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Abstract

Previous study of the time to a common ancestor of all present-day individuals has
focused on models in which each individual has just one parent in the previous
generation. For example, ‘mitochondrial Eve’ is the most recent common ancestor
(MRCA) when ancestry is defined only through maternal lines. In the standard Wright–
Fisher model with population size n, the expected number of generations to the MRCA
is about 2n, and the standard deviation of this time is also of order n. Here we study a
two-parent analog of the Wright–Fisher model that defines ancestry using both parents.
In this model, if the population size n is large, the number of generations, T n, back to
a MRCA has a distribution that is concentrated around lg n (where lg denotes base-2
logarithm), in the sense that the ratio Tn/(lg n) converges in probability to 1 as n→ ∞.
Also, continuing to trace back further into the past, at about 1.77 lg n generations before
the present, all partial ancestry of the current population ends, in the following sense:
with high probability for large n, in each generation at least 1.77 lg n generations before
the present, all individuals who have any descendants among the present-day individuals
are actually ancestors of all present-day individuals.
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1. Introduction

Starting with the set of all of us present-day humans, imagine tracing back in time through
our mothers, our mothers’ mothers, and so on. This is the maternal family tree of mankind,
and we are at its leaves. Recent research has suggested that the woman at the root of this tree
lived roughly 100 000 or 200 000 years ago, perhaps in Africa (Cann et al. (1987); Vigilant
et al. (1991)). This woman has been dubbed ‘mitochondrial Eve’, since all present-day human
mitochondrial DNA descended from hers. Mitochondrial Eve was undoubtedly not the only
woman alive at her time, so the name ‘Eve’ is misleading, as has been pointed out by a
number of authors; see, for example, Ayala (1995). However, this misunderstanding aside,
questions of the origins of mankind and the nature of our relationships to each other are still
of keen interest, and the research on mitochondrial Eve has received a great deal of publicity,
generating headlines in the popular press as well as in scientific publications. Svante Pääbo
(1995) explains:
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. . . the recent date of our mitochondrial ancestor is in a sense the really controver-
sial conclusion from these studies. Everyone agrees that we trace our ancestry to
Homo erectus, who emerged in Africa and from there colonized most of Eurasia
about a million years ago or even earlier. What the mitochondrial data seem to
show, however, is that we have a much more recent ancestor, one who lived some
100 000 or 200 000 years ago.

What captures the imagination is not the particular choice to trace back through the maternal
line, but rather it is the idea that all of present-day humanity may have a common ancestor who
lived as little as 100 000 years ago, a time that seems to many to be surprisingly recent. If we
retain this idea while removing the restriction to the maternal line, the question becomes:
How far back in time do we need to trace the full genealogy of mankind in order to find any
individual who is a common ancestor of all present-day individuals? In this paper we address
this sort of question in a simple mathematical model.

The coalescent model of Kingman (1982a) forms the basis of many of the calculations,
formal and informal, used in recent treatments of questions about mitochondrial Eve and
related topics. The coalescent is a large-population limit of a number of the fundamental mod-
els of population genetics, including the Wright–Fisher process. These models are haploid,
with each individual in a given generation having a single parent in the previous generation.
The Wright–Fisher model assumes ‘random mating’, in the sense that the parent of a given
individual is equally likely to be any of the individuals in the previous generation. The standard
model also postulates a constant population size, which may be an ‘effective population size’
when modeling more general situations. A number of important properties of the coalescent
model are used in applications. For example, the model implies a relationship between coales-
cence times and population size: the expected coalescence time (measured in generations) of
a large sample is about twice the population size. Hudson (1990) gives a survey of the theory
and applications of the coalescent.

Here we study a natural two-parent analog of the Wright–Fisher process. (This process was
previously considered by Kämmerle (1991) and Möhle (1994); see the end of this section for
a discussion of related work.) We assume the population size is constant at n. Generations
are discrete and non-overlapping. The genealogy is formed by this random process: in each
generation, each individual chooses two parents at random from the previous generation. The
choices are made just as in the standard Wright–Fisher model—randomly and equally likely
over the n possibilities—the only difference being that here each individual chooses twice
instead of once. All choices are made independently. Thus, for example, it is possible that
when an individual chooses his two parents, he chooses the same individual twice, so that in
fact he ends up with just one parent; this happens with probability 1/n.

This model is designed only as a simple starting point for thought; of course it is not meant
to be particularly realistic. Still, one might worry that this simple model ignores considerations
of sex and allows impossible genealogies. If this seems bothersome, an alternative interpreta-
tion of the same process is that each ‘individual’ is actually a couple, and that the population
consists of n monogamous couples. Then the random choices cause no contradictions: the
husband and wife each were born to a couple from the previous generation. They could even
come from the same couple in the previous generation.

Our interest here is in finding individuals who are common ancestors of all present-day
individuals. For convenience, we use the abbreviation ‘CA’ to refer to a common ancestor of
all present-day individuals, and ‘MRCA’ stands for ‘most recent common ancestor.’
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It turns out that mixing occurs extremely rapidly in the two-parent model, so that CAs may
be found within a number of generations that depends logarithmically on the population size.
In particular, our first main result says that the number of generations back to an MRCA is
about lg n, where lg denotes logarithm to base 2.

Theorem 1. Let Tn denote the number of generations, counting back in time from the present,
to an MRCA of all present-day individuals, in a population of size n. Then

Tn
lg n

P→ 1 as n→ ∞.

This contrasts dramatically with the one-parent situation. For example if n is 1 million, then
the one-parent MRCA (‘Eve’) is expected to occur about 2 million generations ago, whereas
a two-parent MRCA occurs with high probability within the last 20 generations or so. Also,
the variability in the one-parent situation is such that the actual time to the MRCA may easily
be as small as half the expected time or as large as double the expected time, say, even in
arbitrarily large populations. In contrast, the time to an MRCA for the two-parent model is
much less variable. For example, if the population is large enough, it is very unlikely that a
random realization of the two-parent MRCA time will differ from lg n by even one percent.

This paper also addresses a second related question. Imagine tracing back through the
two-parent genealogy. According to Theorem 1, after about lg n generations, we will reach
the most recent generation that contains a CA. That generation might contain just one CA,
or it might contain more than one. In any case, if we continue tracing back further through
successive generations, then the title ‘CA’ becomes much less of a prestigious distinction. For
example, both parents of a CA will be CAs, and all grandparents of a CA will be CAs, and so
on. Eventually, in a given generation, many (and in fact most) of the individuals will be CAs.
At some point we reach a generation in which some individuals are CAs (having all present-
day individuals as descendants) and some are ‘extinct’ (having no present-day individuals as
descendants), but no individual is intermediate (having some but not all present-day individuals
as descendants). That is, at this point, everyone who is not extinct is a CA. This condition
persists forever as we trace back in time: every individual is a CA or extinct. The next result
shows that this condition is reached very rapidly in the model studied here.

Theorem 2. Let Un denote the number of generations, counting back in time before the
present, to a generation in which each individual is either a CA of all present-day individuals
or an ancestor of no present-day individual. Let γ denote the smaller of the two numbers
satisfying the equation γ e−γ = 2 e−2, and let ζ = −1/(lg γ ) ≈ 0.7698. Then

Un

(1 + ζ ) lg n
P→ 1 as n→ ∞.

Thus, within about 1.77 lg n generations, a tiny amount of time in comparison with the
order n time required to get a one-parent CA, everyone in the population is either a CA of all
present-day individuals or extinct.

Figure 1 shows a small example to illustrate the definitions and statements. The population
size is 5. At the bottom of the figure is generation 0, the present. Going up in the graph
corresponds to going back in time, so that the top row is generation −5. For each individual
I in each previous generation, we calculate the set of present-day individuals (individuals
in generation 0) that are descendants of I . For example, the set of present-day descendants
of individual #1 in generation −1 is {3, 5}. The calculations propagate backward in time
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Figure 1: An example illustrating the model. Here the fourth individual in generation −2 is a CA. By
generation −5, all individuals are CAs or extinct: individuals 1,4, and 5 are CAs, and individuals 2 and

3 are extinct.

according to the rule: the set of descendants of an individual I is the union of the sets of
descendants of the children of I . For example, the set of present-day descendants of individual
#4 in generation −2 is the union {3, 5} ∪ {5} ∪ {1, 2, 4}, which is the whole population S.
Thus, individual #4 in generation −2 is a CA of the set S of all present-day individuals.
Continuing backward in time, at generation −5 we reach the stage where each individual
has as descendants either the whole population S or the empty set ∅. That is, each individual
in generation −5 is either a CA or extinct, having as descendants either everybody or nobody
from the set of present-day individuals, and all generations prior to generation −5 also have
this property. In the example shown, T5 = 2 and U5 = 5.

What is the significance of these results? An application to the world population of humans
would be an obvious misuse. For example, we would not claim that a common ancestor of
every present-day human may be found within the last lg n generations. Even if we took n
to be 5 billion, this would imply a CA just about 32 generations ago—perhaps 500 years or
so. An important source of the inapplicability of the model to this situation is the obvious
non-random nature of mating in the history of mankind. For example, parents are much more
likely to live within a few miles of their children than a thousand miles away or halfway
around the world. So the model studied here is too simple to be directly applicable to the
evolution of mankind as a whole. In such complicated situations, the results sound a note
of caution: if the logarithmic time to CAs seems patently implausible, then at least one of
the assumptions of the model, such as the random mating assumption, must be causing a
great deal of trouble. On the other hand, it would be interesting to know whether there are
simpler real-life situations in which the assumptions of the model do apply reasonably well
and the theorems provide reasonably accurate quantitative descriptions. Perhaps a relatively
homogeneous population lacking discernible structures (geographic or otherwise) that interact
strongly with reproduction would be a promising candidate.
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The random time analysed in Theorem 2 seems of natural interest in this process and may
also be pertinent to certain questions about ‘species trees’ or ‘population trees’ (as opposed to
‘gene trees’). In many contexts the species tree is considered to be the real object of interest,
and we use genetic data and gene trees to attempt to learn about the species tree. For example,
for humans, chimpanzees, and gorillas, is the ‘true species tree’ (HC)G, (HG)C, or (CG)H?
Roughly, the conceptual framework of this question is as follows. There were two ‘speciation
events’ that split a single species ancestral to humans, chimpanzees, and gorillas into the three
separate modern species. The tree (HC)G, for example, says that the first such split separated
the subpopulation that eventually became modern gorillas from the remainder, which later
split to become modern humans and chimpanzees. Unfortunately, more precise definitions of
the concept of species tree that remain useful in difficult or unclear cases seem hard to come
by. One might adopt the viewpoint that the proper starting point for a definition of ‘species
tree’ is the full two-parent genealogy of all present-day individuals. Given such a definition,
if we knew all details of this genealogy, then we could read off an answer to the H , C, and
G question (the answer might be ‘none of the 3 choices above’—that is, the species tree is
not well defined or at least not bifurcating). One interpretation of the time Un is as follows.
Suppose we imagine a case where evolution really proceeded according to a neat succession
of ‘speciation events’. Under a certain reasonable definition of a species tree, if the times
between those speciation events exceed Un, then the species tree is guaranteed to be well
defined and coincide with the history of speciation events. This idea will be discussed more
fully elsewhere.

A caveat to forestall potential misunderstanding: this paper is not about genetics. That is, it
is not about who gets what genes; it is about something more primitive, namely, the ancestor–
descendant relationship. One-parent models are appropriate in tracing the history of a sample
of nonrecombining genes or small bits of DNA; a single nucleotide descends from a single
nucleotide from either the mother or father, but not both. Here we are considering ancestry in
the more common, demographic sense of the word, as applied to people, for example, rather
than genes.

Previous genetics research that is somewhat related, although still very different from the
present study, considers models incorporating recombination. This type of model has been
investigated in a number of papers, including those of Hudson (1983) and Griffiths and
Marjoram (1997). The history of a sample of DNA sequences may be described by a collection
of genealogies, with each nucleotide position in the DNA having its own one-parent genealogy.
The genealogies for two positions that experience no recombination between them will be
congruent, with the paths of the two genealogies going back through the same individuals,
whereas a recombination between two positions causes the genealogies of those positions to
differ. Each of the genealogies in the collection will have its own MRCA (the nucleotide at
its root), which may occur in different individuals. Each of these individuals will be a CA
in the sense considered in this paper, but the most recent of these individuals is generally
not an MRCA in our sense. Our MRCA is more recent, since the paths from ancestors
to descendants consist of all potential paths for genes to be transmitted, and may include
paths that did not happen to be taken by any genes. No previous results about these genetic
models have been similar to the results here, for example, in getting times of order log n.
This is not surprising, since the asymptotics would require an assumption that the sequence
lengths and the number of recombinations tend to infinity. This is another manifestation
of the statement that the questions we are investigating here are not fundamentally genetics
questions.
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There is some previous work on the process we study here and related processes. Two
papers of Kämmerle (1989, 1991) introduce a general class of two-parent (called ‘bisexual’
in those papers) versions of the Wright–Fisher and other processes. These papers focus on
two main questions. First, they analyse the probability of extinction of a set of individuals
in the present generation, that is, the probability that the set of individuals eventually has
no descendants in some future generation. Second, in a two-parent version of the Moran
model, they study the number Rn(t) of individuals t generations ago who have at least one
descendant in the present generation. Kämmerle (1989) finds that the Markov chain {Rn(t) :
t = 0, 1, . . . }, suitably normalized and suitably initialized (with the initialization essentially
requiring that the chain is started in steady state), converges weakly as n → ∞ to a discrete-
time Ornstein–Uhlenbeck process.

Möhle (1994) both generalizes and refines the results of Kämmerle. In particular, Möhle
provides a detailed analysis of the extinction probabilities in a two-parentWright–Fisher model
that approximates the probabilities up to o(1/n). He also establishes weak convergence in a
general class of two-parent models, including an Ornstein–Uhlenbeck limit for the two-parent
Wright–Fisher process. Möhle also has a number of other papers in press, including one that
relaxes the assumption of constant population size.

These previous results are complementary to the results in this paper. The previous papers
considered individuals who have at least one descendant in a given future generation. Here we
consider CAs, who have as descendants all members of the future generation. The previous
results about the process {Rn(t)} apply to large t , that is, to the behavior of the process many
generations before the present, with the process in steady state. Here we focus on the behavior
of a related process at small (i.e. recent) times, starting far away from steady state. We show
that at about t = 1.77 lg n generations before the present, with high probability the Rn(t)
individuals who have at least one present-day descendant are all in fact CAs.

2. Simulations

Table 1 presents a small simulation study consisting of 25 trials each for n = 500, n = 1000,
n = 2000, and n = 4000. Two numbers are reported for each trial: Tn, the number of
generations back to an MRCA, and Un, the generation at which every individual is either a
CA or extinct.

In these simulations the distribution of the time back to an MRCA is indeed quite concen-
trated around the value lg n, which is nearly 9 for n = 500, nearly 10 for n = 1000, and so
on. Thus, the simulation results show that the asymptotic (n→ ∞) statement of Theorem 1 is
‘not so asymptotic’, in that it describes the situation well even for rather small values of n. The
behavior predicted by Theorem 2 is also reflected reasonably well in the simulations, although
one might have guessed a numerical constant closer to 2 rather than 1.77 from this small study.

3. Proofs

3.1. General ideas and tools

We start with the observation that although Theorems 1 and 2 are phrased in terms of
counting generations back in time from the present until some condition obtains, these results
may be proved by counting forward in time from a fixed generation. For example, the event
{Tn ≤ m} requires that a CA of all individuals in generation 0 may be found among generations
−1,−2, . . . ,−m. This is equivalent to requiring that if we start with generation −m and trace
forward in time, then some individual in generation −m becomes a CA of all individuals in
some generation t ∈ {−m+ 1,−m+ 2, . . . , 0}.



1008 J. T. CHANG

Table 1: A small simulation study. For each of four population sizes n, the two times Tn and Un are
reported for 25 trials.

n = 500 n = 1000 n = 2000 n = 4000

1 10 18 11 19 12 24 13 24
2 9 18 11 21 12 22 13 23
3 10 21 10 20 11 23 12 24
4 9 18 11 20 12 22 13 24
5 10 19 10 20 12 21 13 24
6 9 19 11 31 12 23 13 24
7 10 19 11 20 12 21 13 24
8 10 21 10 23 12 27 13 24
9 9 19 11 20 11 24 13 24

10 9 17 11 20 12 24 13 31
11 9 19 10 21 12 26 13 23
12 9 18 11 21 11 22 13 23
13 9 19 11 21 12 21 13 25
14 9 20 11 20 12 25 13 22
15 9 19 10 20 11 24 13 24
16 10 21 10 21 11 23 13 23
17 9 19 11 19 12 24 13 23
18 9 17 10 26 12 22 13 24
19 9 19 11 21 11 23 13 25
20 10 18 10 21 12 22 13 25
21 9 19 11 19 12 22 12 25
22 10 19 11 26 12 22 13 26
23 9 19 10 20 12 24 13 27
24 10 17 11 21 12 22 13 26
25 10 19 11 23 12 23 13 25

So we will count generations forward in time, and for convenience let us renumber genera-
tions so that the initial generation is ‘generation 0’. The population at generation t ≥ 0 consists
of n individuals denoted by It,1, It,2, . . . , It,n. We can picture It,1, It,2, . . . , It,n as dots in an
array as in Figure 1, with It,j being the j th dot in row t . The association of a number j to
individual It,j is an arbitrary labeling of the individuals within generation t . Assigned only
as a means of referring to individuals, the labels have no significance in the model, which
does not order the individuals within a generation. Let µt,1, νt,1, µt,2, νt,2, . . . , µt,n, νt,n be
independent and uniformly distributed on the set {1, . . . , n}. We interpret µt,j and νt,j as
labels of the parents of individual It,j ; that is, the parents of It,j are It−1,µt,j and It−1,νt,j .
Defining a sequence of random sets Gi0,G

i
1, . . . recursively by Gi0 = {i} and

Git = {j ≤ n : µt,j ∈ Git−1 or νt,j ∈ Git−1},

Git is the set of labels of the descendants of I0,i in generation t . Let Git denote the cardinality
of Git . The conditional probability that individual It+1,j has at least one parent among the Git
members of Git is

P({µt+1,j ∈ Git } ∪ {νt+1,j ∈ Git } | Git ) = (Git /n)+ (Git /n)− (Git /n)(Git /n).
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The process {Git : t = 0, 1, . . . } is a Markov chain with transition probabilities

(Git+1 | Git ) ∼ Bin

(
n,

2Git
n

−
(
Git

n

)2
)
, (1)

where Bin(n, p) denotes the binomial distribution for the number of successes in n indepen-
dent trials each having success probability p.

Throughout the proof, {Gt } will denote a Markov chain with transition probabilities as in
(1), although in different parts of the proof we will consider different possible initial values
G0. For example, taking G0 = 1 corresponds to following the descendants of a particular
individual in generation 0. In the early stages of the process, while Gt remains small relative
to n, in view of (1) the conditional distribution ofGt+1 givenGt is nearly Poisson(2Gt), that is,
the Poisson distribution with mean 2Gt . In other words, while {Gt } remains small, it evolves
nearly as a Galton–Watson branching process {Yt } with offspring distribution Poisson(2).
Kämmerle (1991) gave a formal statement of a result of this nature. A special case of his
result says that for fixed u, the joint distribution of (G0,G1, . . . ,Gu) converges to that of
(Y0, Y1, . . . , Yu) as n → ∞. For our purposes, we will use the following result that allows us
to approximate probabilities for the G process by those for the Y process up to a higher order
of accuracy and over longer intervals of time that may have random lengths.

Lemma 3. Let Y0, Y1, . . . denote a Galton–Watson branching process with offspring dis-
tribution Poisson(2). Suppose that Y0 = G0 = 1. Define τYb = inf{t : Yt ≥ b} and
τY0b = inf{t : Yt = 0 or Yt ≥ b}, with corresponding definitions for τGb and τG0b. As n→ ∞, if
m and b satisfy mb2 = o(n), then

P{τGb > m} = P{τYb > m}(1 + o(1)) (2)

and
P{τG0b > m} = P{τY0b > m}(1 + o(1)). (3)

Proof.A straightforward calculation bounds the likelihood ratio

L(y | x) : = P{Gt+1 = y | Gt = x}
P{Yt+1 = y | Yt = x}

= P{Bin(n, (2x/n)− (x2/n2)) = y}
P{Poisson(2x) = y} ≤ e2x(1 − (2x/n)+ (x2/n2))n−y,

so that

logL(y | x) ≤ 2x + (n− y)
(

−2x

n
+ x2

n2

)
≤ (x2 + 2xy)/n.

This holds whenever the denominator P{Yt+1 = y | Yt = x} is positive, that is, for all x > 0
and y ≥ 0, and also for x = y = 0. Thus, for all such pairs of x and y satisfying x < b and
y < b, we have

logL(y | x) ≤ 3b2/n.

A similar calculation gives the lower bound

logL(y | x) ≥ −5b2/(2n)[1 +O(b/n)],
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so that logL(y | x) ≥ −3b2/n for sufficiently large n. So if x1, . . . , xm are all less than b,
then

P{G1 = x1, . . . ,Gm = xm} = P{G1 = x1 | G0 = 1} · · · P{Gm = xm | Gm−1 = xm−1}
= P{Y1 = x1, . . . , Ym = xm}L(x1 | 1) · · ·L(xm | xm−1)

≤ P{Y1 = x1, . . . , Ym = xm} e3mb2/n

and
P{G1 = x1, . . . ,Gm = xm} ≥ P{Y1 = x1, . . . , Ym = xm} e−3mb2/n.

Thus,

P{τGb > m} =
∑

0≤x1<b
· · ·

∑
0≤xm<b

P{G1 = x1, . . . ,Gm = xm}

≤
∑

0≤x1<b
· · ·

∑
0≤xm<b

P{Y1 = x1, . . . , Ym = xm} e3mb2/n

= P{τYb > m} e3mb2/n (4)

and, similarly, P{τGb > m} ≥ P{τYb > m}e−3mb2/n, so that, by the assumption that mb2 =
o(n), we obtain P{τGb > m} = P{τYb > m}(1 + o(1)). This proves (2). The proof of (3)
uses the same reasoning, with the summations in (4) ranging over 0 < xt < b rather than
0 ≤ xt < b.

The previous result will be useful because the Poisson Galton–Watson process is simple
and well understood. The next lemma records a few well known items for future reference.

Lemma 4. Let Y0, Y1, . . . denote a Galton–Watson process with offspring distribution
Poisson(2). Define the moment generating function ψ(z) = E(zY1) = e−2+2z. The extinction
probability ρ = P{Yt = 0 for some t} ≈ 0.20319 is the smaller of the two solutions of
ψ(ρ) = ρ, and ρ = γ /2, where γ is as defined in Theorem 2. The t-fold composition
ψt = ψ ◦ · · · ◦ ψ satisfies ψt(z) ↑ ρ for all 0 ≤ z ≤ ρ.
The relation ρ = γ /2 is confirmed by comparing the definitions of ρ and γ . Despite the simple
relationship, we will keep the two different letters in our notation for conceptual clarity.

Defining gt = Gt/n, we have

E(gt+1 | gt ) = 2gt − g2
t = gt (2 − gt ). (5)

That is, if the fraction of descendants of a given individual is currently gt , it is expected to
multiply by a factor of 2 − gt in the next generation. For example, in the early stages of the
process when the fraction gt is small, it nearly doubles in expectation in the next generation.
For very small gt (of the order 1/n, for example) the random variability is large; for example,
the process could easily go extinct. This is when it is most useful to approximate theG process
by the Poisson(2) Galton–Watson process.

On the other hand, for larger values of gt , the multiplication factor gt+1/gt , although
expected to be somewhat smaller, has much less variability. The deviations of this factor
from its expected value are bounded probabilistically by large deviations inequalities for the
binomial distribution. We will use the following inequality of Bernstein (1946) as a basic tool.
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Lemma 5. (Bernstein’s inequality.) If X ∼ Bin(n, p) and r > 0, then

P{X ≥ np + r} ≤ exp

{ −r2
2np(1 − p)+ (2/3)r

}
. (6)

Since n − X ∼ Bin(n, 1 − p), the right-hand side of (6) is also an upper bound for the
probability P{X ≤ np − r}.
3.2. Proof of Theorem 1

Outline. The proof will be divided into several parts. We start from generation 0 and trace
forward in time.

Stage 1: By the end of Stage 1, we identify an individual I in generation 0 who has a
number of descendants that is small compared to n, but large enough so that I is unlikely ever
to become extinct. In particular, we look for a generation t such that some individual I in
generation 0 has at least lg2(n) descendants in generation t . With probability approaching 1,
this happens in time o(lg n), negligible compared with lg n; this is shown by using Lemma 3
to approximate our process by a Poisson Galton–Watson process. The rest of the proof will
show that with probability approaching 1, individual I becomes a CA within (1 + ε)(lg n)
generations, where ε is an arbitrary positive number.

Stage 2: Let β ∈ (0, 1). Stage 2 follows the descendants of I until reaching a generation
containing at least nβ descendants. In view of (5), since nβ is a small fraction of n for large n,
throughout Stage 2 the number of descendants in a generation is expected to be nearly double
the number of descendants in the previous generation. And lg2(n) is large enough so that the
multiplication factor will be very close to its expected value, with high probability. So Stage 2
should not take much more than about lg(nβ) = β lg(n) generations.

Stage 3: This stage brings the count of descendants of I up from nβ to (1/2)n. Since
the fraction of descendants during Stage 3 stays below 1

2 , the expected multiplication factor
is at least 2 − 1

2 = 3
2 . Again, this multiplication factor is very reliable, so that with high

probability Stage 3 takes no more than about log3/2{(n/2)/(nβ)} generations. We can make
this an arbitrarily small fraction of lg n by choosing β close enough to 1.

Stage 4: Now we switch to looking at the fraction Bt of individuals in a generation who
are not descendants of individual I . This fraction is expected to square each generation. This
causes Bt to decrease very quickly. Fixing α ∈ ( 12 , 2

3 ), we show that Stage 4, which takes the
fraction Bt from 1

2 down to n−α , takes only order lg lg n time.
Stage 5: This completes the process, ending when the B process hits 0, and individual I

has become a CA. We show that this takes just one generation with high probability.
Upper bound: Combining the results of Stages 1 through 5 gives the probabilistic upper

bound limn→∞ P{Tn ≤ (1 + ε) lg n} = 1.
Lower bound: Here we show that limn→∞ P{Tn ≥ (1 − ε) lg n} = 1. This is done by using

Bernstein’s inequality to prove an assertion of the following form: for positive r and δ, once
the process of descendants of any given individual reaches a power nr of n, it is very unlikely
to increase by a factor of more than 2 + δ in a generation, whereas it would have to do so in
order to have Tn < (1 − ε) lg n.
3.2.1. Stage 1. Here we will show that with high probability, within a number of generations
negligible compared to lg n, we can find a generation with at least lg2 n individuals who share
a common ancestor. For simplicity we give a crude argument that circumvents the need to
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consider any dependence among the processes {Git : t ≥ 0} starting from different individuals
I0,i . This could also be done along the lines of the argument in Lemma 19 below, where we
need to confront this dependence.

Lemma 6. Define τb = inf{t : Gt ≥ b}. Assuming that G0 = 1,

lim inf
n→∞ P{τlg2 n ≤ 3 lg lg n} > 0.

Proof. Let b and m denote lg2 n and �3 lg lg n�, respectively. Let {Yt } be a Galton–Watson
process with offspring distribution Poisson(2), and defineMt = Yt2−t . The process {Mt } is a
non-negative martingale that converges almost surely to a limitM∞, say, with P{M∞ = 0} =
ρ < 1. Note that P{τYb > m} ≤ P{Ym < b} = P{Mm < b2−m}. Therefore, using Fatou’s
lemma and the assumption that b2−m → 0,

lim sup P{τYb > m} ≤ lim sup P{Mm < b2−m} ≤ P(lim sup{Mm < b2−m})
= P{Mm < b2−m infinitely often} ≤ P{M∞ = 0} = ρ < 1.

By Lemma 3, P{τb > m} = P{τYb > m}(1 + o(1)) as n→ ∞. Therefore,

lim sup P{τb > m} ≤ lim sup P{τYb > m} ≤ ρ < 1.

So lim inf P{τb ≤ m} ≥ 1 − ρ > 0.

Proposition 7. LetGit denote the number of descendants in generation t of individual I0,i (the
ith individual in generation 0), and let G∗

t = max1≤i≤n{Git }. Define τG∗
b = inf{t : G∗

t ≥ b}.
Then τG

∗
lg2 n

= oP(lg n).
Proof. We use a geometric trials argument. Let mn = �3 lg lg n�, and choose a sequence

{kn} with kn → ∞ and knmn = o(lg n). Perform a sequence of kn trials as follows. For
the first trial, start with individual I0,1, and follow his progeny for mn generations. We say
the trial is a success if I0,1 has at least lg2 n descendants in generation mn; by Lemma 6 this
happens with probability at least c, say, where c > 0. If the trial is a failure, start a new trial,
following the progeny of individual Imn,1 for mn more generations. And so on. We stop at the
first success, having found an individual with at least lg2 n descendants. The probability that
this sequence of trials fails to terminate by generation knmn is at most (1 − c)kn , which tends
to 0.

Thus, with probability tending to 1, there is a κ ∈ {0, . . . , kn−1} such that individual Iκmn,1
has at least lg2 n descendants in generation (κ + 1)mn. Let I denote any ancestor of Iκmn,1 in
generation 0. We will show in the remainder of the proof that for each ε > 0, with probability
tending to 1 as n→ ∞, individual I becomes a CA within (1 + ε) lg n generations.

3.2.2. Stage 2. The following simple consequence of Bernstein’s inequality will be a conveni-
ent tool.

Lemma 8. If δ ≤ 3/4 and Gt ≤ δn/20, then

P{Gt+1 ≤ (2 − δ)Gt | Gt } ≤ exp(−δ2Gt/5).
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The next result shows that the probability that Stage 2 takes more than lg n generations
approaches 0 as n → ∞. In fact, we show that this probability is o(1/n); this will be used in
the proof of Theorem 2.

Proposition 9. Assume that G0 ≥ lg2 n, and let 0 < β < 1. Define T2 = inf{t : Gt ≥ nβ}.
Then P{T2 > lg n} = o(1/n) as n→ ∞.

Proof. Take 0 < δ < 3/4 such that lg(2 − δ) > β, and define

b(n) =
⌈
log2−δ

(
nβ

lg2 n

)⌉
.

Note that

b(n) ≤ β lg n

lg(2 − δ) ≤ lg n,

at least for n ≥ 3, so that P{T2 > lg n} ≤ P{T2 > b(n)}. We will show that P{T2 > b(n)} =
o(1/n).

The inequality T2 > b(n) implies that Gt+1 < (2 − δ)Gt for some 0 ≤ t ≤ b(n)− 1. The
first such t must also satisfy Gt ≥ lg2 n. Thus,

P{T2 > b(n)} ≤ P

{ b(n)−1⋃
t=0

{Gt+1 < (2 − δ)Gt , Gt ≥ lg2 n, T2 > b(n)}
}

≤
b(n)−1∑
t=0

P{Gt+1 < (2 − δ)Gt , lg2 n ≤ Gt ≤ nβ}.

However, nβ ≤ δn/20 for sufficiently large n. Therefore, on the event {lg2 n ≤ Gt ≤ nβ}, we
may apply Lemma 8 to obtain

P{Gt+1 < (2 − δ)Gt | Gt } ≤ exp

(
−δ

2

5
lg2 n

)
= n−(δ2/5)(lg e)(lg n).

Thus,

P{T2 > b(n)} ≤ b(n)n−(δ2/5)(lg e)(lg n) = o(1/n) as n→ ∞.

3.2.3. Stage 3. This stage starts in a generation in which the number of descendants of I is
just over nβ and ends when the number of descendants in a generation reaches 1

2n. Defining
gt = Gt/n, we have E(gt+1 | gt ) = gt (2 − gt ). The idea is that if gt ≤ 1

2 , then in the next
generation gt is expected to multiply by a factor of 2 − gt ≥ 3

2 . So with high probability,
throughout Stage 3, at each generation the number of descendants will multiply by at least√

2, say, since
√

2 < 3
2 . So to get from nβ to 1

2n, we should need at most log√
2(

1
2 )n

1−β =
2[(1 − β) lg n− 1] generations.

Proposition 10. Assume G0 ≥ nβ , and define T3 = inf{t : Gt ≥ ( 12 )n}. Then P{T3 >

2(1 − β) lg n} = o( 1
n
) as n→ ∞.
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Proof. The proof is similar to that of Proposition 9. For nβ ≤ Gt ≤ n/2, a straightforward
calculation using Bernstein’s inequality gives

P{Gt+1 ≤ √
2Gt | Gt } ≤ exp(−0.001Gt) ≤ exp(−0.001nβ).

Note that log√
2{(n/2)/nβ} = 2(1 − β) lg n− 2. So if T3 > 2(1 − β) lg n, then we must have

Gt+1 ≤ √
2Gt for some t < 2(1 − β) lg n satisfying nβ ≤ Gt ≤ n/2. Thus,

P{T3 > 2(1 − β) lg n} ≤ 2(1 − β)(lg n) exp(−0.001nβ) = o(1/n) as n→ ∞.

3.2.4. Stage 4. Let Bt denote 1 −Gt/n, the fraction of individuals in generation t who are not
descendants of the chosen individual I . Then

(Bt+1 | Bt , Bt−1, . . . ) ∼ 1

n
Bin(n, B2

t ), (7)

since an individual is not a descendant of I when both of his parents fail to be descendants of
I . Fix α ∈ ( 12 , 2

3 ). Stage 4 takes the Bt process from 1
2 down to n−α . The idea is this. Since

E(Bt+1 | Bt) = B2
t , we expect Bt to square each generation. We will show that the probability

P{Bt+1 ≥ B3/2
t } is small throughout Stage 4 (note 3

2 < 2). This will be good enough, since if

Bt+1 < B
3/2
t holds throughout Stage 4, then Stage 4 is completed in order lg lg n time.

Proposition 11. Consider a process B0, B1, . . . satisfying (7), and suppose B0 ≤ 1
2 . Let

α ∈ ( 12 , 2
3 ) and define T4 = inf{t : Bt ≤ n−α}. Then P{T4 ≥ 2 lg lg n} = o(1/n) as n→ ∞.

Proof. By Bernstein’s inequality,

P{Bt+1 ≥ B3/2
t | Bt } = P{Bin(n, B2

t ) ≥ nB3/2
t | Bt }

≤ exp

{
−n2B3

t (1 − B1/2
t )2

2nB2
t (1 − B2

t )+ (2/3)nB3/2
t (1 − B1/2

t )

}

= exp

{
−nBt (1 − B1/2

t )2

2(1 − B2
t )+ (2/3)B−1/2

t (1 − B1/2
t )

}
.

If n−α ≤ Bt ≤ 1
2 , then (1 − B1/2

t )2 ≥ 1.5 − √
2 ≥ 0.08, and

nBt (1 − B1/2
t )2

2(1 − B2
t )+ (2/3)B−1/2

t (1 − B1/2
t )

≥ 0.08n1−α

2 + (2/3)nα/2 ≥ 0.08n1−(3/2)α

(the last inequality holding for n ≥ 6 2/α), so that

P{Bt+1 ≥ B3/2
t | Bt } ≤ exp{−0.08n1−(3/2)α}.

For n ≥ 2, if B0 ≤ 1
2 and Bt+1 ≤ B

3/2
t for t = 0, 1, . . . , �2 lg lg n� − 1, then B�2 lg lg n� ≤

n−1 ≤ n−α . Therefore,

{T4 > �2 lg lg n�} ⊆ {B�2 lg lg n� > n−α}

⊆
�2 lg lg n�−1⋃

t=0

{Bt+1 > B
3/2
t , n−α < Bt ≤ 1/2},
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so that

P{T4 > �2 lg lg n�} ≤
�2 lg lg n�−1∑

t=0

P{Bt+1 ≥ B3/2
t , n−α < Bt ≤ 1/2}

≤ �2 lg lg n� exp{−0.08n1−(3/2)α} = o(1/n).

3.2.5. Stage 5. This stage starts with the {Bt } process below n−α and ends when it hits 0. We
show that with high probability this takes just one generation.

Proposition 12. Suppose B0 ≤ n−α . Then P{B1 = 0} → 1 as n→ ∞.

Proof. Since B1 ∼ (1/n)Bin(n, B2
0 ) and 2α > 1, we have P{B1 = 0} = (1 − B2

0 )
n ≥

(1 − n−2α)n → 1.

3.2.6. Upper bound.

Proposition 13. For each ε > 0, P{Tn > (1 + ε) lg n} → 0 as n→ ∞.

Proof. Define T1 to be the time at which Stage 1 ends. Then we know that T1 is finite
with probability 1, and, for arbitrary positive ξ , P{T1 > ξ lg n} → 0 as n → ∞. At the end of
Stage 1 we have found an individual I , say, in generation 0 who has at least lg2(n) descendants
in generation T1. Let Gt denote the number of descendants of I in generation t , and let τ(b)
denote inf{t : Gt ≥ b}. Our previous results have shown that

P{τ(nβ)− T1 > lg n} = o(1/n),
P{τ(n/2)− τ(nβ) > 2(1 − β) lg n | τ(nβ) <∞} = o(1/n),

P{τ(n− n1−α)− τ(n/2) > 2 lg lg n | τ(n/2) <∞} = o(1/n),
P{τ(n)− τ(n− n1−α) > 1 | τ(n− n1−α) <∞} = o(1).

Thus,

P{Tn > ξ lg n+ lg n+ 2(1 − β) lg n+ 2 lg lg n+ 1}
≤ P{T1 > ξ lg n} + P{T1 <∞, τ (nβ)− T1 > lg n}

+ P{τ(nβ) <∞, τ (n/2)− τ(nβ) > 2(1 − β) lg n}
+ P{τ(n/2) <∞, τ (n− n1−α)− τ(n/2) > 2 lg lg n}
+ P{τ(n− n1−α) <∞, τ (n)− τ(n− n1−α) > 1}

= o(1)+ o(1/n)+ o(1/n)+ o(1/n)+ o(1) = o(1).
Given ε > 0, taking ξ and β such that ξ +2(1−β) < ε, we see that P{Tn > (1+ ε) lg n} → 0.

3.2.7. Lower bound. We will use Bernstein’s inequality in the following form.

Lemma 14. For δ ≤ 3
2 , P{Gt+1 ≥ (2 + δ)Gt | Gt } ≤ exp[−δ2Gt/5].

Proposition 15. For each ε > 0, P{Tn < (1 − ε) lg n} → 0.
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Proof. Fix ε ∈ (0, 1). Proceeding forward in time from generation 0, we want to show that
the probability that none of the individuals in generation 0 becomes a CA before
generation �(1 − ε) lg n� tends to 1 as n → ∞. Define G0 = 1 and (Gt+1 | Gt, . . . ,G0) ∼
Bin(n, 2Gt/n − (Gt/n)2). Here we think of Gt as the number of descendants of individual
I0,1 in generation t . Fix r ∈ (0, ε) so that 2(1−r)/(1−ε) ∈ (2, 3.5). Let {G̃t } evolve like {Gt }
except that it is truncated (or ‘reflected’) below at the value �nr�. That is,

(G̃t+1 | G̃t , . . . , G̃0) ∼ max


Bin


n, 2G̃t

n
−

(
G̃t

n

)2

 , �nr�


 .

Defining τGn = inf{t : Gt = n} and τ G̃n = inf{t : G̃t = n}, obviously P{τGn ≥ u} ≥ P{τ G̃n ≥ u}
for all u. Since G̃0 = �nr�, if τ G̃n ≤ �(1 − ε) lg n�, then we must have G̃t+1 ≥ G̃t2(1−r)/(1−ε)
for some t < �(1 − ε) lg n�. Defining δ = 2(1−r)/(1−ε) − 2 ∈ (0, 3

2 ), by Lemma 14 the
probability of this is at most

�(1 − ε) lg n� exp(−δ2�nr�/5),
which is o(1/n) as n → ∞. Thus, we have shown that the probability that individual I0,1 has
become a CA by generation �(1 − ε) lg n� is o(1/n). So the event that at least one of the n
individuals in generation 0 becomes a CA by generation �(1 − ε) lg n� is a union of n such
events of probability o(1/n), and hence has probability that tends to 0 as n→ ∞.

3.3. Proof of Theorem 2

Idea. The idea of the proof is as follows. Define tn = �(ζ−ε) lg n� and un = �(ζ+ε) lg n�. For
each i = 1, . . . , n, the process {Git : t = 0, 1, . . . } follows the descendants of individual I0,i .
We are waiting until all n of the processes {G1

t }, . . . , {Gnt } have reached either 0 or n (some
will reach 0 and some will reach n). The key ingredient of the argument is this assertion:
with high probability, there are many i’s such that Gitn ∈ [1, lg2(n)] and there is no i such that
Giun ∈ [1, lg2(n)]. This follows from Lemma 3 together with an analysis of the Galton–Watson
process with offspring distribution Poisson(2). For an upper bound, consider the situation at
time un. Some of the processes have become extinct and reached 0, and we are just waiting
for the other, non-extinct processes to reach 0 or n. The key assertion says that with high
probability, all of the non-extinct processes have reached values above lg2(n). This level is
high enough so that with high probability these processes will all increase predictably and
reach n within (1 + ε) lg n additional generations; this was shown in the proof of Theorem 1.
So with high probability, Un ≤ un + (1 + ε) lg n. For a lower bound, the key assertion states
that with high probability many of the n processes are in the interval [1, lg2(n)] at time tn. It is
very unlikely that all of these will go extinct. Furthermore, since these processes are starting
from at most lg2(n) at time tn, with high probability it will take more than (1−ε) lg n additional
generations for any of them to reach n. So Un > tn + (1 − ε) lg n with high probability.

3.3.1. A branching process result.

Lemma 16. Let {Yt } be a Galton–Watson process whose offspring distribution is Poisson with
mean 2, starting at Y0 = 1. Define γ as in Theorem 2, and let b1, b2, . . . be positive integers
satisfying lg(bt ) = o(t) as t → ∞. Then

lim
t→∞

1

t
lg P{1 ≤ Yt ≤ bt } = lg(γ ) ≈ −1.29911.
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Proof. We use a number of results from chapter 1 of Athreya and Ney (1972). First, the
Monotone Ratio Lemma says that for each k there is a λk <∞ such that

P{Yt = k}
P{Yt = 1} ↑ λk as t → ∞.

Also,

4(s) :=
∞∑
k=1

λks
k <∞ for all s ∈ (0, 1).

Finally, using the notation and facts collected in Lemma 4, we have

P{Yt = 1} = ψ ′
t (0) = ψ ′[ψt−1(0)]ψ ′

t−1(0) = ψ ′[ψt−1(0)] P{Yt−1 = 1},
so that

P{Yt = 1}
P{Yt−1 = 1} ↑ ψ ′(ρ) = 2ρ = γ.

In particular, (1/t) lg P{Yt = 1} ↑ lg γ .

For s ∈ (0, 1),
bt∑
k=1

P{Yt = k} ≤ P{Yt = 1}
bt∑
k=1

λk

≤ P{Yt = 1}s−bt
bt∑
k=1

λks
k

≤ P{Yt = 1}s−bt4(s). (8)

If we take s close to 1 (e.g. s = 1 − b−1
t , say), then the term s−bt will remain bounded and

present no difficulty. So we would like to know how 4(s) grows as s ↑ 1.
Define ϕ to be the inverse function ψ−1, and ϕk to be the k-fold composition ϕ ◦ · · · ◦ ϕ.

By equation (6) on page 12 of Athreya and Ney (1972), for each s ∈ (ρ, 1),
4(ϕ(s)) = γ−1[4(s)−4(e−2)] ≤ γ−14(s).

Therefore, since ρ < 1
2 < ϕ(

1
2 ) < ϕ2(

1
2 ) < · · · < 1,

4(ϕk(
1
2 )) ≤ γ−k4( 12 ).

However, since ψ ′(1) = 2, we may choose a number 7 so that

ϕk(
1
2 ) ≥ 1 − (1.9)−k7

and, therefore,
4(1 − (1.9)−k7) ≤ γ−k4( 12 )

hold for all sufficiently large k. From this, it follows that

4(1 − y) ≤ 4( 12 )(y/7)(lgγ )/(lg 1.9) ≤ y2 lgγ

holds for all sufficiently small positive y.
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Now substituting s = 1 − b−1
t in (8), there is a finite constant C such that

bt∑
k=1

P{Yt = k} ≤ Cγ t4(1 − b−1
t ) ≤ Cγ tb2 lg(1/γ )

t .

Thus, as long as bt grows subgeometrically, that is, lg(bt ) = o(t), we have

limt→∞
1

t
lg P{1 ≤ Yt ≤ bt } ≤ lg(γ ).

Combining this with the fact that limt→∞(1/t) lg P{Yt = 1} = lg(γ ) completes the proof.

3.3.2. Upper bound.

Lemma 17. Let I0,i denote individual i in generation 0. DefineGit to be the number of descen-
dants of I0,i in generation t; in particular, Gi0 = 1 for all i = 1, . . . , n. Also define

τ i0,b = inf{t : Git = 0 or Git ≥ b},
and let

An =
n⋃
i=1

{τ i
0,lg2 n

> (ζ + ε) lg n}. (9)

Then P(An)→ 0 as n→ ∞.

Proof. Define τY0b = inf{t : Yt = 0 or Yt ≥ b}. Since {τY0b > t} ⊆ {1 ≤ Yt < b}, Lemma 16
and (3) give

lim
1

t
lg P{τ i0b > t} ≤ lg(γ ) if lg(b) = o(t) and tb2 = o(n). (10)

Letting ε > 0 and applying (10) to t = (ζ + ε)(lg n) and b = lg2(n) gives

lg P{τ i
0,lg2(n)

> (ζ + ε)(lg n)} ≤ (lg(γ )+ δ)(ζ + ε)(lg n)

for all δ and all sufficiently large n. Taking δ sufficiently small, from the definition of ζ we see
that

P{τ i
0,lg2(n)

> (ζ + ε)(lg n)} = o(1/n) as n→ ∞,
so that P(An) = o(1).

We have shown that, with high probability, all individuals in generation 0 have either no
descendants or more than lg2(n) descendants in generation �(ζ + ε) lg n� for ε > 0. Next we
will show that for any given ε > 0, with high probability, each individual having more than
lg2(n) descendants in generation �(ζ + ε) lg n� becomes a CA within (1 + ε) lg n additional
generations. Most of the work required to prove this has already been done in the proof of
Theorem 1; the extra ingredient is the following lemma, which takes a closer look at ‘Stage 5’.
We retain the definition Bt = 1 − (Gt/n) from above.

Lemma 18. Let α ∈ ( 12 , 2
3 ) and take k(α) > 1/(2α − 1). Suppose that B0 ≤ n−α and define

T5 = inf{t : Bt = 0}. Then P{T5 > k(α)} = o(1/n) as n→ ∞.
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Proof. Since (Bt+1 | Bt) ∼ (1/n)Bin(n, B2
t ), on the event {Bt ≤ n−α} we have

P{Bt+1 > 0 | Bt } = 1 − (1 − B2
t )
n

≤ 1 − (1 − 2nB2
t ) = 2nB2

t ≤ 2n1−2α,

where the first inequality holds for sufficiently large n (since α > 1
2 implies that nB2

t is
arbitrarily small for sufficiently large n). In particular,

P{0 < Bt+1 ≤ n−α | 0 < Bt ≤ n−α} ≤ 2n1−2α for sufficiently large n. (11)

Next, by Bernstein’s inequality, on the event {Bt ≤ n−α},

P{Bt+1 > n
−α | Bt } = P

{
1

n
Bin(n, B2

t ) > B
2
t + (n−α − B2

t ) | Bt
}

≤ exp

[ −n2(n−α − B2
t )

2

2nB2
t (1 − B2

t )+ (2/3)n(n−α − B2
t )

]

≤ exp

[ −n2−2α

2n1−2α + (2/3)n1−α

]
.

Since the exponent is asymptotic to −( 32 )n1−α , clearly

P{Bt+1 > n
−α | Bt } ≤ exp[−n1−α] on {Bt ≤ n−α}

for sufficiently large n. Assuming that B0 ≤ n−α ,

k⋃
t=0

{Bt > n−α} ⊆
k−1⋃
t=0

{Bt ≤ n−α, Bt+1 > n
−α}.

Therefore, since

P{Bt ≤ n−α, Bt+1 > n
−α} = E[{Bt ≤ n−α}P{Bt+1 > n

−α | Bt }] ≤ exp[−n1−α],

we obtain

P

[
k⋃
t=0

{Bt > n−α}
]

≤ k exp[−n1−α]. (12)

Thus, using (11) and (12),

P{T5 > k} ≤ P

(
k⋃
t=0

{Bt > n−α}
)

+ P

(
k⋂
t=0

{0 < Bt ≤ n−α}
)

≤ k exp[−n1−α] + (2n1−2α)k.

Applying this to k = k(α) > 1/(2α − 1) gives the desired result.
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Proof of the upper bound in Theorem 2. Let Un denote the time at which everyone from
generation 0 has become a CA or extinct. Recall the definition of An from (9), and let τ i(b) =
inf{t : Git ≥ b}. Since

{Un > (1 + ζ + 2ε) lg n} ⊆ An ∪ [Acn ∩ {Un > (1 + ζ + 2ε) lg n}]

⊆ An ∪
n⋃
i=1

{τ i(lg2 n) ≤ (ζ + ε) lg n, τ i(n) > (1 + ζ + 2ε) lg n},

to show that P{Un > (1 + ζ + 2ε) lg n} = o(1), by Lemma 17 it suffices to show that

P{τ 1(lg2 n) ≤ (ζ + ε) lg n, τ 1(n) > (1 + ζ + 2ε) lg n} = o(1/n).
To see this, observe that the results of Stages 2 through 4 from the proof of Theorem 1 show
that

P{τ 1(nβ)− τ 1(lg2 n) > lg n | τ 1(lg2 n) <∞} = o(1/n),
P{τ 1(n/2)− τ 1(nβ) > 2(1 − β) lg n | τ 1(nβ) <∞} = o(1/n),

P{τ 1(n− n1−α)− τ 1(n/2) > 2 lg lg n | τ 1(n/2) <∞} = o(1/n),
and Lemma 18 gives

P{τ 1(n)− τ 1(n− n1−α) > k(α) | τ 1(n− n1−α) <∞} = o(1/n).
Consequently,

P{τ 1(n)− τ 1(lg2 n) > lg n+ 2(1 − β) lg n+ 2 lg lg n+ k(α) | τ 1(lg2 n) <∞} = o(1/n).
Choosing β sufficiently close to 1, we see that for any given ε > 0,

P{τ 1(n)− τ 1(lg2 n) > (1 + ε) lg n | τ 1(lg2 n) <∞} = o(1/n).
Thus,

P{τ 1(lg2 n) ≤ (ζ + ε) lg n, τ 1(n) > (1 + ζ + 2ε) lg n}
≤ P{τ 1(lg2 n) <∞, τ 1(n)− τ 1(lg2 n) > (1 + ε) lg n} = o(1/n),

as desired.

3.3.3. Lower bound. The proof goes as follows. First we show that at time tn = �(ζ − ε) lg n�,
there are many individuals i who have Gitn ∈ [1, lg2 n]. The probability that all of these
individuals eventually become extinct is negligibly small. In the probable event that not all of
these individuals become extinct, the time Un must wait for at least one of them to become a
CA. From the previous results we know that this will take an additional (1−ε) lg n generations.

Here is some notation that will be used throughout the proof. Let tn denote �(ζ − ε) lg n�.
For 1 ≤ i ≤ n, define Ji to be the event {Git ∈ [1, lg2 n] for all t ≤ tn}; we will also
denote by Ji the indicator random variable corresponding to this event. Thus, Ji = 1 means
that individual i in generation 0 does not become extinct by time tn and that the number of
descendants of this individual also remains relatively small (no more than lg2(n)) up to time tn.
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At time tn these individuals still have a chance to become CAs, but they have not yet made
much progress toward doing so. The number of such individuals is Nn = ∑n

i=1 Ji .
The next lemma shows that there is little dependence between the numbers of descendants

of different individuals in the early stages of the process. The lemma gives an upper bound on
a probability; a similar lower bound may be obtained, but it is not needed in the remainder of
the proof.

Lemma 19. P(J1J2) ≤ [P(J1)]2(1 + o(1)) as n→ ∞.

Proof. Consider individuals I0,1 and I0,2, that is, individuals 1 and 2 in generation 0. Let
At denote the number of individuals in generation t who are descendants of I0,1 but not of
I0,2. Let Ct denote the number of individuals in generation t who are descendants of I0,2
but not of I0,1. Let Bt denote the number of individuals in generation t who are descendants
of both I0,1 and I0,2. This notation is local to this proof; in particular, Bt has a different
meaning here than it did in the proof of Theorem 1. So G1

t = At + Bt and G2
t = Ct + Bt .

Letting Ht = (At , Bt , Ct ), the process {Ht } is a Markov chain. For convenience we use the
notation PH (at , bt , ct ) for P{At = at , Bt = bt , Ct = ct }, PH (at+1, bt+1, ct+1 | at , bt , ct ) for
P{At+1 = at+1, Bt+1 = bt+1, Ct+1 = ct+1 | At = at , Bt = bt , Ct = ct }, and so on.

We begin by observing that

P(J1J2) ∼ P(J1J2{Bt = 0 for all t ≤ tn}). (13)

This is easy to see intuitively: If At and Ct are both bounded by lg2(n) and Bt = 0, then the
conditional probability that Bt+1 > 0 is at most 2AtCt/n = O(lg4(n)/n). This suggests that
for each s ≤ tn, given the event J1J2, the conditional probability that Bt is positive for the first
time at t = s isO(lg4(n)/n). Adding these probabilities over all s ≤ tn = O(lg n) would then
give

P(Bt > 0 for some t ≤ tn | J1J2) = O(lg5(n)/n).

This is correct, and the relation

P(J1J2) = P(J1J2{Bt = 0 for all t ≤ tn})
[
1 +O

(
lg5(n)

n

)]

follows from a rather tedious calculation whose details we omit. The calculation bounds ratios
of binomial probabilities in similar way to an argument that is given later in this proof.

Letting Ln denote the interval [1, lg2 n], we want an upper bound on the probability

P(J1J2{Bt = 0 for all t ≤ tn})
=

∑
a1∈Ln

· · ·
∑
atn∈Ln

∑
c1∈Ln

· · ·
∑
ctn∈Ln

PH (a1, 0, c1, a2, 0, c2, . . . , atn , 0, ctn)

=
∑

a1,c1∈Ln

PH (a1, 0, c1)
∑

a2,c2∈Ln

PH (a2, 0, c2 | a1, 0, c1) · · ·
∑

atn ,ctn∈Ln

PH (atn, 0, ctn | atn−1, 0, ctn−1).
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Defining

αs = 2as
n

− as(as + 2cs)

n2 ,

βs = 2ascs
n2 ,

and

γs = 2cs
n

− cs(cs + 2as)

n2 ,

we may write

PH (at , 0, ct | at−1, 0, ct−1) = P{Bin(n, αt−1) = at }P
{
Bin

(
n− at , γt−1

1 − αt−1

)
= ct

}

× P

{
Bin

(
n− at − ct , βt−1

1 − αt−1 − γt−1

)
= 0

}
.

We want to compare this to the analogous probability for two independent {Gt } processes, that
is, to

PG(at | at−1)PG(ct | ct−1) = P{Bin(n, αt−1 + βt−1) = at } P{Bin(n, γt−1 + βt−1) = ct }.
The ratio

PH (at , 0, ct | at−1, 0, ct−1)

PG(at | at−1)PG(ct | ct−1)
(14)

is the product of three terms:

P{Bin(n, αt−1) = at }
P{Bin(n, αt−1 + βt−1) = at } , (15)

P{Bin(n− at , γt−1/(1 − αt−1)) = ct }
P{Bin(n, γt−1 + βt−1) = ct } , (16)

and

P{Bin

(
n− at − ct , βt−1

1 − αt−1 − γt−1

)
= 0}. (17)

We bound the third term (17) simply by 1; in fact it is close to 1. The term (15) is

α
at
t−1(1 − αt−1)

n−at
(αt−1 + βt−1)at (1 − αt−1 − βt−1)n−at

≤
(

1 + βt−1

1 − αt−1 − βt−1

)n

= 1 +O
(

lg4(n)

n

)
,

since
βt−1

1 − αt−1 − βt−1
∼ βt−1 ≤ 2 lg4(n)

n2
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for at−1, ct−1 ≤ lg2(n). By a similar calculation, (16) is also 1+O (
n−1 lg4(n)

)
. Multiplying,

we obtain
PH (at , 0, ct | at−1, 0, ct−1)

PG(at | at−1)PG(ct | ct−1)
= 1 +O

(
lg4(n)

n

)
.

Thus,

P(J1J2{Bt = 0 for all t ≤ tn})
=

∑
a1,c1∈Ln

PH (a1, 0, c1)
∑

a2,c2∈Ln

PH (a2, 0, c2 | a1, 0, c1) · · ·
∑

atn ,ctn∈Ln

PH (atn, 0, ctn | atn−1, 0, ctn−1)

≤
∑

a1,c1∈Ln

PG(a1 | 1)PG(c1 | 1)
∑

a2,c2∈Ln

PG(a2 | a1)PG(c2 | c1) · · ·

∑
atn ,ctn∈Ln

PG(atn | atn−1)PG(ctn | ctn−1)

[
1 +O

(
lg4(n)

n

)]tn

=
∑

at ,...,atn∈Ln

PG(a1 | 1)PG(a2 | a1) · · · PG(atn | atn−1)

∑
ct ,...,ctn∈Ln

PG(c1 | 1)PG(c2 | c1) · · · PG(ctn | ctn−1)

[
1 +O

(
lg4(n)

n

)]tn

=
[
P{G1

t ∈ Ln for all t ≤ tn}
]2

[
1 +O

(
lg5(n)

n

)]

= [P(J1)]2
[
1 +O

(
lg5(n)

n

)]
.

This completes the proof.

Lemma 20. Nn → ∞ in probability as n→ ∞.

Proof. We will show that the mean and standard deviation of Nn satisfy ENn → ∞ and
SD(Nn) = o(E(Nn)). To see that ENn = nPJ1 → ∞, begin with (3), which gives

P(J1) ∼ P{Yt ∈ [1, lg2(n)] for all t ≤ tn}.
This last probability is very close to P{Ytn ∈ [1, lg2(n)]}. Indeed, the difference

P{Ytn ∈ [1, lg2(n)]} − P{Yt ∈ [1, lg2(n)] for all t ≤ tn}
= P{Ytn ∈ [1, lg2(n)], Yt > lg2(n) for some t < tn}, (18)

is the probability that the Y process exceeds lg2(n) some time before tn but then decreases to
be below lg2(n) at time tn. Since the Bernstein inequality applied to the Poisson distribution
gives

P{Yt+1 ≤ Yt | Yt } ≤ exp[−( 3
14 )Yt ] ≤ exp[−( 3

14 ) lg
2(n)] on {Yt > lg2(n)},
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the difference (18) is bounded by tn exp[−(3/14) lg2(n)] = o(1/n). By Lemma 16,

lg P{Ytn ∈ [1, lg2(n)]}
(ζ − ε) lg n ∼ 1

tn
lg P{Ytn ∈ [1, lg2(n)]} → lg γ = −1

ζ
,

which implies that nP{Ytn ∈ [1, lg2(n)]} → ∞. Thus,

nP(J1) ∼ nP{Yt ∈ [1, lg2(n)] for all t ≤ tn} = n[P{Ytn ∈ [1, lg2(n)]} + o(1/n)] → ∞.
Finally, to see that SD(Nn) = o(E(Nn)), we apply Lemma 19 to obtain

Var(Nn) = E(N2
n )− (ENn)2 = nPJ1 + n(n− 1)P(J1J2)− (nPJ1)

2

≤ nPJ1 + n(n− 1)[P(J1)]2(1 + o(1))− (nPJ1)
2

= o(n2(PJ1)
2) = o((ENn)2).

Proof of the lower bound in Theorem 2. DefiningWn = {i : Gitn ∈ [1, lg2(n)]}, we have

P{Un ≤ tn + (1 − ε) lg(n)}
≤ P{Wn = ∅} + P{eventual extinction for all i ∈ Wn}

+ P{Gi�tn+(1−ε) lg(n)� = n for some i ∈ Wn}. (19)

The cardinality of the setWn isNn. SinceNn
P→ ∞, clearly the probability that all individuals

{I0,i : i ∈ Wn} eventually become extinct converges to 0; this is an easy consequence of results
about extinction probabilities of Kämmerle (1991) or Möhle (1994). So it remains to show that
the last probability in (19) tends to 0. To see this, taking i ∈ Wn, observe that for the event
{Gi�tn+(1−ε) lg(n)� = n} to occur the {Git } process must go from below lg2(n) at time tn to n at

time �tn + (1 − ε) lg(n)�. That is, the process must go from below lg2(n) to n within a time
span of at most (1 − ε) lg(n) generations. However, by the proof of Proposition 15, we know
that this has probability o(1/n), so that, taking the union over i ∈ Wn gives a total probability
of o(1).

4. Discussion

A motivation behind this study was the interest surrounding the idea of all of mankind
having a recent common ancestor. In thinking about a mathematical treatment of that idea, it
seemed natural to remove the restriction to the maternal line and consider a two-parent model.

We have seen that CAs occur very recently in the two-parent model studied here. The
most recent CA occurs, with high probability, about lg n generations ago. Within 1.77 lg n
generations, with high probability, all individuals who are not extinct are CAs. These results
describe the behavior of populations satisfying certain assumptions of random mating and so
on. If our world really satisfied such assumptions, the anthropological excitement about the
recentness of mitochondrial Eve would be misplaced: in only a tiny fraction of the time back
to mitochondrial Eve, common ancestors of mankind would abound, and in fact a randomly
chosen individual would be a CA with probability about 0.8.

If we wish to understand analogous questions in more complicated models that could better
address phenomena such as the evolution of mankind, further study is required. For example,
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the absence of geographic structure is a key feature limiting the applicability of the model
studied here to such situations.

Conclusions based on analyses of simple models that ignore geographic considerations
are commonly seen in the scientific discourse about the evolution of mankind. As a typical
example, the abstract of Ayala’s (1995) paper states

The theory of gene coalescence suggests that, throughout the last 60 million years,
human ancestral populations have had an effective size of 100 000 individuals or
greater.

The investigation of ‘Y -chromosome Adam’ by Dorit et al. (1995) is another interesting
example. Such analyses rely strongly on the basic predictions of standard coalescent theory:
n generations for the expected coalescence time of a pair of genes among a population of n
genes, and 2n generations for the expected coalescence of the whole population.

On the other hand, it is doubtful that anyone would seriously entertain the two-parent
answer of lg n for a CA in the context of the evolution of mankind. This raises conceptual
questions. On what basis do we draw insight from the analysis of a one-parent model, when
analysis of an analogous two-parent model leads to results we find implausible? Whereas the
answer 2n given by a haploid model for the ‘Eve’ coalescence time may not be so obviously
inapplicable in a given situation, the two-parent model’s CA time of lg n may well be.

A possible source of comfort when confronting doubts about the realism of the assumptions
underlying the standard coalescent model is the body of results about ‘robustness’ of the
coalescent. Kingman (1982b) showed that the coalescent arises as a limiting genealogy in
a whole class of models that includes Wright–Fisher and other classical models. However, this
class of models assumes symmetries (related to exchangeability) that are typically violated in
models incorporating population subdivision or geographic structure.

The two-parent results highlight the strong consequences that can follow from assuming
models of the Wright–Fisher type, and in particular from assumptions of random mating.
The mathematical conclusions of these models may not be as robust as one might hope, and
models that ignore violations of assumptions such as random mating can easily lead to absurd
estimates. Such unrealistically simple assumptions form a natural starting point for this first
investigation of MRCAs in two-parent models, as it seems appropriate to begin with a direct
analog of a classical model that lies at the foundation of the one-parent theory. But there is
much that could be done to generalize this work.

In the context of one-parent models, a substantial literature investigates departures from
the simplest assumptions of the classical models. In particular, models allowing population
size to vary over time and models incorporating various forms of population subdivision and
geographic structure are all under continuing investigation. See, for example, the recent
collection of papers edited by Donnelly and Tavaré (1997), which gives a fine overview of
recent work.

Möhle (1997) has considered the effect of varying population size in some genetic models
distinguishing males and females. Möhle’s focus is on the genetic question of ultimate fixation
of an allele, so that the two-sex, diploid aspect of the models does not fundamentally affect
the nature of the results, although it complicates the proofs; the results match earlier results
of Donnelly (1986) about variable population size versions of the standard one-parent models.
Aside from this work, generalizations of the standard assumptions remain to be investigated in
two-parent models.
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Möhle, M. (1994). Forward and backward processes in bisexual models with fixed population sizes. J. Appl. Prob.

31, 309–332.
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