable until those
classified as system failure.

An important part of the methodology is the
definition of evaluative criteria. In the medical
domain these neatly divide into the assessment of
safety (is the system safe to use) and efficacy (does
the system achieves its primary goal) following the
approach paved by the drug development field. The
safety criteria are likely to be shared when evalu-
ating the internal and external dimensions. The
efficacy criteria are likely to differ among various
scenarios reflecting higher expectations on the sys-
tem performance under standard/most prevalent
conditions and less demanding expectations under
less favourable conditions.

In conclusion, we have developed a methodology
to test glucose controllers in a simulated (virtual)
environment. The methodology is instrumental in
anticipating the results of real clinical tests for
different physiological conditions and for different
operating conditions. The thorough testing in the
virtual environment reduces costs and speeds up the
development process.
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