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Abstract

Multidimensional scaling (MDS) is the art of reconstructing pointsets (embeddings) from

pairwise distance data, and as such it is at the basis of several approaches to nonlinear dimen-

sion reduction and manifold learning. At present, MDS lacks a unifying methodology as it

consists of a discrete collection of proposals that differ in their optimization criteria, called

“stress functions”. To correct this situation we propose (1) to embed many of the extant stress

functions in a parametric family of stress functions, and (2) to replace the ad hoc choice among

discrete proposals with a principled parameter selection method. This methodology yields the

following benefits and problem solutions: (a) It provides guidance in tailoring stress functions

to a given data situation, responding to the fact that no single stress function dominates all

others across all data situations; (b) the methodology enriches the supply of available stress

functions; (c) it helps our understanding of stress functions by replacing the comparison of

discrete proposals with a characterization of the effect of parameters on embeddings; (d) it

builds a bridge to graph drawing, which is the related but not identical art of constructing

embeddings from graphs.

Key words and phrases: Multidimensional Scaling, Force-Directed Layout, Cluster Analysis,

Clustering Strength, Unsupervised Learning, Box-Cox Transformations

1 INTRODUCTION

In the last decade and a half an important line of work in machine learning has been non-

linear dimension reduction and manifold learning. Many approaches used in this area are
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based on inter-object distances and the faithful reproduction of such distances by so-called

“embeddings,” that is, mappings of the objects of interest (images, signals, documents, genes,

network vertices, ...) to points in a low dimensional space such that the low-dimensional dis-

tances mimic the “true” inter-object distances as best as possible. Examples of distance-based

methods include, among many others: kernel PCA (KPCA; Schölkopf, Smola, and Müller

1998), “Isomap” (Tenenbaum, Silva, and Langford 2000), kernel-based semidefinite program-

ming (SDP; Lu, Keles, Wright, and Wahba 2005; Weinberger, Sha, Zhu, and Saul 2006), and

two very different methods that both go under the name “local multidimensional scaling” by

Venna and Kaski (2006) and by the present authors (Chen and Buja 2009). These can all be

understood as outgrowths of various forms of multidimensional scaling (MDS).

MDS approaches are divided into two distinct classes: (1) classical scaling of the Torgerson-

Gower type (the older approach) is characterized by the indirect approximation of target dis-

tances through inner products; (2) distance scaling of the Kruskal-Shepard type is characterized

by the direct approximation of target distances. The relative merits are as follows: classical

scaling approaches often reduce to eigendecompositions that provide hierarchical solutions (in-

creasing the embedding dimension means adding more coordinates to an existing embedding);

distance scaling approaches are non-hierarchical and require high-dimensional optimizations,

but they tend to force more information into any given embedding dimension. It is this class

of distance scaling approaches for which the present article provides a unified methodology.

Distance scaling approaches differ in their choices of a “stress function”, that is, a criterion

that measures the mismatch between target distances (the data) and embedding distances. Dis-

tance scaling and the first stress function were first introduced by Kruskal (1964a,b), followed

with proposals by Sammon (1969), Takane, Young and de Leeuw (ALSCAL, 1977), Kamada

and Kaway (1989), among others. The problem with a proliferation of proposals is that pro-

posers invariably manage to find situations in which their methods shine, yet no single method

is universally superior to all others across all data situations in any meaningful sense, nor does

one single stress function necessarily exhaust all possible insights to be gained even from a

single dataset. For example, embeddings from two stress functions on the same data may both

be insightful in that one better reflects local structure, the other global structure.

This situation calls for a rethinking that goes beyond the addition of further proposals.

Needed is a methodology that organizes stress functions and provides guidance to their spe-

cific performance on any given dataset. To satisfy this need we will execute the following

program: (1) We embed extant stress functions in a multi-parameter family of stress functions

that ultimately extends to incomplete distance data or distance graphs, thereby encompassing

“energy functions” for graph drawing; (2) we interpret the effects of some of these parame-

ters on embeddings in terms of a theory that describes how different stress functions entail

different compromises in the face of conflicting distance information; (3) we use meta-criteria
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to measure the quality of embeddings independently of the stress functions, and we use these

meta-criteria to select stress functions that are in well-specified senses (near) optimal for a

given dataset. We have used meta-criteria earlier (Chen and Buja 2009) in a single-parameter

selection problem, and a variation of the approach proves critical in a multi-parameter setting.

For part (1) of the program we took a page from graph drawing which had been in a sit-

uation similar to MDS: a collection of discrete proposals for so-called “energy functions”,

the analogs of stress functions for graph data. This state of affairs changed with the work by

Noack (2003) who embedded extant energy functions in single-parameter families of energy

functions. Inspired by this work, the first author (Chen 2006) proposed in her thesis the four-

parameter family of distance-based stress functions presented here for the first time. These

stress functions are based on Box-Cox transforms and named the “B-C family”; it includes

power laws and logarithmic laws for attracting and repulsing energies, a power law for up-

or down-weighting of small or large distances, as well as a regularization parameter for in-

complete distance data. This family provides an umbrella for several stress functions from the

MDS literature as well as energy functions from the graph drawing literature. A related two-

parameter family of energy functions for weighted graph data was proposed by Noack (2009),

and we study its connection to stress functions for distance data in Section 2.5.

For part (2) of the program, the analysis and interpretation of the stress function parameters,

we develop the nucleus of a theory that explains the effects of the some of the parameters on

embeddings. Here, too, we looked to Noack (2003, 2007, 2009) for a template of a theory,

but it turns out that distance data, considered by us, and weighted graph data, considered by

Noack (2009), require different theories. For one thing, distance data, unlike weighted graph

data, have a natural concept of “perfect embedding”, which is achieved when the target distance

data are perfectly matched by the embedding distances. We show that all members in the B-C

family of stress functions for complete distance data have the property that they are minimized

by perfect embeddings if such exist (Section 2.3) because they satisfy what we call “edgewise

unbiasedness”. In the general case, when there exists no perfect embedding, a natural question

is how the minimization of stress functions creates compromises between conflicting distance

information. To answer this question we introduce the notion of “scale sensitivity”, which

is the degree to which the compromise is dominated by small or large distances through the

interaction of two stress function parameters (Section 2.4).

Before we outline step (3) of our program, we make a point that is of interest to machine

learning: The B-C family of stress functions encompasses energy functions for graph drawing

through an extension from complete to incomplete distance data. First we note that MDS based

on complete distance data has been successfully applied to graph drawing through the device

of shortest-path length computation for all pairs of nodes in a graph; see, for example, Gansner

et al. (2004). Underlying this device is the interpretation of (unweighted) graphs as incomplete
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distance data whereby edges carry a distance of +1 and non-edges have missing distances.

Similarly, the ISOMAP method of nonlinear dimension reduction relies on a complete distance

matrix consisting of shortest path lengths computed from a local distance graph. There exists,

however, another device for extending MDS to graphs: It is possible to canonically extend

all B-C stress functions from complete to incomplete distance data by constructing a limit

whereby intuitively non-edges are imputed with an infinite distance that has infinitesimally

small weight, creating a pervasive repulsing energy that spreads out embeddings and prevents

them from crumpling up. This limiting process offers up a parameter to control the relative

strength of the pervasive repulsion vis-à-vis the partial stress for the known distances, thereby

acting as a regularization parameter that stabilizes embeddings by reducing variance at the cost

of some bias. — This device, first applied by the authors (Chen and Buja 2009) to Kruskal’s

stress function, brings numerous energy functions for unweighted graphs under the umbrella

of the B-C family of stress functions.

Finally, in step (3) of our program, we turn to the problem of selecting “good embeddings”

from the multitude that can be obtained from the B-C family of stress functions. This problem

can be approached in a principled way with a method that was first used by the authors again in

the case of Kruskal’s stress function (Chen and Buja 2009; Chen 2006; Akkucuk and Carroll

2006): We employ “meta-criteria” that judge how well embeddings preserve the input topol-

ogy in a manner that is independent of the stress function used to create the embedding. These

meta-criteria measure the degree to which K-nearest neighborhoods are preserved in the map-

ping of objects to their images in an embedding. K-NN structure is insensitive to nonlinear

monotone transformations of the distances in both domains, implying that the meta-criteria

allow even quite biased (distorted) configurations to be recognized as performing well in the

minimalist sense of preserving K-NNs. Thus the parameters of the B-C family of stress func-

tions can be chosen to optimize a meta-criterion. In this way we turn the ad hoc trial-and-error

search for good embeddings into a parameter selection problem.

This article proceeds as follows: Section 2 introduces the B-C family of stress functions

in steps: It first interprets Kruskal’s (1964a) stress in the framework of attracting and repuls-

ing energies (Section 2.1); it then generalizes these energies with general power laws (Sec-

tion 2.2), discusses the notions of edgewise unbiasedness (Section 2.3) and scale sensitivity

(Section 2.4), as well as the relation between distance- and weight-based approaches (Sec-

tion 2.5), and generalizes the family to the case of incomplete distance data (Section 2.6). The

section concludes with technical aspects concerning the irrelevance of the relative strengths of

attracting and repulsing energies (Section 2.7) and the unit invariance of the repulsion param-

eter for incomplete distance data (Section 2.8). Subsequently, Section 3 introduces the meta-

criteria, and Section 4 illustrates the methodology with simulated examples (Section 4.1), the

Olivetti face data (Section 4.2) and the Frey face data (Section 4.3). Section 5 concludes with
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a discussion.

2 MDS Stress Functions Based on Power Laws

2.1 Kruskal’s Stress as Sum of Attracting and Repulsing Energies

To start we assume a generic MDS situation in which a full set of target distance data D =

(Di,j)i,j=1,...,N is given for all pairs of objects of interest. We assume Di,i = 0 and Di,j > 0

for i 6= j. MDS solves what we may call the “Rand McNalley Road Atlas problem”: Given a

table showing the distances between all pairs of cities, draw a map of the cities that reproduces

the given distances.

Kruskal’s (1964a) original MDS proposal solves the problem by proposing a stress function

that is essentially a residual sum of squares (RSS) between the target distances given as data

and the distances in the embedding. An embedding (configuration, graph drawing) is a set of

points X = (xi)i=1,...,N , xi ∈ IRp, so that

di,j = ‖xi − xj‖

are the embedding distances (we limit ourselves to Euclidean distances). The goal is to find an

embedding X whose distances di,j fit the target distances Di,j as best as possible. Kruskal’s

stress function is therefore

S(d|D) =
∑
i,j

(di,j −Di,j)
2,

where we let d = (di,j)i,j = (‖xi − xj‖)i,j and D = (Di,j)i,j . Optimization is carried out

over all N × p coordinates of the configuration X.

Taking a page from the graph drawing literature, we interpret Kruskal’s stress function as

composed of an “attracting energy” and a “repulsing energy” as follows:

S(d|D) =
∑
i,j

(di,j
2 − 2Di,j di,j) + const.

The term di,j
2 represents an “attracting energy” because in isolation it is minimized by di,j =

0. The term −2Di,jdi,j represents a “repulsing energy” because again in isolation it is min-

imized by di,j = ∞. (The term Di,j
2 is a constant that does not affect the minimization; it

calibrates the minimum energy level at zero.) A stress term (di,j −Di,j)
2 is therefore seen to

be equivalent to a sum of an attracting and a repulsing energy term that balance each other in

such a way that the minimum energy is achieved at di,j = Di,j .
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2.2 The B-C Family of Stress Functions

We next introduce a family of stress functions whose attracting and repulsing energies follow

power laws, in analogy to Noack’s (2003, 2007, 2009) generalized energy functions for graph

drawing. However, we would like this family to also include logarithmic laws, as in Noack’s

(2003, 2007) “LinLog” energy. To accommodate logarithms in the family of power transfor-

mations, statisticians have long used the so-called Box-Cox family of transformations, defined

for d > 0 by

BCα(d) =

{
dα−1
α (α 6= 0)

log(d) (α = 0)

This modification of the raw power transformations dα not only affords analytical fill-in with

the natural logarithm for α = 0, it also extends the family to α < 0 while preserving increasing

monotonicity of the transformations: for α < 0 raw powers dα are decreasing while BCα(d)

is increasing. The derivative is

BCα
′(d) = dα−1 > 0 ∀d > 0, ∀α ∈ IR .

By subtracting the (otherwise irrelevant) constant 1 in the numerator and dividing by α, Box-

Cox transformations are affinely matched to the natural logarithm at d = 1 for all powers α:

BCα(1) = 0, BCα
′(1) = 1.

See Figure 1 for an illustration of Box-Cox transformations.

Using Box-Cox transformations we construct a generalization of Kruskal’s stress function

by allowing arbitrary power laws for the attracting and the repulsing energies, subject to the

constraint that the attracting power is greater than the repulsing power to guarantee that the

minimum combined energy is finite (> −∞). We denote the attracting power by µ + λ and

the repulsing power by µ with the understanding that λ > 0 and −∞ < µ < +∞.

Definition: The B-C family of stress functions for complete distance data D = (Dij)i,j is

given by

S(d|D) =
∑

i,j=1,...,N

Di,j
ν
(
BCµ+λ(di,j) − Di,j

λ BCµ(di,j)
)
. (1)

As we assume Di,j > 0 for i 6= j the weight term Di,j
ν is meaningful for all powers

−∞ < ν < +∞. Thus Di,j
ν upweights the summands for large Di,j when ν > 0 and

downweights them when ν < 0; for ν = 0 the stress function is an unweighted sum. The

parameter ν allows us to capture a couple of extant stress functions; see Table 1. Kruskal’s

stress function does not require ν as it arises from µ = 1, λ = 1 and ν = 0. The idea of
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using general power laws in an attraction-repulsion paradigm arose independently in the first

author’s PhD thesis (Chen 2006) and in Noack (2009). For a discussion of the relationship

between the two proposals see Section 2.5.

2.3 Edgewise Unbiasedness of Stress Functions

The reason for introducing the multiplier Di,j
λ in the repulsing energy is to grant what we call

edgewise unbiasedness: If there exist only two objects, N = 2, with target distance D, then

the stress function S(d) = Dν
(
BCµ+λ(d)−DλBCµ(d)

)
should be minimized by d = D:

D = argmind D
ν
(
BCµ+λ(d)−DλBCµ(d)

)
(2)

This property is easily verified using λ > 0: S′(d) = Dν+µ−1 (dλ −Dλ
)
, hence S′(d) < 0

for d ∈ (0, D) and S′(d) > 0 for d ∈ (D,∞), so that S(d) is strictly descending on (0, D)

and strictly ascending on (D,∞). — This property holds only for this particular choice of the

power Dλ in the repulsing energy term.

Edgewise unbiasedness is essential to grant the following exact reconstruction property:

Proposition: If the target data Di,j form a set of Euclidean distances in the embedding di-

mension, Di,j = ‖xi− xj‖ (i, j = 1, ..., N ), then all B-C stress functions are minimized by the

embeddings that reproduce the target distances exactly: di,j = Di,j .

Note that embeddings are unique only up to rotations, translations and reflections. They

may have additional non-uniqueness properties that may be peculiar to the data.

2.4 Scale Sensitivity

Next we analyze the role of the parameters ν and λ. As we will see, they determine the degree

to which conflicting metric information is decided in favor of small or large target distances. It

is a major goal of MDS procedures to reach good compromises to obtain informative embed-

dings in the general situation when distance data are not perfectly embeddable in a Euclidean

space of a given dimension, be it due to error in the target distances, or due to the distance

interpretation of what is really just dissimilarity data, or due to intrinsic higher dimensionality

of the underlying objects. To gain insight into the nature of the compromises, it is beneficial

to construct a simple paradigmatic situation in which contention between conflicting distance

data can be analyzed. One such situation is as follows: Assume again that there are only two

objects (N = 2), but that target distances were obtained twice for this same pair of objects,

resulting in different values D1 and D2 (due to observation error, say). In practice, one often

reduces multiple distances by averaging them, but a more principled approach is to form a
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stress function with multiple stress terms per object pair (i, j). In general, if target distances

Di,j,k for the object pair (i, j) are observed Ki,j times, the B-C stress function will be

S =
∑

i,j=1,...,N

∑
k=1,...,Ki,j

Di,j,k
ν
(
BCµ+λ(di,j)−Di,j,k

λBCµ(di,j)
)

With this background, the paradigmatic situation of two target distances D1 and D2 observed

on one object pair is the simplest case that exhibits contention between conflicting distance

information. The stress function for the single embedding distance d is

S = D1
ν
(
BCµ+λ(d)−D1

λBCµ(d)
)

+ D2
ν
(
BCµ+λ(d)−D2

λBCµ(d)
)
.

It is minimized by

dmin =
(
α1D1

λ + α2D2
λ
)1/λ

, where α1 =
D1

ν

D1
ν +D2

ν , α2 =
D2

ν

D1
ν +D2

ν , (3)

so that α1+α2 = 1. Thus dmin is the Lebesgue Lλ norm of the 2-vector (D1, D2) with regard

to the Bernoulli distribution with probabilities α1 and α2 (an improper norm for 0< λ< 1).

However, α1 and α2 are also functions of (D1, D2), hence the minimizing distance dmin =

d(D1, D2) is a function of the target distances in a complex way. Yet, the Lebesgue norm

interpretation is useful because it allows us to analyze the dependence of d on the parameters

λ and ν separately:

• For fixed D1 6= D2, the minimizing distance d is a monotone increasing function of ν

for −∞ < ν <∞, and we have

dmin =
(
α1D1

λ + α2D2
λ
)1/λ {

↑ max(D1, D2) as ν ↑ ∞ ,

↓ min(D1, D2) as ν ↓ −∞ .

The reason is that if D1 > D2 we have α1 ↑ 1 as ν ↑ ∞, and α2 ↑ 1 as ν ↓ −∞.

• For fixed D1 6= D2, the minimizing distance d is a monotone increasing function of λ

for 0 < λ <∞, and we have

dmin =
(
α1D1

λ + α2D2
λ
)1/λ {

↑ max(D1, D2) as λ ↑ ∞ ,

↓ D1
α1D2

α2 as λ ↓ 0 .

(These facts generalize in the obvious manner to K distances D1, D2, ..., DK observed on the

pair of objects.) While large distances win out in the limit for λ ↑ +∞, fixed small distances

> 0 will never win out entirely for λ ↓ 0, although for ever smaller λ the compromise will be

shifted ever more toward the smaller distance.

Conclusion: Embeddings that minimize B-C stress compromise ever more in favor of ...

... larger distances as λ ↑ ∞ or ν ↑ ∞, with full max-dominance in either limit;

... smaller distances as λ ↓ 0 or ν ↓ −∞, with full min-dominance only in the ν-limit.
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We use the term “small scale sensitivity” for the behavior of stress functions as λ ↓ 0

and/or ν ↓ −∞. It has the effect of reinforcing local structure because object pairs with

small target distances will preferentially be placed close together in the embedding. A related

observation was made by Noack (2003) for λ ↓ 0 in graph drawing and called “clustering

strength”; this concept is not identical to small distance sensitivity, however; see Section 2.5.

2.5 Distances versus Weights

Noack (2009) presents a family of “energy functions” for weighted graphs/networks that should

be discussed here because it might be thought to be identical to the B-C family of stress func-

tions — which it isn’t, though there exists a connection. The following discussion is meant to

clarify the difference between specifying the relation among object pairs in terms of weights

and in terms of distances.

Underlying the idea of mapping weighted graph data to graph drawings is a density paradigm.

The intuition is that objects connected by edges with large weights should be represented by

embedding points that are near each other so as to form high density areas. Hence large weights

play a similar role as small distances in their intended effects on embeddings. Weights and dis-

tances are therefore in an inverse relation to each other, a fact that will be made precise below.

Next we follow Noack (2009) and consider data given as edge weights wi,j ≥ 0 for all

pairs (i, j) with the interpretation that an edge in a graph “exists” between objects i and j if

wi,j > 0. (He also allows node weights wi, but we set these to 1 as they add no essential

freedom of functional form.) The family of energy functions he considers uses a general form

of power laws for attracting and repulsing energies:

U(d|W ) =
∑

i,j=1,...,N

(
wi,j

di,j
a+1

a+ 1
− di,j

r+1

r + 1

)
, (4)

where we write W = (wi,j)i,j=1,...,N . It is assumed that a > r in order to grant finitely sized

minimizing embeddings for connected graphs. In the spirit, though not the letter, of Box-Cox

transforms, Noack imputes natural logarithms for a+1 = 0 or r+1 = 0. Unweighted graphs

are characterized by wi,j ∈ {0, 1}, in which case the total energy (4) amounts to (1) the sum of

attracting energies limited to the edges in the graph, and (2) the sum of repulsing energies for

all pairs of nodes. This functional form is suggested by traditional energy functions in graph

drawing where an attracting force holds the embedding points xi and xj together if there exists

an edge between them and where the repulsing force is pervasive and exists for all pairs so as

to disentangle the embedding points by spreading them out.

We now ask how the energy functions (4) and the B-C stress functions (1) relate to each

other. A simple answer can be given by drawing on the notion of edgewise unbiasedness: in a

two-node situation with single weight w, find the embedding distance dmin that minimizes the
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energy function (4); this distance dmin = d(w) can be interpreted as the target distance D for

which the energy function is edgewise unbiased. Thus the canonical relation between weights

and target distances is D = d(w). For an energy function (4) the specialization to two nodes

is U = w da+1/(a+ 1)− dr+1/(r + 1), whose stationarity condition is U ′ = wda − dr = 0,

hence w = 1/da−r and d(w) = 1/w1/(a−r), as noted by Noack (2009), eq. (3). Thus the

correspondence between w and its edgewise unbiased target distance D is

D =
1

w1/(a−r) . (5)

Using the translation wi,j = Di,j
−(a−r) and the convention wi,j = 0 ⇒ Di,j = +∞ ⇒

Di,j
−(a−r) = 0, we can rewrite the energy function (4) modulo irrelevant constants as

U(d|D) ∼
∑

i,j=1,...,N

(
Di,j

−(a−r)BCa+1(di,j) − BCr+1(di,j)
)

(6)

A comparison with (1) shows that the 2-parameter familiy of energy functions (6) forms a

subfamily of the 3-parameter family of distance-based B-C stress functions (1) as follows:

ν = −(a− r), µ = r + 1, λ = a− r.

Thus the essential constraint is that λ=−ν, entailing ν<0. In light of the results of Section 2.4

this constraint implies a counterbalancing of distance sensitivities implied by these parameters:

as λ ↑ ∞ large distance sensitivity increases, but simultaneously ν = −λ ↓ −∞ and hence

small scale sensitivity increases as well. Full clarity of the interplay is gained by repeating the

exercise of Section 2.4 in the case ν = −λ: Given two target distances D1 and D2 for N =2

objects, the minimizing distance is obtained by specializing (3) to ν = −λ:

dmin =
1(

1
2D1

−λ + 1
2D2

−λ)1/λ
{
↓ min(D1, D2) as λ ↑ ∞ ,

↑
√
D1D2 as λ ↓ 0 .

Thus the minimizing distance dmin is the reciprocal of the Lebesgue Lλ norm of the vector

(D1
−1, D2

−1) with regard to a uniform distribution α1=α2=1/2. The identification ν = −λ
has therefore a considerable degree of small scale sensitivity for all values of λ > 0, and

counter-intuitively it increases with increasing λ: apparently the increasing small scale sensi-

tivity incurred from the parameter ν ↓ −∞ outweighs the diminished small scale sensitivity

due to λ ↑ +∞.

It follows that Noack’s (2003) notion of “clustering strength” is not identical to our notion

of small scale sensitivity because clustering strength increases for λ = −ν ↓ 0. Rather,

clustering strength has to do with the implied translation of a fixed weightw to a target distance

D=1/w1/λ according to (5): relatively large weights w will result in relatively ever smaller

target distances D as λ ↓ 0, thus reinforcing the clustering effect by the simple translation

w 7→ D. Diminishing small scale sensitivity for λ = −ν ↓ 0 is a lesser effect by comparison.
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2.6 B-C Stress Functions for Incomplete Distance Data or Dis-
tance Graphs

In order to arrive at stress functions for non-full graphs, we extend a device we used previously

to transform Kruskal-Shepard MDS into a localized or graph version called “local MDS” or

“LMDS” (Chen and Buja 2009). We now assume target distances Di,j are given only for

edges (i, j) ∈ E in a graph. Starting with stress functions (1) for full graphs, we replace the

dissimilarities Di,j for non-edges (i, j) /∈ E with a single large dissimilarity D∞ which we let

go to infinity. We down-weight these terms with a weight w in such a way that wD∞λ+ν =

tλ+ν is constant:

S =
∑

(i,j)∈E

Di,j
ν
(
BCµ+λ(di,j) − Di,j

λ BCµ(di,j)
)

+ w
∑

(i,j)/∈E

D∞
ν
(
BCµ+λ(di,j) − D∞

λ BCµ(di,j)
)

As D∞ →∞, we have w = (t/D∞)ν+λ → 0 and wD∞ν → 0, hence in the limit we obtain:

S =
∑

(i,j)∈E

Di,j
ν
(
BCµ+λ(di,j) − Di,j

λ BCµ(di,j)
)
− tν+λ

∑
(i,j)/∈E

BCµ(di,j) . (7)

This procedure justifies wiping out the attracting energy outside the graph. We call (7) the B-C

family of stress functions for distance graphs. The parameter t balances the relative strength

of the combined attraction and repulsion inside the graph with the repulsion outside the graph.

For completeness, we list the assumed ranges of the parameters:

t ≥ 0 , λ > 0 , −∞ < µ <∞ , −∞ < ν <∞.

An interesting variation of the idea of pervasive repulsion is proposed by Koren and Civril

(2009) who use finite rather than limiting energies.

2.7 An Irrelevant Constant: Weighting the Attraction

Noack (2003, Sec. 5.5) observed that for his LinLog energy function the relative weighting

of the attracting energy relative to the repulsing energy is irrelevant in the sense that such

weighting would only change the scale of the minimizing layout but not the shape. A similar

statement can be made for all members of the B-C family of stress functions. To demonstrate

this effect, we introduce B-C stress functions whose attraction is weighted by a factor cλ (c >

0):

Sc(d) =
∑

(i,j)∈E

Di,j
ν
(
cλ BCµ+λ(di,j) − Di,j

λ BCµ(di,j)
)
− tν+λ

∑
(i,j)/∈E

BCµ(di,j) ,
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Choice of Parameters Special Cases

E = V 2, λ = 1, µ = 1, ν = 0 MDS (Kruskal 1964a; Kruskal & Seery 1980)

E = V 2, λ = 2, µ = 2, ν = 0 ALSCAL (Takane, Young and de Leeuw 1977)

E = V 2, λ = 1, µ = 1, ν = −2 Kamada & Kawai (1989)

E = V 2, λ = 1, µ = 1, ν = −1 Sammon (1969)

E ⊂ V 2, λ = 1, µ = 1, ν = 0, t > 0 LMDS (Chen and Buja 2009)

E ⊂ V 2, λ = 3, µ = 0, Di,j = 1, t = 1 Fruchterman & Reingold (1991)

E ⊂ V 2, λ = 4, µ = −2, Di,j = 1, t = 1 Davidson & Harel (1996)

E ⊂ V 2, λ = 1, µ = 0, Di,j = 1, t = 1 Noack’s LinLog (2003)

E ⊂ V 2, λ = 1, µ = 1, Di,j = 1, t = 1 Noack’s QuadLin (2003)

E ⊂ V 2, λ > 0, µ = 0, Di,j = 1, t = 1 Noack’s PolyLog family (2003; his r = λ)

Table 1: Some special cases of stress functions and their parameters in the B-C family. The first

four entries refer to stress functions for complete distance data; the last five entries refer to energy

functions for plain graphs (in which case Di,j = 1 for all edges and hence ν is vacuous). LMDS

applies to incomplete distance data or distance graphs, as do all members of the B-C family. (Not

included is Noack’s (2009) family of power laws for weighted graphs because they become stress

functions for distance graphs only after a mapping of weights to distances.)

where d = (di,j) is the set of all configuration distances for all pairs (i, j), including those

not in the graph E. The repulsion terms are still differentially weighted depending on whether

(i, j) is an edge of the graph E or not, which is in contrast to most energy functions proposed

in the graph layout literature where invariably t = 1.

In analogy to Noack’s argument, we observe the following form of scale equivariance:

S1(cd) = cµ Sc(d) + const (8)

As a consequence, if d is a minimizing set of configuration distances for Sc(·), then the dis-

tances cd of the scaled embedding cX minimize the original unweighted B-C stress function

S1(·).
It is in this sense that Noack’s PolyLog family of stress functions can be considered as

a special case of the B-C family: PolyLog energies agree with B-C stress functions for un-

weighted graphs (Di,j = 1) for µ = 0 and t = 1 up to a multiplicative factor in the attracting

energy.
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2.8 Unit-Invariant Forms of the Repulsion Weight

In the B-C family of stress functions (7), the relative strength of attracting and repulsing forces

is balanced by the parameter t. This parameter, however, has two deficiencies: (1) It suffers

from a lack of invariance under a change of units in the target distancesDi,j ; (2) it has stronger

effects in sparse graphs than dense graphs because the number of terms in the summations

over E and V \ E vary with the size of the graph E. Both deficiencies can be corrected by

reparametrizing t in terms of a new parameter τ as follows:

tλ+ν =
|E|

|V 2| − |E|
·
(
median(i,j)∈E Di,j

)λ+ν · τλ+ν . (9)

This new parameter τ is unit free and adjusted for graph size. (Obviously the median can be

replaced with any other statistic S(D) that is positively homogeneous of first order: S(cD) =

cS(D) for c > 0.) These features enable us to formulate past experience in a problem-

independent fashion as follows: in the examples we have tried, τ = 1 has yielded satisfactory

results. In light of this experience, there may arise few occasions in practice where there is a

need to tune τ . As users work with different units inDi,j or different neighborhood sizes when

defining NN-graphs, the recommendation τ = 1 stands. Just the same, we will illustrate the

effect of varying τ in an artificial example (Section 4.1).

3 Meta-Criteria For Parameter Selection

Following Chen and Buja (2009) and Akkucuk and Carroll (2006), we describe “meta-criteria”

to measure the quality of configurations independently of the primary stress functions. The

main purpose of these meta-criteria is to guide the selection of parameters such as those in the

B-C family, λ, µ and τ . The idea is to compare “input neighborhoods” defined in terms ofDi,j

with “output neighborhoods” defined in terms of di,j by measuring the size of their overlaps.

Such neighborhoods are typically constructed asK-NN sets or, less frequently, in metric terms

as ε-neighborhoods. In a dimension reduction setting one may define for the i’th point the

input neighborhood ND(i) as the set of K-NNs with regard to Di,j and similarly the ouput

neighborhood Nd(i) as the set of K-NNs with regard to di,j . In an unweighted graph setting,

one may define ND(i) as the metric ε = 1 neighborhood, that is, the set of points connected

with the i’th point in the graph E, and hence the neighborhood size K(i) = |ND(i)| is the

degree of the i’th point in the graph E and will vary from point to point. The corresponding

output neighborhood Nd(i) can then be defined as the K(i)-NN set with regard to di,j . The

pointwise meta-criterion at the i’th point is defined as size of the overlap between Nd(i) and

ND(i), hence it is in frequency form

Nd(i) = |Nd(i) ∩ND(i)| ,
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and in proportion form, using |ND(i)| as the baseline,

Md(i) =
|Nd(i) ∩ND(i)|
|ND(i)|

.

The global meta-criteria are simply the averages over all points:

Nd =
1

|V |
∑
i

Nd(i) and Md =
1

|V |
∑
i

Md(i) .

Only when all input neighborhood sizes are equal, |ND(i)| = K, is there a simple relationship

between Nd and Md: Md = 1
KNd. We subscript these quantities with d because they serve

to compare different outputs (xi)i=1...N (configurations, embeddings, graph drawings), but all

that is used are the interpoint distances di,j = ‖xi−xj‖. The proportion form Md is obviously

advantageous because it allows comparisons across different K (or ε).

Whether the meta-criterion values are small or large should be judged not against their

possible ranges ([0, 1] for Md) but against the possibility that di,j (hence the embedding) and

Di,j are entirely unrelated and generate only random overlap in their respective neighborhoods

Nd(i) and ND(i). The expected value of random overlap is not zero, however; rather, it is

E[|Nd(i)∩ND(i)|] = |Nd(i)| · |ND(i)|/(|V |−1) because random overlap should be modeled

by a hypergeometric distribution with |ND(i)| “defectives” and |Nd(i)| “draws” from a total

of |V | − 1 “items.” The final adjusted forms of the meta-criteria are therefore:

Nadj
d (i) = |Nd(i) ∩ND(i)| −

1

|V | − 1
|Nd(i)| · |ND(i)| ,

Madj
d (i) =

|Nd(i) ∩ND(i)|
|ND(i)|

− 1

|V | − 1
|Nd(i)| ,

Nadj
d =

1

|V |
∑
i

Nadj
d (d) , Madj

d =
1

|V |
∑
i

Madj
d (d) .

When the neighborhoods are all K-NN sets, |Nd(i)| = |ND(i)| = K, these expressions

simplify:

Nadj
d (i) = |Nd(i) ∩ND(i)| −

K2

|V | − 1
,

Madj
d (i) =

|Nd(i) ∩ND(i)|
K

− K

|V | − 1
=

Nadj
d (i)

K
,

Nadj
d = Nd −

K2

|V | − 1
, Madj

d = Md −
K

|V | − 1
=

Nadj
d

K
.

An important general observation is that if the neighborhoods are defined as K-NN sets,

the meta-criteria are invariant under monotone transformations of both inputs Di,j and out-

puts di,j . Methods that have this invariance are called “non-metric” in proximity analy-

sis/multidimensional scaling because they depend only on the ranks and not the actual values

of the distances.
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In what follows, we will report Madj
d for each configuration shown in the figures, and we

will also use the pointwise values Md(i) as a diagnostic by highlighting points with Md(i) <

1/2 as problematic in some of the figures.

Remark: Venna and Kaski (2006, and references therein) introduce an interesting distinction

between “trustworthiness” and “continuity” measurement. In our notation the points inNd(i)\
ND(i) violate trustworthiness because they are shown near but are not near in truth (near =

being in the K(i)-NN), whereas the points in ND(i) \ Nd(i) violate continuity because they

are near in truth but not shown as near. Venna and Kaski (2006) measure both violations

separately based on distance-ranks. We implicitly also measure both, but more crudely by

unweighted counting of violations. It turns out, however, that the two violation counts are the

same: |Nd(i)\ND(i)| = |ND(i)\Nd(i)| = K(i)−|Nd(i)∩ND(i)|. Thus our meta-criterion

is simultaneously a measure of trustworthiness and of continuity. — Lee and Verleysen (2008)

introduce a larger class of potentially interesting meta-criteria that include ours and Venna and

Kaski’s (2006) as special cases.

4 B-C Stress Functions Applied

4.1 Simulated Data

We introduced three parameters in the B-C stress functions for complete distance data, namely,

λ, µ and ν, and a fourth parameter, τ , in the B-C stress functions for incomplete distance graph

data. In this subsection, we will examine how three of the four parameters affect configurations

in terms of their local and global structure by experimenting with an artificial example. We

will simplify the task and eliminate the parameter ν by setting it to zero, so that the weight

Di,j
ν = 1 disappears from the stress functions. The reason for doing so is that both parameters

ν and λ play a role in determining scale sensitivity, and, while they are not redundant, the

weighting power ν is the more dangerous of the two because it can single-handedly destabilize

stress functions as ν ↓ −∞ through unlimited outweighting of large distances. By comparison,

the small scale sensitivity caused by small values of the parameter λ > 0 is limited as the

analysis of Section 2.4 shows.

To illustrate the effects of the remaining parameters λ, µ and τ on embeddings, we con-

structed an artificial data example consisting of 83 points that form a geometric shape repre-

sented in Figure 2 (top). The design was inspired by a simulation example used by Trosset

(2006). The distance between any pair of adjacent points is set to 1. To define an initial local

graph, as input to the stress functions, we connected each point with its adjacent neighbors

with distance 1 (Figure 2, bottom). That is, we used metric nearest neighborhoods with ra-

dius 1. Thus, interior points have node degree 4, corner points and connecting points have
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node degree 2, and the remaining peripheral points have node degree 3. The geometry of this

input graph is intended to represent three connected clusters with an internal structure that is

relatively tight compared to the connecting structure.

We produced 2-D configurations using B-C stress functions, and to explore the effect of

the parameters on the configurations, we varied each of the three parameters one at a time.

For each combination of parameters, we used two different starting configurations: the inputs

from Figure 2, and a random start, respectively. Starting from the true input configurations

is of course not actionable in practice, but it serves a purpose: it demonstrates the biases

and distortions implied by minimization of the stress function under the best of circumstances.

Starting from a random configuration, on the other hand, gives indications about the stability of

the solutions in terms of local minima, as well as the effort required to get from an uninformed

starting configuration to a meaningful local minimum. (In practice, one never knows how truly

optimal any configuration is that has been obtained by a numerical algorithm, and a better

sense of the issue is often obtained only by analyzing the solutions obtained from multiple

restarts.)

For starts from the input configurations, the results are shown in Figures 3, 5, and 7, and

for starts from random configurations they are shown in Figures 4, 6, and 8, along with their

Madj values that measure the local faithfulness of the configuration. We also colored red the

points whose neighborhood structure is not well preserved in terms of a proportion < 1/2 of

shared neighbors between input and output configurations (M(i) < 1/2).

Parameter λ: We set µ = 0 and τ = 1 and let λ vary as follows: λ = 5, 2, 1, 0.5.

The resulting configurations are shown in Figures 3 and 4. The overall observation from both

figures is that for smaller λ the greater small-scale sensitivity causes the configurations to

cluster more strongly. We also notice in both figures that Madj increases with decreasing λ,

which indicates local structure within clusters is better recovered when the clusters are well

separated. To confirm this, we show a zoom on the nearly collapsed points in the bottom right

configurations and observe the square structure in the input configuration is almost perfectly

recovered. This indicates that by tuning λ properly the resulting configurations can reveal both

macro structure in terms of relative cluster placement as well as micro structure within each

cluster.

Parameter µ: In Figures 5 and 6, we examine the effect of µ. We fix λ = 5 and τ = 1

and let µ vary as follows: µ = −1, 0, 1, 2. An overall observation is that the larger µ, the

more spread out are the points. This is consistent with the interpretation of µ as the power

law of repulsion. With smaller µ (such as µ = −1) the stress function flattens out as the

distance increases (Figure 1) and the points are subject to very weak repulsion. The top left

plots (µ = −1) in both figures show that weak repulsion is suitable for generating locally

faithful structure. However, the repulsion can be too weak to generate globally meaningful
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structure, as illustrated by the configurations obtained from random starts (Figure 6). In the

top left plot of Figure 6, the three clusters are not aligned properly due to the weak repulsion.

With stronger repulsion the points are placed in a globally more correct position, as shown in

bottom two plots in Figure 6, with a sacrifice of local faithfulness (as reflected by the lower

value of Madj). The distortion of local structure is not surprising considering the fact that the

repulsion is stronger in the direction in which points line up, which in this case is the horizontal

direction. By comparison, points are squeezed flat in the vertical direction because repulsion

has no traction vertically.

Parameter τ : We fix λ = 5 and µ = 0 and vary τ as follows: τ = 0.01, 1, 103, 105. The

configurations starting from the original design and from a random start are shown in Figures 7

and 8. Figure 7 shows that the configuration closest to the input configuration is achieved with

relatively small τ (τ = 0.01). This indicates that the B-C stress functions for small τ are

quite successful in recreating local distances as they are supposed to. From a random start,

however, the configuration can be easily trapped in a local minimum with small τ (Figure 8,

top two plots), which indicates that the relative weight of repulsion to attraction controlled by

τ plays an essential role in achieving a stable configuration. With relatively larger τ , the points

are more spread-out and configurations reveal the underlying structure more faithfully, both

locally and globally (bottom two plots, Figure 8).

4.2 Olivetti Faces Data

This dataset, published on Sam Roweis’ website, contains 400 facial images of 40 people, 10

images for each person. All images are of size 64 by 64. Mathematically, each image can be

represented by a long vector, each element of which records the light intensity of one pixel

in the image. Given this representation, we treat each image as a data point lying in a 4096-

dimensional space (64 × 64 = 4096). For visualization purposes we reduce the dimension

from 4096 to 2. As the 40 faces form natural groups, we would expect effective dimension

reduction methods to show clusters in their configurations. If this expectation is correct, then

this dataset provides an excellent test bed for the effect of the clustering power λ.

We first centered the data, a 400× 4096 matrix, at their row means to adjust the brightness

of the images to the same level. We constructed a pairwise distance matrix using Euclidean

distances in the original high dimensional space R4096. We then defined a local graph using

4-NN, that is, we connected each point to its four nearest neighbors. In the resulting graph

five small components were disconnected from the main component of the graph. Each of

them contained images from a single person, with 5 images for one person and 5 images for

another four persons. Since the disconnected components are trivially pushed away from the

main component in any embedding due to the complete absence of attraction, we discarded
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them and kept the 355 images representing 36 people for further analysis. We created for each

person a unique combination of color and symbol to code the points representing it.

Figure 9 shows 2D configurations generated by different stress functions (7) with different

clustering powers, λ = 2, 1, 2/3, 1/2, while the other parameters are fixed at µ = 0 and

τ = 1. For the largest value, λ = 2, we do not see any clusters; for λ = 1, we see some fuzzy

clusters forming; as λ decreases the clusters become clearer. The colors and symbols show that

these clusters are not artifactual but real, mostly representing the images of the same person.

The configurations do not produce exactly 36 clusters: some images of different people are

not quite distinguishable in the configurations and some images of the same person are torn

apart. The former could really present similar images; the latter could be due to the placement

of images in the random start. However, the overall impression is to confirm the clustering

effect due to small scale sensitivity for small values of λ. An interesting observation is that the

meta-criterion Madj
k increases as the small scale sensitivity strengthens, which assures us of

the faithfulness of local topology.

For comparison, Figure 10 shows 2D configurations generated from four popular dimen-

sion reduction methods: PCA, MDS, Isomap and LLE. PCA and MDS did not find any clus-

ters. Isomap and LLE did reveal a few clusters, but not as many nor as clearly as some of

those obtained from the BC-family, even though we tuned the neighborhood size for Isomap

and LLE to achieve the best visualization. For example, we chose a different neighborhood

size K = 8 for LLE and Isomap K = 4; LLE configurations degenerated to lines or lines

and a big cluster when K = 4 and 6, respectively.

4.3 Frey Face Data

In the Olivetti data we were able to show successful use of the small scale sensitivity for small

values of λ. In the present example, the Frey face data, we study the effect of µ and its interac-

tion with λ. The data were originally published with the LLE article (Roweis and Saul, 2000).

We studied its low dimensional configurations from various dimension reduction methods in

Chen and Buja (2009). The data contains 1965 facial images of “Branden Frey,” which are

stills of a short video clip recorded when Frey was making different facial expressions. Each

image is of size 20× 28 which can be thought of as a data point in 560-dimensional space. In

our experiments we use a subset of 500 images in order to save on computations and in order

to obtain less cluttered low dimensional embeddings. The fact is that the intrinsic structure

of the full dataset is well preserved in this subset, partly due to the inherent redundancies in

video sequences: the images close in order are very similar because the stills are taken more

frequently than Frey’s facial expression changes.

In Figure 11 we show the first two principal components of the 3D configurations for
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varying µ as λ and τ are fixed at one. The neighborhood size is K = 6. The coloring scheme

is adapted from the LMDS configurations of Chen and Buja (2009) where the points were

colored to highlight the clustering structure found in those configurations. The bottom left

configuration with parameters λ = µ = 1 is an LMDS configuration. We observe that the

small scale sensitivity of a fixed value λ = 1 varies as µ varies. With smaller µ such as -1 and

0, the small scale sensitivity is most pronounced: we see bigger clusters in the configurations

with larger µ are split into smaller ones. On the other hand, larger values such as µ = 1, 2

clearly provide connectivity between clusters and therefore better capture the global structure

in the data. The local neighborhood structure, though, is better reflected in the configurations

with smaller values of µ, as suggested by the values of meta-criteria.

5 Summary and Discussion

Our work contributes to the literature on proximity analysis, nonlinear dimension reduction and

graph drawing by systematizing the class of distance-based approaches whose commonality is

that they generate embeddings (maps, configurations, graph drawings) of objects in such a

way that given input distances between the objects are well-approximated by output distances

in the embedding. The systematization consists of devising a multi-parameter family of stress

functions that comprises many published proposals from the literatures on proximity analysis

(MDS) and graph drawing. A benefit is that the seemingly arbitrary selection of a loss function

is turned into a parameter selection problem based on external “meta-criteria” that measure the

quality of embeddings independently of the stress functions.

The parameters of the proposed family have the following interpretations:

• λ: This parameter determines the relative strengths of the attracting and repulsing forces

to each other, while maintaining “edgewise unbiasedness” of the stress function. In prac-

tical terms, this parameter strongly influences “small scale sensitivity”: For decreasing

λ, it increases the small-scale sensitivity, that is, the tendency to group together nearby

points in the embedding. Range: λ > 0.

• µ: This parameter is the power law of the repulsing energy. The greater µ, the greater

is the tendency to suppress large discrepancies between inputs Di,j and outputs di,j .

Range: −∞ < µ < +∞.

• ν: This is a weighting parameter that allows up- and down-weighting of pairs of objects

as a function of the input distance Di,j . For example, as ν decreases below zero, stress

terms for large distances Di,j will be progressively down-weighted. Range: −∞ < ν <

+∞.
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• τ : A regularization parameter that stabilizes configurations for incomplete distance data,

that is, distance graphs, at the cost of some bias (stretching of configurations), achieved

by imputing infinite input distances with infinitesimal repulsion. Range: τ > 0.

The power laws for attracting and repulsing energies are interpreted as Box-Cox transforma-

tions, which has two benefits: (1) Box-Cox transformations encompass a logarithmic attracting

law for µ+ λ = 0 and a logarithmic repulsing law for µ = 0; (2) they permit negative powers

for both laws because the Box-Cox transformations are monotone increasing for powers in

the whole range of real numbers. — The regularization parameter τ plays a role only when

the input distance matrix is incomplete, as in the case of a distance graph or in the case of

localization by restricting the loss function to small scale (as in LMDS; Chen and Buja 2009).

The problem of incomplete distance information is often solved by completing it with ad-

ditive imputations provided by the shortest-path algorithm, so that MDS-style stress functions

can be used — the route taken by Isomap (Tenenbaum et al. 2000). The argument against such

completion is that stress functions tend to be driven by the largest distances, which are imputed

and hence noisy. Conversely the argument against not completing is that the use of pervasive

repulsion to stabilize configurations amounts to imputation also, albeit of an uninformative

kind. A full understanding of the trade-offs between completion and repulsion is currently

lacking, but practitioners can meanwhile experiment with both approaches and compare them

on their data. In both cases the family of loss functions proposed here offers control over the

scale sensitivity parameter λ, the repulsion power µ, and the weighting power ν.

Another issue with distance-based approaches is that there is often much freedom in choos-

ing the distances, in particular when applied to dimension reduction. There is therefore a need

to systematize the choices and provide guidance for “distance selection.”
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6 APPENDIX: STRESS MINIMIZATION

Minimizing stress functions can be a very high-dimensional optimization problem involving

all coordinates of all points in an embedding, amounting to Np parameters. For this rea-

son, minimization algorithms tend to be based on simple gradient descent (Kruskal 1964b) or

on majorization (Borg and Groenen 2005). We limit ourselves in this appendix to providing

gradients, though with one innovation to solve the following problem: optimization of stress

functions tends to spend much effort on getting the size of the embedding right, which is not

only unnecessary but also may cause delay of convergence when in fact the shape of the em-

bedding is already optimized, or misjudgement of convergence when the size has been gotten

right but the shape has not. This appendix proceeds therefore in three steps: Section 6.1 pro-

vides gradients for plain stress functions as presented in the body of this article; Section 6.2

derives size-invariant versions of stress functions; Section 6.3 provides gradients for the latter.

(In order to make the formulas more readable, we set the parameter ν to zero and hence ignore

it; it would be a simple matter to put it back in the formulas.)

6.1 Gradients for Stress Functions

Let the N × p matrix X = (x1, · · · , xN )T represent the embedding consisting of n points

in d dimensions. As always let Di,j be the input distances and di,j = ‖xi − xj‖ the output

distances. The B-C stress function for µ 6= 0 and µ+ λ 6= 0 (but ν = 0) is

S(x1, · · · , xN ) =
∑

(i,j)∈E

(
di,j

µ+λ − 1

(µ+ λ)
−Di,j

λ di,j
µ − 1

µ

)

− tλ
∑

(i,j)∈EC

di,j
µ − 1

µ
(10)

Let∇S = (∇1, · · · ,∇N )T be the gradient of the stress function with respect to X:

∇i =
∂S

∂xi
=

∑
j∈ND(i)

(
di,j

µ+λ−2 −Di,j
λdi,j

µ−2
)
(xi − xj)

− tλ
∑

j∈N cD(i)

di,j
µ−2(xi − xj)

Define a N ×N matrix M as follows:

Mij =

{
di,j

µ+λ−2 −Di,j
λdi,j

µ−2 if j ∈ E(i)

−tλdi,jµ−2 if j /∈ E(i)
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Note that M is symmetric. The gradient can be simplified to

∇i =
∂S

∂xi
=
∑
j

Mji(xi − xj)

= (
∑
j

Mji)xi −
∑
j

Mjixj ,

and

∇S = X ∗ (M · E)−M · X ,

where E is a N × d matrix with all elements being 1. The symbol ‘∗’ represents elementwise

multiplication of the two matrices of the same size, and the symbol ‘·’ stands for regular matrix

multiplication.

6.2 Size-Invariant Forms of B-C Stress Functions

As mentioned, it is a common experience that algorithms for minimizing stress functions spend

much effort on getting the size of the embedding right. Size, however, is not of interest —

shape is. We have therefore a desire to re-express stress in a manner that is independent of

size. Fortunately, there exists a general method that achieves this goal: For any configuration,

minimize stress with regard to size and replace the original stress with its size-minimized value.

This works because the minimization with regard to size can be carried out explicitly with

elementary calculus. The result is a new form of stress that is minimized by the same shapes

as the original stress, but it is independent of size and hence purely driven by shape. The

computational advantage of size-invariant stress is that gradient-based optimization descends

along directions that change shape, not size. — We sketch the derivation (again for ν = 0 for

less unwieldy formulas).

It is convenient to collect the repulsion terms inside and outside the graph because they

share the power law:

S =
∑

(i,j)∈E

BCµ+λ(di,j) −
∑

(i,j)∈V 2

D̃λ
i,j BCµ(di,j) .

where

D̃i,j =

{
Di,j , (i, j) ∈ E
t, (i, j) /∈ E

Next, consider a configuration X = (xi)i=1...N and resized versions sX = (s xi)i=1...N thereof

(s > 0). The configuration distances scale along with size: di,j(sX) = s di,j(X). To find the

stationary size factor s of the stress as a function of s, S = S(s), we observe that

∂

∂s
BCµ(s di,j) = sµ−1di,j

µ (∀µ ∈ IR).
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In particular, this holds even for µ = 0. Next we solve the stationary equation and check

second derivatives:

S(sd) =
∑
E

BCµ+λ(s di,j) −
∑
V 2

D̃λ
i,j BCµ(s di,j) , (11)

S′(sd) = sµ+λ−1 Tden − sµ−1Tnum , (12)

S′′(sd) = (µ+λ−1) sµ+λ−2 Tden − (µ− 1) sµ−1Tnum , (13)

where Tden = Tden(d) and Tnum = Tnum(d) are defined for d = (di,j) by

Tden =
∑
E

di,j
µ+λ , Tnum =

∑
V 2

D̃λ
i,j di,j

µ,

and again (12) and (13) hold even for µ = 0 and µ+ λ = 0. The stationary size factor s∗ that

satisfies S′(s∗) = 0 is

s∗ =

(
Tnum
Tden

)λ
(∀µ ∈ IR, λ > 0). (14)

The factor s∗ is a strict minimum:

S′′(s∗d) = λ
T λµ+1−2λ
num

T λµ−2λden

> 0 (∀µ ∈ IR, λ > 0).

Evaluating S(s∗) we arrive at a size-invariant yet shape-equivalent form of the stress func-

tion. For the evaluation we need to separate power laws from the two logarithmic cases:

S(sd) ≈


1

µ+λ s
µ+λ Tden − 1

µ s
µ Tnum (µ+ λ 6= 0, µ 6= 0)

|E| log(s) +
∑

E log(di,j) − 1
µ s

µ Tnum (µ+ λ = 0)

λ sλ Tden −
∑

V 2 D̃λ
i,j (log(s) + log(di,j)) (µ = 0)

where “≈” means “equal up to additive constacts that are irrelevant for optimization.” We

calculate S̃ = S(s∗) separately in the three cases with s∗ from (14):

• µ+ λ 6= 0, µ 6= 0: Several algebraic simplifications produce the following.

S̃ =

(
1

µ+ λ
− 1

µ

)
T λµ+1
num

T λµden
=

(
1

µ+ λ
− 1

µ

) (∑
V 2 D̃λ

i,j di,j
µ
)λµ+1

(∑
E di,j

µ+λ
)λµ . (15)

[Note that S̃ gets minimized, hence the ratio on the right gets minimized when the left

factor is positive (i.e., µ < 0 < µ + 1/λ), and it gets maximized when the left factor is

negative (i.e., µ > 0 or µ+ 1/λ < 0).]

• µ+ λ = 0: We take advantage of the fact that Tden = |E| and µ = −λ.

S̃ ≈ |E|λ log
∑
V 2

(
D̃i,j

di,j

)λ
+
∑
E

log(di,j)
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• µ = 0: We take advantage of the fact that Tden =
∑

E di,j
λ and also that Tnum =∑

V 2 D̃λ
i,j is a constant for optimization with regard to d = (di,j), and any additive term

that is just a function of D̃i,j but not di,j can be neglected.

S̃ ≈ λ

(∑
V 2

D̃λ
i,j

)
log(

∑
E

di,j
λ) −

∑
V 2

D̃λ
i,j log(di,j)

Even though size-invariance holds by construction, one checks it easily in all three cases:

S̃(s d) = S̃(d).

6.3 Gradients for Size-Invariant Stress Functions

To describe the gradient of the size-invariant stress function S̃ (d). We only consider the case

µ+ λ 6= 0 and µ 6= 0, which is shown in equation (15).

Let ∇S = ((∇S)1 , ..., (∇S)n)
T be the gradient the S̃ (d) with respect to configuration

X = (x1, ..., xn)T

(∇S)i =
(

1

µ+ λ
− 1

µ

)[
(λµ+ 1)

(
Tnum
Tden

)λµ
(∇Tnum)i − (λµ)

(
Tnum
Tden

)λµ+1

(∇Tden)i

]

(∇Tnum)i =
∂Tnum (d)

∂xi
= µ

∑
j

D̃i,jd
µ−2
i,j (xi − xj)

(∇Tden)i =
∂Tden (d)

∂xi
= (µ+ λ)

∑
j∈E(i)

dµ+λ−2i,j (xi − xj)

Plug (∇Tnum)i and (∇Tden)i into the (∇S)i

(∇S)i =
(
Tnum
Tden

)λµTnum
Tden

∑
j∈E(i)

dµ+λ−2i,j (xi − xj)−
∑
j

D̃i,jd
µ−2
i,j (xi − xj)


=

(
Tnum
Tden

)λµ ∑
j∈E(i)

(
Tnum
Tden

dµ+λ−2i,j −Dλ
jid

µ−2
i,j

)
(xi − xj)−

∑
j∈Ec(i)

t dµ−2i,j (xi − xj)


Define a N ×N matrix M by

Mij =

{(Tnum
Tden

d
µ+ 1

λ
−2

i,j −Di,j
λdµ−2i,j

)
for j ∈ E (i)

t dµ−2i,j for j /∈ E (i)

}
The gradient can be simplified to

(∇S)i =
(
Tnum
Tden

)λµ∑
j

Mij (xi − xj)

=

(
Tnum
Tden

)λµ∑
j

Mijxi −
∑
j

Mijxj
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and

∇S =

(
Tnum
Tden

)λµ
(X ∗ (M · E)−M · X)

We did the calculation separately for µ = 0 and λ+ µ = 0 which resulted in the following:

µ = 0 : S̃ (d) ∼ λ

 ∑
(i,j)∈V 2

D̃ij

 log

 ∑
(i,j)∈E

Di,j
λ

− ∑
(i,j)∈V 2

D̃ij logDi,j

µ+ λ = 0 : S̃ (d) ∼ λ

 ∑
(i,j)∈E

 log

 ∑
(i,j)∈V 2

D̃ijDi,j
µ

+
∑

(i,j)∈E

logDi,j
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Figure 2: The original configuration (top) and initial local graph (bottom)
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Figure 3: The configurations with varying λ with other parameters fixed at µ = 0, τ = 1, starting

from the input configuration (Figure 2).
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Figure 4: The configurations with varying λ with other parameters fixed at µ = 0, τ = 1, starting

from a random configuration.
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Figure 5: The configurations with varying µ with other parameters fixed at λ = 5, τ = 1, starting

optimization from the input configuration (Figure 2).
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Figure 6: The configurations with varying µ with other parameters fixed at λ = 5, τ = 1, starting

from a random configuration.
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Figure 7: The configurations with varying τ with other parameters fixed at λ = 5, µ = 0, starting

from the input configuration (Figure 2).
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Figure 8: The configurations with varying τ with other parameters fixed at λ = 5, µ = 0, starting

from a random configuration.
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Figure 9: Olivetti Faces: Configurations with varying λ with other parameters fixed at µ = 0, τ =

1.
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Figure 10: Olivetti Faces: Configurations from PCA, MDS, Isomap and LLE.
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Figure 11: Frey Face Data: Configurations with varying µ when λ = 1.
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