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MARS: Multivariate Adaptive Regression Splines (Friedman 1991, Friedman and

Silverman 1989)

An Overview

� MARS is an adaptive procedure for regression, and is well suited for high dimensional
problems.

� It can be viewed as a generalization of stepwise linear regression

� or a modi�cation of the CART method to improve its performance in the regres-
sion setting.

� MARS uses expansions in piecewise linear basis functions of the form in re�ected pairs
(x� t)+ and (t� x)+, with the knots at each observations. Therefore, the collection
of basis functions (Fig 9.9)

C =
�
(Xj � t)+ ; (t�Xj)+
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The Algorithm

� The real art is in the construction of the functions hm (x). (Fig 9.10)

�We start with only the constant function h0 (x) = 1 in the model, and all functions
in the set C are candidate functions.

�At each stage, we consider as a new basis function pair, all products of the function
hm in the model set M with one of the re�ected pairs in C that produces the
largest decrease in the training error. Then the winning products are added to
the model.

�The procedure continues untill the model set M contains some preset maxium
number of terms.

� At the end of the process we have a large model, which often over�ts the data, and so
backward deletion procedure is applied. The terms whose removal causes the smallest
increase in residual square error is deleted from the model at each stage, producing
an estimated best model f̂� of each size(number of terms) �. One would use cross-
validation to estimate the optimal �, but for computional savings the MARS procedure
instead uses generalized cross-validation(GCV).

� The criterion is de�ned as

GCV (�) =
1

N

PN
i=1

�
yi � f̂� (xi)

�2
(1�M (�) =N)2

The value M (�) is the e¤ective number of parameters in the model.
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� Generalized cross-validation provides a convenient approximation to leave-one out
cross-validation, for linear �tting under square-error loss.

What�s the advantage of MARS?

� Why these piecewise linear basis functions?

�A key property of the function is their ability to operate locally. Since they
are zero over part of their ranges, when they are multiplied together the result
is nonzero only over the small part of the feature space where both component
functions are nonzero. (Fig 9.11)

�Computational advantage.

� Why this particular model strategy?

�The forward modeling strategy in MARS is hierarchical, in the sense that mul-
tiway products are built up from products involving terms already in the model.
The philosophy here is that a high-order interaction will likely only exist if some
of its lower order "footprints" exist as well. This need not to be true, but is a rea-
sonable working assumption and avoids the search over an exponentially growing
space of alternatives.

�There is one restriction put on the formation of model terms: each input can
appear at most once in a product. This prevents the formation of higher-order
powers of an input, which increase or decrease too sharplynear the boundaries of
the feature space. Such powers can be approximated in a more stable way with
piecewise linear functions.

� A useful option in MARS procedure is to set an upper limit on the order of interaction,
which can aid in the interpretation.

Relationship of MARS to CART

� Suppose we take the MARS procedure and make the following changes:

�Replace the piecewise linear basis functions by step functions I (x� t > 0) and
I (x� t � 0).
(Multiplying a step function by a pair of re�ected step functions is equivalent to
splitting a node at the step.)

�When a model term is involved in a multiplication by a candidate term, it gets
replaced by the interaction, and hence is not available for further interaction.
(This restriction implies that a node may not be split more than once.)

With these changes, the MARS forward procedure is the same as the CART tree-growing
algorithm.
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