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Abstract

Some existing nonparametric two-sample tests for equality of multivariate distributions perform

unsatisfactorily when the two sample sizes are unbalanced. In particular, the power of these tests

tends to diminish with increasingly unbalanced sample sizes. In this paper, we propose a new

testing procedure to solve this problem. The proposed test, based on a nearest neighbor method

by Schilling (1986a), employs a novel ensemble subsampling scheme to remedy this issue. More

specifically, the test statistic is a weighted average of a collection of statistics, each associated with

a randomly selected subsample of the data. We derive the asymptotic distribution of the test

statistic under the null hypothesis and show that the new test is consistent against all alternatives

when the ratio of the sample sizes either goes to a finite limit or tends to infinity. Via simulated

data examples we demonstrate that the new test has increasing power with increasing sample size

ratio when the size of the smaller sample is fixed. The test is applied to a real data example in the

field of Corporate Finance.

Keywords: Corporate Finance, ensemble methods, imbalanced learning, Kolmogorov-Smirnov

test, nearest neighbors methods, subsampling methods, multivariate two-sample tests.
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1. INTRODUCTION

In the past decade, imbalanced data have drawn increasing attention in the machine learning com-

munity. Such data commonly arise in many fields such as biomedical science, financial economics,

fraud detection, marketing, and text mining. The imbalance refers to a large difference between

the sample sizes of data from two underlying distributions or from two classes in the setting of

classification. In many applications, the smaller sample or the minor class is of particular interest.

For example, the CoIL Challenge 2000 data mining competition presented a marketing problem

where the task is to predict the probability that a customer will be interested in buying a specific

insurance product. However, only 6% of the customers in the training data actually owned the pol-

icy. A more extreme example is the well-cited Mammography dataset (Woods et al. 1994), which

contains 10,923 healthy patients but only 260 patients with cancer. The challenge in learning from

these data is that conventional algorithms can obtain high overall prediction accuracy by classifying

all data points to the majority class while ignoring the rare class that is often of greater interest.

For the imbalanced classification problem, two main streams of research are sampling methods and

cost-sensitive methods. He and Garcia (2009) provide a comprehensive review of existing methods

in machine learning literature.

We tackle the challenges of imbalanced learning in the setting of the long-standing statistical

problem of multivariate two-sample tests. We identify the issue of unbalanced sample sizes in the

well-known multivariate two-sample tests based on nearest neighbors (Henze 1984; Schilling 1986a)

as well as in two other nonparametric tests. We propose a novel testing procedure using ensemble

subsampling based on the nearest neighbor method to handle the unbalanced sample sizes. We

demonstrate the strong power of the testing procedure via simulation studies and a real data

example, and provide asymptotic analysis for our testing procedure.

We first briefly review the problem and existing works. Two-sample tests are commonly used

when we want to determine whether the two samples come from the same underlying distribution,

which is assumed to be unknown. For univariate data, the standard test is the nonparametric

Kolmogorov-Smirnov test. Multivariate two-sample tests have been of continuous interest to the

statistics community. Chung and Fraser (1958) proposed several randomization tests. Bickel (1969)

constructed a multivariate two-sample test by conditioning on the empirical distribution function
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of the pooled sample. Friedman and Rafsky (1979) generalized some univariate two-sample tests,

including the runs test (Wald and Wolfowitz 1940) and the maximum deviation test (Smirnoff 1939),

to the multivariate setting by employing the minimal spanning trees of the pooled data. Several

tests were proposed based on nearest neighbors, including Weiss (1960), Henze (1984) and Schilling

(1986a). Henze (1988) and Henze and Penrose (1999) gave insights into the theoretical properties

of some existing two-sample test procedures. More recently Hall and Tajvidi (2002) proposed

a nearest neighbors-based test statistic that is particularly useful for high-dimensional problems.

Baringhaus and Franz (2004) proposed a test based on the sum of interpoint distances. Rosenbaum

(2005) proposed a cross-match method using distances between observations. Aslan and Zech (2005)

introduced a multivariate test based on the energy between the observations in the two samples. Zuo

and He (2006) provided theoretical justification for the Liu-Singh depth-based rank sum statistic

(Liu and Singh 1993). Gretton et al. (2007) proposed a powerful kernel method for two-sample

problem based on the maximum mean discrepancy.

Some of these existing methods for multivariate data, particularly including the tests based on

nearest neighbors, the multivariate runs test, and the cross-match test, are constructed using the

interpoint closeness of the pooled sample. The effectiveness of these tests assumes the two samples

to be comparable in size. When the sample sizes become unbalanced, as is the case in many

practical situations, the power of these tests decreases dramatically (Section 4). This near-balance

assumption has also been crucial for theoretical analyses of consistency and asymptotic power of

these tests.

Our new test is designed to address the problem of unbalanced sample sizes. It is built upon the

nearest neighbor statistic (Henze 1984; Schilling 1986a), calculated as the mean of the proportions

of nearest neighbors within the pooled sample belonging to the same class as the center point.

A large statistic indicates a difference between the two underlying distributions. When the two

samples become more unbalanced, the nearest neighbors tend to belong to the dominant sample,

regardless of whether there is a difference between the underlying distributions. Consequently the

power of the test diminishes as the two samples become more imbalanced. In order to eliminate

the dominating effect of the larger sample, our method uses a subsample that is randomly drawn

from the dominant sample and is then used to form a pooled sample together with the smaller
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sample. We constrain the nearest neighbors to be chosen within the pooled sample resulted from

subsampling.

Our test statistic is then a weighted average of a collection of statistics, each associated with

a subsample. More specifically, after a subsample is drawn for each data point, a corresponding

statistic is evaluated. Then these pointwise statistics are combined via averaging with appropriate

weights. We call this subsampling scheme ensemble subsampling. Our ensemble subsampling is

different from the random undersampling for the imbalanced classification problem, where only

one subset of the original data is used and a large proportion of data is discarded. The ensemble

subsampling enables us to make full use of the data and to achieve stronger power as the data

become more imbalanced.

Ensemble methods such as bagging and boosting have been widely used for regression and

classification (Hastie et al. 2009). The idea of ensemble methods is to build a model by combining

a collection of simpler models which are fitted using bootstrap samples or reweighted samples of

the original data. The composite model improves upon the base models in prediction stability and

accuracy. Our new testing procedure is another manifestation of ensemble methods, adapting to a

novel unique setting of imbalanced multivariate two-sample tests.

Moreover, we provide asymptotic analysis for our testing procedure, as the ratio of the sample

sizes goes to either a finite constant or infinity. We establish an asymptotic normality result for the

test statistic that does not depend on the underlying distribution. In addition, we show that the

test is consistent against general alternatives and that the asymptotic power of the test increases

and approaches a nonzero limit as the ratio of sample sizes goes to infinity.

The paper is organized as follows. In Section 2 we introduce notations and present the new

testing procedure. Section 3 presents the theoretical properties of the test. Section 4 provides

thorough simulation studies. In Section 5 we demonstrate the effectiveness of our test using a real

data example. In Section 6 we provide summary and discussion. Proofs of the theoretical results

are sketched in Section 7, and the detailed proofs are provided in the supplemental material.
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2. THE PROPOSED TEST

In this section, we first review the multivariate two-sample tests based on nearest neighbors pro-

posed by Schilling (1986a) and discuss the issue of sample imbalance. Then we introduce our

new test which combines ensemble subsampling with the nearest neighbor method to resolve the

issue. Lastly, we show how the ensemble subsampling can be adapted to two other nonparametric

two-sample tests.

We first introduce some notation. Let X1, · · · , Xn and Y1, · · · , Yñ be independent random

samples in Rd generated from unknown distributions F and G, respectively. The distributions are

assumed to be absolutely continuous with respect to Lebesgue measure. Their densities are denoted

as f and g, respectively. The hypotheses of two-sample test can be stated as the null H : F = G

versus the alternative K : F 6= G.

We denote the two samples by X := {X1, · · · , Xn} and Y := {Y1, · · · , Yñ}, and the pooled

sample by Z = X ∪ Y. We label the pooled sample as Z1, · · · , Zm with m = n+ ñ where

Zi =

 Xi, if i = 1, · · · , n;

Yi−n, if i = n+ 1, · · · ,m.

For a finite set of points A ⊂ Rd and a point x ∈ A, let NNr(x,A) denote the r-th nearest

neighbor (assuming no ties) of x within the set A \ {x}. For two mutually exclusive subsets A1,A2

and a point x ∈ A1 ∪A2, we define an indicator function

Ir(x,A1,A2) =

 1, if x ∈ Ai and NNr(x,A1 ∪A2) ∈ Ai, i = 1 or 2

0, otherwise.

The function Ir(x,A1,A2) indicates whether x and its r-th nearest neighbor in A1 ∪A2 belong to

the same subset.

2.1 Nearest Neighbor Method and the Problem of Imbalanced Samples

Schilling (1986a) proposed a class of tests for the multivariate two-sample problem based on nearest

neighbors. The tests rely on the following quantity and its generalizations:

Sk,n =
1

mk

[
m∑
i=1

k∑
r=1

Ir(Zi,X,Y)

]
. (1)
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The test statistic Sk,n is the proportion of pairs containing two points from the same sample, among

all pairs formed by a sample point and one of its nearest neighbors in the pooled sample. Intuitively

Sk,n is small under the null hypothesis when the two samples are mixed well, while Sk,n is large

when the two underlying distributions are different. Under near-balance assumptions, Schilling

(1986a) derived the asymptotic distribution of the test statistic under the null and showed that

the test is consistent against general alternatives. The test statistic Sk,n was further generalized by

weighting each point differently based on either its rank or its value in order to improve the power

of the test.

We consider the two-sample testing problem when the two sample sizes can be extremely imbal-

anced with n << ñ. We observe that the power of the test based on Sk,n diminishes dramatically

as the two sample sizes become disparate. In Figure 1, we show the numerical study of the power

of the test for different sample size ratios and neighborhood sizes k in various simulation settings

discussed in Section 4. We observe that the power of the test decreases as the sample size ratio

increases while holding the size of X constant. This is obviously an undesirable property of the

test because the power of a test should ideally increase with sample size. The decrease in power

associated with unbalanced sample sizes can also be observed in other two-sample tests such as the

run test (Friedman and Rafsky 1979) and the cross-match test (Rosenbaum 2005) (Section 4). This

phenomenon can be explained by the dominance of the larger sample in the common support of the

two samples. More specifically for the test based on Sk,n, when the pooled sample Z is dominated

by the sample Y, the summand over the sample X,
∑n

i=1

∑k
r=1 Ir(Zi,X,Y), tends to be small, and

the summand over the sample Y,
∑m

i=n+1

∑k
r=1 Ir(Zi,X,Y), tends to be large, under both the null

H and the alternative K. Therefore the test has weak power in detecting the difference between

the two underlying distributions.

2.2 Ensemble Subsampling for the Imbalanced Multivariate Two-Sample Test Based on Nearest

Neighbors

In order to solve the problem of unbalanced sample sizes, one could consider two simple approaches

to balance the samples: one is to randomly subsample n points from Y to match the size of X,

and the other is to oversample ñ points from X to match the size of Y. In the simple subsampling,

a large proportion of data points are discarded and some data information is lost. In the simple
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Figure 1: Simulation results representing the decreasing power of the original nearest neighbor test

(1) as the ratio of the sample sizes q increases, q = 1, 4, 16, 64. The two samples are generated from

the six simulation settings in Section 4. Power is approximated by the proportion of rejections over

400 runs of the testing procedure. A sequence of different neighborhood sizes k are used.

oversampling, the data is augmented with repeated data points and the augmented data no longer

comprises of an i.i.d. sample from the true underlying distribution. There is a large amount of

literature in the area of imbalanced classification regarding subsampling, oversampling and their

variations (He and Garcia 2009). More sophisticated sampling methods have been proposed to

improve the simple subsampling and oversampling methods, specifically for classification. However,

there is no research on sampling methods for the two-sample test problem in the existing literature.

We propose a new testing procedure for multivariate two-sample tests that is immune to the

unbalanced sample sizes. We use an ensemble subsampling method to make full use of the data.

The idea is that for each point Zi, i = 1, · · · ,m, a subsample is drawn from the larger sample Y and

forms a pooled sample together with the smaller sample X. We then evaluate a pointwise statistic,
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the proportion of Zi’s nearest neighbors in the formed sample that belong to the same sample as

Zi. Lastly, we take average of the pointwise statistics over all Zi’s with appropriate weights. More

specifically, for each Zi, i = 1, · · · ,m, let Si be a random subsample of Y of size ns, which must

contain Zi if Zi ∈ Y. By constructions Zi belongs to the pooled sample X
⋃

Si, where X
⋃
Si is of

size n+ ns. The pointwise statistic regarding Zi is defined as

tk,ns(Zi,X, Si) =
1

k

k∑
r=1

Ir(Zi,X, Si).

The statistic tk,ns(Zi,X, Si) is the proportion of Zi’s nearest neighbors in X
⋃

Si that belong to the

same sample as Zi. The new test statistic is a weighted average of the pointwise statistics:

Tk,ns =
1

2n

[
n∑
i=1

tk,ns(Zi,X, Si) +
1

q

m∑
i=n+1

tk,ns(Zi,X, Si)

]

=
1

2nk

[
n∑
i=1

k∑
r=1

Ir(Zi,X, Si) +
1

q

m∑
i=n+1

k∑
r=1

Ir(Zi,X, Si)

]
, (2)

where q = ñ/n is the sample size ratio.

Compared with the original test statistic Sk,n (1), this test statistic has three new features.

First and most importantly, for each data point Zi, i = 1, · · · ,m, a subsample Si is drawn from Y

and the nearest neighbors of Zi are obtained in the pooled sample X
⋃
Si. The size of subsample ns

is set to be comparable to n to eliminate the dominating effect of the larger sample Y in the nearest

neighbors. A natural choice is to set ns = n, which is the case we focus on in this paper. The

second new feature is closely related to the first one, that is, a subsample is drawn separately and

independently for each data point and the test statistic depends on an ensemble of all pointwise

statistics corresponding to these subsamples. This is in contrast to the simple subsampling method

in which only one subsample is drawn from Y and a large proportion of points in Y are discarded.

The third new feature is that we introduce a weighting scheme so that the two samples contribute

equally to the test. More specially, we downweight each pointwise statistic tk,ns(Zi,X, Si) for Zi ∈ Y

by a factor of 1/q (= n/ñ) to balance the contributions of the two samples. The combination of these

three features helps to resolve the issue of diminishing power due to the imbalanced sample sizes.

We call our new test the ensemble subsampling based on the nearest neighbor method (ESS-NN).
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Effect of Weighting and Subsampling The weighting scheme is essential to the nice properties

of the new test. Alternatively, we could weigh all points equally and use the following unweighted

statistic, i.e. the nearest neighbor statistic (NN) combined with subsampling without modification,

T uk,ns =
1

mk

[
n∑
i=1

k∑
r=1

Ir(Zi,X, Si) +

m∑
i=n+1

k∑
r=1

Ir(Zi,X, Si)

]
.

However our simulation study shows that, compared with Tk,ns , the unweighted test T uk,ns is less

robust to general alternatives and to the choice of neighborhood sizes.

In Figure 2, we compare the power of the unweighted test (Column 3, NN+Subsampling)

and the new (weighted) test (Column 4, ESS-NN) in three simulation settings (Models 1.2, 2.2,

3.2 in Section 4), where the two samples are generated from the same family of distributions with

different parameters. Both testing procedures are based on the ensemble subsampling and therefore

differences in results, if any, are due to the different weighting schemes. Note that the two statistics

become identical when q = 1. The most striking contrast is in the middle row, representing the case

in which we have two distributions generated from multivariate normal distributions differing only

in scaling and the dominant sample has larger variance (Model 2.2). The test without weighting

has nearly no power for q = 4, 16, and 64, while the new test with weighting improves on the power

considerably. In this case the pointwise statistics of the dominant sample can, on average, have much

lower power in detecting the difference between two distributions, and therefore downweighting

them is crucial to the test. For the other two rows in Figure 2, even though the unweighted test

seems to do well for smaller neighborhood sizes k, the weighted test outperforms the unweighted test

for larger k’s. Moreover, for the weighted test, the increasing trend of power versus k is consistent

for all q in all simulation settings. In contrast, for the unweighted test, the trend of power versus

k depends on q and varies in different settings.

Naturally, one might question the precise role played by weighting alone in the original nearest

neighbor test without random subsampling. We compare NN (Column 1) with NN + Weighting

(Column 2), without incorporating subsampling. The most striking difference is observed in the

model 2.2 and 3.2, where the power of the weighted test improves from the original unweighted NN

test. In particular, the power at q = 4 is smaller than that at q = 1 for the unweighted test but

the opposite is true for the weighted test. This again indicates that the pointwise statistics of the
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dominant sample on average have lower power in detecting the difference and downweighting them

in the imbalanced case makes the test more powerful. However, weighting alone cannot correct

the effect of the dominance of the larger sample on the pointwise statistics, which becomes more

problematic at larger q’s. We can see that the power of the test at q = 16 and 64 is lower than

at q = 4 for NN+Weighting (Column 2). We can overcome this problem by subsampling from

the larger sample and calculating pointwise statistics based on the balanced pooled sample. The

role played by random subsampling alone is clearly demonstrated by comparing NN+Weighting

(Column 2) and ESS-NN (Column 4).

The Size of Random Subsample The size of subsample ns should be comparable to the smaller

sample size n so that the power of the pointwise statistics (and consequently the power of the

combined statistic) does not diminish as the two samples become increasingly imbalanced. Most

of the work in this paper is focused on the perfectly balanced case where the subsampling size ns

is equal to n. As we will see in Section 3, the asymptotic variance formula of our test statistic

is significantly simplified in this case. When ns 6= n, the probability of sharing neighbors will be

involved and the asymptotic variance will be more difficult to compute. Hence, ns = n seems to be

the most natural and convenient choice. However, it is sensible for a practitioner to ask whether ns

can be adjusted to make the test more powerful. To answer this question, we perform simulation

study for ns = n, 2n, 3n, and 4n in the three multivariate settings (Models 1.2, 2.2, 3.2) considered

in Section 4. See Figure 3. The results show that ns = n produces the strongest power on average

and ns = 4n is the least favorable choice.

2.3 Ensemble Subsampling for Runs and Cross-match

The unbalanced sample sizes is also an issue for some other nonparametric two-sample tests such as

the multivariate runs test (Friedman and Rafsky 1979) and the cross-match test (Rosenbaum 2005).

In Section 4, we demonstrate the diminishing power of the multivariate runs test and the problem

of over-rejection for the cross-match test as q increases. These methods are similar in that their

test statistics rely on the closeness defined based on interpoint distances of the pooled sample. The

dominance of the larger sample in the common support of the two samples makes these tests less

powerful in detecting potential differences between the two distributions.
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The idea of ensemble subsampling can also be applied to these tests to deal with the issue of

imbalanced sample sizes. Here, we briefly describe how to incorporate the subsampling idea into

runs and cross-match tests. The univariate runs test (Wald and Wolfowitz 1940) is based on the

total number of runs in the sorted pooled sample where a run is defined as a consecutive sequence

of observations from the same sample. The test rejects H for a small number of runs. Friedman

and Rafsky (1979) generalized the univariate runs test to the multivariate setting by employing the

minimal spanning trees of the pooled data. The analogous definition of number of runs proposed is

the total number of edges in the minimal spanning tree that connect the observations from different

samples, plus one. By omitting the constant 1, we can re-express the test statistic as follows,

1

2

m∑
i=1

E (Zi, T (X ∪ Y)) ,

where T (X∪ Y) denotes the minimal spanning tree of the data X∪ Y, and E(Zi, T (X∪ Y)) denotes

the number of observations that link to Zi in T (X ∪ Y) and belong to the different sample from

Zi. The 1/2 is a normalization constant because every edge is counted twice as we sum over the

observations. As in Section 2.2, let Si be a Zi associated subsample of size ns from Y, which

contains Zi if Zi ∈ Y. Subsampling can be incorporated into the statistic by constructing the

minimal spanning trees of the pooled sample formed by X and Si. The modified runs statistic with

the ensemble subsampling can be expressed as follows:

1

2

[
m∑
i=1

E(Zi, T (X ∪ Si)) +
1

q

n∑
i=m+1

E(Zi, T (X ∪ Si))

]
.

The cross-match test first matches the m observations into non-overlapping m/2 pairs (assuming

that m is even) so that the total distance between pairs is minimized. This matching procedure

is called “minimum distance non-bipartite matching”. The test statistic is the number of cross-

matches, i.e., pairs containing one observation from each sample. The null hypothesis would be

rejected if the cross-match statistic is small. The statistic can be expressed as

1

2

m∑
i=1

C(Zi,B(X ∪ Y)),

where B(X∪Y) denotes the minimum distance non-bipartite matching of the pooled sample X∪Y,

and C(Zi,B(X∪ Y)) indicates whether Zi and its paired observation in B(X∪ Y) are from different
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samples. Similarly the cross-match statistic can be modified as follows to incorporate the ensemble

subsampling:

1

2

[
n∑
i=1

C(Zi,B(X ∪ Si)) +
1

q

m∑
i=n+1

C(Zi,B(X ∪ Si))

]
.

In this subsection we have demonstrated how the ensemble subsampling can be adapted to other

two-sample tests to potentially improve their power for imbalanced samples. Our theoretical and

numerical studies in the rest of the paper remain focused on the ensemble subsampling based on

the nearest neighbor method.

3. THEORETICAL PROPERTIES

There are some general desirable properties for an ideal two-sample test (Henze 1988). First, the

ideal test has a type I error that is independent of the distribution F . Secondly, the limiting

distribution of the test statistic under H is known and is independent of F . Thirdly, the ideal test

is consistent against any general alternative K : F 6= G.

In this section, we discuss these theoretical properties of our new test in the context of imbal-

anced two-sample tests with possible diverging sample size ratio q. As we mentioned in Section

2.2, we focus on the case in which the subsample is of the same size as the smaller sample, that is,

ns = n. In the first theorem, we establish the asymptotic normality of the new test statistic (2)

under the null hypothesis, which does not depend on the underlying distribution F , and we provide

asymptotic values for mean and variance. In the second theorem, we show the consistency of our

testing procedure.

We would like to emphasize that our results include two cases, in which the ratio of the sample

sizes q(n) = ñ/n goes to either a finite constant or infinity as n → ∞. Let λ be the limit of the

sample size ratio, λ = limn→∞ q(n), with λ <∞ and λ =∞ representing the two cases respectively.

The asymptotic power of the new testing procedure can be measured by an efficacy coefficient. We

show that this coefficient increases as λ becomes larger, and approaches a nonzero limit as λ tends

to infinity. This is in contrast to the original test based on Sk,n (1) whose efficacy coefficient

decreases to zero as λ goes to infinity. In the following, we first present the asymptotic mean and

variance of our test statistic. In order to derive these quantities, we introduce three types of mutual

and shared neighbors probabilities, and then derive two propositions regarding their relationship.
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3.1 Mutual and Shared Neighbors

We consider three types of events characterizing mutual neighbors. All three types are needed here

because the samples X and Y play asymmetric roles in the test and therefore need to be treated

separately.

(i) mutual neighbors in X : NNr(Z1,X ∪ S1) = Z2, NNs(Z2,X ∪ S2) = Z1;

(ii) mutual neighbors in Y : NNr(Zn+1,X ∪ Sn+1) = Zn+2, NNs(Zn+2,X ∪ Sn+2) = Zn+1;

(iii) mutual neighbors between X and Y : NNr(Z1,X ∪ S1) = Zn+1, NNs(Zn+1,X ∪ Sn+1) =

Z1.

Similarly we consider three types of events indicating neighbor-sharing:

(i) neighbor-sharing in X : NNr(Z1,X ∪ S1) = NNs(Z2,X ∪ S2);

(ii) neighbor-sharing in Y : NNr(Zn+1,X ∪ Sn+1) = NNs(Zn+2,X ∪ Sn+2);

(iii) neighbor-sharing between X and Y : NNr(Z1,X ∪ S1) = NNs(Zn+1,X ∪ Sn+1).

The null probabilities for the three types of mutual neighbors are denoted by px,1(r, s), py,1(r, s),

and pxy,1(r, s) and those for neighbor-sharing are denoted by px,2(r, s), py,2(r, s), and pxy,2(r, s).

The following two propositions describe the values of these probabilities for large samples.

Proposition 1. We have the following relationship between the null mutual neighbor probabilities,

p1(r, s) := lim
n→+∞

npx,1(r, s) = lim
n→+∞

q(n)npxy,1(r, s) = lim
n→+∞

q(n)2npy,1(r, s),

where the analytical form of limit p1(r, s) (4) is given at the beginning of Section 7.

The proof is given in Section 7. The relationship between the mutual neighbor probabilities

pxy,1 and px,1 can be easily understood by noting that pxy,1 involves the additional subsampling

of Y, and the probability of Zi (i = n + 1 · · ·m) being chosen by subsampling is 1/q(n). Similar

arguments apply to py,1 and pxy,1. The limit p1(r, s) depends on r and s, as well as the dimension

d and the limit of sample size ratio λ. λ = 1 is a special case of Schilling (1986a), where there is

no subsampling involved and the three mutual neighbor probabilities are all equal. With λ > 1,
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subsampling leads to the new mutual neighbor probabilities. Please note that n here is the size

of X, rather than the size of the pooled sample Z. Therefore our limit p1(r, s) ranges from 0 to

1
2 . The rates at which px,1, pxy,1 and py,1 approach the limit differ by a factor of q(n). The limit

p1(r, s) plays a key role in the calculation of the asymptotic variance. Note that as d→∞, p1(r, s)

simplifies to

 r + s− 2

r − 1

 2−(r+s), which does not depend on λ. The general analytical form of

p1(r, s) is rather complex and is given in (4) at the beginning of Section 7.

Proposition 2. We have the following relationship between the null neighbor-sharing probabilities:

px,2(r, s) ∼ pxy,2(r, s) ∼ py,2(r, s), as n→ +∞,

where An ∼ Bn is defined as An/Bn → 1 as n→∞.

The proof is given in Section 7. As a side note, we can show that npx,2(r, s), npxy,2(r, s), and

npy,2(r, s) approach the same limit as n goes to infinity. However the analytical form of this limit

is rather complicated and irrelevant to the proof of the main theorems, and therefore is not given

in this work.

3.2 The Asymptotic Null Distribution of The Test Statistic

In this subsection, we first give the asymptotic mean and variance of the test statistic Tk,n under

the null hypothesis H, and then present the null distribution in the main theorem.

Proposition 3. The expectation of the test statistic Tk,n under the null hypothesis is 1
2 as n goes

to infinity. More specifically

EH (Tk,n) =
n− 1

2n− 1
, and µk := lim

n→+∞
EH(Tk,n) =

1

2
.

The proof is straightforward given EH(Ir(Zi,X, Si)) = n− 1
2n− 1 , ∀ i = 1, 2, · · · ,m. Please note

that the ratio q is irrelevant in either the finite sample case or the large sample case.

Proposition 4. The asymptotic variance of the test statistic Tk,n satisfies

σ2
k = lim

n→+∞
nkVarH(Tk,n) =

λ+ 1

16λ
+ kp1,k

(
1

16
+

1

8λ
+

1

16λ2

)
, (3)

where p1,k = k−2
∑k

r=1

∑k
s=1 p1(r, s), with p1(r, s) defined as in Proposition 1.
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The proof is given in Section 7. The asymptotic variance depends explicitly on λ and k, and

implicitly on the dimension d through average mutual neighbor probability p1,k, which also depends

on λ and k. We numerically evaluate p1,k and σ2
k for different combinations of λ, k and d, and

observe a similar pattern of dependence. Therefore, we only present the result for σ2
k (Table 1). For

∀d ≤ ∞, σ2
k increases as k increases slightly when λ is fixed, and σ2

k decreases as λ increases when

k is fixed. These relationships will be useful for us to understand the dependence of asymptotic

power on λ and k, which will be discussed in the next subsection.

For the case of equal sample sizes (λ = 1), our Proposition 4 agrees with Theorem 3.1 in Schilling

(1986a) (λ1 = λ2 = 1/2). In fact, in this case our test statistic Tk,n defined in (2) is identical to

that in Schilling (1986a) and therefore their asymptotic variances should coincide. More precisely,

we have p1,k = p′1/2 where p′1 is the notation adopted by Schilling (1986a, Theorem 3.1) and our σ2
k

is actually one-half of the variance σ2
k defined in Schilling (1986a). The factor 1/2 has to do with

the notation n, which represents the size of X in this work, versus representing the size of X∪ Y in

Schilling (1986a). The former is exactly 1/2 of the latter in the case of equal sample sizes.

Theorem 1. Suppose the distribution F is absolutely continuous with respect to Lebesgue measure.

Suppose q ≡ q(n) → λ ∈ [1,+∞] as n → ∞ and q = O (nν) for some ν ∈ (0, 1/9). Then

(nk)1/2 (Tk,n − µk) /σk has a limiting standard normal distribution under the null H, where µk =

1/2 and σ2
k is defined as in Proposition 4.

This theorem shows the asymptotic normality of the null distribution. The result includes two

cases in which the ratio of the sample sizes goes to either a finite constant or infinity as n→∞.

3.3 Consistency and Asymptotic Power

In Section 2.1, we discussed the problem associated with the original test statistic Sk,n (1) in the

setting of the imbalanced two-sample test and we demonstrated via simulation that the test has

decreasing power with respect to increasing the sample size ratio q (or λ)(see Figure 1). In fact

this problem was implied by the theoretical analysis of the test based on Sk,n in Schilling (1986a),

although the imbalanced data was not the focus of his work. In Section 3.2 of his paper, it was

shown that Sk,n is consistent under the general alternative K. More specifically,

∆̃(λ) := lim inf
n→∞

(EKSk,n − EHSk,n) =
2λ

(1 + λ)2

(
1−

∫
f(x)g(x)dx

f(x)/(1 + λ) + g(x)λ/(1 + λ)

)
> 0.
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However, we can see that as λ increases, the consistency result becomes very weak. In fact, as

λ→∞, we have ∆̃(λ) = o
(

1
λ

)
. Moreover the asymptotic power of the test based on Sk,n can be

measured by the following efficacy coefficient

η̃(λ) =
limn→∞ (EKSk,n − EHSk,n)

limn→∞ [nVarH(Sk,n)]1/2

=

[
1−

∫
f(x)g(x)dx

f(x)/(1 + λ) + g(x)λ/(1 + λ)

] [
1 + λ

4λ
+ kp′1,k − k(1− p′2,k)

(λ− 1)2

4λ(1 + λ)

]−1/2

k1/2,

where p′1,k and p′2,k are the average mutual neighbor and neighbor sharing probabilities defined in

Schilling (1986a) (Section 3.1). This expression implies as λ→∞, η̃(λ)→ 0. Thus the asymptotic

power of the test based on Sk,n goes to zero when λ goes to infinity.

Our new test statistic Tk,n is designed to address the issue of unbalanced sample sizes. Theorem

2 shows that our new testing procedure is consistent, and, more importantly, the consistency result

does not depend on the ratio λ. Furthermore the efficacy coefficient of Tk,n implies increasing power

with respect to λ.

Theorem 2. The test based on Tk,n is consistent against any general alternative hypothesis K.

More specifically,

lim
n→∞

VarK(Tk,n) = 0,

and

∆(λ) := lim inf
n→∞

(EKTk,n − EHTk,n) > 0.

Moreover, ∆(λ) can be expressed as follows,

∆(λ) ≡ 1

2

(
1−

∫
f(x)g(x)dx

f(x)/2 + g(x)/2

)
,

which is independent of λ.

The proof follows immediately from the results and derivations in Henze (1988, Theorem 4.1),

which do not impose the requirements on the differentiability of the density functions of distri-

butions. The details are omitted here. We also provide an alternative detailed proof, similar to

Schilling (1986a, Theorem 3.4), which requires that the density functions are differentiable, in the

supplemental article. Note that the term

1

2

∫
f(x)g(x)

f(x)/2 + g(x)/2
dx
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is known as Henze-Penrose affinity; see, for example, Neemuchwala et al. (2007). If the Henze-

Penrose affinity is higher, ∆(λ) is smaller and hence it becomes harder to test f against g. The

efficacy coefficient measuring the asymptotic power of the new test is

η(λ) =
limn→∞ EKTk,n − 1/2

limn→∞[nVarH(Tk,n)]1/2

=
1

2

(
1−

∫
f(x)g(x)dx

f(x)/2 + g(x)/2

)[
λ+ 1

16λ
+ kp1,k

(
1

16
+

1

8λ
+

1

16λ2

)]−1/2

k1/2.

Note that the denominator contains the asymptotic variance σ2
k =

[
λ+1
16λ + kp1,k

(
1
16 + 1

8λ + 1
16λ2

)]
,

which is a decreasing function of λ. This implies that the asymptotic power increases as λ increases.

When λ goes to infinity, we have

lim
λ→∞

η(λ) = 2

(
1−

∫
f(x)g(x)dx

f(x)/2 + g(x)/2

)(
1 + kp∞1,k

)−1/2
k1/2,

where p∞1,k denotes the average of the mutual probabilities p1,k defined in Proposition 4 for the λ =∞

case. The expression above depends on the underlying distributions f and g, the neighborhood size

k and the dimension d. The dependence on k and d is characterized by k1/2 in the numerator and

by
(

1 + kp∞1,k

)1/2
in the denominator. In Table 2, we give a numerical evaluation of kp∞1,k. It is

clear that for a fixed d, kp∞1,k increases with k. For a fixed k, kp∞1,k increases with d when k ≥ 2 and

decreases with d when k = 1, which implies that the range of kp∞1,k is between limd→∞ kp
∞
1,1 = 1/4

and limk→∞ limd→∞ kp
∞
1,k = 1/2. Putting it all together, we conclude that

(
1 + kp∞1,k

)1/2
increases

with k much slower than k1/2. Hence the efficacy coefficient η(λ) increases with k, which is consistent

with the increasing power with increasing k, as observed in the simulation study (Figure 2, last

column).

4. SIMULATION EXAMPLES

We first compare our new testing procedure, the ensemble subsampling based on the nearest neigh-

bor method (ESS-NN), with four other testing procedures to illustrate the problem with existing

methods and the limitations of a simple treatment of the problem. The first three methods are

the cross-match method proposed by Rosenbaum (2005); the multivariate runs test proposed

by Friedman and Rafsky (1979) which is a generalization of the univariate runs test (Wald and

Wolfowitz 1940) by using the minimal spanning tree; and the original test based on nearest neigh-

bors (NN) by Schilling (1986a). These three methods by design are not appropriate for testing

18



the case of two imbalanced samples. Refer to Section 2 for the detailed discussion on the problem

of imbalanced samples. The last method is a simple treatment of the imbalance problem. We

select a random subsample from the larger sample of the same size as the smaller sample, and then

do the NN test based on the pooled sample. We call this method simple subsampling based on

the nearest neighbor method (SSS-NN). We examine three simulation models well-studied in the

existing literature, considering two sets of parameters for each model.

• Model 1: Multivariate normal with location shift. Both distributions have identity covariance

matrix. They are different only in the mean vector for which we choose two sets of simulation

parameters {d = 1, µx = 0, µy = 0.3} (Model 1.1) and {d = 5, µx = 0, µy = 0.75} (Model

1.2).

• Model 2: Multivariate normal with scale difference. The two distributions have zero mean

and a scaled identity covariance matrix σ2Id for which we choose two sets of parameters,

{d = 1, σx = 1, σy = 1.3} (Model 2.1), and {d = 5, σx = 1, σy = 1.2} (Model 2.2).

• Model 3: The multivariate random vector X = (X1, . . . , Xd) follows the log-normal distribu-

tion. That is log(Xj) ∼ N(µ, 1), where Xj ’s are independent across j = 1, . . . , d. The two

sets of parameters are {d = 1, µx = 0, µy = 0.4} (Model 3.1), and {d = 5, µx = 0, µy = 0.3}

(Model 3.2).

For all simulation settings, the size of the smaller sample is fixed at n = 100 and the ratio of the

two sample sizes q equals 1, 4, 16, or 64. We conduct each testing procedure to determine whether

to reject the null hypothesis at 0.05 significance level. Since the data are indeed generated from

two different distributions, a powerful test should reject the null hypothesis with high probability.

The critical values of all test statistics are generated using 100 permutations. In each setting,

each testing procedure is repeated on 400 independently generated data sets and the proportion of

rejections is reported in Table 3 to compare the power of the tests. For the new testing procedure

ESS-NN, we also report the empirical type I errors in the parentheses, that is, the proportion of

rejections under the null when two samples are generated from the same distributions.

In Table 3, we observed similar patterns in all simulation settings. The overall impression is

that the power of runs and NN methods generally decreases with respect to the increase in the
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ratio q. The power of the cross-match method does not seem to follow a particular pattern with

respect to q, and in particular, with noticeable higher power (> 60%) for q = 64 in the three

settings of d = 1. We checked its type I errors in these settings and found that the false rejection

rate to be as high as 58%, which indicates that the observed high power is due to over-rejection,

and therefore is not meaningful for comparison. Intuitively the number of cross-matches under the

null hypothesis converges to the size of the smaller sample n when the samples become increasingly

imbalanced, which makes the test inappropriate. For the simple subsampling method, we expect

that on average the power should not be sensitive to q at all because only one subsample of size n

of the larger sample is utilized, and we do observe the power to be relatively stable as the ratio q

increases. It is clear that only our new test based on ensemble subsampling has overall increasing

power as q increases, with type I error being capped at around 0.05.

For the three tests based on nearest neighbor methods, NN, SSS-NN and ESS-NN, we report

the results for the neighborhood size k = 3 in order to make a fair comparison with the results

in Schilling (1986a). Both our asymptotic analysis (Section 3.3) and numerical results (Figure 2)

indicate that our test is more powerful with a larger k. Our numerical results in Figure 2 suggest

the increase in power become marginal after around k = 11. It seems wise to choose k around 11

for our new test, considering that computational cost is higher with larger k.

We then compare our method with the state-of-the-art method among two-sample tests, pro-

posed by Gretton et al. (2007). The test statistic is based on Maximum Mean Discrepancy (MMD),

namely the maximum difference of the mean function values in the two samples, over a sufficiently

rich function class. Larger MMD values indicate a difference between the two underlying distribu-

tions. MMD performs strongly compared to many other two-sample tests and is not affected by the

imbalance of sample sizes. We compare our method ESS-NN with MMD for Models 1.2, 2.2, and

3.2, and additional three settings for testing the normal mixtures (Table 4). ESS-NN performs as

well as MMD for Models 1.2 and 3.2 especially for larger q’s, and underperforms MMD for Model

2.2. We further consider the cases in which one or two of the samples are generated from a normal

mixture model. In particular we consider the normal mixture consisting of two components with a

probability 1/2 from each component. The two components have the same variance and µ1 = −µ2.

In the univariate case, each normal component has the following relationship between its mean and
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variance, σ2 = 1− µ2 with µ ∈ (−1, 1). Hence the mixture has mean 0 and variance 1. More gen-

erally we define this family of normal mixture in Rd with the mean vector µ1d and the covariance

matrix (1 − µ2)Id. We denote this family of the normal mixtures by NMd(µ). In the last three

settings presented in Table 4, ESS-NN is more powerful. In summary, even though MMD demon-

strates strong performance in Models 1.2, 2.2 and 3.2 when the two underlying distributions are

different in global parameters such as the mean and the variance, ESS-NN appears more sensitive

to local differences in the distributions of the data. In our results of MMD, the kernel parameter is

set to the median distance between points in the pooled sample, following suggestions in Gretton

et al. (2007). The optimal selection of the parameter is subtle, but can potentially improve the

power, and is an area of ongoing research (Gretton et al. 2012).

5. REAL DATA EXAMPLE

We consider a real data example from Corporate Finance, the study of how corporations make their

decisions on financing, investment, payout, compensation, and so on. One important question in

Corporate Finance is whether macroeconomic conditions and firm profitability affect the financing

decisions of corporations. Financing decisions include events like issuing/repurchasing debt and

equity. Among the widely accepted proxies for the macroeconomic conditions are term spread,

default spread, and real equity return. Conventionally, the firm profitability is measured by the

ratio between the operating income before depreciation and total assets for each quarter. Based

on these variables, Korajczyk and Lévy (2003) investigated this question using the Kolmogorov-

Smirnov two-sample test where the two samples are distinguishable by debt or equity repurchase.

Specifically, part of their research concerns financially-unconstrained firms 1 and the firm-event

window between the 1st quarter of 1985 (1985Q1) and the 3rd quarter of 1998 (1998Q3). Each

observation is a firm quarter pair for which all the variables are available in the firm-event window

from the well-known COMPUSTAT and CRSP databases. The data in this analysis are intrinsically

imbalanced, in part because stock repurchases (equity repurchase) in the open market usually takes

longer time and have a more complex completion procedure compared to the debt repurchases. In

1“Unconstrained firms are firms that are not labeled as constrained firms”. “Constrained firms do not pay

dividends, do not have a net equity or debt purchase (not both) over the event quarter, and have a Tobin’s Q greater

than one at the end of the event quarter” (Korajczyk and Lévy 2003).
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Korajczyk and Lévy (2003), there are n = 164 firm quarters corresponding to equity repurchases,

while there are ñ = 1, 769 firm quarters corresponding to debt repurchases. Using the Kolmogorov-

Smirnov two-sample test (KS test), the authors found that the samples are not significantly different

in distribution with respect to the three macroeconomic condition indicators, which suggests that

no significant association exists between each macroeconomic condition indicator and repurchasing

decisions.

In this section, we examine a question similar to one considered by Korajczyk and Lévy (2003)

using our new testing procedure. In addition, unlike KS test which is designed for univariate tests,

our testing procedure can test multiple variables jointly. We extend the time horizon of the study

with firm quarters from 1981Q1 to 2005Q42. There are n = 305 firm quarters corresponding to

equity repurchases and ñ = 4, 343 firm quarters corresponding to debt repurchases. The variables

of interest are lagged term spread, lagged credit spread, lagged real stock return, and firm prof-

itability. We use multivariate two-sample tests to explore whether the macroeconomic conditions

and profitability are jointly associated with firm repurchase activity.

For the two-sample test on the joint distribution of the four-dimensional variables, the original

nearest neighbor method (Schilling 1986a) produces a p-value of 0.43 and our method reports a

p-value smaller than 0.01, both using k = 5. The results are consistent across different k’s, from 1

to 30 (Table 5). The significant difference can be confirmed upon visual inspection of the each of

the variables separately. In Figure 4, the histograms of the two samples indeed show a difference

in the univariate distributions of profitability, with noticeably long tails in the debt repurchases

sample. For the univariate test on profitability, both the KS test, which is robust to imbalanced

data, and our test produces p-values smaller than 0.01, whereas the p-value for the original nearest

neighbor method is 0.82. This shows that our new test improves upon the original nearest neighbor

test for imbalanced data. The significance of univariate test also confirms the validity of our test

result for the joint distributions, as a difference between marginal distributions implies a difference

between joint distributions.

2The raw data are from the COMPUSTAT database, the CRSP database, the Board of Governors of Federal

Reserve System H.15 Database, and the U.S. Bureau of Labor Statistics CPI database. The cleaned data and R

codes are available upon request
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6. SUMMARY AND DISCUSSION

We addressed the issue of unbalanced sample sizes in existing nonparametric multivariate two-

sample tests. We proposed a new testing procedure which combines the ensemble subsampling with

the nearest neighbor method, and demonstrated the superiority of the test by both a simulation

study and through real data analysis. In contrast to the original nearest neighbor test, the power

of the new test increases as the sample sizes become more imbalanced. Furthermore, we provided

asymptotic analysis for our testing procedure, as the ratio of the sample sizes goes to either a finite

constant or infinity.

We would like to note that the imbalance in the two samples is not an issue for some existing

tests including the Kolmogorov-Smirnov test for the univariate case, the test based on maximum

mean discrepancy (MMD) (Gretton et al. 2007), and the Liu-Singh test (Liu and Singh 1993; Zuo

and He 2006). We have discussed the test based on MMD in detail in Section 4. The Liu-Singh

test uses a multivariate extension of the Wilcoxon rank sum statistic based on depth functions,

and is also distribution-free. Zuo and He (2006) derived the explicit asymptotic distribution of the

Liu-Singh test under both the null hypothesis and the general alternative hypothesis, as well as the

asymptotic power of the test. However there is a practical drawback of the test, that is, the power

of the test is sensitive to the depth function and it is difficult to select an “efficient” depth function

without knowing what the alternative is.

An interesting topic for future research is to explore the dependence on the distance metric used

in the nearest neighbor method. Our current analysis is based on the Euclidean distance, the most

commonly used distance metric to define nearest neighbors. A systematic generalization of the

Euclidean distance is to define neighborhood using the Mahalanobis metric. This treatment can be

viewed as applying a linear transformation of the original sample space before conducting the test

based on the Euclidean distances. Intuitively such a linear transformation can be pursued to amplify

the distributional difference between the two samples both locally and globally. In this avenue,

there has been continuous interest in learning the optimal distance metric for nearest neighbor

classification. Hastie and Tibshirani (1996) adapted the idea of linear discriminant analysis in each

neighborhood and applied local linear transformation so that the neighborhood is elongated along

the most discriminant direction. Weinberger and Saul (2009) proposed a large marginal nearest
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neighbor classifier that seeks a linear transformation to make the nearest neighbors share the same

class labels as much as possible. In the setting of unsupervised learning, Abou-Moustafa et al.

(2011) introduced (semi)-metrics based on convolution kernels for an augmented data space, which

is formed by the parameters of the local Gaussian models. The intention was to relax the global

Gaussian assumption under which the Euclidean distance is optimal. These ideas can potentially

be borrowed to improve the power of the two-sample tests based on nearest neighbors.

Another interesting area of research is related to variation in the test statistic due to sub-

sampling. Subsampling variation introduces another source of randomness to our test statistic.

Though this should not be a concern to the effectiveness of our test as both the asymptotic theory

and the permutation test have taken this variation into account, more efficient tests can be de-

signed by reducing this variation, for example, by averaging the test statistics from multiple runs

of subsampling.

7. SKETCH OF PROOFS

This section provides the sketch of proofs. Readers who are interested in our detailed proofs should

refer to the supplemental materials to this paper. We write indicator function of event A as 1A.

In proposition 1

p1(r, s) =
1

2

h∑
i=0

h−i∑
j=0

h−i−j∑
j1=0

h−i−j−j1∑
j2=0

 r + s− i− j − 2

i, j, j1, j2, r − i− j − j1 − 1, s− i− j − j2 − 1

Q(λ, i, j, j1, j2)

(4)

with h = min(r − 1, s− 1), and for all λ ∈ [1,+∞],

Q(λ, i, j, j1, j2) = 2−i−j−j1−j2(λ− 1)j1+j2λ−(j+j1+j2)(1− Cd)i+j+j1+j2Cr+s−2i−2j−j1−j2−2
d

×
(
Cd + (1− λ−1)(1− Cd)/2 + 1

)−(r+s−i−j−1)
,

where 00 := 1, ∞0 := 1, and

Cd =
2Γ(d2 + 1)Jd

π
1
2 Γ(d+1

2 )
, with Jd =

∫ 1/2

0
(1− x2)

d−1
2 dx.

Proof of proposition 1
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Proof. First, we know that

px,1(r, s) =
1

2n− 1
P
(
{NNr(Z1,X ∪ S1) = Z2}|{NNs(Z2,X ∪ S2) = Z1}

)
.

Define Bd[x, ρ] as the closed ball in Rd, centered at x, which has radius ρ. We know that the surfaces

of the two balls Bd[Z1, ||Z1−Z2||] and Bd[Z2, ||Z1−Z2||] pass through Z2 and Z1, respectively. The

two balls have the same volume, which is denoted as Ad = πd/2||Z1 − Z2||d/Γ(d/2 + 1). Define Bd

to be the volume of the intersection of the two balls, that is, Bd[Z1, ||Z1−Z2||]∩Bd[Z2, ||Z1−Z2||].

Define Cd := (Ad −Bd)/Ad. It is easy to see that Bd → 0 and Cd → 1 as d→∞, .

According to Schilling (1986b, Theorem 2.1) and Henze (1987, Theorem 1.1 and Lemmas in its

proof), we know that to analyze the asymptotic conditional probability of the mutual neighbors,

P
(
{NNr(Z1,X ∪ S1) = Z2}|{NNs(Z2,X ∪ S2) = Z1}

)
, as n approaches infinity, Z1, · · · , Zm can be viewed as samples from a homogeneous Poisson process

with intensity τ . The exact value of τ is not important here because under the null hypothesis the

two distributions are equal and hence the effect of τ will be canceled out.

Remark. The problem of computing the mutual neighbor probabilities has been studied

extensively in the literature. Clark and Evans (1955), Clark (1955), Cox (1981), Pickard (1982),

and Henze (1986), among others, analyzed this problem in the case of homogeneous Poisson

processes. Schilling (1986b) found the limits of the mutual neighbor probabilities for i.i.d. case as

the sample size goes to infinity. However, the author did not rigorously bridge the gap between

the homogeneous-Poisson-process case and the i.i.d.-sample case, and assumed that they are

equivalent in limit for this particular local problem. Henze (1987) rigorously established the

asymptotic equivalence result in weak convergence. Without repeating the exact steps in the

proofs to Theorem 1.1, Lemma 2.1, and Lemma 2.2 in Henze (1987), we can directly use the

asymptotic equivalence results developed in that paper.

According to (Cox 1981, Page 368), it follows that given that Z1 is the s-th nearest neighbor to Z2

in X ∩ S2, Ad has the distribution with the following density:

f(A; s) = (
2τ

1 + λ
)sAs−1 exp(−τ2A/(1 + λ))/(s− 1)!, A > 0.

Now consider three sub-Poisson processes B1 ≡ S1−S2,B2 ≡ S2−S1,C = S1∩S2. The intensities

of Poisson processes are τB1 = τB2 = τ
1 + λ

(
1− 1

λ

)
and τC = τ

1 + λ
1
λ

. Given that the volume is A
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and there are i points of X and j2 points of B2 and j points of C falling in the intersection of the

two balls, the conditional probability that Z2 is the r-th nearest neighbor to Z1 is given by

g(i, j, j2;A) =

h−i−j−j2∑
j1=0

1

(r − i− j − j1 − 1)!

(
2τCdA

1 + λ

)r−i−j−j1−1

e−
2τCdA

1+λ

1

j1!

(
λ− 1

λ

τ(1− Cd)A
1 + λ

)j1
e−

λ−1
λ

τ(1−Cd)A
1+λ ,

where 1
(r − i− j − j1 − 1)!

(
2τCdA
1 + λ

)r−i−j−j1−1
exp

(
−2τCdA

1 + λ

)
is the probability that the Poisson

process X∪S1 with intensity 2τ
1 + λ

has r−i−j−j1−1 points lying in the region Bd[Z1, ||Z1−Z2||]\

Bd[Z2, ||Z1−Z2||], and 1
j1!

(
λ− 1
λ

τ(1− Cd)A
1 + λ

)j1
exp

(
−λ− 1

λ
τ(1− Cd)A

1 + λ

)
is the probability that

the Poisson process B1 has j1 points lying in the region Bd[Z1, ||Z1 − Z2||] ∩Bd[Z2, ||Z1 − Z2||].

Hence the (conditional) probability, Pn(r, s), that Z2 is the r-th nearest neighbor to its own

s-th nearest neighbor Z1 is given by

Pn(r, s) =

∫ ∞
0


h∑
i=0

h−i∑
j=0

h−i−j∑
j2=0

(s− 1)!

i!j!j2!(s− 1− i− j − j2)!

(
1− Cd

2

)i(1− Cd
2λ

)j
(

1− Cd
2

(
1− 1

λ

))j2
Cs−i−j−j2−1
d g(i, j, j2;A)

}
f(A; s)dA,

where h := min(r − 1, s− 1). So, we get

Pn(r, s) =
h∑
i=0

h−i∑
j=0

h−i−j∑
j2=0

h−i−j−j2∑
j1=0

 r + s− i− j − 2

i, j, j1, j2, r − i− j − j1 − 1, s− i− j − j2 − 1

 2−(i+j+j1+j2)

× (Cd + (1− Cd)(1− 1/λ)/2 + 1)−(r+s−i−j−1) (λ− 1)j1+j2λ−(j+j1+j2)

× (1− Cd)i+j+j1+j2Cr+s−2i−2j−j1−j2−2
d .

Therefore, limn→+∞ npx,1(r, s) = limn→∞
n

2n− 1Pn(r, s) = p1(r, s).

Note that

py,1(r, s) =
(n− 1)2

(2n− 1)(qn− 1)2

× P
(
{{NNr(Zn+1,X ∪ Sn+1) = Zn+2}|{NNs(Zn+2,X ∪ Sn+2) = Zn+1, Zn+2 ∈ Sn+1}}

)
,
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and

pxy,1(r, s) =
n− 1

(2n− 1)(qn− 1)

× P
(
{NNr(Z1,X ∪ S1) = Zn+1}|{NNs(Zn+1,X ∪ Sn+1) = Z1, Zn+1 ∈ S1}

)
.

Using similar arguments, we can analyze the asymptotic behavior of the conditional probability

above, and then, show that limn→+∞ nq
2py,1(r, s) = p1(r, s) and limn→+∞ nqpxy,1(r, s) = p1(r, s).

�

Proof of Proposition 2

Proof. We have

py,2(r, s) ≡ P ({NNr(Zn+1,X ∪ Sn+1) = NNs(Zn+2,X ∪ Sn+2)})

∼ P ({NNr(Zn+1,X ∪ Sn+1 ∪ {Zn+2}) = NNs(Zn+2,X ∪ Sn+2 ∪ {Zn+1})})

∼ px,2(r, s).

Similarly, we have

pxy,2(r, s) ≡ P ({NNr(Z1,X ∪ S1) = NNs(Zn+1,X ∪ Sn+1)})

∼ P ({NNr(Z1,X ∪ S1 ∪ {Zn+1}) = NNs(Zn+1,X ∪ Sn+1 ∪ {Z1})})

∼ px,2(r, s).

�

Proof of Proposition 4

Proof. We denote the index sets of the two samples by Ωx = {1, · · · , n} and Ωy = {n+ 1, · · · ,m},

with m = n+ ñ. We know that

VarH(mkTk,n) =
m∑
i=1

m∑
j=1

k∑
r=1

k∑
s=1

wiwjPH
(
Ir(Zi,X, Si) = Is(Zj ,X, Sj) = 1

)
−
(
mkEH(Tk,n)

)2
, (5)

where wi =
1 + q

2 for i ∈ Ωx and
1 + q

2q for i ∈ Ωy. For terms in which i = j, we know that

PH
(
Ir(Zi,X, Si) = Is(Zj ,X, Sj) = 1

)
= 1{r=s}

(
1

2
− 1

4n

)
+ 1{r 6=s}

(
1

4
− 3

8n

)
. (6)
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For each term in which (1) i 6= j ∈ Ωx, or (2) i 6= j ∈ Ωy, or (3) i ∈ Ωx, j ∈ Ωy, there are always

five mutually exclusive and exhaustive cases involved:

(i) NNr(Zi,X ∪ Si) = Zj , NNs(Zj ,X ∪ Sj) = Zi;

(ii) NNr(Zi,X ∪ Si) = NNs(Zj ,X ∪ Sj);

(iii) NNr(Zi,X ∪ Si) = Zj , but NNs(Zj ,X ∪ Sj) 6= Zi;

(iv) NNr(Zi,X ∪ Si) 6= Zj , but NNs(Zj ,X ∪ Sj) = Zi;

(v) NNr(Zi,X ∪ Si) 6= Zj , NNs(Zj ,X ∪ Sj) 6= Zi, and NNr(Zi,X ∪ Si) 6= NNs(Zj ,X ∪ Sj).

Let the null probabilities of these events be denoted by px,i(r, s), py,i(r, s), and pxy,i(r, s), respec-

tively, for the three scenarios, where i = 1, · · · , 5. Therefore, we have for i 6= j,

PH(Ir(Zi,X, Si)
.
= 1{i,j∈Ωx}px,1(r, s) + 1{i,j∈Ωy}py,1(r, s)

+ 1{i,j∈Ωx}(1−
1

1 + q
− 2q

(1 + q)2n
)px,2(r, s) + 1{i,j∈Ωy}(

1

1 + q
− 2q

(1 + q)2n
)py,2(r, s)

+ 1{i,j∈Ωx}(
1

2
− 1

2n
)(

1

2n
− px,1(r, s)) + 1{i,j∈Ωy}(

1

2
− 1

4n
− 1

4qn
)(

1

2qn
− py,1(r, s))

+ 1{i,j∈Ωx}(
1

2
− 1

2n
)(

1

2n
− px,1(r, s)) + 1{i,j∈Ωy}(

1

2
− 1

4n
− 1

4qn
)(

1

2qn
− py,1(r, s))

+ 1{i,j∈Ωx}(
1

4
− 11

16n
+

1

16qn
)

(
1− 1

n
+ px,1(r, s)− px,2(r, s)

)
+ 1{i,j∈Ωy}(

1

4
− 3

16n
− 7

16nq
)

(
1− 1

qn
+ py,1(r, s)− py,2(r, s)

)
+ 2× 1{i∈Ωx,j∈Ωy}(

1

4
− 1

16n
+

3

16nq
)

(
1− 1

2n
− 1

2qn
+ pxy,1(r, s)− pxy,2(r, s)

)
. (7)

We plug the long equation (7) together with (6) into the formula of the asymptotic variance

(5), and then after re-arranging the terms we can achieve the result of the theorem. �

Proof of Theorem 1

Proof. In order to invoke (Chatterjee 2008, Theorem 3.4), we write

fi(z1, · · · , zm) =


1
2k

∑
r≤k Ir(zi,X, Si) if 1 ≤ i ≤ n;

1
2qk

∑
r≤k Ir(zi,X, Si) if n+ 1 ≤ i ≤ m.

28



Define

Gk,n =
1√
m

∑
i≤m

fi(Z1, · · · , Zm) =

√
m

1 + q
Tk,n,

and

Wk,n =
Gk,n − EGk,n
σ(Gk,n)

=
Tk,n − ETk,n
σ(Tk,n)

.

After re-arranging terms we have

(nk)1/2 (Tk,n − µk) /σk =
σ(Tk,n)(nk)1/2

σk
Wk,n +

(nk)1/2(E(Tk,n)− µk)
σk

.

According to Propositions 3 and 4, we know that

σ(Tk,n)(nk)1/2

σk
→ 1 and

(nk)1/2(E(Tk,n)− µk)
σk

→ 0, as n→∞.

Thus, it suffices to show that P (Wk,n ≤ x) → Φ(x), ∀ x ∈ R. For a constant ζ ∈ (0, 1) that is

small enough such that 4.5ν + 4ζ < 1/2 and ν + 2ζ < 1, we define

K(n) := k(1 + q)nζ . (8)

We focus on the big probability set An on which for all Zi, the k nearest neighbors among

X ∪ Si are in its K(n) nearest neighbors among X ∪ Y, that is, An = ∩i≤nAn,i, where An,i :={
ω | ∪r≤k NNr(Zi,X ∪ Si) ⊆ ∪r≤K(n)NNr(Zi,X ∪ Y)

}
. Then, we can get

PAc
n ≤ mPAc

n,1 = m(1− PAn,1)

≤ m(1− P(there are at least k points of S1 lying in (9)

the K(n) nearest neighbors of Z1 among Y)) (see below for more explanations)

= mP(there are at most k − 1 points of S1 lying in

the K(n) nearest neighbors of Z1 among Y)

≤ mk
(
K(n)

k − 1

)(
nq −K(n)

n− k + 1

)/(nq
n

)
= O

(
nq2−kK(n)k−1a(λ)K(n)/(1+q)

)
= o

(
nk+νa(λ)kn

ζ
)

= o (1) ,

where a(λ) ≡ (1 − 1/(1 + λ))1+λ is a constant on (0, 1). The second inequality above (9) is due

to the fact that Bn,1 := {at least k points of S1 lie in the K(n) nearest neighbors of Z1 among Y}

and Bn,1 ⊆ An,1. More precisely, suppose event Bn,1 holds and consider the K(n) nearest neighbors
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of Z1 among the points of Y. The K(n) balls are colored black. Each of these balls is recolored

red (covering the original black color) if it belongs to S1. Therefore, at least k of these K(n) balls

are red (i.e. the event Bn,1 holds). Now, let us focus on the K(n) nearest neighbors of Z1 among

the points of the bigger set X ∪ Y, which is a set of balls not necessarily identical to the previously

colored K(n) balls, with all other m+n−K(n)−1 points eliminated. Each of these balls is colored

yellow if it belongs to X and is kept as red if it belongs to S1 ⊂ Y; otherwise it is colored black

as before. Some of the black balls and red balls of the original arrangement may now have been

eliminated by being recolored as yellow. The key point is that the number of black and red balls

that are eliminated equals to the number of yellow balls that are added. Therefore, the number

of eliminated red balls is less than or equal to the number of added yellow balls. Thus, we have

at least k yellow and red balls after adding yellow balls and eliminating red/black balls (i.e. An,1

holds). Therefore, we have proved Bn,1 ⊆ An,1
3.

Denote Fn(x) := P(Wk,n ≤ x|An) and denote εn := dL(Fn,Φ), the Lévy distance between Fn

and Φ. By definition of the Lévy distance and the Mean Value Theorem, we have

Fn(x)− Φ(x) ≤ Φ(x+ εn) + εn − Φ(x) ≤
(

1 +
1

2π

)
εn,

Fn(x)− Φ(x) ≥ Φ(x− εn)− εn − Φ(x) ≥ −
(

1 +
1

2π

)
εn.

Thus,

|Fn(x)− Φ(x)| ≤
(

1 +
1

2π

)
εn. (10)

From (Huber 1981, Page 33-34), we know that the following relation between the Lévy distance

and the Wasserstein (or the Kantorovich) distance,

εn ≤
√
dW (Fn,Φ), (11)

where dW (Fn,Φ) is the Wasserstein (or Kantorovich) distance between Fn and Φ. Given the set

An, we know that each function fi only depends on the K(n) nearest neighbors of the point zi.

Moreover, based on Proposition 4, it follows that σ(Gk,n) � 1/
√
q. By the definition of K(n) in

(8) and the assumption on q, we know that K(n) = O
(
nν+ζ

)
. For the large constant p such that

3This relatively short and conceptual proof is suggested by one of our anonymous referees. An alternative proof

which is more explicit can be found in the supplemental materials
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4.5ν + 4ζ < (p − 8 − 8ν)/(2p), we invoke Theorem 3.4 in (Chatterjee 2008) directly to get the

following bound,

|Fn(x)− Φ(x)| ≤
(

1 +
1

2π

)
εn ≤

(
1 +

1

2π

)√
dW (Fn,Φ)

≤ C K(n)2

σ(Gk,n)(n(1 + q))(p−8)/(4p)
+ C

K(n)3/2

σ3/2(Gk,n)(n(1 + q))(p−6)/(4p)

≤ C ′K(n)2n−(p−8)/(4p)q1/2−(p−8)/(4p) + C ′K(n)3/2n−(p−6)/(4p)q3/4−(p−6)/(4p)

≤ C ′′n2.25ν+2ζ−(p−8−8ν)/(4p) + C ′′n2.25ν+1.5ζ−(p−6)/(4p) = o(1),

where C, C ′, and C ′′ are universal constants and the first two inequalities result from (10) and

(11), respectively. Because P(Wk,n ≤ x) = P(An)P(Wk,n ≤ x|An) + P(Ac
n)P(Wk,n ≤ x|Ac

n), then

we have P(Wk,n ≤ x)→ Φ(x), ∀ x ∈ R. �
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Figure 2: Simulation results comparing the power of original nearest neighbor method (NN),

NN+Weighting, the unweighted statistic T uk,n (NN+Subsampling) and the new weighted statis-

tic Tk,n (ESS-NN), for different ratios of the sample sizes q = 1, 4, 16, 64. The two samples are

generated from the three simulation settings with d = 5 in Section 4. Power is approximated by

the proportion of rejections over 400 runs of the testing procedures. A sequence of neighborhood

sizes k are used.
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Figure 3: Simulation results comparing the power of the statistic Tk,ns for different subsample sizes

ns = n, 2n, 3n, 4n, at the different ratios of the sample sizes q = 4, 16, 64. The two samples are

generated from the three simulation settings with d = 5 in Section 4. Power is approximated by

the proportion of rejections over 400 runs of the testing procedures.
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Figure 4: The histograms of profitability comparing the equity repurchases sample and the debt

repurchases sample.
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Table 1: Numerical evaluation of the asymptotic variance σ2
k (3), for different combinations of

the dimension d = 1, 5,∞, the neighborhood size k = 1, 3, 5, 10, 30, and the ratio of sample sizes

λ = 1, 4, 16, 64,∞.

λ = 1 λ = 4 λ = 16 λ = 64 λ =∞

d = 1

k=1 0.208 0.107 0.087 0.082 0.080

k=3 0.218 0.108 0.087 0.082 0.081

k=5 0.223 0.109 0.087 0.082 0.081

k=10 0.228 0.109 0.088 0.082 0.081

k=30 0.234 0.112 0.089 0.083 0.082

d = 5

k=1 0.195 0.104 0.085 0.080 0.079

k=3 0.208 0.109 0.088 0.083 0.082

k=5 0.215 0.111 0.090 0.085 0.083

k=10 0.223 0.114 0.092 0.087 0.085

k=30 0.230 0.118 0.095 0.089 0.087

d =∞

k=1 0.188 0.103 0.084 0.080 0.078

k=3 0.203 0.109 0.088 0.084 0.082

k=5 0.211 0.112 0.091 0.086 0.084

k=10 0.219 0.115 0.093 0.088 0.086

k=30 0.228 0.118 0.095 0.090 0.088
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Table 2: Numerical evaluation of kp1,k at λ = ∞ (p1,k is defined in Proposition 4), for different

combinations of the dimension d = 1, 2, 3, 5, 10,∞ and the neighborhood size k = 1, 2, 3, 5, 10, 30,∞.

k=1 k=2 k=3 k=5 k=10 k=30 k =∞

d=1 0.286 0.292 0.291 0.293 0.307 0.365

d=2 0.277 0.299 0.309 0.324 0.356 0.419

d=3 0.271 0.303 0.319 0.341 0.379 0.435

d=5 0.264 0.307 0.330 0.359 0.398 0.444

d=10 0.255 0.311 0.339 0.372 0.409 0.448

d =∞ 0.250 0.312 0.344 0.377 0.412 0.449 0.5
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Table 3: Simulation results comparing the power of cross-match, runs, nearest neighbor method

(NN), simple subsampling based on NN (SSS-NN) and ensemble subsampling based on NN (ESS-

NN), for the sample size ratio q = 1, 4, 16, 64. The simulation settings are detailed in Section 4.

Power is approximated by the proportion of rejections over 400 runs of each testing procedure on

independently generated data. In the parentheses are empirical type I errors, i.e. the proportions

of rejections under the null.

cross-match runs NN SSS-NN ESS-NN

Model 1

dim=1

q=1 0.10 0.13 0.12 0.10 0.11 (0.05)

q=4 0.08 0.11 0.11 0.13 0.12 (0.08)

q=16 0.07 0.12 0.08 0.11 0.12 (0.04)

q=64 0.62 (0.58) 0.06 0.05 0.13 0.17 (0.05)

dim=5

q=1 0.36 0.58 0.59 0.60 0.59 (0.06)

q=4 0.37 0.57 0.64 0.54 0.77 (0.05)

q=16 0.26 0.36 0.41 0.53 0.83 (0.04)

q=64 0.25 (0.13) 0.25 0.23 0.59 0.85 (0.05)

Model 2

dim=1

q=1 0.12 0.15 0.13 0.14 0.15 (0.05)

q=4 0.13 0.13 0.13 0.14 0.20 (0.08)

q=16 0.06 0.10 0.09 0.14 0.17 (0.04)

q=64 0.66 (0.58) 0.06 0.08 0.15 0.23 (0.05)

dim=5

q=1 0.14 0.22 0.17 0.17 0.17 (0.06)

q=4 0.15 0.00 0.03 0.15 0.26 (0.05)

q=16 0.13 0.00 0.01 0.18 0.30 (0.04)

q=64 0.17 (0.13) 0.00 0.00 0.18 0.31 (0.05)

Model 3

dim=1

q=1 0.18 0.18 0.16 0.17 0.16 (0.04)

q=4 0.14 0.20 0.18 0.17 0.27 (0.06)

q=16 0.07 0.12 0.09 0.19 0.30 (0.05)

q=64 0.65 (0.58) 0.09 0.08 0.19 0.28 (0.05)

dim=5

q=1 0.24 0.38 0.36 0.34 0.34 (0.07)

q=4 0.33 0.24 0.36 0.37 0.54 (0.08)

q=16 0.25 0.15 0.20 0.38 0.62 (0.05)

q=64 0.26 (0.10) 0.11 0.15 0.38 0.66 (0.06)
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Table 4: Simulation results comparing the test based on MMD and the new test ESS-NN, for the

sample size ratio q = 1, 4, 16, 64. The simulation settings are detailed in Section 4. Power is approx-

imated by the proportion of rejections over 400 runs of each testing procedure on independently

generated data.

MMD ESS-NN (k = 15)

q=1 q=4 q=16 q=64 q=1 q=4 q=16 q=64

Model 1 (dim=5) 0.99 1.00 1.00 1.00 0.87 0.97 0.99 0.99

Model 2 (dim=5) 0.61 0.87 0.89 0.92 0.25 0.43 0.48 0.49

Model 3 (dim=5) 0.92 0.98 0.99 1.00 0.66 0.81 0.90 0.92

N(0, 1) vs NM1(0.9) 0.60 0.89 0.92 0.92 0.79 0.93 0.96 0.98

N(0, I5) vs NM5(0.4) 0.12 0.17 0.22 0.24 0.22 0.37 0.37 0.41

NM(0.7) vs NM1(0.9) 0.29 0.50 0.61 0.62 0.59 0.77 0.83 0.81

Table 5: P-values for comparing the joint distributions of the four variables between the firm

quarters related to equity repurchases and those related to debt repurchases. The variables are

lagged term spread, lagged credit spread, lagged real stock return, and firm profitability. Both the

original nearest neighbor method (NN) and the ensemble subsampling based on nearest neighbor

method (ESS-NN) are applied. The p-values are obtained using different neighborhood sizes k =

1, 3, 5, 10, 30.

k=1 k=3 k=5 k=10 k=30

NN 0.449 0.367 0.432 0.056 0.54

ESS-NN 0.004 0.006 0 0 0
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