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Conditional probability distributions seem to have a bad reputation
when it comes to rigorous treatment of conditioning. Technical argu-
ments are published as manipulations of Radon±Nikodym derivatives,
although we all secretly perform heuristic calculations using elementary
de®nitions of conditional probabilities. In print, measurability and
averaging properties substitute for intuitive ideas about random
variables behaving like constants given particular conditioning informa-
tion.
One way to engage in rigorous, guilt-free manipulation of conditional

distributions is to treat them as disintegrating measuresÐfamilies of
probability measures concentrating on the level sets of a conditioning
statistic. In this paper we present a little theory and a range of
examplesÐfrom EM algorithms and the Neyman factorization, through
Bayes theory and marginalization paradoxesÐto suggest that disinte-
grations have both intuitive appeal and the rigor needed for many
problems in mathematical statistics.
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1 Introduction

In elementary probability courses one learns to calculate conditional probabilities by

taking ratios, sometimes on little intervals that shrink to a point at the end of a proof.

Conditional probability distributions are used and enjoyed freely, in restricted

settings. In more advanced courses, where conditioning is placed on a rigorous

measure-theoretic basis, one learns that real probabilists use Radon±Nikodym

derivatives. One is warned that only in special cases can the conditional expectation

HX�t� � P�X j T � t� be treated rigorously as the expectation of the random variable

X with respect to a probability measure P�� j T � t� that concentrates on the set

fT � tg. Instead, in the abstract Kolmogorov approach, HX��� is characterized up to
almost-sure equivalence as the measurable function for which

P�fT 2 BgHX�T �� � P�fT 2 BgX � �1�
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for all measurable B. (Note that we are using linear functional notation for

expectations, as explained at the end of this section.) The abstract approach has the

virtue of making P�X j T � t� well de®ned (up to an almost sure equivalence) as a

function of t whenever X is integrable. It has the disadvantage of sacri®cing intuition

to rigor.

Conditional probability distributions are clearly missed in some advanced work.

Probabilists and statisticians often really do think in terms of conditional distribu-

tions, returning to them for private side calculations performed to get initial under-

standing of a problem. One ®rst guesses the form of HX�t�, perhaps with the help of
an unjusti®ed manipulation of the nonexistent probability measure P�� j T � t�, or by
a hand-waving reduction to the discrete case. Then the proof reduces to a mechanical

checking of the necessary measurability and averaging properties. Moreover,

attempts to construct rigorous arguments using only elementary methods of

conditioning can lead to the imposition of extraneous regularity conditions. Such

attempts also lead to contortions, such as the introduction of unnecessary random

variables and maps that transform the problem to a setting in which conditional

densities may be calculated as ratios of joint to marginal densities on Euclidean

spaces.

In this paper we discuss an approach to conditioning that combines the advantages

of both the elementary and the abstract Kolmogorov approaches. We advocate the

use of disintegrations, which are regular conditional distributions P�� j T � t� that
also satisfy natural concentration requirements of the form PfT 6� t j T � tg � 0.

We borrow the term ``disintegration'' from the French to emphasize the extra

concentration property. The level of generality achievable by the disintegration

approach to conditioning is much higher than with elementary methods. The extra

requirements do sacri®ce slight generality compared with the abstract Kolmogorov

approach, but in the problems that we consider the generality is not missed. As

compensation, arguments using disintegrations tend to look and feel much closer to

the elementary arguments; by aiming for slightly less generality, we get to make

stronger statements that come closer to the way that we tend to think intuitively

about conditioning.

Consider a typical example.

Example 1. The intuitive de®nition of su�ciency says that a statistic T is su�cient for

a family of probability measures P � fP� : � 2 Yg if the conditional distributions
given T do not depend on �. The elementary approach is based on conditional

distributions, which work ®ne in the simplest discrete and absolutely continuous

settings, but are typically abandoned in rigorous treatments that aim for any more

generality. As LEEHHMMAANNNN (1959, page 18) noted, there are some ``di�culties concerning

the behavior of conditional probabilities'' that make a precise analysis delicate.

As an example, suppose P� is the uniform distribution on the square �0; ��2, for an
unknown positive �. The coordinate maps X and Y are independent Uniform �0; ��
under P�. The maximum, M, of X and Y is a su�cient statistic. Given M�m, the
#VVS, 1997
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conditional distribution P��� jM � m� is uniformly distributed around two edges

where one of X or Y equals m and the other is smaller.

One could argue informally, by conditioning on fm �M � m� �g and then

letting � tend to zero, to get the form of the conditional distribution. It is also easy to

check the Radon±Nikodym property by direct calculation of probabilities, but we

feel that it is helpful to be able to think of the conditional distribution concentrated

around the two edges where M � m.

Frequently one sees su�ciency for this particular example demonstrated by an

appeal to a factorization theorem for the joint density of X and Y. A diligent student

might be dismayed to learn that the form of that theorem needed in the present simple

case is beyond the scope of most textsÐtypically one is o�ered the proof for the

simple, discrete version of the theorem, with a suggestion to read about the general

case in the thorough text of LEEHHMMAANNNN (1959). Even there, one might suspect that the

simple proof (page 19) for smooth continuous distributions might have small

problems with the non-di�erentiability of the maximum function. To be really

rigorous one seems forced to skip forward several sections (to page 46) to ®nd

Lehmann's treatment of the HAALLMMOOSS and SAAVVAAGGEE (1949) approach, based on Radon±

Nikodym derivatives.

Is it really that complicated? See Example 6. &

It has long bothered us (and other authors, such as TJJUURR, 1974 and WIINNTTEERR, 1979)

that there should be such a wide gap between intuition and rigor in conditioning

arguments. We feel that, in many statistical problems, manipulation of the

conditional probability distribution is the most intuitive way to proceed. However,

we mathematical statisticians are trained to treat such conditional distributions with

great caution, being aware of the menagerie of nasty counterexamplesÐsuch as the

Borel paradoxÐthat warn one away from conditional distributions. Apparently such

examples have left conditional distributions with a bad name. As KOOLLMMOOGGOORROOVV (1930,

page 51) put it, ``the concept of a conditional probability with regard to an isolated

hypothesis whose probability equals 0 is inadmissible.'' There is a technical di�culty,

but it does not require us to abandon the notion of a conditional distribution. We feel

our profession may have overreacted to the di�culties of placing conditioning on a

sound basis and, in so doing, given up too much of the power of intuition.

By way of a small amount of theory and a collection of illustrative examples, in this

paper we present a case that disintegrations are easy to manipulate and that they

recapture some of the intuition lost by the more abstract approach, allowing guilt-

free manipulation of conditional distributions. Most of our mathematics is well

known and well used in certain areas of probability theory, such as Markov process

theory. The disintegration property is essentially the assertion of the Decomposition

Theorem in Section 29.2 of LOOEEÁÁ VVEE (1978), or of Theorem 6 in Section 2.5 of LEEHHMMAANNNN

(1959). (For further references see Section 5.) Nevertheless, it seems to us that the

ideas are not as widely known or used as they should be, which is our reason for

collecting together some of the facts we might easily have learned in graduate school,
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but didn't. We suggest that the concept of disintegration should be part of the

education of every young probabilist and mathematical statistician.

In Section 2 we outline some theory for disintegrations, which we apply to a

collection of conditioning examples in Section 3. We would suggest that the reader

might contemplate how one usually attacks these problems, before looking at our

explanations. We were all too often surprised and embarrassed by how much

di�culty we were having using traditional methods as a ®rst pass on the problems

during the drafting of the paper.

With some slight trepidationÐwe fear some readers might take fright at the

absence of integral signsÐwe have chosen to use notation that we have found most

convenient and most helpful to our understanding. We adopt linear functional

notation for integrals, writing l f instead of
�
fdl or

�
f �x�l�dx�. We also identify sets

with their indicator functions: l� fA� instead of
�
f �x�1fx 2 Agl�dx�. When we

want to identify explicitly the dummy variable of integrationÐfor example, when

integrating a function of more than one variableÐwe do so by attaching a super-

script to the measure: lyf �x; y� is the same as � f �x; y�l�dy�.
We also adopt a slightly unusual notation for image measures. If T is a measurable

function from �X ;A� into �T ;B�, and if l is a measure on �X ;A�, we denote the
image measure of l under the map T by T�l�, or simply Tl. It is de®ned by

�Tl��g� � l�g � T �
for nonnegative measurable functions g on �T ;B�. If l is a point mass at x0 then Tl is
a point mass at Tx0 . If g is the indicator function of a set B then g � T is the indicator

function of the inverse image T ÿ1B, and �Tl�B � l�T ÿ1B�. That is, our Tl is the
same as the measure sometimes denoted by lTÿ1. If l is a probability measure, Tl is
also called the distribution of T under l.

2 What is a disintegration?

In the elementary approach to conditioning, there are two ways to calculate

conditional distributions. In the discrete case everything reduces to ratios of prob-

abilities. For continuous distributions on Euclidean spaces (that is, distributions

absolutely continuous with respect to Lebesgue measure), with conditioning on the

projection onto a coordinate space, one calculates conditional densities by dividing

marginal densities into joint densities. Conditioning on other random variables

(or vectors) presents some di�culty when contemplated in any generality. Special

transformations under extra smoothness assumptions are needed to reduce the

calculations to the special case.

In this section we will describe a method that covers both discrete and continuous

cases with equal ease. The same formulae appear in all cases. But ®rst let us consider

the elementary discrete case in more detail.

For discrete random variables conditioning is straightforward, as long as we heed

the admonition not to try to condition on events of probability zero. Suppose P is a
#VVS, 1997
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probability measure on �X ;A�. Suppose T takes values only in a ®nite subsetR of T ,
with PfT � tg > 0 for all t in R. The elementary de®nition has

P�A j T � t� � PAfT � tg
PfT � tg for A � A and t � R

Following KOOLLMMOOGGOORROOVV (1933), we will also use the more compact Pt(A) for

P�A j T � t�. The elementary de®nition enjoys the following pleasant properties.

(a) Pt(.) is a probability measure on �X ;A� for all t 2 R.
(b) The measure Pt concentrates on the set fT � tg:

PtfT 6� tg � PfT 6� tgfT � tg
PfT � tg � 0

(c) For A 2 A;

P�A� �
X
t2R

PfT � tgPt�A�

The decomposition in property (c) writes P as a weighted sum of the conditional

probability measures Pt for t in R, where the measure Pt concentrates on the level set
fT � tg. Notice that PfT � tg is the mass placed by the image measure TP at the

point t. In our notation, the averaging property in (c) is written

PA � �T P�tPtA
We would like with equal assurance to be able to talk about and work with

conditional probabilities of the form P�A j T � t� for more general spaces �X ;A� and
maps T. The standard Kolmogorov de®nition of conditional expectation has an

accounting problem: for each A 2 A the measurable function P�A j T � t� is free to
be de®ned arbitrarily on any set of probability zero, and as there are in general many

events A 2 A, those sets of probability zero could accumulate into a nonnegligible

set. Worse yet, however many events there may be, there are still more sequences of

events. For each such disjoint sequence A1 , A2 , . . . , we have relations like

P�[An j T � t� � � P�An j T � t� �2�
holding, at least almost surely, in the sense that there exists a set N � T for which

PfT 2 Ng � 0 and for which (2) holds if t 62 N. The set N depends on the particular

sequence {Ai}. Thus, the unpleasant prospect arises that there might be no t for which

(2) holds simultaneously for all sequences A1 , A2 , . . . of disjoint events.

These considerations are the familiar motivation for introducing the concept of a

regular conditional distribution. Under stronger assumptions than required for the

existence of Kolmogorov's conditional expectations, one can choose appropriate

versions of each P�A j T � t�, as a function of t, to make P�� j T � t� a probability
measure for (almost) all t. The slightly stronger notation of a disintegration also

requires P�� j T � t� to concentrate on the set fT � tg.
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For the general de®nition of a disintegration we will consider not just probability

measures, but also measures (such as Lebesgue measure) that have in®nite total mass.

Let T be a measurable map from �X ;A� into �T ;B�. Let l be a sigma-®nite measure
on A and � be a sigma-®nite measure on B. Here l is the measure to be disintegrated
and � is often the image measure Tl, although, as we will see below, it is useful
to admit other possibilities for m, especially to cover cases where Tl is not sigma-
®nite.

Definition 1. We say that l has a disintegration fltg with respect to T and m, or a
�T ; ��-disintegration, if:

(i) lt is a sigma-®nite measure on A concentrated on fT � tg, that is,

ltfT 6� tg � 0, for �-almost all t;

and, for each nonnegative measurable f on X :
(ii) t 7! lt f is measurable;
(iii) l f � �t�lt f �.

We will refer to the fltg as the disintegrating measures and to � as the mixing measure.
We will also write l�� j T � t� for lt��� on occasion.
Requirement (i) is analogous to property (b) in the discrete case; requirement (iii) is

the analog of (c) generalized to functions. As de®ned by DEELLLLAACCHHEERRIIEE and MEEYYEERR

(1978, page 78) the disintegrating measures fltg are required to be probability

measures, analogously to (a). However we ®nd that it is better to hold that property

in reserve, and allow more general disintegrating measures. (Purist disintegrators

might prefer us to invent yet another name.) As we will soon demonstrate, the lt can
be taken as probability measures if and only if the image measure Tl is sigma-®nite
and we take � to be that image measure. In that case we will speak of a

T-disintegration, omitting explicit mention of �.

When l and (almost) all the lt are probability measures we will also refer to the

disintegrating measures as (regular) conditional distributions or (regular) conditional

probabilities; we will usually write P and Pt , instead of l and lt, in this case. If X is a

P-integrable random variable, its expecation with respect to Pt is then a version of the
conditional expectation P�X j T � t�. As shown in Section 6, the concentration

property (i) for conditional probabilities is a simple consequence of (1) when the

sigma-®nite B contains all singleton sets and is countably generated. Thus a dis-

integration of a probability measures may be thought of as resulting from a careful

selection of versions of the conditional expectations (in Kolmogorov's sense), in a

way that eliminates awkward complications caused by uncountable families of

negligible sets. Not surprisingly, as with many stochastic process problems involving

uncountable families of random variables, we need some extra (topological) assump-

tions about the underlying spaces and maps to ensure existence of the disintegration.

It might appear that, as a proper probabilist or mathematical statistician, one

should be interested only in the case where the disintegrating measures are
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probabilities. However, then one could not recover as a special case of a general

disintegration result the elementary formula for calculating a conditional density

(with respect to Lebesgue measure) as a ratio of a joint density to a marginal density.

It would also hamper the improper urges of Bayesians with their priors (see

Example 9).

Example 2. Suppose l is a product of two sigma-®nite measures, l � � 
 �, on a

product space S 
 T . Let T be the map that projects onto the T coordinate space.

For example, l might be Lebesgue measure on R2 and m might be Lebesgue measure
on the x-axis.

Think of S 
 ftg as a copy of S imbedded into the product space, and let lt be �
living on that copy. With a mild abuse of notation we will write lt � �. (More

formally, let lt be the image of l under the map s 7! �s; t�, for t ®xed.) Then Fubini's
theorem implies that fltg is a �T ; �� disintegration of l. As in the case of Lebesgue

measure on R2, the image measure Tl is not sigma-®nite unless � is a ®nite measure.
So it is handy that the de®nition of a �T ; ��-disintegration does not require m to be the
image measure Tl. Moreover, there is no way to get a disintegration with almost all

lt probability measures if � is not ®nite. &

One grudge held against disintegrations concerns existence. The abstract

Kolmogorov approach to conditioning requires only pure measure theory; disinte-

grations, in general, are tainted by topological requirements, but they deliver more in

terms of natural and useful properties. There is the usual trade-o�: stronger

requirements give stronger properties. We believe that the extra generality sacri®ced

by restricting to situations in which disintegrations exist will not be missed in many

statistical applications.

We have found the following version of the existence theorem quite adequate, even

though it is not the most general possible. We require that l be a Radon measure

(also known as a tight measure) on a metric space. That is, l is a Borel measure for
which lK <1 for each compact K and lB � supK�BlK , the supremum being taken

over compact sets, for each Borel set B. For example, a ®nite Borel measure on a

complete, separable metric space is RadonÐsee Theorem 1.4 of BIILLLLIINNGGSSLLEEYY (1968).

Theorem 1. (Existence Theorem) Let l be a sigma-®nite Radon measure on a metric
space X and let T be a measurable map from X into �T ;B�. Let � be a sigma-®nite

measure on B that dominates the image measure Tl. If B is countably generated and

contains all the singleton sets {t}, then l has a �T ; ��-disintegration. The lt measures are
uniquely determined up to an almost sure equivalence: if fl�t g is another �T ; ��-
disintegration then �ft 2 T : lt 6� l�t g � 0:

Notice that the uniqueness assertion is much stronger than the almost sure

uniqueness of P�X j T � t� for each integrable X in the Kolmogorov approach to

conditioning. It requires existence of a single �-negligible set N such that ltA � l�t A
for all t =2 N and all Borel sets A.
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The proof of existence is just di�cult enough to intimidate the typical graduate

student, even though versions of it appear in many texts. We sketch a proof in the

Appendix, to make the point that, with the possible exception of one topological/

measure-theoretic fact, the argument is within the reach of most graduate probability

courses.

On occasion, one works only with conditional probabilities of events involving

another measurable map S into a space �S; C�. In such a case one needs the

disintegrating measures de®ned only on the sigma-®eld A0 on X generated by the

mapC � �S;T � into S 
 T . If the image measureC�l� has a disintegration f�tg with
respect to the coordinate projection onto T and the measure m, and if the complement
C�X�c of the range of C has zero outer C�l� measure, then the disintegrating

measures can be pulled back to A0 using the de®nition �t � C�lt�. Compare with
LOOEEÁÁ VVEE (1978, Section 30.2). It is easy to see that C�X�c necessarily has zero inner

measure. If it is not in the product sigma-®eld there might be some di�culty in

arguing for zero outer measure. If l were a Radon measure the set would have zero

outer measure, but in that case why would one want to settle for less than the full

disintegration for l?
A few simple facts about disintegrations make them easy to work with. First let us

be precise about when the disintegrating measures are probabilities. In essence, to get

conditional probabilities one has only to standardize the disintegrating measures. The

only subtlety is that standardization cannot work on a set of in®nite or zero measure.

Theorem 2. Let l have a �T ; ��-disintegration fltg, with l and � each sigma-®nite.

(i) The image measure Tl is absolutely continuous with respect to �, with density
ltX .

(ii) The measures fltg are ®nite for �-almost all t if and only if Tl is sigma-®nite.
(iii) The measures fltg are probabilities for �-almost all t if and only if � � Tl.
(iv) If Tl is sigma-®nite then �Tl�fltX � 0g � 0 and �Tl�fltX � 1g � 0: For

Tl-almost all t, the measures

~lt��� � lt���ltX f0 < ltX <1g

are probabilities that give a T-disintegration of l.

Proof. We abbreviate ``for �-almost all t'' to ``mod �'', and write `�t� for the total
mass, ltX , of lt. For nonnegative measurable g,

�Tl�g � lxg�Tx� � �tlxt g�Tx� � �tg�t�`�t� �3�

As a service to readers who may still be getting used to our notation, we could write

the last equalities as�
g�t��Tl��dt� �

�
g�Tx�l�dx� �

� �
g�Tx�lt�dx���dt� �

�
g�t�`�t���dt�
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The simpli®cation in the last equality occurs because g�Tx� � g�t� for lt-almost all x,
and that g(t) can be brought outside the innermost integral as a constantÐexactly

what intuition says conditional distributions should allow.

For (i): If g � 0 and �g � 0 then g�t� � 0 mod �, whence g�t�`�t� � 0 mod �. In

particular, every �-negligible set is also Tl-negligible. Equation (3) is the formal

statement that `�t� is the density.
For (ii): Sigma-®niteness of a measure is equivalent to the existence of a strictly

positive real-valued function with a ®nite integral. In particular, there exists an h > 0

for which �h <1. If `�t� <1 mod �, the function g�t� � h�t�=�1� `�t�� is strictly
positive mod � and �Tl�g � �h <1, which makes Tl sigma-®nite. Conversely, if
�Tl�k <1 for some strictly positive k then k�t�`�t� <1 mod �, by (i), which gives

®niteness of `�t� mod �.
For (iii): If `�t� � 1 mod � then equation (3) shows that �Tl�g � �g. By assump-

tion, � is always sigma-®nite. For the converse, let h be strictly positive with �h <1
as in the previous paragraph. Choosing g�t� � h�t�f`�t� < 1g in (3) and using the

assumption that Tl � � gives

1 > �
t
h�t�f`�t� < 1g � �th�t�f`�t� < 1g`�t�

which implies �f` < 1g � 0. A similar argument shows that �f` > 1g � 0.

For (iv): From (ii) we have �fl � 1g � 0, so that (i) gives �Tl�fl � 1g � 0. Take

g�t� � f`�t� � 0g in (3) to show that �Tl�fl � 0g � 0. For nonnegative measurable f,

we then have

l f � �
tlt f

� �
t
`�t�~lt f � �t�f`�t� � 0glt f � � �t�f`�t� � 1glt f �

� �Tl�t~lt f � 0� 0

The second term is zero because lt is the zero measure when `�t� � 0. The third term

is zero because �f` � 1g � 0: &

Caution! The result in part (i) can be most misleading when the image measure Tl
is not sigma-®nite. For example, if T projects Lebesgue measure l on R2 onto a

coordinate axis, the image measure is not sigma-®nite; it gives in®nite measure to

every set of nonzero one-dimensional Lebesgue measure. In one sense the function

ltR
2 � 1 is the correct Radon±Nikodym density, but the integration theory for such

an extremely in®nite measure is delicate and of little use; every set has image measure

either zero or in®nity. It would perhaps be better to insist that a density be ®nite

almost everywhere, to avoid bad measures of this type. Only when Tl is sigma-®nite
can it sensibly be used as the mixing measure �. (The reader should exercise similar

caution when interpreting part (ii) of the next Theorem.)

Notice that the construction for part (iv) can be applied more generally. If m is

dominated by a measure � with a ®nite density d�=d� � m�t�, then l has a (T, �)-
disintegration {Lt} given by Lt f � m�t�lt f , because l f � �tlt f � �t�m�t�lt f �.
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Much of the convenience of working with disintegrations comes from the way they

®t nicely with image measures and densities. Most of the following results are easy

consequences of the special case treated by Theorem 2. We state them in full for

future reference. See HOOFFFFMMAANNNN-JééRRGGEENNSSEENN (1994, Section 10.11) for similar

assertions for probability measures, proved in more traditional notation.

Theorem 3. Let l have a �T ; ��-disintegration {lt}, and let � be absolutely continuous
with respect to l with a ®nite density r�x�, with each of l; �, and � sigma-®nite.

(i) The measure � has a �T ;m�-disintegration {�t} where each �t is dominated by
the corresponding lt , with density r�x�.

(ii) The image measure T� is absolutely continuous with respect to �, with density

ltr.
(iii) The measures {�t} are ®nite for � almost all t if and only if T� is sigma-®nite.

(iv) The measures {�t} are probabilities for � almost all t if and only if � � T�.

(v) If T� is sigma-®nite then �T��fltr � 0g � 0 and �T��fltr � 1g � 0. For T�-

almost all t, the measures de®ned by

~�t� f � � lt� fr�ltr
f0 < ltr <1g �4�

are probabilities that give a T-disintegration of �.

Proof. For (i) note that �f � l�rf � � �tlt�rf �. The other assertions follow from

Theorem 2 via the equality �tX � ltr: &

The ~�t measures in part (v) are just the �t of part (i) standardized to be probability

measures, on the set f0 < ltr <1g where standardization is possible. The comple-

ment of that set has zero T� measure, so it wouldn't matter if we changed the

de®nition of ~�t there. The disintegrating measures can be changed arbitrarily on a

T�-negligible set without disturbing the disintegration.

The simple formula (4) is the general version of the familiar method for calculating

conditional densities as a ratio of joint density to marginal density. It is more useful

than the familiar formula because it does not require the conditioning variable to be a

coordinate projection on a Euclidean space with Lebesgue measure playing the role

of l. LEEHHMMAANNNN (1959, Chapter 2, Lemma 6) used a special case of (4) in his treatment

of exponential families.

Example 3. Suppose P is a probability on Rk 
 Rnÿk with density p(x, y) with respect
to Lebesgue measure. Disintegrate the dominating Lebesgue measure l on Rn as in

Example 2. Writing X for the projection onto Rk, we have disintegrating probability

measures Px with (conditional) densities

p�x; y�=lyx p�x; y� �
p�x; y��
p�x; y 0�dy 0

with respect to Lebesgue measure on Rk, as taught in undergraduate classes.
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Much theory in the statistical literature is based on this special case. One supposes

that each member of a family fP� : � 2 Yg is a probability on Rn and that Tmaps Rn

smoothly into a lower-dimensional space Rk. One assumes existence of another

smooth map S from Rn into Rn7k such that ��x� � �T�x�;S�x�� is smoothly invert-
ible. Inferences on the family fP� : � 2 Yg should then be equivalent to inferences on
the family of image measures f�P� : � 2 Yg, for which there are densities with respect
to Lebesgue measure on Rn in its role as the range space,

q�s; t; �� � p��ÿ1�s; t�; ��j�s; t� �5�

Here j(s, t) involves the Jacobian of the transformation �. The conditioning variable

is now one of the coordinate projections, for which the conditional density can be

calculated as the ratio of joint to marginal densities,

q�s; t; ���
q�s0; t; ��ds0

We have three qualms about this method for continuous distributions. First, it

applies only to densities on Euclidean spaces. Second, it requires invention of an

auxiliary map S that need be of no particular interest except that it builds the

interesting T into a one-to-one transform of the dataÐone needs to force the

conditioning variable to be a coordinate projection on a Euclidean space. Third, it

requires extraneous smoothness assumptions about the conditioning map T, in order

that the image measure might be absolutely continuous with respect to Lebesgue

measure. As Theorem 3 shows, one needs none of these restrictive assumptions in

order to derive a conditional density analogous to the ratio of joint to marginal

densities. It is merely a matter of making a proper choice for the measure to use when

calculating the ``marginal'' density. &

Many facts about abstract conditional expectations have analogs for disintegra-

tions that make slightly stronger assertions under slightly more restrictive circum-

stances. We present just one example.

Conditional expectations given sigma-®elds have the nesting property

P�P�X j F 1� j F 0� � P�X j F 0� when F 0 � F 1

There is an analogous formula for disintegrations, which corresponds to the idea of

taking conditional expectations over the variables that are discarded in pulling back

to the coarser sigma-®eld.

Example 4. Suppose l is a sigma-®nite measure on �X ;A� with a (T, �)-disinte-

gration {lt}, for a sigma-®nite � on �T ;B�, which in turn has a (S, �)-disintegration
{�s} for a sigma-®nite � on �S; C�. Here T is a measurable map from X into T and S is

a measurable map from T into S. Their composition S � T is a measurable map from

X into S.
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The measure l has an �S � T ; ��-disintegration {gs} given symbolically by gs � �tslt.
One averages the lt disintegrations over all level sets that S maps onto s. That gs has
the right averaging property follows from

lf � �t�lt f � � �s��ts�lt f �� �6�
That it concentrates on the right level sets follows from the concentration properties

of the other two disintegrations:

�
sgxs fS�Tx� 6� sg � �

s
�
t
s�fSt � sglxt �fTx � tgfS�Tx� 6� sg��

� �s�tsl
x
t fSt � s;Tx � t;S�Tx� 6� sg

� 0

because the region of integration is an empty subset of X 
 T 
 S.
Sigma-®niteness of l implies existence of a strictly positive f for which lf is ®nite.

Equality (6) then gives ®niteness of �tslt f for �-almost all s; the measure gs is sigma-
®nite for � almost all s. &

3 Examples

In this section we present a small collection of examples that shows some of the

bene®ts of treating conditioning as a matter of disintegration.

We start (Example 5) with the EM-algorithm, where it seems that one has to work

explicitly with the conditional probability measure for a particular realization of a

statistic. We set aside worries that the realization might fall in the negligible set where

a meddling probabilist might decide to change the disintegrating measure. Once the

conditional measure is ®xed, the conditioning interpretation plays no further role in

the analysisÐour ®rst example of conditioning has very little to do with

conditioning.

We next turn to the Factorization Theorem for su�cient statistics (Example 6), a

topic that ®rst got us seriously interested in a more satisfactory way to work with

conditioning. Most textbooks make it clear that the general version of the theorem is

much too hard for general discussion. We feel the di�culty diminishes when one

thinks of conditioning as disintegration.

The third example (Example 7) shows how the disintegrating measures can inherit

invariance properties under a group of transformations.

The fourth example (Example 8) proves the converse of Basu's theorem about

ancillary statistics. The proof is easy. It helped us to understand the need for

something beyond independence from the su�cient statistic when we saw that the

distributions concentrate on level sets de®ned by the disintegration.

The ®fth example (Example 9) should be common knowledge to Bayesians, who

know that posterior distributions are probability measures and not just collections of

measurable functions that almost hang together in the right way. Their posteriors are

disintegrating measures. To make life more interesting, we allow improper priors,

with a reminder that even nonBayesians make use of Bayes estimators that guarantee
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admissibility. One has only to be careful about in®nite expectations at awkward

moments.

The sixth example (Example 10) is an elementary Bayesian problem concerning the

posterior distribution for a probability concentrated on two lines. We ®rst present a

non-rigorous, elementary method of solution, which we suspect would be the

instinctive approach of most mathematical statisticians. (It was certainly how we

initially solved the problem.) We then show how an even more general problem

almost solves itself when properly framed: a small disappointment for anyone bent on

demonstrating superiority of disintegrations, perhaps, but a genuine example of a

method of solution that hadn't occurred to us before we started writing this paper.

We recommend that our readers provide their own complete, rigorous solutions

before looking at what we come up with.

Examples 11 and 12 come as a pair. They describe a marginalization paradox of

STTOONNEE and DAAWWIIDD (1972) that can a�ict Bayesians with improper priors. We end up

agreeing with Hartigan (1983, page 29), who pointed out the dangers in calculating

marginal distributions by integration over unwanted variables. One must be careful

when interpreting independence when probabilities are not ®nite.

In Example 13 we present a disintegration interpretation of the Gibbs sampler.

We could cite many stochastic process examples where the disintegration approach

sheds light on complicated conditioning arguments. In an initial version of this paper

we included one such applicationÐthe proof of continuity for the sample paths of

martingales adapted to a Brownian ®ltrationÐand a referee pointed out other

applications (interpretation of the strong Markov property; re¯ection principle for

Brownian motion). For the sake of brevity, we decided to omit those examples from

the ®nal version, after realizing that stochastic process experts are unlikely to need

further reminder of the advantages of working with regular conditional distributions

or disintegrations.

Example 5. The EM algorithm is often presented as a technique of maximum

likelihood estimation for problems with missing data. For example, LIITTTTLLEE and

RUUBBIINN (1987, page 127) describe it in the following way:

Suppose as before that we have a model for the complete data Y, with

associated density f �Y j �� indexed by an unknown parameter �. We

write Y � �Yobs;Ymis� where Yobs represents the observed part of Y and

Ymis denotes the missing values. In this chapter we assume for simplicity

that the data are [missing at random] and that the objective is to

maximize the likelihood

L�� j Yobs� �
�
f �Yobs;Ymis j ��dYmis

with respect to �.

The dYmis here has presumably the symbolic meaning of whatever averaging is

necessary to obtain the marginal density of Yobs . The measure corresponding to
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dYmis would be Lebesgue measure if f �Yobs;Ymis j �� were interpreted as a density

with respect to Lebesgue measure on a product of Euclidean spaces. (A similar

interpretation is needed for the dx at the top of page 96 of the WUU (1983) paper.)

In situations where the observed data are given as some arbitrary function of Y,

one must concoct a Ymis so that the pair (Yobs , Ymis) becomes a one-to-one function

of Y. The density for Y then transforms into a joint density for (Yobs , Ymis), in much

the same way as in Example 3, and then the problem ®ts into a framework where

conditioning can be handled by elementary means.

We would argue that in problems where data are naturally modelled as a function

T(x) on a probability space �X ;A;P�� it is an unnecessary arti®ce to invent a missing
function merely to accommodate EM theory to elementary methods of conditioning.

One should instead start from a family of probability densities fp�x; �� : � 2 Yg with
respect to a sigma-®nite measure l, which has a disintegration fltg with respect to

(T, �). The image measure has density

��t; �� � lxt p�x; ��
with respect to �. For a given t, the maximum likelihood method seeks a � to

maximize ��t; ��.
More generally, one could consider the problem of maximizing a function

G��� � gxg�x; ��
where fg�x; �� : � 2 Yg is a family of positive functions, and g is a sigma-®nite

measure for which 0 < G��� <1 for each �.

The generalized EM algorithm consists of repeated application of two steps that

improve upon an initial guess �0 for the value maximizingG. LetQ� be the probability

measure with density

q�x; �� � g�x; ��=G���
with respect to g. In the E-step one calculates the expectation

L0��� � Q
x
�0
log g�x; ��

In the M-step one maximizes L0 , or at least ®nds a �1 for which

L0��1� > L0��0�
The two steps are guaranteed to give

G��1� > G��0�
because

0 < L0��1� ÿ L0��0�

� Q
x
�0
log

q�x; �1�G��1�
q�x; �0�G��0�
� �

� log
G��1�
G��0�

ÿ gxq�x; �0�log
q�x; �0�
q�x; �1�

300 J. T. Chang and D. Pollard

#VVS, 1997



The last term is the Kullback±Leibler distance betweenQ�0
and Q�1

, which is positive

by Jensen's inequality.

One then repeats the two steps, with �1 taking over the role of �0 . And so on. &

The next example is the perfect illustration of how a disintegration proof can be

built by analogy with simple arguments for a discrete case. The exposition is slightly

more complicated than we would have liked, because we chose not to ignore some

subtleties concerning division by zero. (The reader might care to ponder how these

subtleties are usually taken care of in textbook proofs for the discrete case.) We have

been told that a proof similar to ours appears in a book of Borovkov, but we have not

yet been able to ®nd that book.

Example 6. The intuitive de®nition of su�ciency says that a statistic T is su�cient

for a family of probability measures P � fP� : � 2 Yg if the conditional distributions
given T do not depend on �. We avoid technical ``di�culties concerning the behavior

of conditional probabilities'' by interpreting the de®nition to mean existence of a

shared disintegration {Pt}. That is, Pt��� should serve as a conditional distribution

P��� j T � t� for every �.
Most often one checks for su�ciency by means of a factorization criterion, whose

general proof has a forbidding reputation. LEEHHMMAANNNN (1959) approached the proof in

a most sensible manner, by discussing ®rst the discrete version, then a special case of

the continuous version (using methods based on the transformation idea described in

Example 3), and ®nally presenting (Section 2.6) the full-blown Radon±Nikodym

approach of HAALLMMOOSS and SAAVVAAGGEE (1949) only after careful measure-theoretic

preparation. We were struck by the di�erences between the proofs in the various

cases. The disintegration interpretation allows us to use the same idea for all cases.

Consider ®rst the proof that factorization implies su�ciency in the discrete case.

Here each P� is de®ned on a ®nite set X with probabilities that factorize as

p�x; �� � P�fxg � g�Tx; ��h�x�
for some statistic T. The conditional expectations are then obtained as simple ratios.

For ®xed t,

P�� f j T � t� � �Tx� tg�Tx; ��h�x�f �x�
�Tx� tg�Tx; ��h�x�

� �Tx� th�x�f �x�
�Tx� th�x�

The factors involving g in the numerator and denominator have cancelled out,

leaving a ratio that does not depend on �. (Might there be any problem with 0/0 here?)

The last formula has a simple disintegration interpretation. Let us regard p(x, �) as

the density of P� with respect to counting measure l on X . With � as counting

measure on T , the �T ; ��-disintegration of l has lt equal to counting measure on

fT � tg. The last displayed ratio is just the expectation

Pt� f � �
lt� f h�
lth

f0 < lth <1g
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We have included the explicit indicator function to avoid one 0/0 problem. The upper

bound on lth is automatic for the case of a ®nite set X , but is needed already for

countably in®nite sets.

Now consider the general case, where P� has density g�Tx; ��h�x� with respect to a
general sigma-®nite measure l. Suppose l has a (T ; �)-disintegration {lt} for some
sigma-®nite �. For a ®xed �, Theorem 3 shows that P� has a T-disintegration fP�;tg,
where

P�;t� f � �
lxt g�Tx; ��h�x�f �x�
lxt g�Tx; ��h�x�

f0 < lxt g�Tx; ��h�x� <1g

By parts (ii) and (v) of the same Theorem and the concentration property of the {lt},

0 < lxt g�Tx; ��h�x� � g�t; ��lth <1 for T P�-almost all t

We are therefore almost everywhere justi®ed in cancelling out a g(t, �) factor from

numerator and denominator to get

P�;t��� � Pt��� for T P�-almost all t

where Pt��� is de®ned by (7), just as in the discrete case except for the changed

meaning of lt . The disintegration property is una�ected if we change the disinte-

grating measures for a T P�-negligible set of t. The {Pt} also de®ne a T-disintegration

for P�, as required for su�ciency.

For the converse it is useful to replace l by a dominating probability measure of the
form P � �i2

ÿiP�i , for some countable subfamily fP�ig of P. (A device due to

HAALLMMOOSS and SAAVVAAGGEE, 1949Ðsee Theorem 2 in the Appendix of LEEHHMMAANNNN, 1959).

What matters is that the common disintegrating probabilities {Pt} for each P� also
provide a T-disintegration for P, because

�T P�tPt f �
X
i

2
ÿi�T P�i�

t
Pt f � Pf

If we write g(t, �) for the density of T P� with respect to TP, we have

P�f � �T P��tPt f definition of fPtg
� �T P�tg�t; ��Pt f definition of g�t; ��
� Pxg�Tx; ��f �x�

the last equality holding because {Pt} is also a disintegration for P. Thus P� has
density g(Tx, �) with respect to P, and density g�Tx; ��dP=dl with respect to l: &

Sometimes the disintegration can be identi®ed by an appeal to symmetry, or to an

invariance argument, with the uniqueness of disintegrations simplifying the formal

proof.
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Example 7. Let P be a probability measure on a space X . Suppose a probability

measure P is invariant under a group G of transformations on X . That is, gP � P for

all g in G. Suppose also that the sets fT � tg are invariant under G. Does it follow that

the conditional distributions are also invariant under G?
For example, the standard normal distribution on R2 is invariant under rotations

about the origin. The statistic T�x1; x2� � x21 � x22 is constant on circles centered at

the origin, sets that are invariant under rotations. The conditional distributions are

uniform around the circles, a fact that it usually demonstrated by means of a

calculation with Jacobians. In higher dimensions the argument becomes quite messy.

How much easier it would be if we could deduce the form the conditional distribu-

tions directly from invariance considerations.

The argument succeeds if G can be replaced by a countable subclass G0. Suppose
measures invariant under G0 are necessarily also invariant under the whole of G. Then
if P is invariant under G, the conditional distributions Ptmust also be invariant under

G, for TP-almost all t. The proof depends on the uniqueness of disintegrations.

For each bounded measurable f on X , and each g in G,
Pf � �gP�f invariance of P

� P� f � g� de®nition of image measure gP

� �TP�tPt� f � g� disintegration

� �TP�t�gPt� f de®nition of image measure gPt

When Pt concentrates on the set fT � tg, so does gPt . It follows that fgPt : t 2 T g is
another disintegration for P. By uniqueness of disintegrations, there exists a TP-

negligible set N g such that gPt � Pt for all t in N c
g. Cast out a sequence of negligible

setsÐone for each member of G0Ðto deduce that, for TP-almost all t, the

probability measure Pt is invariant under G0 , and hence invariant under G: &

The Borel paradox (KOOLLMMOOGGOORROOVV, 1993, page 50) is the classic example of an

unjusti®able appeal to invariance for the construction of conditional distributions.

POOLLLLAARRDD (1996, Chapter 5) has explained the source of the di�culty, using the

language of disintegration.

Example 8. Suppose T is su�cient for P � fP� : � 2 Yg on O, with disintegrating

measures {Pt}. Let f and g be bounded real functions on R, and let S be another

statistic. De®ne G�t� � Ptg�S�. Then
P�f �T �g�S� � �T P��tf �t�Ptg�S� � P� f �T �G�T � �8�

In particular, g(S) and G(T) have the same P� expectation, C(�).
If S is ancillary, then the expected value C(�) is equal to a constant C. If T is

boundedly complete, then the assertion P�G�T� � C implies that P� concentrates on
fG�T� � Cg for each �, whence

P� f �T �G�T � � P� f �T � � C � P� f �T �P�g�S�
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It follows that S is independent of T. That is the BAASSUU (1955, 1958) theorem.

Conversely, if S is independent of T under each P�, then by choosing f � G in (8)

we get

�P�G�T ��2 � P�G�T �2

so that P� concentrates on the level set O��� � fG�T � � C���g. If there were �0 and �1
for which C��0� 6� C��1�, we would have a partition of Y into two nonempty

subfamilies,

Y0 � f� : P� concentrated on O��0�g
Y1 � f� : P� concentrated on O��0�cg

with the corresponding families of probability measures supported by disjoint subsets

of O. If such a partition ofY is assumed impossible then C(�) must be a constant, that

is, Smust be ancillary. That is the converse to Basu's theorem. &

Basu's results can be proved without the use of disintegrations. For us, the advan-

tage of the proof with disintegrations is clean de®nition of the two sets Y0 and Y1 .

Bayesians work with conditional distributions, by choice. Decision theorists often

apply Bayesian arguments. The next Example broadens slightly the scope of a

venerable admissibility argument, as used by EAATTOONN (1992), for example, by removing

unnecessary sigma-®niteness assumptions. Our approach is based on an idea

explained to us by John Hartigan.

Example 9. Let fPt : t 2 T g be a family of probability measures on X . If the map
t 7! Pt f is measurable for nonnegative measurable f on X , and if � is a probability

(a prior distribution) on T , then a probability measure Q can be de®ned on X 
 T by

Qg � �tPx
t g�x; t�

The coordinate maps X and T have joint distribution Q. The fPtg have the

interpretation of a T-disintegration of Q, that is, the conditional distribution of X

given T � t is Pt. The X-disintegration of Q de®nes the Bayesian posterior distribu-

tion Qx��� � Q�� j X � x�.
If each Pt has a density p�x; t� with respect to a sigma-®nite � on X , then

Qg � �t�xp�x; t�g�x; t�
That is, Q has density p(x, t) with respect to the product measure �
 �. The product
measure has the trivial disintegration

��
 ��x � �;
if we abuse notation as in Example 2. It follows from Example 3 that Qx has density

p�x; t�=�tp�x; t� �9�
with respect to �.
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Given a nonnegative loss function L�t; d � on T 
 T , a Bayes estimator �(x) can be
de®ned by the value of � that minimizes the posterior expected loss Q t

xL�t; ��,

Qt
xL�t; ��x�� � inf

�
Qt

xL�t; �� for each x �10�

Even nonBayesians are interested in such estimators because they enjoy a number of

nice decision theoretic properties. For example, suppose � has ®nite Bayes risk

QL�t; ��x�� � �tPx
t L�t; ��x�� � �xQt

xL�t; ��x�� <1

where � stands for the marginal distribution of X under Q. Suppose also that ��(x) is
another estimator with smaller expected loss,

P
x
t L�t; ���x�� � P

x
t L�t; ��x�� <1 for �-almost all t �11�

Then strict inequality can hold only on a �-negligible set, for otherwise

0 > �
t
P
x
t �L�t; ���x�� ÿ L�t; ��x���

� �xQt
x�L�t; ���x�� ÿ L�t; ��x��� �12�

The de®ning property of �(x) requires the last integrand to be everywhere non-

negative, which gives a contradiction to the inequality (12).

The preceding argument has little to do with � or any of the disintegrating {Qx}

being probability measures, nor with � being the marginal X distribution. It is valid

for any (X, �) disintegration and any sigma-®nite � (an improper prior), provided the

Bayes estimator de®ned by equality (10) has ®nite Bayes risk QL(t, �(x)).
For example, if Pt is the Bin(n, t) distribution and � is the improper prior with

density tÿ1�1ÿ t�ÿ1 with respect to Lebesgue measure l on (0, 1), then Q has density

p�x; t� � n
x

� �
t
xÿ1�1ÿ t�nÿxÿ1

with respect to l
 �, where m is counting measure on {0, 1, . . . , n}. The marginal

measure � � XQ is not sigma-®nite; it puts in®nite mass at 0 and at n. Nevertheless,Q
has an �X ; ��-disintegration with Qx having density p(x, t) with respect to l. Notice
that Qx is a ®nite measure for 1 � x � nÿ 1, and both Q0 and Qn are in®nite (but

sigma-®nite).

Let L�t; d � � �tÿ d �2. For 1 � x � nÿ 1 the usual argument shows that the

estimator ��x� � x=n minimizes the posterior expected loss. It also minimizes

Qt
0L�t; �� �

�1
0

�tÿ ��2tÿ1�1ÿ t�nÿ1 dt

for the trivial reason that the integral is ®nite only when � equals zero. Similar trivial
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reasoning applies to Qn . The estimator � is Bayes for the improper prior �, with a

®nite Bayes risk,

Xn
x�0

�1
0

n
x

� �
t
xÿ1�1ÿ t�nÿxÿ1�tÿ x=n�2 dt <1

The inequality corresponding to (11) could hold only on a �-negligible set. As both

sides of that inequality would be polynomials in t, the negligible set would have to be

empty: a contradiction. The Bayes estimator is admissible for quadratic loss. &

Example 10. Suppose a distribution P on R2 concentrates on two straight lines, L1

and L2 , neither of them orthogonal to the x-axis. Suppose the total mass pi that P

assigns to Li is distributed according to a density gi with respect to Lebesgue measure

along the line. An observation (X ;Y ) is taken from P giving a point with X � x0.

What is the conditional probability that the point lies on the line L1?

The elementary method approximates fX � x0g by fx0 � X � x0 � �g, for a small
positive �, then argues that

P��X ;Y � 2 L1 j X � x0� �
P��X ;Y� 2 L1; x0 � X � x0 � ��

P�x0 � X � x0 � ��
� p1�1g1�x0��

p1�1g1�x0�� � p2�2g2�x0��

where 1/�i is the absolute value of the cosine of the angle between Li and the x-axis.

The small � factors cancel out, leaving an equality

P��X ;Y � 2 L1 j X � x0� �
p1�1g1�x0�

p1�1g1�x0� � p2�2g2�x0�

in the limit.

Write H1(x0) for the last ratio. If one wants a totally rigorous derivation using the

Kolmogorov approach, one can easily check the de®ning property analogous to (1),

Pf�X ;Y � 2 L1gfX 2 Bg � PH1�X �fX 2 Bg

for all Borel sets B. Alternatively, one might appeal to some sort of abstract

di�erentiation theorem to guarantee existence of the limiting ratio and justify its

interpretation as a conditional probability.

Both rigorous derivations would obscure the simple form of the conditional

probability distribution Pf� j X � x0g, which puts mass H1(x0) at the point where L1
intersects the line where X � x0, and mass 1ÿH1�x0� at the corresponding point on
L2 . Provided (X;Y ) does not land at the intersection of the two lines, this conditional

probability distribution gives the asserted mass to line L1 . We prefer an argument

that identi®es the conditional distribution directly, rather than have it emerge

indirectly from a calculation of uncertain rigor.
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To determine the X-disintegration of P we need ®rst to be precise about what we

mean by a distribution with a density with respect to Lebesgue measure along a line in

R2. Bring everything back to the x-axis X , by regarding Lebesgue measure along Li as

the image of �i times Lebesgue measure � along X . The geometry of the lines enters
only through the �i factors. The measure with density pigi��� with respect to Lebesgue
measure on Li is just the image of the measure �i with density hi�x� � �i pi gi�x� with
respect to �. Now we can forget all about lines and Lebesgue measure, and solve a

more general problem.

Suppose � is a sigma-®nite measure on X and that h1 , . . . , hk are nonnegative

integrable functions on X . Let  1 , . . . ,  k be measurable maps into another space Y.
Let �i be the ®nite measure with density hi with respect to �. Let Qi be the image of �i
under the map �i that takes x onto �x;  i�x��. That is, Qi is the result of sliding �i to

live on the graph of  i in the product space X 
 Y. De®ne P to be the sum of the Qi .

What is the conditional distribution P�� j X � x�?
Formally,

Pf �
Xk
i�1

�i��i�� f � �
Xk
i�1

�
x
hi�x�f �x;  i�x�� �13�

Taking the � outside the last sum we immediately get a representation of P as an

�X ; ��-disintegration,

Pf � �xPxf

where Px is the measure that puts mass hi(x) at the points (x,  i(x)) for i � 1; . . . ; k.

Notice that Px is not a probability, but it does live on the set fX � xg. To make the
disintegrating measures probabilities, we need to standardize as prescribed by

Theorem 2. For i � 1; . . . ; k the conditional probability measure P�� j X � x) (that is,

the X-disintegrating measure) puts mass hi�x�=�h1�x� � � � � � hk�x��, except at the
negligible set of x values where the denominator is zero. &

The result from the previous Example is a solution to a Bayesian problem posed to

us by John Hartigan. LEE CAAMM (1986, page 477) has used an analogous disintegration

to establish a bound on Hellinger a�nities for convex hulls. With reference to this

result, DOONNOOHHOO and LIIUU (1991, page 644) remarked that ``Le Cam has established a

fact which seems, at ®rst, quite similar to . . . but is in fact far deeper''. The case of

®nite convex combinations is a simple consequence of an identity like (13); the general

case is a consequence of a general disintegration.

For a measure l on a product space X 
 Y it is traditional to use the name

X -marginal for the image of l under the map X that projects onto the X coordinate

space. If l happens to be a product of probability measures, P
 �, the X -marginal
equals P. One can safely refer to both Pfx 2 X : x 2 Ag and �P
 ��f�x; y� 2
X 
 Y : x 2 Ag as ``the probability that X lies in the set A''. However, if � is not a

probability measure, the X -marginal of l does not equal P. At worst, � might not
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even be a ®nite measure, in which case the image measure assigns mass1 to every A

with PA > 0. In this situation there is real danger in thinking of the X - and

Y-coordinates as being independent, or even in thinking of P as the distribution of X.

Bayesians with a penchant for improper priors should be particularly aware of this

problem.

Example 11. Suppose (X;Y ) has strictly positive probability density f(x, y) with

respect to Lebesgue measure on the unit square �0; 1� 
 �0; 1�. Then, in traditional

notation, X has marginal density fX�x� �
�
1
0 f �x; y� dy and the conditional distribu-

tion of Y given X � x has conditional density fY jX�y j x� � f �x; y�=fX�x�. Given
X � x and Y � y, let the Z distribution be the constant multiple 1/f(x, y) times

Lebesgue measure on R. The joint (improper) distribution of (X, Y, Z) is equal to

three-dimensional Lebesgue measure l on �0; 1� 
 �0; 1� 
 R.
With l expressed as a product of Lebesgue measure on each coordinate space, we

might be tempted to think of X, Y, and Z as independent, each uniformly distributed.

Indeed, for a product of proper probability measures, the coordinate maps are

independent random variables with those probabilities as their marginal distribu-

tions. However, our Example involves products of improper distributions: the Z

marginal is Lebesgue measureÐthe improper uniform distribution on the real lineÐ

and conditional on Z � z, the pair �X ;Y � is uniformly distributed on the square.

(That is, we have a Z-disintegration of l with Lebesgue measure on the unit square as
disintegrating measure.) Since the last conditional distribution does not depend on z,

we might conclude that (X ;Y ) is uniform on the square, so that X and Y are

independent and uniform on (0, 1). Or should we use the (X ;Y )-marginal measure,

which is very in®nite, as the joint distribution? Or should we stick with the original

f �x; y� density?
Is there any paradox in �X ;Y � appearing to have several di�erent joint

distributions? We think not.

The confusion arises because Lebesgue measure on �0; 1� 
 �0; 1� 
 R can be

disintegrated in many di�erent ways. The �X ;Y �-image measure is not sigma-®nite; it
cannot be used as the mixing measure in an �X ;Y �-disintegration. With the image

measure no longer a candidate, there are many equally plausible mixing measures and

disintegrations, giving many di�erent plausible answers for the joint distribution of X

and Y and for the conditional distribution of Y given X.

When one works only with probability measures, all arguments lead back to the

same joint (marginal) distributions. With in®nite measures, di�erent derivations can

lead to di�erent measures. One should exercise some care in bestowing the title of

joint distribution. &

The rather obvious sort of distinction in the last Example can become much more

puzzling when buried within more complicated collections of marginal and condi-

tional distributions, as in the following marginalization paradox of STTOONNEE and DAAWWIIDD

(1972). When their constructions are expressed as explicit assertions about disintegra-

tions, the ¯aw behind the paradox is quickly revealed.
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Example 12. Consider a measure de®ned on �R��4, speci®ed in the traditional way by
means of distributions of random variables as coordinate projections. Let

F � L � Lebesgue measure on R�;
�Y j F � �� � probability density ���� with respect to L;

�X j Y � �;F � �� � exponential; with mean 1=����;
�Z j X � x;Y � �;F � �� � exponential; with mean 1=��x�:

The random vector (F, Y, X, Z) has a joint (improper) distribution l with density

f ��; �; x; z� � ������2xeÿ��� z��x �14�
That is, we have de®ned a sigma-®nite measure on (R��4 with density f with respect to
the product L4 of Lebesgue measures on the coordinate spaces.

The (F, Y, Z)-marginal distribution is sigma-®nite with density

f ��; �; z� � �����
��� z�2

and the (F, Z) marginal is sigma-®nite with density

f ��; z� � I�z� � L
� �����
��� z�2

 !

Notice that neither density depends on �; both marginal measures are products

having the measure L on the F-axis as a factor.
Disintegration with respect to the (F, Z) marginal measure gives the (Y jF, Z)

conditional probability density

f �� j �; z� � �����
��� z�2I�z� �15�

Noting that the last conditional distribution does not depend on �, we might be

tempted to conclude that the �Y j Z � conditional density is

f �� j z� �? �����
��� z�2I�z� �16�

Example 4 would justify such a conclusion if the (F, Z)-marginal had a disintegration
with the Z-marginal as mixing measure. Unfortunately the Z-marginal is not sigma-

®nite. Assertion (16) is based on a false analogy with the result for averaging over

disintegrating probability measures.

Something has gone wrong already, but now let us repeat the same sort of

reasoning along a di�erent path. The (Y, X, Z)-marginal is sigma-®nite with density

f ��; x; z� � 2�����
x2��� z�3
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and the (X, Z)-marginal is sigma-®nite with density 2J(z)/x2, where

J�z� � L
� �����
��� z�3
 !

The marginal distribution of �Y;X ;Z � has a �X ;Z �-disintegration with the

�Y j X ;Z � conditional probability density

f �� j x; z� � �����
��� z�3J�z� �17�

Again we might be tempted to interpret the lack of dependence on one variable, x, as

meaning that the �Y j Z � conditional density is

f �� j z� �? �����
��� z�3J�z� �18�

And again we would be misled by the analogy with Example 4. The Z-marginal is still

not sigma-®nite, no matter how it is calculated.

Formulae (16) and (18) appear contradictoryÐa paradox. We would explain the

paradox by pointing out that neither formula represents a disintegration of the

(Y, Z)-marginal with the Z-marginal as mixing measure. There is no such disintegra-
tion. The assertions (15) and (17) are ®ne; each statement gives a disintegration with

respect to a sigma-®nite measure. In both cases, the trouble comes when we are

tempted to throw away one of the conditioning variables, leaving just the variable Z,

whose image measure is not sigma-®nite. We must live with the fact that distributions

conditional on Z are not determined uniquely. So there is no such thing as the �Y j Z �
conditional density. Indeed, in this case, much as in Example 11, the (Y, Z ) image
measure is not sigma-®nite. So in constructing a (Y, Z )-disintegration for the joint

distribution of (F, Y, X, Z ), we are left with a rather arbitrary choice of what

measure to use as the (Y, Z )-mixing measure. If we then regard our choice of (Y, Z )-
mixing measures as the ``joint distribution'' for that pair of variables, then clearly we

can arrive at many di�erent ``conditional distributions'' for �Y j Z �.
More concisely, by integrating out variables in di�erent orders we have constructed

two distinct sequences of disintegrations for calculating L
 L
 L
 L� fg�:

L
�
L
z
I�z�L� �����

��� z�2I�z�L
x�x��� z�2�2eÿ���z��xg��; �; z; x��

" #" #

� L
x 1

x2
L
z
2J�z�L� �����

��� z�3J�z�L
� �2

2
��� z�3x3eÿ���z�x�g��; �; z; x�

� �" #" #" #

All integrals correspond to probability measures, except for the ®rst ``L��� � ��'' and
the second ``Lx(� � �)'' and ``Lz(� � �)''. If L������=�� were ®nite, then we could also have

310 J. T. Chang and D. Pollard

#VVS, 1997



standardized J to be a probability density. It is futile to try to interpret the probability

measures as the conditional distributions. &

Example 13. Terms like ``Markov chain Monte Carlo'' and ``Markov sampling''

refer to methods for generating random samples from given distributions by running

Markov chains. Although such methods have quite a long history, they have become

the subject of renewed interest in the last decade, particularly with the introduction

of the ``Gibbs sampler'' by GEEMMAANN and GEEMMAANN (1984), who used the method in a

Bayesian approach to image reconstruction. The Gibbs sampler itself has enjoyed a

recent surge of intense interest within statistics community, spurred by GEELLFFAANNDD

and SMMIITTHH (1990), who applied the Gibbs sampler to a wide variety of inference

problems.

Recall that a distribution P being stationary for a Markov chain X0 , X1 , . . . means

that, if X0 � P, then Xn � P for all n. The theoretical foundation of Markov sampling

methods is the convergence in distribution of a Markov chain to its stationary

distribution: If a Markov chain X0 , X1 , . . . has stationary distribution P, then under

quite general conditions (involving irreducibility and aperiodicity), the distribution of

Xn for large n is close to P. Thus, in order to generate an observation from a desired

distribution P on X , we ®nd a Markov chain X0 , X1 , . . . on X that has P as its

stationary distribution. The theory then suggests that running or simulating the chain

until a large time n will produce a random variable Xn whose distribution is close to

the desired P. By taking n large enough, in principle we obtain a value that may for

practical purposes be considered a random draw from the distribution P.

The Gibbs sampler is a way of constructing a Markov chain having a desired

stationary distribution. To illustrate the idea, consider a product space X � S 
 T
with coordinate maps S and T. The problem is to generate an observation from a

given probability measure P on X . We assume that both S- and T-disintegrations of P

exist, giving conditional probability distributions that we will denote as P�� j S � ��
and P�� j T � ��: To perform a Gibbs sampler, start with any initial point (S0 , T0).

Then generate S1 from the conditional distribution P�� j T � T0�, and generate T1

from the conditional distribution P�� j S � S1�. Continue on in this way, generating

S2 from the conditional distribution P�� j T � T1� and T2 from the conditional

distribution P�� j S � S2�, and so on. Then the distribution P is stationary for the

Markov chain f�Sn;Tn� : n � 0; 1; . . .g. To see this, suppose �S0;T0� � P. In

particular, T0 is distributed according to the T-marginal of P, so that, since S1 is

drawn from the conditional distribution of S given T � T0 , we have �S1;T0� � P.

Now we use the same reasoning again: S1 is distributed according to the S-marginal

SP, so that �S1;T1� � P.

Here is a general formulation of the Gibbs sampler in terms of disintegrations.

Suppose we wish to simulate an observation from a probability measure P on a

space X . The Gibbs sampler consists of a sequence of ``moves'' that tell us how to

choose a new point Xn�1, given a current point Xn . For each map T for which a

T-disintegration {Pt} of P exists, there is a corresponding ``T-move'', which is
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performed as follows: Given the current point Xn 2 X , draw the next point Xn� 1
according to the distribution PT�Xn�:A T-move leaves the measure P invariant, that is,

P
x
PT�x� f � Pf

In fact, this is just a restatement of the averaging property required in the de®nition of

disintegration: de®ning g�t� � Pt f , we have

Pf � �TP�tPt f � �TP�tg�t� � P
x
g�T�x�� � P

x
PT�x� f

Thus, for any map T, the Markov chain X0 , X1 , . . . produced by a succession of

T-moves has the desired distribution P as a stationary distribution. However, such a

chain would stay on the same level set of the map T forever, that is, we would have

Xn 2 fx : T�x� � T�X0�g for all n. To have convergence in distribution to P starting

from an arbitrary initial distribution, we must perform moves using more than one

disintegration. That is the Gibbs sampler: given a sequence of disintegrations, the

Gibbs sampler is a performance of the corresponding moves. For example, given two

maps S and T, we could alternate making S-moves and T-moves. Or we could ¯ip a

coin at each iteration to decide whether to make an S-move or a T-move. There is no

need to restrict to product spaces and coordinate maps as in the illustrative simple

setting above. &

4 Other notions of conditioning

We hope we have convinced you that the existence of a disintegration is very

convenient in many statistical problems. However we do not wish to give the impres-

sion that we never feel the need to condition on sigma-®elds. After all, the expectation

of an integrable X with respect to the disintegrating Pt is just a version of the abstract
Kolmogorov conditional expectation. More precisely, if we de®ne G�t� � PtX then,

at least for bounded measurable functions H,

PH�T �X � �T P�tPt�H�T �X �
� �T P�tH�t�PtX because Pt concentrates on fT � tg
� PH�T �G�T �

�19�

That is, Y � G�T � is the (almost surely) unique random variable that is measurable

with respect to the sigma-®eld G generated by T for which

PWX � PWY all bounded G-measurable W �20�

As the proof in the Appendix shows, the fact that Pt concentrates on fT � tg is
actually equivalent to equality (19) for a suitable countable collection ofH functions.

No topology is needed there. It is in the interpretation of P�� j G� as an expectation

with respect to a probability measure that topology intervenes, as a way of sorting out

problems with uncountable collections of negligible sets. If we are concerned with the
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conditional expectations of only countably many random variablesÐas in the theory

of discrete-time martingales, for exampleÐthen there is no need to bring in

topological tools to manage the almost sure equivalences. However, in statistical

problems many surprises can lie hidden in the formulations using conditioning on

sigma-®elds.

Consider, for example, the concept of su�ciency. One could call a sub-sigma-®eld

G su�cient for a family P of probability measures on (O, F ) if, for each bounded

F -measurable random variable X there exists a single G-measurable Y for which

equality (20) holds for every P in P. That is the standard rigorous de®nition. As

BUURRKKHHOOLLDDEERR (1961) showed, the de®nition allows some disturbing consequences,

such as the possibility of a su�cient G being contained in a ®ner sigma-®eld G� that is
not su�cient for P. If the intuition behind su�ciency says that G contains all the

information about which P in P we are sampling from, then how can G� be telling us
something extra? Apparently, the abstract de®nition has let a few nonintuitive beasts

through the gate. In the case of a dominated family no such problem can existÐ

compare with the factorization theorem of Example 6.

In some situations even the abstract de®nition is too concrete; the interpretation of

Y � P�X j G� as a random variable (or as an equivalence class of random variables)

becomes super¯uous. We can identify Y with a transition operator g, mapping
L1�P;F� into L1(P, G ), identi®ed by the analog of equality (20),

hgX ;W i � hX ;W i all W in L
1�P;G�

And then we can dispense with Y altogether and express conditioning properties

purely in terms of a transition operator. DAAWWIIDD (1980) chose something similar as the

best way to deal with the general form of conditional independence.

Finally, one can dispense with the interpretation of the domains of probability

measures as families of random variables on a speci®c O set, and treat conditioning as

a transition map between abstract spaces, as in HAARRTTIIGGAANN's (1983) development of

Bayes theory, or LEE CAAMM's (1986) theory for convergence of experiments.

By stripping away assumptions unnecessary for the development of a particular

statistical or probabilistic idea, one gains in generality and sometimes even in insight.

We would claim that disintegrations o�er more insight into something like the

factorization criterion for su�ciency than a collection of more elementary calcula-

tions for speci®c cases, sometimes involving unnecessary technical assumptions to

accommodate the details of a particular method. In the same way, disintegrations

could be regarded as overly restrictive, involving unnecessary topological assump-

tions in many abstract conditioning arguments using Radon±Nikodym derivatives.

And so on.

Conditioning is one of the most important ideas of probability and statistics. It is

needed at many di�erent levels of understanding. We see great value in there also

being many ways of formalizing its mathematical description, each suited to a

di�erent purpose.
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5 History

The concepts of conditioning have a long history, which we cannot claim to have

researched carefully. The best we can do is o�er some references that might help those

who wish to pursue the topic further.

LOOEEÁÁ VVEE (1978, Section 30.2) mentioned that the problem of existence of regular

conditional probabilities was ``investigated principally by Doob'', but he cited no

speci®c reference. DOOOOBB (1953, page 624) cited a counterexample to the unrestricted

existence, which also appears in the exercises to Section 48 of the 1969 printing of

HAALLMMOOSS (1950). Doob's remarks suggest that the original edition of the Halmos book

contained a slightly weaker form of the counterexample. Doob also noted that the

counterexample destroyed a claim made in (DOOOOBB, 1938), an error pointed out by

DieudonneÂ (no citation) and Andersen and Jessen (no citation)Ðperhaps in their

(1946) paper?

BLLAACCKKWWEELLLL (1956) cited DIIEEUUDDOONNNNEEÂÂ (1948) as the source of a counterexample for

unrestricted existence of a regular conditional probabilities. Blackwell also proved

existence of regular conditional distributions for (what are now known as) Blackwell

spaces. The proof given by DEELLLLAACCHHEERRIIEE and MEEYYEERR (1978) uses the same sort of

regularity properties on the underlying space.

HOOFFFFMMAANNNN-JééRRGGEENNSSEENN (1994, page 162) asserted that KOOLLMMOOGGOORROOVV (1933) was the

®rst to establish existence of regular conditional distributions (for ``ordinary random

vectors''). We could not ®nd this result in Kolmogorov's book; indeed he stressed

(page 50) that the conditional probability Pu(B) was determined only up to an almost

sure equivalence. Chapter 10 of the Ho�man-Jùrgensen book contains an exposition

of the best disintegration theorem available, a result due to PAACCHHLL (1978). Pachl cited

a number of earlier papers on disintegrations.

PAARRTTHHAASSAARRAATTHHYY (1967, Sections V.7 and V.8) cited notes of Varadarajan for his

existence proof for a disintegration.

A mention of the names Doob and Kuratowski by WIILLLLIIAAMMSS (1979, page 100) was

drawn to our attention by a referee, but we were unable to trace furtherÐWilliams

cited no works of those two authors. Probably DOOOOBB (1953) was intended, but we can

only guess about Kuratowski. (Maybe the Topology book?)

The key idea in all proofs of existence of regular conditional distributions is that of

compact approximationÐexistence of a class of approximating sets with properties

analogous to the class of compact sets in a metric spaceÐas a means for deducing

countably additivity from ®nite additivity. PFFAANNZZAAGGLL and PIIEERRLLOO (1969) developed a

systematic theory of compact approximation. They were cited in the Note Historique

by BOOUURRBBAAKKII (1969), who also gave credit to Ryll-Nardzewski for disintegration

(no citation), perhaps in some point-process context. In point process theory dis-

integrations appear as Palm distributionsÐconditional distributions given a point of

the process at a particular position (KAALLLLEENNBBEERRGG, 1969).

PFFAANNZZAAGGLL (1979) gave a condition under which a regular conditional distribution

can be obtained by means of the elementary ``limit of ratio of probabilities''.
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The BAARRNNDDOORRFFFF-NIIEELLSSEENN, BLLAAEESSIILLDD and ERRIIKKSSEENN (1989) book contains much

material on the invariance properties of conditional distributions, which we have not

yet studied in detail.

6 Appendix: Existence of disintegrations

Here is a condensed proof of the Existence Theorem 1, based on ideas from

DEELLLLAACCHHEERRIIEE and MEEYYEERR (1978, page 78). We agree with them that ``The theorem on

disintegration of measures has a bad reputation, and probabilists often try to avoid

the use of conditional distributions . . . But it really is simple and easy to prove.''

The assumptions let us reduce the proofs of both existence and uniqueness to the

case where X is compact and both l and � are ®nite measures. (Partition T into

countably many disjoint sets Bi , each of ®nite � measure. Partition each Tÿ1Bi into

sets Ni;Ki1;Ki2; . . . ; with lNi � 0 and each Kij compact. For existence, construct

®nite disintegrating measures for the restriction of l to Kij and � restricted to Bi , then

piece together the restrictions. Notice that each disintegrating measure will be sigma-

®nite, being constructed from countably many ®nite measures concentrated on

disjoint sets. For uniqueness, combine the trivial result for the restriction of l to a

negligible set with the result for compact sets.)

De®ne a ®nite measure � (the image of l under the map that takes x onto (x, Tx))
on A
 B by �h�x; t� � lh�x;Tx�: It lives on the graph of T, in the sense that

�f�x; t� : Tx 6� tg � 0 �21�
This assertion follows from the countable generation property, and the fact that B
contains all the singleton sets. (Let B0 be the countable subclass that generates B. For
each t 2 T , the singleton ftg is equal to ftg � \fB 2 B0 : t 2 Bg, which implies that
f�x; t� : Tx 6� tg � [B2B0fTx =2 B; t 2 Bg. For ®xed B in B0 ,

�fTx 2 B; t =2 Bg � lfTx 2 B;Tx =2 Bg � 0

The set fTx 6� tg is a countable union of �-negligible sets.)

Now we use compactness to avoid the problem, mentioned at the start of Section 2,

with uncountable families of negligible sets. The trick is to reduce countable

additivity to a condition involving only countably many assertions about conditional

expectations. On the real line one can determine measures from the values taken by

their distribution functions at a countable dense set. On more general spaces, the

following consequence of the Riesz representation theorem, and of the fact that there

exists a sequence of functions dense in the space of all continuous real functions on X
(under the uniform metric), su�ces.

If X is a compact metric space then there exists a countable family C0 of non-

negative, continuous functions on X such that

(i) C0 is closed under addition
(ii) for each additive functional ` : C0 ! R� there exists a unique Borel measure L

such that `� f � � Lf for each f in C0 .
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For ®xed f in C0 , the map g 7! �� f �x�g�t�� de®nes a measure on B, which is

dominated by � because j �� f �x�g�t�� j � Cl j g�Tx� j� C�Tl� j g j for some

constant C that bounds f. Write lt f for a density of this measure with respect to �:

�� f �x�g�t�� � �t�g�t�lt f �

(As a function of t, the lt f integral corresponds to the Kolmogorov conditional

expectation of f.) For almost all t, the map f 7! lt f is nonnegative and additive, and
hence corresponds to a measure on A. Invoke a generating-class argument to deduce
that t 7! lxt h�x; t� is measurable, for bounded measurable h, and �h � �tlxt h�x; t�. In
particular, l f � �tlxt f �x� for each bounded, A-measurable f. Put h�x; t� �
f�x; t� : Tx 6� tg to deduce from property (21) that �tltfx : Tx 6� tg � 0. Conse-

quently, ltfx : Tx 6� tg � 0 for � almost all t.

For uniqueness, suppose we have two disintegrations, {lt} and fl�t g, of a ®nite

Radon measure l on a compact metric space. Consider an f in C0 . De®ne

Bf � ft 2 T : lt f < l�t f g. The two disintegrations of l give

�
tft 2 Bf glt f � lfT 2 Bf gf � �tft 2 Bf gl�t f

Deduce that �Bf � 0, that is, lt f � l�t f for almost all t. Argue analogously to get the
reverse inequality. Cast out countably many negligible sets as f ranges over C0 , to
deduce that lt and l

�
t can be di�erent measures only for a �-negligible set of t values.
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