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Conditioning as disintegration

J. T. Chang and D. Pollard*

Statistics Department, Yale University, Box 208290 Yale Station,
New Haven, CT 06520, USA

Conditional probability distributions seem to have a bad reputation
when it comes to rigorous treatment of conditioning. Technical argu-
ments are published as manipulations of Radon—Nikodym derivatives,
although we all secretly perform heuristic calculations using elementary
definitions of conditional probabilities. In print, measurability and
averaging properties substitute for intuitive ideas about random
variables behaving like constants given particular conditioning informa-
tion.

One way to engage in rigorous, guilt-free manipulation of conditional
distributions is to treat them as disintegrating measures—families of
probability measures concentrating on the level sets of a conditioning
statistic. In this paper we present a little theory and a range of
examples—from EM algorithms and the Neyman factorization, through
Bayes theory and marginalization paradoxes—to suggest that disinte-
grations have both intuitive appeal and the rigor needed for many
problems in mathematical statistics.

Key Words & Phrases: Conditional probability distributions, disintegra-
tions, EM algorithm, sufficiency, Bayes theory, admissibility, marginal-
ization paradoxes, Basu’s theorem, exchangeability.

1 Introduction

In elementary probability courses one learns to calculate conditional probabilities by
taking ratios, sometimes on little intervals that shrink to a point at the end of a proof.
Conditional probability distributions are used and enjoyed freely, in restricted
settings. In more advanced courses, where conditioning is placed on a rigorous
measure-theoretic basis, one learns that real probabilists use Radon—Nikodym
derivatives. One is warned that only in special cases can the conditional expectation
Hy,(t) =P(X | T = t) be treated rigorously as the expectation of the random variable
X with respect to a probability measure P(- | 7 = ¢) that concentrates on the set
{T = t}. Instead, in the abstract Kolmogorov approach, H(-) is characterized up to
almost-sure equivalence as the measurable function for which

PHT € B}H(T)] = P{T € B}X] (1)
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for all measurable B. (Note that we are using linear functional notation for
expectations, as explained at the end of this section.) The abstract approach has the
virtue of making P(X | T = ¢) well defined (up to an almost sure equivalence) as a
function of r whenever X is integrable. It has the disadvantage of sacrificing intuition
to rigor.

Conditional probability distributions are clearly missed in some advanced work.
Probabilists and statisticians often really do think in terms of conditional distribu-
tions, returning to them for private side calculations performed to get initial under-
standing of a problem. One first guesses the form of H (¢), perhaps with the help of
an unjustified manipulation of the nonexistent probability measure P(- | T = 1), or by
a hand-waving reduction to the discrete case. Then the proof reduces to a mechanical
checking of the necessary measurability and averaging properties. Moreover,
attempts to construct rigorous arguments using only elementary methods of
conditioning can lead to the imposition of extraneous regularity conditions. Such
attempts also lead to contortions, such as the introduction of unnecessary random
variables and maps that transform the problem to a setting in which conditional
densities may be calculated as ratios of joint to marginal densities on Euclidean
spaces.

In this paper we discuss an approach to conditioning that combines the advantages
of both the elementary and the abstract Kolmogorov approaches. We advocate the
use of disintegrations, which are regular conditional distributions P(- | 7 = ¢) that
also satisfy natural concentration requirements of the form P{7 #¢| T =} =0.
We borrow the term “‘disintegration” from the French to emphasize the extra
concentration property. The level of generality achievable by the disintegration
approach to conditioning is much higher than with elementary methods. The extra
requirements do sacrifice slight generality compared with the abstract Kolmogorov
approach, but in the problems that we consider the generality is not missed. As
compensation, arguments using disintegrations tend to look and feel much closer to
the elementary arguments; by aiming for slightly less generality, we get to make
stronger statements that come closer to the way that we tend to think intuitively
about conditioning.

Consider a typical example.

ExaMPLE 1. The intuitive definition of sufficiency says that a statistic 7'is sufficient for
a family of probability measures P = {IP, : § € @} if the conditional distributions
given T do not depend on 6. The elementary approach is based on conditional
distributions, which work fine in the simplest discrete and absolutely continuous
settings, but are typically abandoned in rigorous treatments that aim for any more
generality. As LEHMANN (1959, page 18) noted, there are some “‘difficulties concerning
the behavior of conditional probabilities” that make a precise analysis delicate.

As an example, suppose P, is the uniform distribution on the square [0, 9]2, for an
unknown positive §. The coordinate maps X and Y are independent Uniform [0, 6)

under P,. The maximum, M, of X and Y is a sufficient statistic. Given M = m, the
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conditional distribution P,(- | M = m) is uniformly distributed around two edges
where one of X or Y equals m and the other is smaller.

One could argue informally, by conditioning on {m < M <m+ 6} and then
letting 6 tend to zero, to get the form of the conditional distribution. It is also easy to
check the Radon—Nikodym property by direct calculation of probabilities, but we
feel that it is helpful to be able to think of the conditional distribution concentrated
around the two edges where M = m.

Frequently one sees sufficiency for this particular example demonstrated by an
appeal to a factorization theorem for the joint density of X and Y. A diligent student
might be dismayed to learn that the form of that theorem needed in the present simple
case is beyond the scope of most texts—typically one is offered the proof for the
simple, discrete version of the theorem, with a suggestion to read about the general
case in the thorough text of LEHMANN (1959). Even there, one might suspect that the
simple proof (page 19) for smooth continuous distributions might have small
problems with the non-differentiability of the maximum function. To be really
rigorous one seems forced to skip forward several sections (to page 46) to find
Lehmann’s treatment of the HALMos and SAVAGE (1949) approach, based on Radon—
Nikodym derivatives.

Is it really that complicated? See Example 6. O

It has long bothered us (and other authors, such as TIur, 1974 and WINTER, 1979)
that there should be such a wide gap between intuition and rigor in conditioning
arguments. We feel that, in many statistical problems, manipulation of the
conditional probability distribution is the most intuitive way to proceed. However,
we mathematical statisticians are trained to treat such conditional distributions with
great caution, being aware of the menagerie of nasty counterexamples—such as the
Borel paradox—that warn one away from conditional distributions. Apparently such
examples have left conditional distributions with a bad name. As KorL.MoGorov (1930,
page 51) put it, “the concept of a conditional probability with regard to an isolated
hypothesis whose probability equals 0 is inadmissible.” There is a technical difficulty,
but it does not require us to abandon the notion of a conditional distribution. We feel
our profession may have overreacted to the difficulties of placing conditioning on a
sound basis and, in so doing, given up too much of the power of intuition.

By way of a small amount of theory and a collection of illustrative examples, in this
paper we present a case that disintegrations are easy to manipulate and that they
recapture some of the intuition lost by the more abstract approach, allowing guilt-
free manipulation of conditional distributions. Most of our mathematics is well
known and well used in certain areas of probability theory, such as Markov process
theory. The disintegration property is essentially the assertion of the Decomposition
Theorem in Section 29.2 of LogvE (1978), or of Theorem 6 in Section 2.5 of LEHMANN
(1959). (For further references see Section 5.) Nevertheless, it seems to us that the
ideas are not as widely known or used as they should be, which is our reason for

collecting together some of the facts we might easily have learned in graduate school,
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but didn’t. We suggest that the concept of disintegration should be part of the
education of every young probabilist and mathematical statistician.

In Section 2 we outline some theory for disintegrations, which we apply to a
collection of conditioning examples in Section 3. We would suggest that the reader
might contemplate how one usually attacks these problems, before looking at our
explanations. We were all too often surprised and embarrassed by how much
difficulty we were having using traditional methods as a first pass on the problems
during the drafting of the paper.

With some slight trepidation—we fear some readers might take fright at the
absence of integral signs—we have chosen to use notation that we have found most
convenient and most helpful to our understanding. We adopt linear functional
notation for integrals, writing 4/ instead of [ fdl or [ f (x)A(dx). We also identify sets
with their indicator functions: A(f4) instead of [f (x)I{x € A}A(dx). When we
want to identify explicitly the dummy variable of integration—for example, when
integrating a function of more than one variable—we do so by attaching a super-
script to the measure: 2’f (x,y) is the same as [ f (x,y)A(dy).

We also adopt a slightly unusual notation for image measures. If 7'is a measurable
function from (X,.A) into (7,8), and if 1 is a measure on (X,.A4), we denote the
image measure of A under the map T by T(4), or simply TA. It is defined by

(TA)(g) =AlgoT)

for nonnegative measurable functions g on (7, B). If 1 is a point mass at xq then T4 1s
a point mass at Tx,. If g is the indicator function of a set B then g o T is the indicator
function of the inverse image 7T~'B, and (TA)B = (T ~'B). That is, our T/ is the
same as the measure sometimes denoted by 27!, If 1 is a probability measure, T4 is
also called the distribution of T under /.

2 What is a disintegration?

In the elementary approach to conditioning, there are two ways to calculate
conditional distributions. In the discrete case everything reduces to ratios of prob-
abilities. For continuous distributions on Euclidean spaces (that is, distributions
absolutely continuous with respect to Lebesgue measure), with conditioning on the
projection onto a coordinate space, one calculates conditional densities by dividing
marginal densities into joint densities. Conditioning on other random variables
(or vectors) presents some difficulty when contemplated in any generality. Special
transformations under extra smoothness assumptions are needed to reduce the
calculations to the special case.

In this section we will describe a method that covers both discrete and continuous
cases with equal ease. The same formulae appear in all cases. But first let us consider
the elementary discrete case in more detail.

For discrete random variables conditioning is straightforward, as long as we heed

the admonition not to try to condition on events of probability zero. Suppose P is a
©VVS, 1997



Conditioning as disintegration 291

probability measure on (X, A). Suppose T takes values only in a finite subset R of 7,
with P{T = ¢} > 0 for all 7 in R. The elementary definition has
PA{T =1}
PA|T=t)=——+—— ford= dr=
(4 | ) BT =1 or A an R
Following KoLmoGorov (1933), we will also use the more compact P,(A4) for
P(A | T =t). The elementary definition enjoys the following pleasant properties.

(a) P,-)is a probability measure on (X, A) for all € R.
(b) The measure P, concentrates on the set {7 = ¢}:

P{T # t}{T =t} _o
P{T =1}

PAT # 1} =
(¢c) FordeA,

P(4) = P{T = 1}P,(4)
teR
The decomposition in property (c) writes P as a weighted sum of the conditional
probability measures P, for 7 in R, where the measure P, concentrates on the level set
{T = t}. Notice that P{T = ¢} is the mass placed by the image measure TP at the
point z. In our notation, the averaging property in (c) is written

P4 = (TP)'P,4

We would like with equal assurance to be able to talk about and work with
conditional probabilities of the form P(4 | T = ¢) for more general spaces (X, .A) and
maps 7. The standard Kolmogorov definition of conditional expectation has an
accounting problem: for each 4 € A the measurable function P(4 | T = 1) is free to
be defined arbitrarily on any set of probability zero, and as there are in general many
events A € A, those sets of probability zero could accumulate into a nonnegligible
set. Worse yet, however many events there may be, there are still more sequences of
events. For each such disjoint sequence A;, A4,, ..., we have relations like

B(UA, | T =)= P(4,| T=1) ®)

holding, at least almost surely, in the sense that there exists a set N C 7 for which
P{T € N} = 0 and for which (2) holds if 7 ¢ N. The set N depends on the particular
sequence {A4,;}. Thus, the unpleasant prospect arises that there might be no ¢ for which
(2) holds simultaneously for all sequences 4;, 4>, ... of disjoint events.

These considerations are the familiar motivation for introducing the concept of a
regular conditional distribution. Under stronger assumptions than required for the
existence of Kolmogorov’s conditional expectations, one can choose appropriate
versions of each P(4 | T = 1), as a function of ¢, to make P(- | T = ¢) a probability
measure for (almost) all ¢. The slightly stronger notation of a disintegration also
requires P(- | T = ¢) to concentrate on the set {7 = t}.
©VVS, 1997
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For the general definition of a disintegration we will consider not just probability
measures, but also measures (such as Lebesgue measure) that have infinite total mass.
Let 7 be a measurable map from (X, A) into (7, B). Let 1 be a sigma-finite measure
on A and p be a sigma-finite measure on 5. Here /4 is the measure to be disintegrated
and p is often the image measure 7'A, although, as we will see below, it is useful
to admit other possibilities for u, especially to cover cases where 74 is not sigma-
finite.

DEFINITION 1. We say that A has a disintegration {1} with respect to T and p, or a
(T, p)-disintegration, if:

(i) A is a sigma-finite measure on A concentrated on {T =t}, that is,
AT # t} =0, for u-almost all t;

and, for each nonnegative measurable f on X:

(i1) ¢+ Af is measurable;
(i) Af =p'(Af).

We will refer to the {J.,} as the disintegrating measures and to p as the mixing measure.
We will also write A(- | T = t) for A,(-) on occasion.

Requirement (i) is analogous to property (b) in the discrete case; requirement (iii) is
the analog of (c) generalized to functions. As defined by DELLACHERIE and MEYER
(1978, page 78) the disintegrating measures {A,} are required to be probability
measures, analogously to (a). However we find that it is better to hold that property
in reserve, and allow more general disintegrating measures. (Purist disintegrators
might prefer us to invent yet another name.) As we will soon demonstrate, the 4, can
be taken as probability measures if and only if the image measure 7°Z is sigma-finite
and we take p to be that image measure. In that case we will speak of a
T-disintegration, omitting explicit mention of .

When / and (almost) all the 4, are probability measures we will also refer to the
disintegrating measures as (regular) conditional distributions or (regular) conditional
probabilities; we will usually write I’ and P,, instead of / and 4,, in this case. If X'is a
P-integrable random variable, its expecation with respect to [P, is then a version of the
conditional expectation P(X | T =1¢). As shown in Section 6, the concentration
property (i) for conditional probabilities is a simple consequence of (1) when the
sigma-finite B contains all singleton sets and is countably generated. Thus a dis-
integration of a probability measures may be thought of as resulting from a careful
selection of versions of the conditional expectations (in Kolmogorov’s sense), in a
way that eliminates awkward complications caused by uncountable families of
negligible sets. Not surprisingly, as with many stochastic process problems involving
uncountable families of random variables, we need some extra (topological) assump-
tions about the underlying spaces and maps to ensure existence of the disintegration.

It might appear that, as a proper probabilist or mathematical statistician, one

should be interested only in the case where the disintegrating measures are
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probabilities. However, then one could not recover as a special case of a general
disintegration result the elementary formula for calculating a conditional density
(with respect to Lebesgue measure) as a ratio of a joint density to a marginal density.
It would also hamper the improper urges of Bayesians with their priors (see
Example 9).

EXAMPLE 2. Suppose 4 is a product of two sigma-finite measures, A = v ® u, on a
product space S ® 7. Let T be the map that projects onto the 7 coordinate space.
For example, 2 might be Lebesgue measure on R? and p might be Lebesgue measure
on the x-axis.

Think of S ® {} as a copy of S imbedded into the product space, and let 4, be v
living on that copy. With a mild abuse of notation we will write A, = v. (More
formally, let 2, be the image of A under the map s — (s, ), for ¢ fixed.) Then Fubini’s
theorem implies that {/,} is a (7, n) disintegration of 4. As in the case of Lebesgue
measure on R?, the image measure 72 is not sigma-finite unless v is a finite measure.
So it is handy that the definition of a (T, u)-disintegration does not require p to be the
image measure 7' A. Moreover, there is no way to get a disintegration with almost all
/., probability measures if v is not finite. O

One grudge held against disintegrations concerns existence. The abstract
Kolmogorov approach to conditioning requires only pure measure theory; disinte-
grations, in general, are tainted by topological requirements, but they deliver more in
terms of natural and useful properties. There is the usual trade-off: stronger
requirements give stronger properties. We believe that the extra generality sacrificed
by restricting to situations in which disintegrations exist will not be missed in many
statistical applications.

We have found the following version of the existence theorem quite adequate, even
though it is not the most general possible. We require that A be a Radon measure
(also known as a tight measure) on a metric space. That is, 4 is a Borel measure for
which 1K < oo for each compact K and AB = sup - zAK, the supremum being taken
over compact sets, for each Borel set B. For example, a finite Borel measure on a
complete, separable metric space is Radon—see Theorem 1.4 of BILLINGSLEY (1968).

THEOREM 1. (EXISTENCE THEOREM) Let A be a sigma-finite Radon measure on a metric
space X and let T be a measurable map from X into (T,B). Let p be a sigma-finite
measure on B that dominates the image measure T. If B is countably generated and
contains all the singleton sets {t}, then A has a (T, p)-disintegration. The A, measures are
uniquely determined up to an almost sure equivalence: if {;} is another (T, pu)-
disintegration then p{t € T : A, # A7} = 0.

Notice that the uniqueness assertion is much stronger than the almost sure
uniqueness of P(X | T =) for each integrable X in the Kolmogorov approach to
conditioning. It requires existence of a single p-negligible set N such that 1,4 = 174
for all ¢ N and all Borel sets A.
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The proof of existence is just difficult enough to intimidate the typical graduate
student, even though versions of it appear in many texts. We sketch a proof in the
Appendix, to make the point that, with the possible exception of one topological/
measure-theoretic fact, the argument is within the reach of most graduate probability
courses.

On occasion, one works only with conditional probabilities of events involving
another measurable map S into a space (S,C). In such a case one needs the
disintegrating measures defined only on the sigma-field A, on X" generated by the
map ¥ = (S, T)into S ® 7. If the image measure ¥ (A) has a disintegration {v, } with
respect to the coordinate projection onto 7 and the measure p, and if the complement
P(X)° of the range of ¥ has zero outer ¥(1) measure, then the disintegrating
measures can be pulled back to A, using the definition v, = ¥(4,). Compare with
Loive (1978, Section 30.2). It is easy to see that ¥(X)“ necessarily has zero inner
measure. If it is not in the product sigma-field there might be some difficulty in
arguing for zero outer measure. If 4 were a Radon measure the set would have zero
outer measure, but in that case why would one want to settle for less than the full
disintegration for 1?

A few simple facts about disintegrations make them easy to work with. First let us
be precise about when the disintegrating measures are probabilities. In essence, to get
conditional probabilities one has only to standardize the disintegrating measures. The
only subtlety is that standardization cannot work on a set of infinite or zero measure.

THEOREM 2. Let A have a (T, p)-disintegration {J,}, with . and . each sigma-finite.

(1)  The image measure T A is absolutely continuous with respect to u, with density
AX.
(il)  The measures {A,} are finite for u-almost all t if and only if T is sigma-finite.
(itl)  The measures {1,} are probabilities for u-almost all t if and only if p = TA.
(v) If TA is sigma-finite then (TA){1,X =0} =0 and (T1){1,X = oo} = 0. For
TA-almost all t, the measures

J() = );’(X) {0 < 1,X < o0}

are probabilities that give a T-disintegration of A.

PrOOF. We abbreviate “for u-almost all £ to “mod p”’, and write £(¢) for the total
mass, 4,X, of A,. For nonnegative measurable g,

(Th)g = 2"¢(Tx) = u'27g(Tx) = p'g(1)4(1) (3)

As a service to readers who may still be getting used to our notation, we could write
the last equalities as

jg<z><n><dz> - Jg(Tx)i(dx) - ”g(Tx)&(dder) - jguw(t)mdr)
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The simplification in the last equality occurs because g(7Tx) = g(7) for 1,-almost all x,
and that g(¢) can be brought outside the innermost integral as a constant—exactly
what intuition says conditional distributions should allow.

For (i): If g > 0 and pug = 0 then g(¢) = 0 mod p, whence g(¢)¢(¢) = 0 mod p. In
particular, every p-negligible set is also TA-negligible. Equation (3) is the formal
statement that #(¢) is the density.

For (ii): Sigma-finiteness of a measure is equivalent to the existence of a strictly
positive real-valued function with a finite integral. In particular, there exists an 2 > 0
for which ph < oco. If £(¢) < co mod p, the function g(¢) = h(r)/(1 + £(¢)) is strictly
positive mod p and (T24)g < ph < oo, which makes TA sigma-finite. Conversely, if
(TA)k < oo for some strictly positive k then k(¢)¢(¢) < oo mod p, by (i), which gives
finiteness of ¢(¢) mod u.

For (iii): If ¢(#) = 1 mod u then equation (3) shows that (T'1)g = ug. By assump-
tion, u is always sigma-finite. For the converse, let / be strictly positive with uh < oo
as in the previous paragraph. Choosing g() = h(#){¢(¢) < 1} in (3) and using the
assumption that 7/ = p gives

oo > p'h(1){0(r) < 1} = u'h(r){€(1) < 1}£()

which implies p{¢ < 1} = 0. A similar argument shows that u{¢ > 1} = 0.

For (iv): From (ii) we have p{/ = co} = 0, so that (i) gives (T1){/ = oo} = 0. Take
g(t) = {4(¢) = 0} in (3) to show that (T'A){/ = 0} = 0. For nonnegative measurable f,
we then have

Af =i
= w02 + p ({€(r) = 0}2, [ ) + p' ({€(r) = 00}2,f )
= (TA)'2,f+0+0

The second term is zero because /, is the zero measure when ¢(¢) = 0. The third term
is zero because u{¢ = co} = 0. O

Caution! The result in part (i) can be most misleading when the image measure 72
is not sigma-finite. For example, if T projects Lebesgue measure A on R? onto a
coordinate axis, the image measure is not sigma-finite; it gives infinite measure to
every set of nonzero one-dimensional Lebesgue measure. In one sense the function
ZIRZ = oo is the correct Radon—Nikodym density, but the integration theory for such
an extremely infinite measure is delicate and of little use; every set has image measure
either zero or infinity. It would perhaps be better to insist that a density be finite
almost everywhere, to avoid bad measures of this type. Only when 7'/ is sigma-finite
can it sensibly be used as the mixing measure u. (The reader should exercise similar
caution when interpreting part (ii) of the next Theorem.)

Notice that the construction for part (iv) can be applied more generally. If p is
dominated by a measure v with a finite density du/dv = m(t), then A has a (T, v)-
disintegration {A,} given by A, = m(t)4,f, because Af = p'A f = v'(m(t)A,f).
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Much of the convenience of working with disintegrations comes from the way they
fit nicely with image measures and densities. Most of the following results are easy
consequences of the special case treated by Theorem 2. We state them in full for
future reference. See HOFFMANN-J@RGENSEN (1994, Section 10.11) for similar
assertions for probability measures, proved in more traditional notation.

THEOREM 3. Let A have a (T, p)-disintegration {1}, and let p be absolutely continuous
with respect to A with a finite density r(x), with each of ., i, and p sigma-finite.

(1)  The measure p has a (T, m)-disintegration {p,} where each p, is dominated by

the corresponding 1,, with density r(x).

(i)  The image measure Tp is absolutely continuous with respect to u, with density
A

(iii)  The measures {p,} are finite for p almost all t if and only if T p is sigma-finite.

(iv)  The measures {p,} are probabilities for u almost all t if and only if = Tp.

(v) If Tpis sigma-finite then (Tp){ A, = 0} = 0 and (T p){A;r = 00} = 0. For Tp-
almost all t, the measures defined by

A (ﬁ)

A

ﬁt(f) =

{0 < ir < o0} (4)

are probabilities that give a T-disintegration of p.

ProoF. For (i) note that pf = A(rf) = p'2,(rf). The other assertions follow from
Theorem 2 via the equality p, X = A,r. O

The p, measures in part (v) are just the p, of part (i) standardized to be probability
measures, on the set {0 < 4,7 < oo} where standardization is possible. The comple-
ment of that set has zero Tp measure, so it wouldn’t matter if we changed the
definition of p, there. The disintegrating measures can be changed arbitrarily on a
Tp-negligible set without disturbing the disintegration.

The simple formula (4) is the general version of the familiar method for calculating
conditional densities as a ratio of joint density to marginal density. It is more useful
than the familiar formula because it does not require the conditioning variable to be a
coordinate projection on a Euclidean space with Lebesgue measure playing the role
of 1. LEHMANN (1959, Chapter 2, Lemma 6) used a special case of (4) in his treatment
of exponential families.

EXAMPLE 3. Suppose P is a probability on R¥ @ R"~* with density p(x, y) with respect
to Lebesgue measure. Disintegrate the dominating Lebesgue measure 1 on R” as in
Example 2. Writing X for the projection onto R¥, we have disintegrating probability
measures P, with (conditional) densities

__pxy)
I p(x,y")dy’

with respect to Lebesgue measure on R¥, as taught in undergraduate classes.
©VVS, 1997
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Much theory in the statistical literature is based on this special case. One supposes
that each member of a family {P, : § € @} is a probability on R” and that 7' maps R”
smoothly into a lower-dimensional space R¥. One assumes existence of another
smooth map S from R” into R"~* such that ¢(x) = (T(x), S(x)) is smoothly invert-
ible. Inferences on the family {P, : € ©} should then be equivalent to inferences on
the family of image measures {¢P, : § € @}, for which there are densities with respect
to Lebesgue measure on R” in its role as the range space,

q(s,1,0) = (&~ (5,1),0)j(s, 1) (5)

Here j(s, ) involves the Jacobian of the transformation ¢. The conditioning variable
is now one of the coordinate projections, for which the conditional density can be
calculated as the ratio of joint to marginal densities,

q(s,1,0)
Jq(s',t,60)ds'

We have three qualms about this method for continuous distributions. First, it
applies only to densities on Euclidean spaces. Second, it requires invention of an
auxiliary map S that need be of no particular interest except that it builds the
interesting 7 into a one-to-one transform of the data—one needs to force the
conditioning variable to be a coordinate projection on a Euclidean space. Third, it
requires extraneous smoothness assumptions about the conditioning map 7, in order
that the image measure might be absolutely continuous with respect to Lebesgue
measure. As Theorem 3 shows, one needs none of these restrictive assumptions in
order to derive a conditional density analogous to the ratio of joint to marginal
densities. It is merely a matter of making a proper choice for the measure to use when
calculating the “marginal” density. O

Many facts about abstract conditional expectations have analogs for disintegra-
tions that make slightly stronger assertions under slightly more restrictive circum-
stances. We present just one example.

Conditional expectations given sigma-fields have the nesting property

P(P(X | F,) | Fy) =P(X | F,) when F, C F,

There is an analogous formula for disintegrations, which corresponds to the idea of
taking conditional expectations over the variables that are discarded in pulling back
to the coarser sigma-field.

ExaMPLE 4. Suppose A is a sigma-finite measure on (X,.A) with a (7, u)-disinte-
gration {/,}, for a sigma-finite xx on (7, 8), which in turn has a (S, v)-disintegration
{1} for a sigma-finite v on (S,C). Here T 'is a measurable map from X into 7 and Sis
a measurable map from 7 into S. Their composition S o 7' is a measurable map from
X into S.
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The measure 4 has an (S o T, v)-disintegration {y,} given symbolically by y, = n!4,.
One averages the 4, disintegrations over all level sets that .S maps onto s. That y, has
the right averaging property follows from

M = f) =V (2 ) (6)

That it concentrates on the right level sets follows from the concentration properties
of the other two disintegrations:

VyAS(Tx) # s} = V' pg({St = s34 ({Tx = (}{S(Tx) # s}))
= V' {St = 5, Tx = 1, S(Tx) # s}
—0

because the region of integration is an empty subset of ¥ @ 7 ® S.
Sigma-finiteness of / implies existence of a strictly positive f for which Af is finite.

Equality (6) then gives finiteness of x4, f for v-almost all s; the measure y, is sigma-

finite for v almost all s. |

3 Examples

In this section we present a small collection of examples that shows some of the
benefits of treating conditioning as a matter of disintegration.

We start (Example 5) with the EM-algorithm, where it seems that one has to work
explicitly with the conditional probability measure for a particular realization of a
statistic. We set aside worries that the realization might fall in the negligible set where
a meddling probabilist might decide to change the disintegrating measure. Once the
conditional measure is fixed, the conditioning interpretation plays no further role in
the analysis—our first example of conditioning has very little to do with
conditioning.

We next turn to the Factorization Theorem for sufficient statistics (Example 6), a
topic that first got us seriously interested in a more satisfactory way to work with
conditioning. Most textbooks make it clear that the general version of the theorem is
much too hard for general discussion. We feel the difficulty diminishes when one
thinks of conditioning as disintegration.

The third example (Example 7) shows how the disintegrating measures can inherit
invariance properties under a group of transformations.

The fourth example (Example 8) proves the converse of Basu’s theorem about
ancillary statistics. The proof is easy. It helped us to understand the need for
something beyond independence from the sufficient statistic when we saw that the
distributions concentrate on level sets defined by the disintegration.

The fifth example (Example 9) should be common knowledge to Bayesians, who
know that posterior distributions are probability measures and not just collections of
measurable functions that almost hang together in the right way. Their posteriors are
disintegrating measures. To make life more interesting, we allow improper priors,

with a reminder that even nonBayesians make use of Bayes estimators that guarantee
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admissibility. One has only to be careful about infinite expectations at awkward
moments.

The sixth example (Example 10) is an elementary Bayesian problem concerning the
posterior distribution for a probability concentrated on two lines. We first present a
non-rigorous, elementary method of solution, which we suspect would be the
instinctive approach of most mathematical statisticians. (It was certainly how we
initially solved the problem.) We then show how an even more general problem
almost solves itself when properly framed: a small disappointment for anyone bent on
demonstrating superiority of disintegrations, perhaps, but a genuine example of a
method of solution that hadn’t occurred to us before we started writing this paper.
We recommend that our readers provide their own complete, rigorous solutions
before looking at what we come up with.

Examples 11 and 12 come as a pair. They describe a marginalization paradox of
StoNE and Dawip (1972) that can afflict Bayesians with improper priors. We end up
agreeing with Hartigan (1983, page 29), who pointed out the dangers in calculating
marginal distributions by integration over unwanted variables. One must be careful
when interpreting independence when probabilities are not finite.

In Example 13 we present a disintegration interpretation of the Gibbs sampler.

We could cite many stochastic process examples where the disintegration approach
sheds light on complicated conditioning arguments. In an initial version of this paper
we included one such application—the proof of continuity for the sample paths of
martingales adapted to a Brownian filtration—and a referee pointed out other
applications (interpretation of the strong Markov property; reflection principle for
Brownian motion). For the sake of brevity, we decided to omit those examples from
the final version, after realizing that stochastic process experts are unlikely to need
further reminder of the advantages of working with regular conditional distributions
or disintegrations.

ExaMPLE 5. The EM algorithm is often presented as a technique of maximum
likelihood estimation for problems with missing data. For example, LITTLE and
RusBIN (1987, page 127) describe it in the following way:

Suppose as before that we have a model for the complete data Y, with
associated density /(Y | 6) indexed by an unknown parameter 6. We
write Y = (Yobs, Ymis) Where Y, represents the observed part of ¥ and
Y mis denotes the missing values. In this chapter we assume for simplicity
that the data are [missing at random] and that the objective is to
maximize the likelihood

L(9 | Yobs) = Jf(yobm Ymis | e)dymis

with respect to 6.

The dY,,;s here has presumably the symbolic meaning of whatever averaging is

necessary to obtain the marginal density of Y,,s. The measure corresponding to
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dYmis would be Lebesgue measure if /(Y ,, Y, | #) were interpreted as a density
with respect to Lebesgue measure on a product of Euclidean spaces. (A similar
interpretation is needed for the dx at the top of page 96 of the Wu (1983) paper.)

In situations where the observed data are given as some arbitrary function of Y,
one must concoct a Yy, so that the pair (Yops, Ymis) becomes a one-to-one function
of Y. The density for Y then transforms into a joint density for (Yops, Ymis), in much
the same way as in Example 3, and then the problem fits into a framework where
conditioning can be handled by elementary means.

We would argue that in problems where data are naturally modelled as a function
T(x) on a probability space (X, A, P,) it is an unnecessary artifice to invent a missing
function merely to accommodate EM theory to elementary methods of conditioning.
One should instead start from a family of probability densities {p(x, ) : § € O} with
respect to a sigma-finite measure A, which has a disintegration {4,} with respect to
(T, p). The image measure has density

¢([7 9) = )';Cp(xv 6)

with respect to p. For a given ¢, the maximum likelihood method seeks a 6 to
maximize ¢(t,6).
More generally, one could consider the problem of maximizing a function

G(0) ="g(x,0)

where {g(x,0):0 € O} is a family of positive functions, and y is a sigma-finite
measure for which 0 < G(6) < oo for each 6.

The generalized EM algorithm consists of repeated application of two steps that
improve upon an initial guess 6, for the value maximizing G. Let Q, be the probability
measure with density

q(x,0) = g(x,0)/G(0)

with respect to y. In the E-step one calculates the expectation
Ly(6) = 0; log g(x.0)

In the M-step one maximizes L, or at least finds a 6; for which
Ly(6,) > Ly(6,)

The two steps are guaranteed to give
G(0,) > G(6,)

because

0< LO(QI) - LO(QO)
_ Q;OIOg(Z(§7ZI)G(91))
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The last term is the Kullback—Leibler distance between Q9o and Qel, which is positive
by Jensen’s inequality.
One then repeats the two steps, with 6, taking over the role of 6. And so on. O

The next example is the perfect illustration of how a disintegration proof can be
built by analogy with simple arguments for a discrete case. The exposition is slightly
more complicated than we would have liked, because we chose not to ignore some
subtleties concerning division by zero. (The reader might care to ponder how these
subtleties are usually taken care of in textbook proofs for the discrete case.) We have
been told that a proof similar to ours appears in a book of Borovkov, but we have not
yet been able to find that book.

ExaMPLE 6. The intuitive definition of sufficiency says that a statistic 7 is sufficient
for a family of probability measures P = {P, : § € @} if the conditional distributions
given T do not depend on §. We avoid technical “difficulties concerning the behavior
of conditional probabilities”” by interpreting the definition to mean existence of a
shared disintegration {P,}. That is, P,(-) should serve as a conditional distribution
Py(- | T = t) for every 0.

Most often one checks for sufficiency by means of a factorization criterion, whose
general proof has a forbidding reputation. LEHMANN (1959) approached the proof in
a most sensible manner, by discussing first the discrete version, then a special case of
the continuous version (using methods based on the transformation idea described in
Example 3), and finally presenting (Section 2.6) the full-blown Radon—Nikodym
approach of HaLmos and SAVAGE (1949) only after careful measure-theoretic
preparation. We were struck by the differences between the proofs in the various
cases. The disintegration interpretation allows us to use the same idea for all cases.

Consider first the proof that factorization implies sufficiency in the discrete case.
Here each P, is defined on a finite set X with probabilities that factorize as

p(x,0) = Pyix} = g(Tx, 0)h(x)

for some statistic 7. The conditional expectations are then obtained as simple ratios.
For fixed ¢,
= 8(TX, 0)h(x)f (x) _ Eqy_ A(X)f (x)

Fy(f | T=1)= Sre_&(Tx,0)h(x) Sy h(x)

The factors involving g in the numerator and denominator have cancelled out,
leaving a ratio that does not depend on 6. (Might there be any problem with 0/0 here?)

The last formula has a simple disintegration interpretation. Let us regard p(x, ) as
the density of P, with respect to counting measure A on X. With p as counting
measure on 7, the (7T, u)-disintegration of A has 4, equal to counting measure on
{T = t}. The last displayed ratio is just the expectation

P ="M 0 < < o)
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We have included the explicit indicator function to avoid one 0/0 problem. The upper
bound on 4,4 is automatic for the case of a finite set X, but is needed already for
countably infinite sets.

Now consider the general case, where P, has density g(7x, 0)h(x) with respect to a
general sigma-finite measure A. Suppose 4 has a (7T, u)-disintegration {4,} for some
sigma-finite 4. For a fixed 0, Theorem 3 shows that P, has a T-disintegration {P,},
where

41&8(Tx, 0)h(x)/ (x)

(T, O)h(x) {0 < 27g(Tx,0)h(x) < 0o}

P(),[(f) =

By parts (ii) and (v) of the same Theorem and the concentration property of the {4},
0 < A;g(Tx,0)h(x) = g(1,0)2,h < o for T P,-almost all ¢

We are therefore almost everywhere justified in cancelling out a g(z, 0) factor from
numerator and denominator to get

Py,(-) = P,(") for T Pj-almost all ¢

where P,(-) is defined by (7), just as in the discrete case except for the changed
meaning of 1,. The disintegration property is unaffected if we change the disinte-
grating measures for a T'Py-negligible set of 7. The {P,} also define a 7-disintegration
for P,, as required for sufficiency.

For the converse it is useful to replace 4 by a dominating probability measure of the
form P =3%2" ’IP’(,, for some countable subfamily {P, } of P. (A device due to
HarLmos and SAVAGE 1949—see Theorem 2 in the Append1x of LEHMANN, 1959).
What matters is that the common disintegrating probabilities {P,} for each Py also
provide a T-disintegration for IP, because

(TB)'Pf =) 2 (TP,)'P.f =Bf

If we write g(¢, 0) for the density of TP, with respect to TP, we have

P,f = (TP,)'P,f definition of {P,}
= (TP)'g(t,0)P,f definition of g(z,0)
= ng(Txv 0)f<x)

the last equality holding because {P,} is also a disintegration for P. Thus Py has
density g(7Tx, 0) with respect to P, and density g(7x, 8)dP/d A with respect to 4. |

Sometimes the disintegration can be identified by an appeal to symmetry, or to an
invariance argument, with the uniqueness of disintegrations simplifying the formal
proof.
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ExAMPLE 7. Let P be a probability measure on a space X. Suppose a probability
measure P is invariant under a group G of transformations on X. That is, gP = P for
all g in G. Suppose also that the sets {7 = ¢} are invariant under G. Does it follow that
the conditional distributions are also invariant under G?

For example, the standard normal distribution on R? is invariant under rotations
about the origin. The statistic T'(x,, x,) = x7 + x3 is constant on circles centered at
the origin, sets that are invariant under rotations. The conditional distributions are
uniform around the circles, a fact that it usually demonstrated by means of a
calculation with Jacobians. In higher dimensions the argument becomes quite messy.
How much easier it would be if we could deduce the form the conditional distribu-
tions directly from invariance considerations.

The argument succeeds if G can be replaced by a countable subclass G,. Suppose
measures invariant under G, are necessarily also invariant under the whole of G. Then
if Pis invariant under G, the conditional distributions P, must also be invariant under
G, for TP-almost all ¢. The proof depends on the uniqueness of disintegrations.

For each bounded measurable fon X, and each g in G,

Pf = (gP)f invariance of P
=P(fog) definition of image measure gP
= (TP)'P(fog) disintegration
= (TP)’(gP,)f definition of image measure gP,

When P, concentrates on the set {7 = ¢}, so does gP,. It follows that {gP, : t € T } is
another disintegration for P. By uniqueness of disintegrations, there exists a TP-
negligible set N/ o such that gP, = P, forall 7in N ;. Cast out a sequence of negligible
sets—one for each member of Gy—to deduce that, for TP-almost all ¢, the
probability measure P, is invariant under G, and hence invariant under G. O

The Borel paradox (KoLMoGoRrov, 1993, page 50) is the classic example of an
unjustifiable appeal to invariance for the construction of conditional distributions.
PoLLARD (1996, Chapter 5) has explained the source of the difficulty, using the
language of disintegration.

ExamPLE 8. Suppose 7 is sufficient for P = {P, : § € @} on Q, with disintegrating
measures {P,}. Let fand g be bounded real functions on R, and let S be another
statistic. Define G(¢) = P,g(S). Then

Pof (T)g(S) = (TPy)f (1)P,g(S) = Pyf (T)G(T) 8)

In particular, g(S) and G(T) have the same P, expectation, C(6).

If S is ancillary, then the expected value C(6) is equal to a constant C. If T is
boundedly complete, then the assertion P,G(7) = C implies that [P, concentrates on
{G(T) = C} for each 6, whence

Pof (T)G(T) =Py f (T) - C =Py (T)Pyg(S)
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It follows that S is independent of 7. That is the Basu (1955, 1958) theorem.
Conversely, if S is independent of 7 under each P,, then by choosing f = G in (8)
we get

(P,G(T))* = P,G(T)?

so that P, concentrates on the level set Q(0) = {G(T') = C(0)}. If there were 6, and 6,
for which C(6,) # C(#,), we would have a partition of @ into two nonempty
subfamilies,

0, = {0 : P, concentrated on Q(6,)}
O, = {0 : P, concentrated on Q(6,)}

with the corresponding families of probability measures supported by disjoint subsets
of Q. If such a partition of @ is assumed impossible then C(#) must be a constant, that
is, S must be ancillary. That is the converse to Basu’s theorem. |

Basu’s results can be proved without the use of disintegrations. For us, the advan-
tage of the proof with disintegrations is clean definition of the two sets @ and ©;.

Bayesians work with conditional distributions, by choice. Decision theorists often
apply Bayesian arguments. The next Example broadens slightly the scope of a
venerable admissibility argument, as used by EAToN (1992), for example, by removing
unnecessary sigma-finiteness assumptions. Our approach is based on an idea
explained to us by John Hartigan.

EXAMPLE 9. Let {P, : t € T} be a family of probability measures on X If the map
t — P, f is measurable for nonnegative measurable fon X, and if 7 is a probability
(a prior distribution) on 7, then a probability measure QQ can be defined on XY ® 7 by

Qg = ﬂ—tp;cg(x7 t)

The coordinate maps X and 7T have joint distribution Q. The {P,} have the
interpretation of a 7T-disintegration of Q, that is, the conditional distribution of X
given T = tis P,. The X-disintegration of QQ defines the Bayesian posterior distribu-

tion Q (1) =Q(- | X = x).
If each P, has a density p(x, #) with respect to a sigma-finite ¢ on X, then

Qg = ﬂ-t.u“xp(x7 t)g(xv t)

That is, Q has density p(x, ¢) with respect to the product measure x4 ® 7. The product
measure has the trivial disintegration

(h®m), =,
if we abuse notation as in Example 2. It follows from Example 3 that Q. has density
p(x,1)/m'p(x, 1) 9)

with respect to .
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Given a nonnegative loss function L(¢,d) on 7 ® 7, a Bayes estimator 6(x) can be
defined by the value of « that minimizes the posterior expected loss Q! L(¢, o),

Q! L(t,6(x)) = inf Q_L(t,a) for each x (10)
a

Even nonBayesians are interested in such estimators because they enjoy a number of
nice decision theoretic properties. For example, suppose ¢ has finite Bayes risk

QL(1,8(x)) = 7' PYL(1,8(x)) = V' QLL(1,6(x)) < oo

where v stands for the marginal distribution of X under Q. Suppose also that §*(x) is
another estimator with smaller expected loss,

PYL(t,6"(x)) < PYL(t,6(x)) < oo for m-almost all ¢ (11)
Then strict inequality can hold only on a m-negligible set, for otherwise

0> = PY(L(1,6°(x)) - L(1,6(x))

P () - (12)
= V' QL(L(1, 8" (x)) — L(1,8(x)))

The defining property of 6(x) requires the last integrand to be everywhere non-
negative, which gives a contradiction to the inequality (12).

The preceding argument has little to do with 7 or any of the disintegrating {Q.}
being probability measures, nor with v being the marginal X distribution. It is valid
for any (X, v) disintegration and any sigma-finite 7 (an improper prior), provided the
Bayes estimator defined by equality (10) has finite Bayes risk QL(#, 6(x)).

For example, if P, is the Bin(n, ¢) distribution and = is the improper prior with
density (1 — t)_l with respect to Lebesgue measure 4 on (0, 1), then Q has density

plx, 1) = (Z)tx_l(l gy

with respect to 1 ® u, where p is counting measure on {0, 1, ..., n}. The marginal
measure v = XQ is not sigma-finite; it puts infinite mass at 0 and at n. Nevertheless, Q
has an (X, )-disintegration with Q, having density p(x, f) with respect to 1. Notice
that Q. is a finite measure for 1 < x <n — 1, and both Q) and Q,, are infinite (but
sigma-finite).

Let L(t,d)= (t—d)*. For 1 <x<n—1 the usual argument shows that the
estimator §(x) = x/n minimizes the posterior expected loss. It also minimizes

1

Q)L(1,a) = J(f —a) =0 ar

0

for the trivial reason that the integral is finite only when a equals zero. Similar trivial
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reasoning applies to Q. The estimator ¢ is Bayes for the improper prior «, with a
finite Bayes risk,

anj(?c)’x_l(l — )" /) dr < 0

X:OO

The inequality corresponding to (11) could hold only on a w-negligible set. As both
sides of that inequality would be polynomials in 7, the negligible set would have to be
empty: a contradiction. The Bayes estimator is admissible for quadratic loss. O

ExaMPLE 10. Suppose a distribution P on R? concentrates on two straight lines, L,
and L,, neither of them orthogonal to the x-axis. Suppose the total mass p; that P
assigns to L; is distributed according to a density g; with respect to Lebesgue measure
along the line. An observation (X, Y') is taken from P giving a point with X = x,,.
What is the conditional probability that the point lies on the line L;?

The elementary method approximates {X = x,} by {x, < X < x, + 6}, for a small
positive 6, then argues that

P((X,Y)eL,,xy, <X <x,+9)
P(xy < X < x,+9)
~ P19181(xp)6
P104181(X)0 + P20y 8, (x)0

P(X,Y)eL | X =x)~

where 1/a; is the absolute value of the cosine of the angle between L; and the x-axis.
The small 6 factors cancel out, leaving an equality

P10181 (%)
D108, (xX) + Prangs (X))

P(X,Y)EL, | X=0x)=

in the limit.
Write H{(xg) for the last ratio. If one wants a totally rigorous derivation using the
Kolmogorov approach, one can easily check the defining property analogous to (1),

P{(X,Y) € L }{X € B} = PH,(X){X € B}

for all Borel sets B. Alternatively, one might appeal to some sort of abstract
differentiation theorem to guarantee existence of the limiting ratio and justify its
interpretation as a conditional probability.

Both rigorous derivations would obscure the simple form of the conditional
probability distribution P{- | X = x,}, which puts mass H,(x,) at the point where L,
intersects the line where X' = x,, and mass 1 — H,(x,) at the corresponding point on
L,. Provided (X, Y) does not land at the intersection of the two lines, this conditional
probability distribution gives the asserted mass to line L;. We prefer an argument
that identifies the conditional distribution directly, rather than have it emerge

indirectly from a calculation of uncertain rigor.
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To determine the X-disintegration of P we need first to be precise about what we
mean by a distribution with a density with respect to Lebesgue measure along a line in
RR?. Bring everything back to the x-axis X, by regarding Lebesgue measure along L, as
the image of «a; times Lebesgue measure i along X'. The geometry of the lines enters
only through the «; factors. The measure with density p,g;(-) with respect to Lebesgue
measure on L; is just the image of the measure , with density 4,(x) = «,p, g;(x) with
respect to . Now we can forget all about lines and Lebesgue measure, and solve a
more general problem.

Suppose u is a sigma-finite measure on X and that A, ..., i are nonnegative
integrable functions on X. Let ¢, ... , ¥, be measurable maps into another space ).
Let p; be the finite measure with density /; with respect to u. Let O, be the image of 1,
under the map ¢, that takes x onto (x,v,(x)). That is, Q; is the result of sliding y, to
live on the graph of ; in the product space X ® ). Define P to be the sum of the Q;.
What is the conditional distribution P(- | X = x)?

Formally,

k k
Pf = Z ¢ () () = Zﬂxhi(x)f(wii(x)) (13)
i=1 i=1

Taking the p outside the last sum we immediately get a representation of P as an
(X, p)-disintegration,

Pf=u'Pf

where P, is the measure that puts mass /x) at the points (x, ¥{(x)) fori=1,... k.
Notice that P, is not a probability, but it does live on the set {X = x}. To make the
disintegrating measures probabilities, we need to standardize as prescribed by
Theorem 2. Fori = 1,.. .,k the conditional probability measure P(- | X = x) (that s,
the X-disintegrating measure) puts mass /,(x)/(h,(x) + - - -+ h(x)), except at the
negligible set of x values where the denominator is zero. O

The result from the previous Example is a solution to a Bayesian problem posed to
us by John Hartigan. LE Cam (1986, page 477) has used an analogous disintegration
to establish a bound on Hellinger affinities for convex hulls. With reference to this
result, DoNoHo and Liu (1991, page 644) remarked that “Le Cam has established a
fact which seems, at first, quite similar to ... but is in fact far deeper”. The case of
finite convex combinations is a simple consequence of an identity like (13); the general
case is a consequence of a general disintegration.

For a measure 4 on a product space X ® ) it is traditional to use the name
X-marginal for the image of 1 under the map X that projects onto the X coordinate
space. If 4 happens to be a product of probability measures, P ® v, the X-marginal
equals P. One can safely refer to both P{x € X:x € A} and (P®v){(x,y) €
X®Y:x € A} as “the probability that X lies in the set 4”. However, if v is not a

probability measure, the X-marginal of 4 does not equal P. At worst, ¥ might not
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even be a finite measure, in which case the image measure assigns mass oo to every A
with PA > 0. In this situation there is real danger in thinking of the X- and
Y-coordinates as being independent, or even in thinking of P as the distribution of X.
Bayesians with a penchant for improper priors should be particularly aware of this
problem.

ExaMPLE 11. Suppose (X, Y) has strictly positive probability density f(x, y) with
respect to Lebesgue measure on the unit square (0,1) ® (0, 1). Then, in traditional
notation, X has marginal density f, (x) = [} f (x,») dy and the conditional distribu-
tion of Y given X = x has conditional density fyy(v | x) =/ (x,»)/fy(x). Given
X =x and Y =y, let the Z distribution be the constant multiple 1/f(x, y) times
Lebesgue measure on R. The joint (improper) distribution of (X, Y, Z) is equal to
three-dimensional Lebesgue measure A on (0,1) ® (0,1) ® R.

With / expressed as a product of Lebesgue measure on each coordinate space, we
might be tempted to think of X, Y, and Z as independent, each uniformly distributed.
Indeed, for a product of proper probability measures, the coordinate maps are
independent random variables with those probabilities as their marginal distribu-
tions. However, our Example involves products of improper distributions: the Z
marginal is Lebesgue measure—the improper uniform distribution on the real line—
and conditional on Z = z, the pair (X, Y) is uniformly distributed on the square.
(That is, we have a Z-disintegration of 1 with Lebesgue measure on the unit square as
disintegrating measure.) Since the last conditional distribution does not depend on z,
we might conclude that (X, Y) is uniform on the square, so that X and Y are
independent and uniform on (0, 1). Or should we use the (X, Y')-marginal measure,
which is very infinite, as the joint distribution? Or should we stick with the original
f (x,y) density?

Is there any paradox in (X,Y) appearing to have several different joint
distributions? We think not.

The confusion arises because Lebesgue measure on (0,1)® (0,1) ® R can be
disintegrated in many different ways. The (X, ¥ )-image measure is not sigma-finite; it
cannot be used as the mixing measure in an (X, Y)-disintegration. With the image
measure no longer a candidate, there are many equally plausible mixing measures and
disintegrations, giving many different plausible answers for the joint distribution of X
and Y and for the conditional distribution of Y given X.

When one works only with probability measures, all arguments lead back to the
same joint (marginal) distributions. With infinite measures, different derivations can
lead to different measures. One should exercise some care in bestowing the title of
joint distribution. O

The rather obvious sort of distinction in the last Example can become much more
puzzling when buried within more complicated collections of marginal and condi-
tional distributions, as in the following marginalization paradox of STONE and DAWID
(1972). When their constructions are expressed as explicit assertions about disintegra-
tions, the flaw behind the paradox is quickly revealed.
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ExaMPLE 12. Consider a measure defined on (R+)4, specified in the traditional way by
means of distributions of random variables as coordinate projections. Let
@ ~ L = Lebesgue measure on R*,
(6 | & = ¢) ~ probability density 7(#) with respect to L,
(X | ©=0,d = ¢) ~ exponential, with mean 1/(0¢),
(Z]| X =x,0 =0,0 = ¢) ~ exponential, with mean 1/(¢x).

The random vector (@, O, X, Z) has a joint (improper) distribution 4 with density
1 (.6,x,2) = m(6)fp"xe” " (14)

That is, we have defined a sigma-finite measure on (R*)4 with density f'with respect to
the product L* of Lebesgue measures on the coordinate spaces.
The (&, @, Z)-marginal distribution is sigma-finite with density
o (0)
(0+2)”

f(¢,0,2) =

and the (®, Z) marginal is sigma-finite with density

.ﬂ@@zuazL«Q““>

0+ 2)2

Notice that neither density depends on ¢; both marginal measures are products
having the measure L on the @-axis as a factor.

Disintegration with respect to the (@, Z) marginal measure gives the (O |®, Z)
conditional probability density

o (6)
7

O+z2)1(2)

Noting that the last conditional distribution does not depend on ¢, we might be
tempted to conclude that the (@ | Z) conditional density is
?  On(0)
fO]2)=——5—~

(0+2)1(z)

f(0]¢,z)= (15)

(16)

Example 4 would justify such a conclusion if the (@, Z)-marginal had a disintegration
with the Z-marginal as mixing measure. Unfortunately the Z-marginal is not sigma-
finite. Assertion (16) is based on a false analogy with the result for averaging over
disintegrating probability measures.

Something has gone wrong already, but now let us repeat the same sort of
reasoning along a different path. The (@, X, Z)-marginal is sigma-finite with density

, _ 20x(6)
j(@,x,z) _x2(9+2)3
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and the (X, Z)-marginal is sigma-finite with density 2J(z)/x?, where

_ g0 om(6)
/e =L ((9 n z)3>

The marginal distribution of (@,X,Z) has a (X,Z)-disintegration with the
(@ | X, Z) conditional probability density

(6

x,z) =m0
FO1%3) = e

(17)

Again we might be tempted to interpret the lack of dependence on one variable, x, as
meaning that the (@ | Z) conditional density is

7 on(0

)
0lz)=—-—
f0]z)= 65 2°70)

(18)

And again we would be misled by the analogy with Example 4. The Z-marginal is still
not sigma-finite, no matter how it is calculated.

Formulae (16) and (18) appear contradictory—a paradox. We would explain the
paradox by pointing out that neither formula represents a disintegration of the
(O, Z)-marginal with the Z-marginal as mixing measure. There is no such disintegra-
tion. The assertions (15) and (17) are fine; each statement gives a disintegration with
respect to a sigma-finite measure. In both cases, the trouble comes when we are
tempted to throw away one of the conditioning variables, leaving just the variable Z,
whose image measure is not sigma-finite. We must live with the fact that distributions
conditional on Z are not determined uniquely. So there is no such thing as the (0 | Z)
conditional density. Indeed, in this case, much as in Example 11, the (®, Z) image
measure is not sigma-finite. So in constructing a (©, Z)-disintegration for the joint
distribution of (&, ©, X, Z), we are left with a rather arbitrary choice of what
measure to use as the (@, Z)-mixing measure. If we then regard our choice of (©, Z)-
mixing measures as the “‘joint distribution” for that pair of variables, then clearly we
can arrive at many different “conditional distributions” for (@ | Z).

More concisely, by integrating out variables in different orders we have constructed
two distinct sequences of disintegrations for calculating L ® L ® L @ L( fg):

67z - [} (9) xx - 2 267(9+z)c§x X
L°L [1( )L T LY[x(0+2)°¢ 2(¢,0,2,x)] 1
NI RN DY TRYY. om(0) o[¢ 333 (0+2)%6 Z
= L' |5 L72/()L —(0+Z)3J() [ (0 +2)°x g(¢,9, X)HH

All integrals correspond to probability measures, except for the first “L?(---)” and

the second “L*(---)” and “L*(---)”. If LY(7(6)/6) were finite, then we could also have
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standardized J to be a probability density. It is futile to try to interpret the probability
measures as the conditional distributions. O

ExaMPLE 13. Terms like “Markov chain Monte Carlo” and “Markov sampling”
refer to methods for generating random samples from given distributions by running
Markov chains. Although such methods have quite a long history, they have become
the subject of renewed interest in the last decade, particularly with the introduction
of the “Gibbs sampler” by GEMAN and GEMAN (1984), who used the method in a
Bayesian approach to image reconstruction. The Gibbs sampler itself has enjoyed a
recent surge of intense interest within statistics community, spurred by GELFAND
and SmrtH (1990), who applied the Gibbs sampler to a wide variety of inference
problems.

Recall that a distribution P being stationary for a Markov chain X, X, ... means
that, if X, ~ P, then X, ~ P for all n. The theoretical foundation of Markov sampling
methods is the convergence in distribution of a Markov chain to its stationary
distribution: If a Markov chain Xy, X1, ... has stationary distribution P, then under
quite general conditions (involving irreducibility and aperiodicity), the distribution of
X, for large n is close to P. Thus, in order to generate an observation from a desired
distribution P on X, we find a Markov chain X, X;, ... on X that has P as its
stationary distribution. The theory then suggests that running or simulating the chain
until a large time »n will produce a random variable X,, whose distribution is close to
the desired P. By taking n large enough, in principle we obtain a value that may for
practical purposes be considered a random draw from the distribution P.

The Gibbs sampler is a way of constructing a Markov chain having a desired
stationary distribution. To illustrate the idea, consider a product space X =S ® T
with coordinate maps S and 7. The problem is to generate an observation from a
given probability measure P on X. We assume that both S- and 7-disintegrations of P
exist, giving conditional probability distributions that we will denote as P(- | S = -)
and P(-| T = ). To perform a Gibbs sampler, start with any initial point (Sy, 7).
Then generate S; from the conditional distribution P(- | T = T,), and generate T
from the conditional distribution P(- | S = S,). Continue on in this way, generating
S, from the conditional distribution P(-| 7= T,) and T, from the conditional
distribution P(- | S = S,), and so on. Then the distribution P is stationary for the
Markov chain {(S,,7,):n=0,1,...}. To see this, suppose (S,,7T,) ~ P. In
particular, T is distributed according to the 7-marginal of P, so that, since S; is
drawn from the conditional distribution of S given T' = T, we have (S,,T,) ~ P.
Now we use the same reasoning again: S| is distributed according to the S-marginal
SP, so that (S,,T,) ~ P.

Here is a general formulation of the Gibbs sampler in terms of disintegrations.
Suppose we wish to simulate an observation from a probability measure P on a
space X. The Gibbs sampler consists of a sequence of “moves” that tell us how to
choose a new point X, given a current point X,. For each map T for which a

n+1°
T-disintegration {P,} of P exists, there is a corresponding “7-move”, which is
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performed as follows: Given the current point X, € X, draw the next point X,
according to the distribution Py, ). A T-move leaves the measure P invariant, that s,

YPT(x)f. — Pf

In fact, this is just a restatement of the averaging property required in the definition of
disintegration: defining g(¢) = P, f, we have

Pf = (TP)'P,f = (TP)'g(r) = P*g(T(x)) = PPy f

Thus, for any map 7T, the Markov chain X,, X;, ... produced by a succession of
T-moves has the desired distribution P as a stationary distribution. However, such a
chain would stay on the same level set of the map T forever, that is, we would have
X, € {x: T(x)=T(X,)} for all n. To have convergence in distribution to P starting
from an arbitrary initial distribution, we must perform moves using more than one
disintegration. That is the Gibbs sampler: given a sequence of disintegrations, the
Gibbs sampler is a performance of the corresponding moves. For example, given two
maps S and 7T, we could alternate making S-moves and 7T-moves. Or we could flip a
coin at each iteration to decide whether to make an S-move or a T-move. There is no
need to restrict to product spaces and coordinate maps as in the illustrative simple
setting above. O

4 Other notions of conditioning

We hope we have convinced you that the existence of a disintegration is very
convenient in many statistical problems. However we do not wish to give the impres-
sion that we never feel the need to condition on sigma-fields. After all, the expectation
of an integrable X with respect to the disintegrating [P, is just a version of the abstract
Kolmogorov conditional expectation. More precisely, if we define G(¢) = P, X then,
at least for bounded measurable functions H,

PH(T)X = (TP)'P,(H(T)X)
= (TP)'H()P, X because P, concentrates on {7 = ¢} (19)
=PH(T)G(T)

That is, ¥ = G(T) is the (almost surely) unique random variable that is measurable
with respect to the sigma-field G generated by T for which

PWX =PWY all bounded G-measurable W (20)

As the proof in the Appendix shows, the fact that P, concentrates on {T = ¢} is
actually equivalent to equality (19) for a suitable countable collection of H functions.
No topology is needed there. It is in the interpretation of P(- | G) as an expectation
with respect to a probability measure that topology intervenes, as a way of sorting out

problems with uncountable collections of negligible sets. If we are concerned with the
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conditional expectations of only countably many random variables—as in the theory
of discrete-time martingales, for example—then there is no need to bring in
topological tools to manage the almost sure equivalences. However, in statistical
problems many surprises can lie hidden in the formulations using conditioning on
sigma-fields.

Consider, for example, the concept of sufficiency. One could call a sub-sigma-field
G sufficient for a family P of probability measures on (€2, F) if, for each bounded
F-measurable random variable X there exists a single G-measurable Y for which
equality (20) holds for every P in P. That is the standard rigorous definition. As
BurkHOLDER (1961) showed, the definition allows some disturbing consequences,
such as the possibility of a sufficient G being contained in a finer sigma-field G* that is
not sufficient for P. If the intuition behind sufficiency says that G contains all the
information about which P in P we are sampling from, then how can G* be telling us
something extra? Apparently, the abstract definition has let a few nonintuitive beasts
through the gate. In the case of a dominated family no such problem can exist—
compare with the factorization theorem of Example 6.

In some situations even the abstract definition is too concrete; the interpretation of
Y =P(X | G) as a random variable (or as an equivalence class of random variables)
becomes superfluous. We can identify Y with a transition operator y, mapping
L'(P,F) into L'(P, G), identified by the analog of equality (20),

(GX, W)y =(X,W) all Win L*(P,G)

And then we can dispense with Y altogether and express conditioning properties
purely in terms of a transition operator. DaAwiD (1980) chose something similar as the
best way to deal with the general form of conditional independence.

Finally, one can dispense with the interpretation of the domains of probability
measures as families of random variables on a specific Q set, and treat conditioning as
a transition map between abstract spaces, as in HARTIGAN’s (1983) development of
Bayes theory, or LE CAM’s (1986) theory for convergence of experiments.

By stripping away assumptions unnecessary for the development of a particular
statistical or probabilistic idea, one gains in generality and sometimes even in insight.
We would claim that disintegrations offer more insight into something like the
factorization criterion for sufficiency than a collection of more elementary calcula-
tions for specific cases, sometimes involving unnecessary technical assumptions to
accommodate the details of a particular method. In the same way, disintegrations
could be regarded as overly restrictive, involving unnecessary topological assump-
tions in many abstract conditioning arguments using Radon—Nikodym derivatives.
And so on.

Conditioning is one of the most important ideas of probability and statistics. It is
needed at many different levels of understanding. We see great value in there also
being many ways of formalizing its mathematical description, each suited to a

different purpose.
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5 History

The concepts of conditioning have a long history, which we cannot claim to have
researched carefully. The best we can do is offer some references that might help those
who wish to pursue the topic further.

Logeve (1978, Section 30.2) mentioned that the problem of existence of regular
conditional probabilities was ““investigated principally by Doob”, but he cited no
specific reference. DooB (1953, page 624) cited a counterexample to the unrestricted
existence, which also appears in the exercises to Section 48 of the 1969 printing of
Hawrmos (1950). Doob’s remarks suggest that the original edition of the Halmos book
contained a slightly weaker form of the counterexample. Doob also noted that the
counterexample destroyed a claim made in (DooB, 1938), an error pointed out by
Dicudonné (no citation) and Andersen and Jessen (no citation)—perhaps in their
(1946) paper?

BLACKWELL (1956) cited DIEUDONNE (1948) as the source of a counterexample for
unrestricted existence of a regular conditional probabilities. Blackwell also proved
existence of regular conditional distributions for (what are now known as) Blackwell
spaces. The proof given by DELLACHERIE and MEYER (1978) uses the same sort of
regularity properties on the underlying space.

HoFFMANN-J@RGENSEN (1994, page 162) asserted that KormMoGorov (1933) was the
first to establish existence of regular conditional distributions (for “ordinary random
vectors’). We could not find this result in Kolmogorov’s book; indeed he stressed
(page 50) that the conditional probability P,(B) was determined only up to an almost
sure equivalence. Chapter 10 of the Hoffman-Jergensen book contains an exposition
of the best disintegration theorem available, a result due to PAcHL (1978). Pachl cited
a number of earlier papers on disintegrations.

PARTHASARATHY (1967, Sections V.7 and V.8) cited notes of Varadarajan for his
existence proof for a disintegration.

A mention of the names Doob and Kuratowski by WiLLiams (1979, page 100) was
drawn to our attention by a referee, but we were unable to trace further—Williams
cited no works of those two authors. Probably DooB (1953) was intended, but we can
only guess about Kuratowski. (Maybe the Topology book?)

The key idea in all proofs of existence of regular conditional distributions is that of
compact approximation—existence of a class of approximating sets with properties
analogous to the class of compact sets in a metric space—as a means for deducing
countably additivity from finite additivity. PFANZAGL and PIERLO (1969) developed a
systematic theory of compact approximation. They were cited in the Note Historique
by BourBaki (1969), who also gave credit to Ryll-Nardzewski for disintegration
(no citation), perhaps in some point-process context. In point process theory dis-
integrations appear as Palm distributions—conditional distributions given a point of
the process at a particular position (KALLENBERG, 1969).

PrFANZAGL (1979) gave a condition under which a regular conditional distribution

can be obtained by means of the elementary “limit of ratio of probabilities”.
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The BARNDORFF-NIELSEN, BLAESILD and ERIKSEN (1989) book contains much
material on the invariance properties of conditional distributions, which we have not
yet studied in detail.

6 Appendix: Existence of disintegrations

Here is a condensed proof of the Existence Theorem 1, based on ideas from
DEeLLACHERIE and MEYER (1978, page 78). We agree with them that ““The theorem on
disintegration of measures has a bad reputation, and probabilists often try to avoid
the use of conditional distributions ... But it really is simple and easy to prove.”

The assumptions let us reduce the proofs of both existence and uniqueness to the
case where X is compact and both 4 and p are finite measures. (Partition 7 into
countably many disjoint sets B;, each of finite ; measure. Partition each T~!B; into
sets N, K;,K,,,..., with AN, =0 and each K; compact. For existence, construct
finite disintegrating measures for the restriction of 4 to K;; and p restricted to B;, then
piece together the restrictions. Notice that each disintegrating measure will be sigma-
finite, being constructed from countably many finite measures concentrated on
disjoint sets. For uniqueness, combine the trivial result for the restriction of 1 to a
negligible set with the result for compact sets.)

Define a finite measure v (the image of 4 under the map that takes x onto (x, Tx))
on A® B by vh(x,t) = 2h(x, Tx). It lives on the graph of 7, in the sense that

v{(x,t): Tx #1} =0 (21)

This assertion follows from the countable generation property, and the fact that B
contains all the singleton sets. (Let B, be the countable subclass that generates 5. For
each 7 € 7, the singleton {¢} is equal to {t} = N{B € B, : t € B}, which implies that
{(x, 1) : Tx # 1} = Up 5 {Tx ¢ B,1 € B}. For fixed B in By,

v{TxeB,t¢ B} =MTxe B, Tx¢ B} =0

The set {Tx # ¢} is a countable union of v-negligible sets.)

Now we use compactness to avoid the problem, mentioned at the start of Section 2,
with uncountable families of negligible sets. The trick is to reduce countable
additivity to a condition involving only countably many assertions about conditional
expectations. On the real line one can determine measures from the values taken by
their distribution functions at a countable dense set. On more general spaces, the
following consequence of the Riesz representation theorem, and of the fact that there
exists a sequence of functions dense in the space of all continuous real functions on X
(under the uniform metric), suffices.

If X is a compact metric space then there exists a countable family C, of non-
negative, continuous functions on X such that

(i) Cyis closed under addition
(ii)  for each additive functional ¢ : Cy — R there exists a unique Borel measure L
such that £(f) = Lf for each fin Cy.
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For fixed f in Cy, the map g — v(f(x)g(¢)) defines a measure on B, which is
dominated by p because |v(f(x)g(f))| < CA|g(Tx)|=C(TA)|g| for some
constant C that bounds f. Write 4,/ for a density of this measure with respect to ju:

v(f (x)g(1) = W' (g(1)2,f)

(As a function of ¢, the A,/ integral corresponds to the Kolmogorov conditional
expectation of f.) For almost all ¢, the map " — 4, f is nonnegative and additive, and
hence corresponds to a measure on 4. Invoke a generating-class argument to deduce
that ¢ — A7h(x, t) is measurable, for bounded measurable /4, and vh = p'A7h(x, t). In
particular, Af = p'A} f(x) for each bounded, .A-measurable f. Put /h(x,?) =
{(x,t) : Tx # t} to deduce from property (21) that p'A {x: Tx # t} = 0. Conse-
quently, 4,{x : Tx # t} = 0 for p almost all ¢.

For uniqueness, suppose we have two disintegrations, {4,} and {4;}, of a finite
Radon measure A on a compact metric space. Consider an f in Cy. Define
B, ={t€T:2,/ <7/} The two disintegrations of 4 give

p'{te B}y f=MT € B,}f = p{te By, f

Deduce that pB, =0, thatis, 4, f > A; f for almost all 7. Argue analogously to get the
reverse inequality. Cast out countably many negligible sets as f ranges over Cy, to
deduce that 1, and A; can be different measures only for a p-negligible set of 7 values.
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