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Abstract—We investigated insulin lispro kinetics with bolus
and continuous subcutaneous insulin infusion (CSII) modes of
insulin delivery. Seven subjects with type-1 diabetes treated by
CSII with insulin lispro have been studied during prandial and
postprandial conditions over 12 hours. Eleven alternative models
of insulin kinetics have been proposed implementing a number
of putative characteristics. We assessed 1) the effect of insulin
delivery mode, i.e., bolus or basal, on the insulin absorption rate,
the effects of 2) insulin association state and3) insulin dose on
the rate of insulin absorption, 4) the remote insulin effect on its
volume of distribution, 5) the effect of insulin dose on insulin
disappearance, 6) the presence of insulin degradation at the
injection site, and finally 7) the existence of two pathways, fast
and slow, of insulin absorption. An iterative two-stage parameter
estimation technique was used. Models were validated through
assessing physiological feasibility of parameter estimates, pos-
terior identifiability, and distribution of residuals. Based on the
principle of parsimony, best model to fit our data combined the
slow and fast absorption channels and included local insulin
degradation. The model estimated that 67(53–82)% [mean (in-
terquartile range)] of delivered insulin passed through the slow
absorption channel [absorption rate 0.011(0.004–0.029) min 1]
with the remaining 33% passed through the fast channel [ab-
sorption rate 0.021(0.011–0.040) min 1]. Local degradation rate
was described as a saturable process with Michaelis–Menten
characteristics [VMAX = 1 93(0 62 6 03) mU min 1,
KM = 62 6(62 6 62 6) mU]. Models representing the
dependence of insulin absorption rate on insulin disappearance
and the remote insulin effect on its volume of distribution could
not be validated suggesting that these effects are not present or
cannot be detected during physiological conditions.

Index Terms—Biological systems modeling, identification, in-
sulin kinetics, parameter estimation, type-1 diabetes.

I. INTRODUCTION

I NSULIN therapy in people with type-1 diabetes aims to
mimic the pattern of endogenous insulin secretion present

in healthy subjects. This pattern can be achieved to some ex-
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tent by continuous subcutaneous insulin infusion (CSII) with
an insulin pump administering individually titrated basal in-
sulin infusion and prandial insulin boluses. Despite consider-
able progress, currently available insulin preparations do not
fully deliver the desired insulin profile, partly due to the delay
in the appearance of insulin in the plasma following subcuta-
neous injection. Absorption of regular insulin from the subcuta-
neous depot is impeded by the formation of hexameric macro-
molecules. The DNA-recombinant technique has contributed
to the synthesis of rapid acting human insulin analogues such
as lispro, with a reduced formation of higher order hexamers
and with binding to the receptors and biological activity pre-
served [1]. As this type of insulin is absorbed faster from the
subcutaneous tissue, its ability to mimic the physiological pat-
tern of insulin secretion is improved [2]. For that reason lispro
and, for that matter, other fast acting insulin analogues have be-
come the insulin of choice for the CSII therapy [1]. The avail-
ability of rapid acting analogue also opened new opportunities
for the development of a wearable artificial pancreas (WAP),
a research goal of the last decade. A better understanding of
the insulin absorption process could lead to further improve-
ments in glycaemic control and, in relation to the WAP, could
help to increase predictive powers of the WAP algorithm. How-
ever, the pharmacokinetics of subcutaneous insulin is yet to be
fully described. The absorption from the subcutaneous tissue
is influenced by many factors including the associated state of
insulin, i.e., hexameric, dimeric, or monomeric [3], concentra-
tion and injected volume [4], injection site and depth [5], [6],
and blood flow [7]. Several models of subcutaneous insulin ki-
netics have been proposed [8]–[13] dealing with different types
of commercially available insulin preparations. As insulin ana-
logues are a recent innovation, only two of those models [11],
[13] consider monomeric rapid acting insulin such as lispro.
Shimoda et al. [13] used a simple three-compartmental linear
model, equivalent to Model 1 presented in this study, to derive
their closed-loop insulin infusion algorithm. Trajanoski and col-
leagues [12] used a different approach. They modified and ap-
proximated a noncompartmental model with distributed param-
eters by Mosekilde et al. [14]. In order to reduce the complexity
of the model, the authors made a number of assumptions. One of
such simplifications, for instance, was an assumption that the sc
injected insulin forms a spherical homogenous depot. Since the
model by Trajanoski et al. was theoretically unidentifiable [15],
the formal identification techniques could not be used. There-
fore, the parameter values for this model were not estimated but
were chosen from published in vivo and in vitro studies.

The aim of this study was to investigate the kinetics of insulin
lispro during a standard insulin pump treatment with bolus and
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TABLE I
PROPOSED COMPARTMENT MODELS OF INSULIN LISPRO KINETICS

continuous infusion modes of insulin delivery as it may be used
in a WAP.

II. METHODS

A. Subjects and Experimental Protocol

Seven subjects with type-1 diabetes (4/3 F/M, age 31.7
14.1 years, 8.5 1%, BMI ,

daily basal insulin requirements 23.6 6.4 U/day; mean
SD) treated by CSII participated in the study. All subjects
had nondetectable C-peptide levels. The participants provided
written informed consent, and the study was approved by
the local ethics committee. Six subjects (Subject 1–6) were
studied after an overnight fast (start of the study at 8:00) and

one subject (Subject 7) was studied at postprandial conditions
overnight (start of the study at 19:00). The subjects arrived at
the University Hospital, University of Graz, Austria, one hour
prior to the start of the study and remained in supine position
for the 12 hours of the experiment.

On arrival at the hospital, an intravenous cannula was in-
serted into a forearm vein to facilitate arterialised venous blood
sampling using a thermoregulated (55 ) box. A replacement
cannula was inserted into the subcutaneous abdominal tissue
for the variable administration of rapid acting insulin analogue
(Humalog, Eli Lilly) (lispro) by an insulin pump (D-Tron, Dis-
etronic Medical Systems, Burgdorf, Switzerland).

At the start of the study, the subjects ingested a standard meal
[40-gram (g) carbohydrates (CHO)] with a co-administration of
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TABLE I
(Continued.)

PROPOSED COMPARTMENT MODELS OF INSULIN LISPRO KINETICS

an individually determined prandial insulin bolus. Only water
was allowed for the rest of the study. In case of a low plasma
glucose (PG) concentration ( 3.3 mmol/l) a bolus of 10–20 g
of intravenous glucose (20% Dextrose solution, Fresenius Kabi,
Graz, Austria) was administered.

Arterialised venous blood samples were drawn every 15
min for the determination of PG and every 30 min for the
determination of plasma insulin. Plasma insulin was measured
using the Iso-Insulin ELISA (Mercodia AB, Uppsala, Sweden)
assay with an intra-assay CV 6%. PG was measured every
15 min on a bedside analyzer and the insulin infusion rate
was changed every 15 min based on the advice of the MPC
algorithm [16], with an aim to maintain normoglycaemia at
postprandial conditions.

B. Modeling Insulin Kinetics

Eleven alternative compartment models were postulated to
represent the insulin kinetics following the administration of a
bolus and continuous infusion of insulin lispro (Table I).

The models differed in the description of subcutaneous
insulin absorption and its elimination from plasma. We assessed
1) the effect of insulin delivery mode, i.e., bolus or basal, on
the insulin absorption rate, the effects of 2) insulin association
state and 3) insulin dose on its rate of absorption, 4) the
remote insulin effect on its volume of distribution, 5) the
effect of insulin dose on insulin disappearance, 6) the presence
of insulin degradation at the injection site, and finally 7)
the existence of two pathways, fast and slow, of insulin
absorption.

Plasma insulin was represented by a single compartment in
all models. Insulin in the subcutaneous tissue was represented
by two compartments to describe the delay in insulin absorption,
or by one compartment to represent a faster absorption channel.

Model 1 was a basic three compartment linear model, in
which both the insulin absorption rate and the insulin disap-
pearance rate were assumed unaffected by other factors.

Model 2 assumed a linear relationship between insulin ab-
sorption rate and the amount of insulin infused.

Model 3 assumed saturable insulin absorption rate with an in-
creasing insulin dose. The saturable process was implemented
as the Michaelis–Menten relationship between the insulin ab-
sorption rate and the insulin dose. The two delivery modes,
continuous infusion and bolus, were not discriminated by this
model.

Model 4 assumed a saturable, dose dependent insulin disap-
pearance rate implemented in a Michaelis–Menten form. The
absorption rate was assumed linear and independent of the in-
sulin delivery mode.

Model 5 differentiated among continuous insulin infusion and
the bolus administration and assumed that the insulin absorption
rate is dependent on the delivery mode with the aim to assess
whether, as frequently discussed in literature, insulin adminis-
tered in the form of a bolus is absorbed more slowly than insulin
given as a continuous infusion.

In Model 6, it was assumed that certain amount of the in-
jected monomeric insulin associates to form dimmers and that
a state of equilibrium is reached between the two association
states. The insulin absorption rate was assumed to be different
for monomers and dimers. No nonlinearities were included in
this model.

Model 7 examined the remote insulin effect on its volume
of distribution. The relationship between plasma insulin and the
volume of distribution was assumed to take a Michaelis–Menten
form.

Model 8 considered two different pathways of insulin absorp-
tion, one consisting of two compartments, as in the previously
described models, and the other with one compartment turning
it into a faster channel for insulin absorption. The proportion of
insulin channeled through these two pathways was considered to
be the same for the two delivery modes, continuous infusion and
the bolus. This and following models were formulated to over-
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come underestimation of the postprandial plasma insulin peak
encountered by the previous models.

Model 9 introduced bioavailability of the insulin bolus rel-
ative to that of the continuous infusion while maintaining the
two pathways of insulin absorption implemented in Model 7.
This relative bioavailability is sometimes referred to in litera-
ture as an effectiveness factor and could be explained by dif-
ferent levels of local insulin degradation of bolus and infusion
delivery modes.

Model 10 considered local degradation of insulin at the injec-
tion side, also maintaining the two pathways of insulin absorp-
tion (as in Model 8). The degradation process was assumed to be
saturable and was implemented as a Michaelis–Menten relation.

Finally, Model 11 is based on that published by Berger et al.
[11] and describes insulin absorption using a noncompartment
formulation derived from published studies [17], [18].

Formal definitions of models are shown in Table I. The ex-
planation of symbols is as follows: i is plasma insulin (mU L ;

and represent insulin mass (mU) in the accessible and
nonaccessible subcutaneous compartments, respectively;
and represent mass of insulin administered as continuous
infusion (Model 5) or mass of insulin associated into dimers
(Model 6) (mU), and and represent mass of insulin
given as a bolus (Model 5) or mass of insulin maintaining
monomeric form (Model 6) (mU); represents insulin mass
(mU) in the plasma compartment; V represents the insulin
distribution volume (L ); u represents the insulin input
(mU ), and (mU ) represent the continuous
insulin infusion and the bolus input, respectively; , ,

, and are transfer rates , is the slope of
saturable insulin absorption ( mU ); and

are the maximal values of insulin flux (mU )
describing the Michaelis–Menten dynamics of insulin absorp-
tion and insulin disappearance respectively; and are
values of insulin mass (mU) at which insulin flux is equal to half
of its maximal value when describing the Michaelis–Menten
dynamics of insulin absorption and disappearance, respec-
tively; X is the remote insulin effect in (mU ), is
the value of insulin concentration at which the distribution
volume attains half of its maximal value (mU ), and
(unitless) is the maximum proportional increase in the volume
of distribution; is the saturation level (mU )
describing Michaelis–Menten dynamics of insulin degradation
for continuous infusion and bolus; is the value of insulin
mass (mU) at which insulin degradation is equal to half of its
maximal value for continuous infusion and bolus; B (unitless)
is the relative bioavailability of the insulin bolus to the contin-
uous infusion; and represent local degradation at the
injection site (mU ) for continuous infusion and bolus,
respectively; k (unitless) is the proportion of the total input flux
passing through the slower, two compartment channel (Models
8–10) or a proportion of insulin associated into dimeric form
in the sc pool (Model 6); s and (unitless) characterize the
absorption rate of bolus and continuous infusion respectively,

is the time to reach 50% absorption of the injected
insulin bolus (min) with (min ) and (min) used as
parameters, and is the time interval (min) to reach
50% absorption of the continuous infusion. All models are a
priori identifiable [15].

C. Parameter Estimation

To reflect the skewed distribution of model parameters, prior
to the estimation process, all parameters except k and B were
log-transformed. This also assured nonnegativity of those pa-
rameters. The parameters were then estimated using an itera-
tive two-stage (ITS) population kinetic analysis [19], [20]. In
each iteration, model parameters were estimated employing a
nonlinear, weighted, least-squares algorithm with an empirical
Bayesian term.

The weight was defined as the reciprocal of the square of the
measurement error, which was assumed to have a zero mean and
a coefficient of variation of 6%. This measurement error was
assumed to be constant across both subjects and measurements.

The accuracy of parameter estimates was obtained from the
Fisher information matrix [15]. The SAAM II Population Ki-
netics v 1.2 (SAAM Institute, Seattle, WA) was employed to
carry out the calculations.

D. Iterative Two-Stage Analysis

Model parameters were estimated using ITS population ki-
netic analysis.

ITS is a parametric iterative population analysis method
based on the concepts of population prior knowledge and
maximum a posteriori (MAP) probability empirical Bayes es-
timator [20]. There are three steps of ITS: Step 1) initialization,
Step 2) expectation, and Step 3) minimization. In the initializa-
tion step, the population mean for each parameter is calculated
as the sample mean of all the individual parameter estimates.
Population variance is also calculated as the corresponding
sample variance. In Step 2, the expectation step, parameter
estimation for each individual subject is performed again,
this time minimizing the following extended MAP Bayesian
objective function with respect to [21]

(1)
where the distance of the current parameter estimate from the
population mean is also penalized; we denote with the ith el-
ement of the parameter vector for subject j, is the value
of the population mean at the kth iteration, is the number of
data points available for the jth subject, and are the ith
time point and data point, respectively, for the jth subject,
is the variance of the measurement error of the ith data point,

is the model prediction for a given , and is
the ith diagonal element of the population covariance matrix at
the kth iteration. The estimate obtained by minimizing this ob-
jective function is called post hoc, or empirical Bayes, estimate.
An updated population mean of the parameter vector and the
covariance are calculated. In the final Step 3, the check for con-
vergence of the population mean, the population variance, and
the individual parameter estimates is carried out. This is done
by determining whether or not the current and the previous es-
timate differ by 1%. If so, the algorithm is stopped, if not, it
returns to Step 2. Hence, Step 2 and 3 are performed iteratively
until the convergence is reached.
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Fig. 1. Plasma insulin concentration. Values are mean � SE.

E. Model Identification and Validation

Parameter estimates were checked for physiological fea-
sibility. To validate the models, two additional criteria were
adopted. These were posterior identifiability and the distribu-
tion of residuals [15]. Posterior identifiability of each model
was assessed on the basis of the accuracy of parameter esti-
mates. A given parameter was considered nonidentifiable if the
coefficient of variation of the parameter estimate was 150%.
The Runs test evaluated the randomness of the residuals.

F. Model Selection

The best model, i.e., the model, which best represented our
experimental data with the minimum number of parameters,
was selected using the principle of parsimony. The two most
commonly used tests that implement this principle are the
Akaike criterion (AIC) [22] and the Bayesian information
criterion (BIC), also known as Schwarz [23]. The two tests are
defined as follows:

AIC (2)

BIC (3)

where is the number of data points, WRSS is the weighted
residual sum of squares, and is the number of parameters.

As the number of data points in this study was small ( range
from 18 to 28), the two tests would give similar results [see (2)
and (3)]. The author chose to implement AIC in this study, al-
though BIC was also calculated by SAAM II software package.

III. RESULTS

A. Experimental Data

Mean plasma insulin concentration is shown in Fig. 1. The
continuous insulin infusion rate, which varied during the exper-
iments, was 0.86 0.27 U/h (mean SD), and the bolus ad-
ministered prior to the meal was 5.95 2.37 U.

B. Model Identification and Validation

Model identification and validation results are summarized in
Table II. Models 4 and 7 proved nonidentifiable with precision

Fig. 2. Mean weighted residuals for Model 1, 2, 3, 5 and 6 (top panel) and
Model 8, 9, 10 and 11 (bottom panel) (n = 7).

of parameter estimates for , , , and , ex-
pressed as CV considerably exceeding 150% in most of the in-
dividual cases. The remaining eight models demonstrated phys-
iological feasibility of parameter estimates and posterior identi-
fiability, see Table II. Weighted residuals associated with these
models are plotted in Fig. 2. The results of the Runs test applied to
the weighted residuals, i.e., the percentage of cases, which passed
this test, are shown in Table II. Weighted residuals of models 2, 9,
10, and 11 passed the Runs test in 100% of cases (see Table II).

C. Model Selection

The values of AIC for a posteriori identifiable models are
shown in Table II. On the basis of this criterion, Model 10 was
selected as best representing the experimental data. This model
is also characterized by 100% of cases passing the Runs test
and the tightest range of the weighted residuals (see Fig. 2). Al-
though parameter estimates for and V were outside the physi-
ological limits defined from the validated studies, their product,
the metabolic clearance rate (MCR), maintained physiological
feasibility. The parameter estimates for this model and for all the
other a posteriori identifiable models are shown in Tables III(a),
III(b), and III(c). An example model fit generated by Model 10
is shown in Fig. 3.
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TABLE II
MODEL IDENTIFICATION, VALIDATION AND SELECTION. SUMMARY RESULTS

IV. DISCUSSION

Mathematical modeling is a common approach to quantify
subcutaneous insulin absorption. A number of models have been
proposed [8]–[14] dealing with different insulin types. Two of
those models [12], [13] consider monomeric rapid acting in-
sulin, such as lispro.

Our 11 models are partly or, in case of Model 11, entirely based
onexistingmodelsofinsulinkineticsafterscinsulininjection.For
instance, Model 1 has an identical structure to that by Puckett et
al. [10] with an omitted effectiveness factor to represent local in-
sulin degradation. In our study, the effect of local insulin degrada-
tion at the injection site was accounted for in Models 9 and 10. In
Model 9, instead of Puckett’s effectiveness factor, we use relative
bioavailability B to account for different levels of insulin degra-
dation for the bolus and continuous infusion modes of delivery.
Although this model proved identifiable, the model fit was not as
good as that of the best Model 10.

Model 11 is the only noncompartmental model based on em-
pirical equation describing subcutaneous insulin absorption de-

rived by Berger et al. [24]. This model was also identifiable with
borderline physiological values of parameter estimates but did
not provide the best fit to the experimental data.

Except Models 1 and 6, all other models are nonlinear. Non-
linearity with Michaelis–Menten characteristics was imposed on
insulin absorption (Model 3), insulin disappearance (Model 4),
the remote insulin effect on the volume of distribution (Model 7),
and finally on the local insulin degradation (Model 10).

Several authors [4], [9], [12], [14], [25] observed that the
insulin absorption rate varies inversely with the concentration
of the injected insulin. Trajanoski et al. [12], in their theoret-
ical study, examined this phenomenon in the monomeric in-
sulin and found its absorption rate to be constant regardless of
the concentration and volume. This finding was supported indi-
rectly by Kang et al. [3] who studied the influence of molecular
aggregation on rates of subcutaneous absorption. Our Models
2 and 3 addressed this issue of concentration dependent ab-
sorption rate by assuming nonlinear dynamics and saturability
of subcutaneous insulin absorption. Model 2 uses a simplified,
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TABLE III(a)
PARAMETER ESTIMATES FOR IDENTIFIABLE MODELS. VALUES ARE POPULATION MEANS

(INTER-QUARTILE RANGE OF INDIVIDUAL VALUES) (N = 7)

whereas Model 3 a full form of the Michaelis–Menten rela-
tion. Both models proved only borderline identifiable with pre-
cision of some parameter estimates exceeding 100%. In par-
ticular, and , the Michaelis–Menten parameters
in Model 3, achieved borderline precision for some but not all
subjects. The highest CV for was 123% and for
124% indicating higher degree of uncertainty related to these
parameter estimates. In the case of Model 2, borderline CVs
were recorded for V, the volume of distribution, and , insulin
disappearance rate.

As already stated, Kang et al. [3] studied the influence of
molecular aggregation on rates of sc insulin absorption. The au-
thors found differing absorption rates of hexamers, dimers, and
monomers. The fastest absorption rates were demonstrated with
monomeric, while the slowest with hexameric insulin. In Model
6, we assume that the injected monomeric insulin partially as-
sociates to form dimers in the subcutaneous depot. Assuming
an equilibrium state between dimers and monomers, Model 6
considered two separated pools for the two association states
of the injected insulin and two different absorption rates (see
Table I, Model 6). Model 6 was a posteriori identifiable with a
good precision of parameter estimates. It was estimated that ap-
proximately 41% of the injected insulin was in a dimeric form
characterized by a slower absorption rate [see Table III(a)]. The
difference between the two absorption rates, however, was not
statistically significant ( ; paired t-test).

The evidence of a saturable insulin removal in the sup-
raphysiological range of the insulin concentration has been
demonstrated in several studies [26]–[28]. In the physiolog-
ical range of the insulin concentration, however, the existing
evidence points to a linear process [29]. A nonlinear kinetics
of the insulin removal rate is adopted by Model 4. This model
proved a posteriori nonidentifiable with a CV of three of the
parameter estimates (V, , and ) exceeding 150%.
A low precision of the Michaelis–Menten parameters suggests
that saturable levels of the plasma insulin concentration were
not achieved during our experiment and that the insulin disap-
pearance is most probably linear over the physiological range.

Mosekilde et al. [14] observed an inverse relationship be-
tween the insulin absorption rate and the injected volume. This
implies that insulin kinetics depends on the insulin delivery
mode, i.e., it is different for bolus (a large volume) and the con-
tinuous subcutaneous infusion (a sequence of small volumes).
Other authors [8] did not find such dependence in their studies.
In Model 5, we examined this finding for insulin lispro. The
bolus and continuous infusion inputs were routed via separate
absorption channels. The insulin absorption rate constants
for bolus and infusion were estimated and were not different
( , paired t-test). We acknowledge that the continuous
mode of insulin delivery used in our study differed from the
standard approach, where the insulin infusion rate is changed
less frequently. However, changing the insulin infusion rate
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TABLE III(b)
PARAMETER ESTIMATES FOR MODELS 2, 3, 8, AND 9. VALUES ARE POPULATION MEANS

(INTER-QUARTILE RANGE OF INDIVIDUAL VALUES) (N = 7)

TABLE III(c)
PARAMETER ESTIMATES OF A, B, B , S, AND S VALUES ARE POPULATION MEANS

(INTER-QUARTILE RANGE OF INDIVIDUAL VALUES) (N = 7)

Fig. 3. Example fit for Model 10.

every 15 min provided a richer dynamic behavior and was more
representative of the insulin delivery to be used in an artificial
pancreas.

It has been suggested that insulin may have a remote effect
on its volume of distribution [30]. This remote effect of insulin
was represented in Model 7. Unfortunately, Model 7 was not a
posteriori identifiable with a CV for and reaching
values as high as 300%.

Although several of the already discussed models were a
posteriori identifiable, the post meal peak of plasma insulin
was consistently underestimated. We therefore introduced

two, slow and fast, insulin absorption channels differing in
the number of compartments. A marked improvement in the
model fit was observed in Models 8, 9, and 10, which include
the two absorption channels. The best model fit was observed
in Models 9 and 10, which further implement local insulin
degradation. Although the volume of distribution and the
insulin elimination rate from plasma were not physiologically
feasible in Models 9 and 10, the MCR of insulin attained
physiological feasibility [see Table III(a)]. For this reason, the
two models were retained and Model 10, with a slightly lower
Akaike value, was selected as best representing our data (see
Fig. 3 for an example model fit). The value of insulin MCR
obtained by Model 10 is almost identical with that obtained by
Kraegen et al. [9] with an independent intravenous experiment
(10.8 mL/min for regular insulin) and Shimoda et al. [13] (10.6
mL/min for monomeric insulin).

The presence of the local insulin degradation is a con-
troversial issue. Some studies confirm its significance [31],
[32], others discount it as relatively small [4], [9], [33]. In
Model 10, we modeled the local degradation as a saturable
Michaelis–Menten process. The mean precision of
estimate was very good (47 58%; mean SD) with the
exception of one subject with a value of 150%. Parameter
estimates for almost converged to the population
mean in all subjects. The mean precision of each of the pa-
rameter estimates in this model was less than 50%. Our best
model indicates that the effect of insulin degradation, how-
ever small [ ,
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], is not, as suggested by
Binder et al. [4], insignificant in the physiological range of
insulin concentrations.

As far as the two absorption channels are concerned,
Model 10 estimated that 67(53–82)% [mean(interquartile
range)] of insulin passes through the slow absorption channel
[absorption rate 0.011(0.004–0.029) ] with the re-
maining 33% passing through the fast channel [absorption rate
0.021(0.011–0.040) ]. The idea of two absorption chan-
nels does not have an immediate physiological interpretation.

Marked intersubject variability of the insulin absorption rate
from the subcutaneous tissue has been observed by many au-
thors [12], [14], [34]. The insulin absorption is thought to be
dependent on the injection site [5], [6], the injection depth [35],
lipodystrophy [36], low body weight [36] and many other fac-
tors such as exercise, smoking, temperature etc. The intersubject
variability can be seen very clearly across all individual param-
eter estimates of Model 10.

V. CONCLUSION

Eleven alternative models of insulin lispro kinetics have
been evaluated and validated with experimental data collected
in subjects with type-1 diabetes. The selection process based
on the AIC identified Model 10 as best representing our data.
The model suggests the presence of fast and slow absorption
channels and the presence of local insulin degradation.
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