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Abstract

In a nonparametric framework, we consider the problem of classifying a categorical
response Y whose distribution depends on a vector of predictors X, where the coordi-
nates Xj of X may be continuous, discrete, or categorical. To select the variables to
be used for classification, we construct an algorithm which for each variable Xj com-
putes an importance score sj to measure the strength of association of Xj with Y .
The algorithm deletes Xj if sj falls below a certain threshold. It is shown in Monte
Carlo simulations that the algorithm has a high probability of only selecting variables
associated with Y . Moreover when this variable selection rule is used for dimension
reduction prior to applying classification procedures, it improves the performance of
these procedures. Our approach for computing importance scores is based on root Chi-
square type statistics computed for randomly selected regions (tubes) of the sample
space. The size and shape of the regions are adjusted iteratively and adaptively using
the data to enhance the ability of the importance score to detect local relationships
between the response and the predictors. These local scores are then averaged over the
tubes to form a global importance score sj for variable Xj. When confounding and
spurious associations are issues, the nonparametric importance score for variable Xj

is computed conditionally by using tubes to restrict the other variables . We call this
variable selection procedure CATCH (Categorical Adaptive Tube Covariate Hunting).
We establish asymptotic properties, including consistency.

Keywords: Adaptive variable selection, Importance score, Chi-square statistic
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1. Introduction

We consider classification problems with a large number of predictors that can be
numerical or categorical. We are interested in the case in which many of the predictors
may be irrelevant for classification, thus the variables useful for classification need to be
selected. In genomic research, the classes considered are often cases and controls. Thus
variable selection is the same as the important problem of deciding which variables are
associated with disease. With modern technology, data of large dimension arise in many
scientific disciplines including biology, genomics, astronomy, economics and computer
science. In particular, the number of variables can be greater than the sample size,
which poses a considerable challenge to the statistical analysis. If only some of the
variables are useful for classification, over-fitting is a problem for methods that use all
variables, and therefore variable selection becomes critical for statistical analysis.

Methods for variable selection in the classification context include methods that in-
corporate variable selection as part of the classification procedure. This class includes
random forest (Breiman [1]), CART (Breiman et al. [2]) and GUIDE (Loh [12]). Ran-
dom forest assigns an importance score for each of the predictors and one can drop
those variables whose importance score fall below a certain threshold. CART, after
pruning, will choose a subset of optimal splitting variables to be the most significant
variables. GUIDE is a tree-based method particularly powerful in unbiased variable
selection and interaction detection. Other research includes methods that incorporate
variable selection by applying shrinkage methods with L1 norm constraints on the pa-
rameters (Tibshirani [17]) that generate sparse vectors of parameter estimates. Wang
and Shen [18] and Zhang et al. [19] incorporate variable selection with classification
based on support vector machine (SVM) methods. Qiao et al. [14] consider variable se-
lection based on linear discriminant analysis. One limitation of these variable selection
methods is that they are not based on nonparametric methods and therefore they may
not work well when there is a complex relationship between the prediction variables
and the variables to be classified.

We propose a nonparametric method for variable selection called Categorical Adap-
tive Tube Covariate Hunting (CATCH) that performs well as a variable selection algo-
rithm and can be used to improve the performance of available classification procedures.
The idea is to construct a nonparametric measure of the relational strength between
each predictor and the categorical response, and to retain those predictors whose rela-
tionship to the response is above a certain threshold. The nonparametric measure of
importance for each predictor is obtained by first measuring the importance of the pre-
dictor using local information, and then combing such local importance scores to obtain
an overall importance score. The local importance scores are based on root chi-square
type statistics for local contingency tables.

In addition to the aforementioned nonparametric feature, the CATCH procedure
has another property: it measures the importance of each variable conditioning on all
other variables thereby reducing the confounding that may lead to selection of variables
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spuriously related to the categorical variable Y . This is accomplished by constraining all
predictors but the one we are focusing on. For the case where the number of predictors
is huge (d � n), this can be done by restricting principal components for some types
of studies. See Remark 3.4.

Our approach to nonparametric variable selection is related to the EARTH algo-
rithm (Doksum et al. [3]) which applies to nonparametric regression problems with a
continuous response variable and continuous predictors. It measures the conditional
association between a predictor i and the response variable conditional on all the other
predictors {j}j 6=i, by constraining the {j}j 6=i variables to regions called tubes. The local
importance score is based on a local linear or a local polynomial regression. The contri-
bution of the current paper is to develop variable selection methods for the classification
problem with a categorical response variable and predictors that can be continuous, dis-
crete or categorical.

Our CATCH algorithm can be used as a variable selection step before classification.
Any classification method, preferably nonparametric, can be used after we single out the
important variables. In particular, SVM and random forest are statistical classification
methods that can be used with CATCH. We show in simulation studies that when the
true model is highly nonlinear and there are many irrelevant predictors, using CATCH
to screen out irrelevant or weak predictors greatly improves the performance of SVM
and random forest.

The CATCH algorithm works with general classification data, with both numerical
and categorical predictors. Moreover, the CATCH algorithm is robust when the pre-
dictors interact with each other, especially when numerical and categorical predictors
interact, e.g., for hierarchical interactive association between the numerical and cate-
gorical predictors. We present a model with a reasonable sample size and predictor
dimension for which random forest has a relatively low chance of detecting the signifi-
cance of the categorical predictor. The CART and GUIDE algorithms, with pruning,
can find the correct splitting variables including the categorical one, but yield relatively
high classification errors. Moreover CART and GUIDE have trouble choosing the split-
ting predictors in the correct order. The CATCH algorithm achieves higher accuracy
in the task of variable selection. This is due to the importance scores being conditional
as illustrated in the simulation example in section 4.1.

The rest of the paper will proceed as follows. In section 2 we introduce importance
scores for univariate predictors. In sections 3.1 - 3.4 we extend these scores to multi-
variate predictors, and in section 3.5, we introduce the CATCH algorithm. In section
4, we use simulation studies to show the effectiveness of the CATCH algorithm. A real
example is provided in section 5. In section 6, we provide some theoretical properties to
justify the definition of local contingency efficacy, and in section 7, we show asymptotic
consistency of the algorithm.
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2. Importance Scores for Univariate Classification

Let (X(i), Y (i)), i = 1, · · · , n, be independent and identically distributed (i.i.d.) as
(X, Y ) ∼ P . We first consider the case of a univariate X, then use the methods
constructed for the univariate case to construct the multivariate versions.

2.1. Numerical Predictor: Local Contingency Efficacy

Consider the classification problem with a numerical predictor. Let

Pr(Y = c|x) = pc(x), c = 1, · · · , C,
C∑
c=1

pc(x) ≡ 1. (2.1)

We introduce a measure of how strongly X is associated with Y in a neighbor-
hood of a “fixed” point x(0). Points x(0) will be selected at random by our algorithm.
Local importance scores will be computed for each point, then averaged. For a fixed
h > 0, define Nh(x

(0)) = {x : 0 < |x − x(0)| ≤ h} to be a neighborhood of x(0), and
let n(x(0), h) =

∑n
i=1 I(X(i) ∈ Nh(x

(0))) denote the number of data points in the neigh-
borhood. For c = 1, · · · , C, let n−c (x(0), h) be the number of observations (X(i), Y (i))
satisfying x(0)−h ≤ X(i) < x(0) and Y (i) = c, let n+

c (x(0), h) be the number of (X(i), Y (i))
satisfying x(0) < X(i) ≤ x(0) +h and Y (i) = c. Let nc(x

(0), h) = n+
c (x(0), h) +n−c (x(0), h),

n−(x(0), h) =
∑C

c=1 n
−
c (x(0), h), and n+(x(0), h) =

∑C
c=1 n

+
c (x(0), h). Table 1 gives the

resulting local contingency table:

Table 1: Local contingency table

Y = 1 Y = 2 · · · · · · Y = C Total

x(0) − h ≤ X < x(0) n−1 (x(0), h) n−2 (x(0), h) · · · · · · n−C(x(0), h) n−(x(0), h)

x(0) < X ≤ x(0) + h n+
1 (x(0), h) n+

2 (x(0), h) · · · · · · n+
C(x(0), h) n+(x(0), h)

Total n1(x
(0), h) n2(x

(0), h) · · · · · · nC(x(0), h) n(x(0), h)

To measure how strongly Y relates to local restrictions on X, we consider the chi-
square statistic:

X 2(x(0), h) =
C∑
c=1

(
(n−c (x(0), h)− E−c (x(0), h))2

E−c (x(0), h)
+

(n+
c (x(0), h)− E+

c (x(0), h))2

E+
c (x(0), h)

)
, (2.2)
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where 0/0 ≡ 0 and

E−c (x(0), h) =
n−(x(0), h)nc(x

(0), h)

n(x(0), h)
; E+

c (x(0), h) =
n+(x(0), h)nc(x

(0), h)

n(x(0), h)
. (2.3)

Due to the local restriction on X, the local contingency table might have some zero
cells. However this will not be an issue for the χ2 statistic. The χ2 statistic can detect
local dependence between Y and X as long as there exist observations from at least
two categories of Y in the neighborhood of x(0) . When all observations belong to the
same category of Y , intuitively no dependence can be detected. In this case χ2 statistic
is equal to zero which coincides with our intuition.

We call the neighborhood Nh(x
(0)) a section and maximize X 2(x(0), h) (2.2) with

respect to the section size h. Let plim denote limit in probability. Our local measure
of association is ζ(x(0)) as given in:

Definition 1. Local Contingency Efficacy (For Numerical Predictor). The local con-
tingency section efficacy and the Local Contingency Efficacy (LCE) of Y on a numerical
predictor X at the point x(0) are:

ζ(x(0), h) = plimn→∞n
−1/2

√
X 2(x(0), h), ζ(x(0)) = sup

h>0
{ζ(x(0), h)}. (2.4)

If pc(x) is constant in x for all c ∈ {1, · · · , C} for x near x(0), then, as n → ∞,
X 2(x(0), h) converges in distribution to a χ2

C−1 variable and in this case, ζ(x(0), h) = 0.
On the other hand, if pc(x) is not constant near x(0), ζ(x(0), h) determines the asymptotic
power for Pitman’s alternatives of the test based on X 2(x(0), h) for testing whether X
is locally independent of Y and is called the efficacy of this test. Moreover, ζ2(x(0), h)
is the asymptotic noncentrality parameter of the statistic n−1X 2(x(0), h).

The estimators of ζ(x(0), h) and ζ(x(0)) are:

ζ̂(x(0), h) = n−1/2
√
X 2(x(0), h); ζ̂(x(0)) = sup

h>0
ζ̂(x(0), h). (2.5)

We selected the section size h as

ĥ = argmax{ζ̂(x(0), h) : h ∈ {h1, . . . , hg}}

for some grid {h1, . . . , hg}. This corresponds to selecting h by maximizing estimated
power. See Doksum and Schafer [5], Gao and Gijbels [7], Doksum et al. [3], Schafer and
Doksum [16].
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2.2. Categorical Predictor: Contingency Efficacy

Let (X(i), Y (i)), i = 1, · · · , n, be as before except X ∈ {1, · · · , C ′} is a categorical
predictor. Let n(c, c′) be the number of observations satisfying Y = c and X = c′, and
let

X 2 =
C∑
c=1

C′∑
c′=1

(n(c, c′)− E(c, c′))2

E(c, c′)2
, (2.6)

where

E(c, c′) =

∑C
c=1 n(c, c′)

∑C′

c′=1 n(c, c′)

n
. (2.7)

Definition 2. Contingency Efficacy (For Categorical Predictor). The Contingency
Efficacy (CE) of Y on a categorical predictor X is.

ζ = plimn→∞ n
−1/2
√
X 2. (2.8)

Under the null hypothesis that Y and X are independent, X 2 converges in distri-
bution to a χ2

(C−1)(C′−1) variable. In this case, ζ = 0. In general, ζ2 is the asymptotic

noncentrality parameter of the statistic n−1X 2. The contingency efficacy ζ determines
the asymptotic power of the test based on X 2 for testing whether Y and X are inde-
pendent. We use ζ as an importance score that measures how strongly Y depends on
X. The estimator of (2.8) is:

ζ̂ = n−1/2
√
X 2. (2.9)

3. Variable Selection for Classification Problems: The CATCH Algorithm

Now we consider a multivariate X = (X1, ..., Xd), d > 1. To examine whether a
predictor Xl is related to Y in the presence of all other variables, we calculate efficacies
conditional on these variables as well as unconditional or marginal efficacies.

3.1. Numerical Predictors

To examine the effect of Xl in the local region of x(0) = (x
(0)
1 , · · · , x(0)d ), we build a

“tube” around the center point x(0), in which data points are within a certain radius δ
of x(0) with respect to all variables except Xl. Define X−l = (X1, ..., Xl−1, Xl+1, ..., Xd)

T

to be the complementary vector to Xl. Let D(·, ·) be a distance in Rd−1 which we will
define later.

Definition 3. A tube, Tl, of size δ (δ > 0) for the variable Xl at x(0) is the set

Tl ≡ Tl(x
(0), δ,D) ≡ {x : D(x−l, x

(0)
−l ) ≤ δ} (3.1)
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We adjust the size of the tube so that the number of points in the tube is a preas-
signed number k. We find that k ≥ 50 is in general a good choice. Note that k = n
corresponds to unconditional or marginal nonparametric regression.

Within the tube Tl(x
(0), δ,D), Xl is unconstrained. To measure the dependence of

Y on Xl locally, we consider neighborhoods of x(0) along the direction of Xl within the
tube. Let

Nl,h,δ,D(x(0)) = {x = (x1, · · · , xd)T ∈ Rd : x ∈ Tl(x(0), δ,D), |xl − x(0)l | ≤ h} (3.2)

be a section of the tube Tl(x
(0), δ,D). To measure how strongly Xl relates to Y in

Nl,h,δ,D(x(0)), we consider

X 2
l,δ,D(x(0), h). (3.3)

where (3.3) is defined by (2.2) using only the observations in the tube Tl(x
(0), δ,D).

Analogous to the definitions of local contingency efficacy (2.4), we define

Definition 4. The local contingency tube section efficacy and the local contingency
tube efficacy of Y on Xl at the point x(0) and their estimates are:

ζ(x(0), h, l) = plimn→∞ n
−1/2

√
X 2
l,δ,D(x(0), h); ζl(x

(0)) = sup
h>0
{ζ(x(0), h, l)}. (3.4)

ζ̂(x(0), h, l) = n−1/2
√
X 2
l,δ,D(x(0), h); ζ̂l(x

(0)) = sup
h>0
{ζ̂(x(0), h, l)}. (3.5)

For an illustration of local contingency tube efficacy consider Y ∈ {1, 2} and suppose

logit P (Y = 2|x) =
(
x− 1

2

)2
, x ∈ [0, 1] . Then the local efficacy with h small will be

large, while if h ≥ 1, the efficacy will be zero.

3.2. Numerical and Categorical Predictors
If Xl is categorical but some of the other predictors are numerical, we construct

tubes Tl(x
(0), δ,D) based on the numerical predictors leaving the categorical variables

unconstrained, and we use the statistic as defined by (2.6) to measure the strength of the
association between Y and Xl in the tube Tl(x

(0), δ,D), by using only the observations
in the tube Tl(x

(0), δ,D). We denote this version of (2.6) by

X 2
l,δ,D(x(0)). (3.6)

Analogous to the definition of contingency efficacy given in (2.8), we define

Definition 5. The local contingency tube efficacy of Y on Xl at x(0) and its estimate
are

ζl(x
(0)) = plimn→∞ n

−1/2
√
X 2
l,δ,D(x(0)); ζ̂l(x

(0)) = n−1/2
√
X 2
l,δ,D(x(0)). (3.7)
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3.3. The Empirical Importance Scores

The empirical efficacies (3.5) and (3.7) measure how strongly Y depends on Xl near
one point x(0). To measure the overall dependency of Y on Xl, we randomly sample
M bootstrap points x∗a, a = 1, ...,M , with replacement from {x(i) : 1 ≤ i ≤ n} and
calculate the average of local tube efficacies estimates at these points.

Definition 6. The CATCH empirical importance score for variable l is

sl = M−1
M∑
a=1

ζ̂l(x
∗
a) (3.8)

where ζ̂l(x
(ia))is defined in (3.5) and (3.7) for numerical and categorical predictors,

respectively.

3.4. Adaptive Tube Distances

Doksum et al. [3] used an example to demonstrate that the distance D needs to
be adaptive to keep variables strongly associated with Y from obscuring the effect of
weaker variables. Suppose Y depends on three variable X1, X2 and X3 among the larger
set of predictors. The strength of the dependency ranges from weak to strong, which
will be estimated by the empirical importance scores. As we examine the effect of X2

on Y , we want to define the tube so that there is relatively less variation in X3 than in
X1 in the tube because X3 is more likely to obscure the effect of X2 than X1. To this
end we introduce a tube distance for the variable Xl of the form

Dl(x−l, x
(0)
−l ) =

d∑
j=1

wj|xj − x(0)j |I(j 6= l) (3.9)

where the weights wj adjust the contribution of strong variables to the distance so that
the strong variables are more constrained.

The weights wj are proportional to sj − s′j which are determined iteratively and

adaptively as follows: in the first iteration, set sj = s
(1)
j = 1 in (3.9) and compute the

importance score s
(2)
j using (3.8). For the second iteration, we use the weights sj = s

(2)
j

and the distance

Dl(x−l, x
(0)
−l ) =

∑d
j=1(sj − s′j)+|xj − x

(0)
j |I(j 6= l)∑d

j=1(sj − s′j)+I(j 6= l)
(3.10)

where 0/0 ≡ 1 and s′j is a threshold value for sj under the assumption of no conditional
association of Xl with Y computed by a simple Monte Carlo technique. This adjust-
ment is important because some predictors by definition have larger importance scores
than others when they are all independent of Y . For example a categorical predictor
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with more levels has a larger importance score than that with fewer levels. Therefore
the unadjusted scores sj can not accurately quantify the relative importance of the

predictors in the tube distance calculation. Next, we use (3.8) to produce sj = s
(3)
j and

use s
(3)
j in the next iteration, and so on.

In the definition above, we need to define |xj − x(0)j | appropriately for a categorical

variable Xj. Because Xj is categorical, we need to assume that |xj − x(0)j | is constant

when xj and x
(0)
j take any pair of different categories. One approach is to define |xj −

x
(0)
j | =∞I(xj 6= x

(0)
j ) in which case all points in the tube are given the same Xj value

as the tube center. The approach is a very sensible one as it strictly implements the
idea of conditioning on Xj when evaluating the effect of another predictor Xl, and Xj

does not contribute to any variation in Y . The problem with this definition, though, is
that when the number of categories of Xj is relatively large as compared to sample size,
there will not be enough points in the tube if we restrict Xj to a single category. In
such a case, we do not restrict Xj, which means that Xj can take any category in the

tube. We define |xj − x(0)j | = k0I(xj 6= x
(0)
j ), where k0 is a normalizing constant. The

value of k0 is chosen to achieve a balance between numerical variables and categorical
variables. Suppose that X1 is a numerical variable with standard deviation one and
X2 is a categorical variable. For X2, we set k0 ≡ E(|X(1)

1 − X
(2)
1 |), where X

(1)
1 and

X
(2)
1 are two independent realizations of X1. Note that k0 =

√
2/π if X1 follows a

standard normal distribution. Also, k0 can be based on the empirical distributions of
the numerical variables. Based on the proceeding discussion of the choice of k0, we use
k0 =∞ in the simulations and k0 =

√
2/π in the real data example.

Remark 3.1. (choice of k0) k0 =
√

2/π is used all the time unless the sample size is

large enough in the sense to be explained below. Suppose k0 = ∞, then Dl

(
x−l, x

(0)
−l

)
is finite only for those observations with xj = x

(0)
j . When there are multiple categorical

variables, Dl is finite only for those points, denoted by set Ω(0), that satisfy xj = x
(0)
j for

all categorical xj. When there are many categorical variables, or when the total sample
size is small, the size of this set can be very small or close to zero, in which case the
tube cannot be well defined, therefore k0 =

√
2/π is used, as in the real data example.

On the other hand, when the size of Ω(0) is larger than the specified tube size, we can
use k0 =∞, as in the simulation examples.

3.5. The CATCH Algorithm

The variable selection algorithm for a classification problem is based on importance
scores and an iteration procedure.
The Algorithm
(0) Standardizing: Standardize all the numerical predictors to have sample mean 0,
and sample standard deviation 1 using linear transformations.
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(1) Initializing Importance Scores: Let S = (s1, · · · , sd) be importance scores for
the predictors. Let S ′ = (s′1, · · · , s′d) such that s′l is a threshold importance score which
corresponds to the model where Xl is independent of Y given X−l. Initialize S to be
(1, · · · , 1) and S ′ to be (0, · · · , 0). Let M be the number of tube centers and m the
number of observations within each tube.
(2) Tube Hunting Loop: For l = 1, · · · , d, do (a), (b), (c) and (d) below:

(a) Selecting tube centers: For 0 < b ≤ 1, set M = [nb] where [ ] is the great-
est integer function, and randomly sample M bootstrap points X∗1 , . . . , X

∗
M with

replacement from the n observations. Set k = 1, do (b).

(b) Constructing tubes: For 0 < a < 1, set m = [na]. Using the tube distance
Dl defined in (3.10), select the tube size a so that there are exactly m ≥ 10
observations inside the tube for Xl at X∗k .

(c) Calculating efficacy: If Xl is a numerical variable, let ζ̂l(X
∗
k) be the estimated

local contingency tube efficacy of Y on Xl at X∗k as defined in (3.5). If Xl is a

categorical variable, let ζ̂l(X
∗
k) be the estimated contingency tube efficacy of Y

on Xl at X∗k as defined in (3.7).

(d) Thresholding: Let Y ∗ denote a random variable which is identically distributed

as Y , but independent of X. Let (Y
(1)
0 , · · · , Y (n)

0 ) be a random permutation of

(Y (1), · · · , Y (n)), then Y0 ≡ (Y
(1)
0 , · · · , Y (n)

0 ) can be viewed as a realization of Y ∗.
Let ζ̂∗l (X∗k) be the estimated local contingency tube efficacy of Y0 on Xl at X∗k
calculated as in (c) with Y0 in place of Y .

If k < M , set k = k + 1, go to (b), otherwise, go to (e).

(e) Updating importance scores: Set

snewl =
1

M

M∑
k=1

ζ̂l(X
∗
k), s

′new
l =

1

M

M∑
k=1

ζ̂∗l (X∗k).

Let Snew = (snew1 , · · · , snewd ) and S
′new = (s

′new
1 , · · · , s′newd ) denote the updates of S

and S ′.
(3) Iterations and Stopping Rule: Repeat (2) I times. Stop when the change in
Snew is small. Record the last S and S ′, as Sstop and S ′stop, respectively.
(4) Deletion step: Using Sstop and S ′stop, delete Xl if sstopl − s′stopl <

√
2SD(s′stop).

If d is small, we can generate several sets of S ′stop and then use the sample standard
deviation of all the values in these sets to be SD(s′stop). See Remark 3.3.
End of the algorithm

Remark 3.2. Step (d) needs to be replaced by (d’) below when a global permutation of Y
does not result in appropriate “local null distribution”. For example when sample sizes
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of different classes are extremely unequal, which is known as unbalanced classification
problems,it is very likely to have a pure class of Y in local region after the global per-
mutation and the threshold S ′ will be spuriously low. And therefore irrelevant variables
will be falsely selected into the model. This approach is more nonparametric, but more
time consuming.

(d’) Local Thresholding: Let Y ∗ denote a random variable which is distributed as Y

but independent of Xl given X−l. Let (Y
(1)
0 , · · · , Y (m)

0 ) be a random permutation of the

Y ’s inside the tube, then (Y
(1)
0 , · · · , Y (m)

0 ) can be viewed as a realization of Y ∗. If Xl

is a numerical variable, let ζ̂l
′
(X∗k) be the estimated local contingency tube efficacy of

Y ∗ on Xl at X∗k as defined in (3.5). If Xl is a categorical variable, let ζ̂l
′
(X∗k) be the

estimated contingency tube efficacy of Y ∗ on Xl at X∗k as defined in (3.7).

Remark 3.3. (The threshold). Under the assumption H
(l)
0 that Y is independent of Xl

given X−l in Tl, sl and s′l are nearly independent and SD(sl − s′l) ≈
√

2SD(s′l). Thus
the rule that deletes Xl when sstopl − s′stopl <

√
2SE(s′stop) is similar to the one standard

deviation rule of CART and GUIDE. The choice of threshold is also discussed in Section
7. Alternatively, we calculate the p-values for each covariate by permutation tests. More
specifically, we permute the response variable and obtain the important scores for the
permeated data and then calculate how extreme s′stopl compared to permutated scores.
We then identify a covariate as important if its p-value is less than 0.1.

Remark 3.4. (Large d, small n) A key idea in this paper is that when determining the
importance of the variable Xj we restrict (condition) the vector X−j to a relatively small
set. This is done to address the problem of the spurious correlation of great concern in
genomics (Price et al. [13], Lin and Zeng [11]). In such genomic studies, the number of
predictors d typically greatly exceeds sample size n. For numerical variables, this can be
dealt with by replace X−j with a vector of principal components explaining most of the
variation in X−j. Although our paper does not deal with the d � n case directly, this
remark shows that it is also applicable to the genome wide association studies described
in Price et al. [13].

Remark 3.5. We now provide computational complexity of the algorithm. Recall the
notations: I is the number of repetitions; M is the number of tube centers; m is the
tube size; d is the dimension and n is the sample size. The number of operations
needed for the algorithm is I × d × {M × (2b+ 2c+ 2d) + 2e}, where 2b, 2c, 2d, 2e
denote the number of operations required for those steps. The computational complexity
required for 2b, 2c, 2d and 2e are O (nd), O (m), O (m)and O (M). Since nd� m and
the required computation is dominated by step 2b, the computational complexity of the
algorithm is O (IMnd2). Solving least squares problem requires O (nd2) operations. So
our algorithm requires higher computational complexity by a factor of IM compared to
least squares. However, the computations for M tube centers are independent of the
other computations and are performed in parallel.
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4. Simulation Studies

4.1. Variable Selection with Categorical and Numerical Predictors

Example 4.1. Consider d ≥ 5 predictors X1, X2, ..., Xd, and a categorical response
variable Y . The fifth predictor X5 is a Bernoulli random variable which takes two
values 0 and 1 with equal probability. All other predictors are uniformly distributed on
[0,1].

When X5 = 0, the dependent variable Y is related to the predictors in the following
fashion:

Y =


0 if X1 −X2 − 0.25 sin(16πX2) ≤ −0.5;
1 if −0.5 < X1 −X2 − 0.25 sin(16πX2) ≤ 0;
2 if 0 < X1 −X2 − 0.25 sin(16πX2) ≤ 0.5;
3 if X1 −X2 − 0.25 sin(16πX2) > 0.5.

(4.1)

When X5 = 1, Y depends on X3 and X4 in the same way as above with X1 replaced
by X3 and X2 replaced by X4. The other variables X6, . . . , Xd are irrelevant noise
variables. All d predictors are independent.

In addition to the presence of noise variables X6, . . . , Xd, this example is challenging
in two aspects. First there is an interaction effect between the continuous predictors
X1, . . . , X4 and the categorical predictor X5. Such interaction effect may arise in prac-
tice. For example, suppose Y represents the effect resulting from multiple treatments
X1, . . . , X4 and that X5 represents the gender of a patient. Our model allows males and
females to respond differently to treatments. Secondly the classification boundaries for
fixed X5 are highly nonlinear, as shown in Figure 1. This design is to demonstrate the
our method can detect nonlinear dependence between the response and the predictors.

Table 2 shows the number of simulations where the predictors X1, · · · , X5 are cor-
rectly kept in the model, and, in column 6 the average number of simulations where
d− 5 irrelevant predictors are falsely selected to be in the model out of 100 simulation
trials from model (4.1). In the simulation, n = 400, d = 10, 50 and 100 are used.
We compare CATCH with other methods, including Marginal CATCH, Random Forest
classifier (RFC) (Breiman [1]) and GUIDE (Loh [12]). For Marginal CATCH we test
the association between Y and Xl without conditioning on X−l. RFC is well-known as
a powerful tool for prediction. Here we use importance scores from RFC for variable
selection. We create additional 30 noise variables and use their average importance
scores multiplied by a factor of 2 as a threshold (Doksum et al. [3]) to decide whether a
variable should be selected into the model. In particular we generate the noise variables
using uniform and Bernoulli distributions, respectively, for numerical and categorical
predictors.

The main goal of GUIDE is to solve the variable selection bias problem in regression
and classification tree methods. As an illustration, if a categorical predictor takes K
distinct values, then the splitting test exhausts 2K − 1 possibilities, and therefore is
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Figure 1: The relationship between Y and X1, X2 for model (4.1). The four areas represent the four
values of Y

biased toward being selected. The way that GUIDE alleviate this bias is to employ
the lack-of-fit tests, i.e. χ2-test applicable to both numerical and categorical predictors,
with the p-values adjusted by the bootstrap procedure. Since GUIDE has negligible se-
lection bias, it can include tests for local pairwise interactions. Furthermore, it achieves
sensitivity to local curvature by using linear model at each node.

The results in table 2 show that Marginal CATCH does a very poor job of select-
ing X5. This illustrates the importance of local conditioning. RFC does better than
Marginal CATCH but also has difficulties, while CATCH and GUIDE can successfully
identify X5 along with X1 to X4 with high frequency. When d = 10 GUIDE does very
well for the relevant variables, but selects too many irrelevant variables as d increases.
Surprisingly GUIDE selects fewer irrelevant variables as d increases. It becomes more
cautious as the dimension d increases. CATCH performs very well for the high dimen-
sional cases (d = 50 and d = 100). This indicates that the CATCH algorithm is robust
to the intricate interaction structures between the predictors.

In model (4.1) above, the predictors interact in a hierarchical way. When X5 = 0,
the response is related to X1 and X2 as shown in Figure 1, where the two axes are
the two relevant predictors and the four areas partitioned by the curves correspond
to different values of Y . When X5 = 1, the response depends on X3 and X4 in the
same way. This type of hierarchical interaction between the categorical and numerical
predictors are difficult to detect even by state of the art classification methods such as
support vector machine(SVM) and RFC. In particular, RFC produces an importance
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score vector that identifies the four numerical variables X1, . . . , X4 as very significant,
but often leaves the categorical variable X5 unidentified, as we see in table 2.

The CATCH algorithm, however, performs very well for this complicated model. We
now explain why CATCH is able to identify X5 as an important variable. To explore
the association between X5 and Y , we construct M contingency tables of 2 rows and
4 columns based on M randomly centered tubes, calculate contingency efficacy scores
and then average the scores. Figure 2 (a) and (b) illustrate how one of the contingency
efficacy scores is calculated. 1000 data points are generated from model (4.1) and they
are split into two sets according to x5. (a) shows approximately half of the points with
x5 = 0 in (x1, x2) dimensions and (b) shows the rest points with x5 = 1 in (x3, x4)
dimensions. The data points are colored according to Y . This representation enables
us to clearly see the classification boundaries (grey lines). The randomly selected tube
center when x5 is zero is shown as a star in (a). The data points within the tube, close
to the tube center in terms of X−5, are highlighted by larger dots. Since the distance
defining the tube does not involve X5, the larger dots have x5 equal 0 or 1 and are
present in both (a) and (b). The counts of the larger dots in different colors in (a) and
(b) correspond to the cell counts of the two rows, x5 = 0 and x5 = 1, in the contingency
table. As we can see, larger dots in (a) are mostly red and larger dots in (b) are mostly
blue and orange, which shows that distribution in Y depends on the value of X5 and
the contingency efficacy score is high. We expect the contingency efficacy score would
be low only if the tube center has similar values in (x1, x2) and (x3, x4). Such tube
centers would be very few among the M tube centers since they are randomly chosen.
Thus the average contingency efficacy scores is high and X5 is identified as an important
variables.

To contrast this example with a simpler data generating model, suppose the effects
of predictors are additive, that is, the categorical variable is related to the response as
an added term to the effect of the numerical predictors. In this type of simpler models,
the RFC and GUIDE algorithm can efficiently identify relevant predictors but so can
the CATCH algorithm. We do not include the simulation results for additive models
here.

Remark 4.1. We observe that the CATCH algorithm is not very sensitive to the choice
of the number of tube centers M or the tube size m = [na], where 0 < a ≤ 1 and [ ] is
the greatest integer function. For example 4.1 we perform the simulation using M = n
and M = n/2, and a = 0.1, 0.15, 0.2, 0.3, 0.5. The results are summarized in Table 3.
The CATCH algorithm performs similarly for M = n and M = n/2 with M = n having
a small winning edge. We generally suggest to use M = n if computation resource is
of a less concern or n is not large (≤ 200). When computational cost is a concern
(Remark 3.5), one can reduce tube size to M = n/2 for a compromise between detection
power and the computational cost. Table 3 also shows that the tube size works well in
the range between 0.1 and 0.3 while the detection power of X5 decreases for the case
a = 0.5, where the tube size is too big to achieve local conditioning. This is a consistent
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observation with the comparison to Marginal CATCH in Table 2. On the other hand,
the tube size should not be too small to achieve sufficient detection power. We suggest
to use a = 0.1 or 0.15 for sample sizes n ≥ 400 or m = 50 for smaller sample sizes.
In light of these guidelines, we use M = n/2 = 200 and a = 0.15 for Examples 4.1-4.3,
M = n = 200 and m = 50 for Example 4.4.

Table 3: Sensitivity study of CATCH for Example 4.1 (n = 400, d = 50) using different number of
tube centers M and tube size m = [na]. For 1 ≤ i ≤ 5, the ith column gives the number of times Xi

was selected. Column 6 gives the percentage of times irrelevant variables were selected.

Number of Selections(100 simulations)
M a X1 X2 X3 X4 X5 Xi, i ≥ 6

M = 200 0.10 75 67 77 69 92 7.8
0.15 76 76 87 84 96 8.2
0.20 85 84 90 87 93 9.9
0.30 89 87 95 89 85 9.6
0.50 89 90 96 93 62 9.9

M = 400 0.10 74 76 82 77 92 7.2
0.15 85 82 89 87 94 8.6
0.20 87 88 90 86 96 9.1
0.30 88 89 91 91 92 9.4
0.50 89 91 94 93 61 10.2

In Example 4.1, all predictors are independent. In a similar setting, we next consider
the case where the predictors are dependent.

Example 4.2. We generate standard normal random variables Zi, for i = 1, · · · , d, in
such a way that cor(Z1, Z4) = 0.5, cor(Z3, Z6) = 0.9,and the other Zi’s are independent.
We set Xi = Φ(Zi), for i = 1, · · · , d, where Φ(·) is the CDF of a standard normal, and
therefore Xi are uniformly distributed marginally as in Example 4.1. The correlation
structure between the Xi’s are similar to that of the Zi’s. The dependent variable Y is
generated in the same way as in Example 4.1.

The results of Example 4.2 are given in Table 4. By comparing with results in Table
2, both CATCH and GUIDE are doing well in the presence of dependence between the
numerical variables. The explanation is two-fold. First, both methods could identify the
categorical X5 as an important predictor most of the time which make the identification
of other relevant predictors possible. Second, conditioning on X5, Y depends on a pair
of variables (“X1 and X2” or “X3 and X4”) jointly and in particular this dependence is
nonlinear, which makes both methods less affected by the correlation introduced here.
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Figure 2: Sample scatter plots of (x1, x2) and (x3, x4) for simulated data using model (4.1). The left
panel includes all the pairs (x1, x2) with x5 = 0 while the right panel includes all the pairs (x3, x4)
with x5 = 1. The larger dots in the two plots are within the tube around a tube center, shown as the
star.

We now explain the latter in details for both methods. In CATCH, the algorithm
adaptively weighs the effects of predictors by their importance scores in defining the
tubes when they are being conditioned on, therefore identifying either of the two will
help to identify the other whereas an irrelevant variable, though strongly associated with
one of the relevant variables, is down-weighted iteratively and does not strongly affect
the selection of the relevant variable. This can explain the slight decreasing selection
probability in X3 in presence of a strongly correlated X6, and consequently overall less
selection of X3 and X4 compared to X1 and X2 given the correlation between X1 and
X4. In GUIDE, the difference between the dependent and independent cases is even
less because GUIDE is very powerful in detecting local interaction by literally including
pairwise interactions when selecting splitting variables.

Marginal CATCH and Random Forest do poorly in this case mainly because X5 can
not be detected as we explained earlier. More specifically, the dependence between Y
and X4 in X5 = 1 case is the same as that between Y and X2 in X5 = 0. The linear
terms of X1 and X2 have opposite signs in decision function therefore marginal effects
of X1 and X4 are obscured when X5 is not identified as an important variable.

4.2. Improving The Performance of SVM and RF Classifiers

The criterion used in the CATCH algorithm is not based on classification accuracy.
But if we use CATCH to screen out the irrelevant variables, and only use the important
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variables for classification, the performance of other algorithms such as Support Vector
Machine (SVM) and Random Forest Classifiers (RFC) can be significantly improved.
We compare the prediction performance of (1) SVM, (2) RFC, (3) CATCH followed
by SVM, and (4) CATCH followed by RFC in this section. We label (3) and (4)
with CATCH+SVM and CATCH+RFC, respectively. In this section we use the “svm”
function in the “e1071” package in R with radial kernel to perform SVM analysis,
and use the “randomForest” function in the “randomForest” package to perform RFC
analysis. We use simulation experiments to illustrate the improvement obtained by
using CATCH prior to classifying Y .

Let the true model be

(X, Y ) ∼ P, (4.2)

where P will be specified later. In each of 100 Monte Carlo experiments, n pairs of
(X(i), Y (i)), i = 1, · · · , n, are generated from the true model (4.2). Based on the simu-
lated data (X(i), Y (i)), i = 1, · · · , n, the methods (1) SVM, (2) RFC, (3) CATCH+SVM,
(4) CATCH+RFC are used to classify a future Y (0) for which we have available a cor-
responding X(0).

The integrated-misclassification rate (IMR, Friedman [6]) defined below is used to
evaluate the performance of the classification algorithms. Let FX,Y(·) be the classifier
constructed by a classification algorithm based on X = (X(1), · · · , X(n)), and Y =
(Y (1), · · · , Y (n))T .

Let (X(0), Y (0)) be a future observation with the same distribution as (X(i), Y (i)).
We only know X(0) = x(0), and want to classify Y (0). For a possible future observation
(x(0), y(0)), define

MR(X,Y;x(0), y(0)) = P (FX,Y(x(0)) 6= y(0)|X,Y). (4.3)

Our criterion is

IMR = E{E0[MR(X,Y;x(0), y(0))]}. (4.4)

where E0 is with respect to the distribution of (x(0), y(0)) random and E is with respect
to the distribution of (X,Y).

This double expectation is evaluated using Monte Carlo simulation. The result is
denoted as IMR∗. More precisely, E0 is estimated using 5000 simulated (x(0), y(0)) obser-
vations, then IMR∗ is computed on the basis of 100 simulated {(Xi,Yi), i = 1, · · · , 100}
samples.

Example 4.3. First consider model (4.1) in section 4.1. Figure 3 shows IMR∗ versus
the number of irrelevant variables for this example. The left panel shows that the
IMR∗’s of the SVM approach increases dramatically as the number of irrelevant variables
increases, while the IMR∗’s of CATCH+SVM are stable. Thus CATCH stabilizes the
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performance of SVM for this complex model. The right panel shows that CATCH also
stabilizes the performance of RFC. These results indicate that CATCH can improve the
prediction accuracy of other classification algorithms.
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Figure 3: IMR∗’s of SVM, RFC, CATCH+SVM, CATCH+RFC versus the number of predictors for
the simulation study in model (4.1) in example 4.1. The sample size is n = 400.

Example 4.4. Contaminated Logistic Model: Consider a binary response Y ∈ {0, 1}
with

P (Y = 0|X = x) =

{
F (x) if r = 0
G(x) if r = 1

(4.5)

where x = (x1, . . . , xd),

r ∼ Bernoulli(γ) (4.6)

F (x) = (1 + exp{−(0.25 + 0.5x1 + x2)})−1 (4.7)

G(x) =

{
0.1 if 0.25 + 0.5x1 + x2 < 0
0.9 if 0.25 + 0.5x1 + x2 ≥ 0

(4.8)

and x1, x2, . . . , xd are realizations of independent standard normal random variables.
Hence, given X(i) = x(i), 1 ≤ i ≤ n, the joint distribution of Y (1), Y (2), . . . , Y (n) is the
contaminated logistic model with contamination parameter γ
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(1− γ)
n∏
i=1

[F (x(i))]Y
(i)

[1− F (x(i))]1−Y
(i)

+ γ

n∏
i=1

[G(x(i))]Y
(i)

[1−G(x(i))]1−Y
(i)

(4.9)

We perform simulation study for n = 200, d = 50 and γ = 0; 0.2; 0.4; 0.6; 0.8 and
1, where γ = 0 corresponds to no contamination. Figure 4 shows the IMR∗’s versus the
different values of γ for this example. CATCH improves the performance of the SVM
and Random Forest classifiers for this contaminated logistic regression model.
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Figure 4: IMR∗’s of SVM, RFC, CATCH+SVM, CATCH+RFC versus different contamination pa-
rameters γ for simulation model (4.9) in example 4.4.

5. CATCH Analysis of The ANN Data

In this section, CATCH is applied to a data set available at the UCI data base
("http://ftp.ics.uci.edu/pub/machine-learning-databases/thyroid-disease/
"). The data is from a clinical trial to determine whether a patient is hypothyroid (see
e.g., Quinlan [15]). The dataset is split into two parts: a training set with 3772 ob-
servations and a testing set with 3428 observations. The response is a categorical
variable with three classes: normal (not hypothyroid), hyperfunction, and subnormal
functioning. There are 21 predictors, including 15 categorical predictors and 6 numer-
ical predictors. The three classes are very imbalanced with 92.5% of normal patients.
A good classifier should produce a significant decrease from an error rate 7.5%, which
can be obtained by classifying all observations to the normal class.
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CATCH identifies 7 variables as important, including 4 continuous variables and
3 categorical variables. We consider three classification methods: 1. Support Vector
Machine with radial kernel, denoted by SVM(r); 2. Support Vector Machine with
polynomial kernel, denoted by SVM(p); 3. RFC. We apply these three methods on
the training set to build classification models, and use the test set to estimate the
misclassification rate of the methods. We apply the methods with CATCH and without
CATCH, respectively, where “with CATCH” means that only the 7 important variables
identified by CATCH are used to build the model, and “without CATCH” means that
all the 21 variables are used in the analysis.

Table 5: Misclassification rates of three classification methods (SVM(r), SVM(p), RFC) with CATCH
and without CATCH

SVM(r) SVM(p) RFC

w/o CATCH 0.052 0.063 0.024

with CATCH 0.037 0.055 0.015

Table 5 shows that if CATCH is used to select important variables before the clas-
sification methods are applied, the misclassification rates decrease. CATCH reduces
the misclassification rates by 29%, 13% and 37% for SVM(r), SVM(p) and RFC respec-
tively. CATCH + RFC has the best performance. Although CATCH is not designed for
improving classification accuracy, nonetheless, it can help other classification methods
to perform better.

6. Properties of Local Contingency Efficacy

In this section, we investigate the properties of local contingency efficacy. For a uni-
variate continuous predictor, Theorem 6.1 below shows that local contingency efficacy
is well-defined and equals to 0 if the response variable is independent of the predictor.
Consider an R × C contingency table. Let nrc, r = 1, · · · , R, c = 1, · · · , C, be the
observed frequency in the (r, c)-cell, and let prc be the probability that an observation
belongs to the (r, c)-cell. Let

pr =
C∑
c=1

prc; qc =
R∑
r=1

prc; (6.1)
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and

nr· =
C∑
c=1

nrc; n·c =
R∑
i=1

nrc; n =
R∑
i=1

C∑
c=1

nrc; Erc = nr·n·c/n. (6.2)

Consider testing that the rows and the columns are independent, i.e.,

H0 : ∀r, c prc = prqc versus H1 : ∃r, c prc 6= prqc, (6.3)

a standard test statistic is:

X 2 =
R∑
r=1

C∑
c=1

(nrc − Erc)2

Erc
. (6.4)

Under H0, X 2 converges in distribution to χ2
(R−1)(C−1). Moreover, define 0/0 = 0, we

have the well known result:

Lemma 6.1. As n tends to infinity, X 2/n tends in probability to

τ 2 ≡
R∑
r=1

C∑
c=1

(prc − prqc)2

prqc

Moreover, if prqc is bounded away from 0 and 1 as n → ∞, and if R and C are fixed
as n→∞, then τ 2 = 0 if and only if H0 is true.

Remark 6.1. Lemma 6.1 shows that the contingency efficacy ζ in (2.8) is well defined.
Moreover, ζ = 0 if and only if X and Y are independent.

Theorem 6.1. Consider a categorical response Y and a continuous predictor X with
density function f(x) such that for a fixed h > 0, f(x) > 0 for x ∈ (x(0) − h, x(0) + h),
then

(1) For fixed h, the estimated local section efficacy ζ̂(x(0), h) defined in (2.5) converges
almost surly to the section efficacy ζ(x(0), h) defined in (2.4).

(2) If X and Y are independent, then the local efficacy ζ(x(0)) defined in (2.4) is zero.

(3) If there exists c ∈ {1, · · · , C}, such that pc(x) = P (Y = c|x) has a continuous
derivative at x = x(0) with p′c(x

(0)) 6= 0, then ζ(x(0)) > 0.

The χ2 statistic (6.4) can be written in terms of multinomial proportions p̂rc with
{
√
n(p̂rc − prc), 1 ≤ r ≤ R, 1 ≤ c ≤ C} converging in distribution to a multivariate

normal. By Taylor expansion of Tn ≡
√
χ2/n at τ = plim

√
χ2/n, we find that
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Theorem 6.2. √
n(Tn − τ) −→d N(0, v2) (6.5)

where the asymptotic variance v2, which can be obtained from the Taylor expansion, is
not needed in this paper.

Remark 6.2. The result (6.5) applies to the multivariate χ2-based efficacies ζ̂ with n
replaced by the number of observations that goes in to the computations of ζ̂. In this
case we use the notation χ2

j for the chi-square statistic for the jth variable.

7. Consistency Of CATCH

Let Y denote a variable to be classified into one of the categories {1, . . . , C} by using
the Xj’s in the vector X = (X1, . . . , Xd). Let X−j ≡ X −Xj denote X without the Xj

component. Assume that the squared Pearson nonparametric correlation (Doksum and
Samarov [4], Huang and Chen [9]) between Xj and X−j is less than 0.5. We call the
variable Xj relevant for Y if conditionally given X−j, L(Y |Xj = x) is not constant in x;
and irrelevant otherwise. Our data are (X(1), Y (1)), . . . , (X(n), Y (n)), i.i.d. as (X, Y ). A
variable selection procedure is consistent if the probability that all the relevant variables
are selected and none of the irrelevant variables are selected tends to one as n tends to
infinity.

We give a general nonparametric framework where the variable selection rule based
on the CATCH importance scores sj given in (3.8) is consistent.

When the predictors are not all categorical and CATCH involves tubes, we assume
that the number of observations in each tube tends to∞ as n→∞, and we assume that
for those importance scores that require the selection of a section size h, the selection is
from a finite set {hj} with minj{hj} > h0 for some h0 > 0. It follows that the number
of observations mj,k in the kth tube used to calculate the importance score sj for the
variable Xj tends to infinity as n→∞.

The key quantities that determine consistency are the limits λj of sj. That is

λj = τ(ζj, P ) = EP [ζj(X)] =

∫
ζj(x)dP (x), j = 1, . . . , d,

where ζj(x) is the local contingency efficacy defined by (2.4) for numerical X’s and by
(2.8) for categorical X’s, and P is the probability distribution of X. Our estimate sj
of τj is

sj = τ(ζ̂j, P̂ ) =
1

M

M∑
k=1

ζ̂j(X
∗
k),

where ζ̂j is defined in section 3 and P̂ is the empirical distritution of X.
Let d0 denote the number of X’s that are irrelevant for Y . Set d1 = d − d0, and

without loss of generality, reorder the λj so that
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λj > 0 if j = 1, . . . , d1;
λj = 0 if j = d1 + 1, . . . , d.

. (7.1)

Our variable selection rule is :

“keep variable Xj if sj ≥ t for some threshold t” (7.2)

Rule (7.2) is consistent if and only if

P (min
j≤d1
{sj} ≥ t and max

j>d1
{sj} < t) −→ 1 (7.3)

To establish (7.3), it is enough to show that

P (max
j>d1
{sj} > t) −→ 0 (7.4)

and
P (min

j≤d1
{sj} ≤ t) −→ 0 (7.5)

We call (7.4) and (7.5) type I and type II consistency, respectively. Type I and II
error probabilities refer to probabilities of any false positives and any false negatives,
respectively.

7.1. Type I consistency

We consider (7.4) first and note that

P (max
j>d1
{sj} > t) ≤

d∑
j=d1+1

P (sj > t) . (7.6)

For the jth irrelevant variable Xj, j > d1, the results in Section 6 apply to the local

efficacy ζ̂j(x) at a fixed point x. The importance score sj defined in (3.8) is the average
of such efficacies over a sample of M random points {x∗a}. We assume that there is a
point x(0) such that for irrelevant xj’s and for n large enough, ζ̂j(x

(0)) is stochastically

larger in the right tail than the average M−1∑M
a=1 ζ̂j(x

∗
a). That is, we assume that

there exist t > 0 and n0 such that for n ≥ n0,

p(sj > t) ≤ P (s
(0)
j > t), j > d1 (7.7)

The existence of such a point x(0) is established by considering the probability limit of

arg max{ζ̂j(x∗a) : x∗a ∈ {x∗1, · · · , x∗M}}

Note by Lemma (6.1), s
(0)
j →p 0 as n → ∞. It follows that we have established
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(7.4) for t and d0 = d − d1 that are fixed as n → ∞. To examine the interesting case
where d0 → ∞ as n → ∞, we need large deviation results, which we turn to next. In
the d0 →∞ case, we consider t ≡ tn that tend to ∞ as n→∞ and we use the weaker
assumption: there exists x(0) and n0 such that

P (sj > tn) ≤ P (s
(0)
j > tn) (7.8)

for n ≥ n0 and each {tn} with limn→∞ tn = ∞. We also assume that the number of
columns C and rows R in the contingency table that define the efficacy χ2

j/n given by

(6.4) stays fixed as n→∞. In this case, P (s
(0)
j > tn)→ 0 provided each term

[T (j)
rc ]2 ≡

[
nrcErc√
n
√
Erc

]2
in s2j = χ2

j/n, defined for Xj by (6.4) satisfies

P
(
|T (j)
rc | > tn

)
−→ 0

This is because

P

√∑
r

∑
c

[T
(j)
rc ]2 > tn

 ≤ P
(
RC max

rc
[T (j)
rc ]2 > t2n

)
≤ RC maxP

(
|T (j)
rc | > tn/

√
RC
)

and tn and tn/
√
RC are of the same order as n → ∞. By large deviation theory, Hall

[8] and Jing et al. [10], for some constant A,

P (|T (j)
rc | > tn) =

2t−1n√
2π
e−t

2
n/2
[
1 + At3nn

− 1
2 + o

(
t3nn
− 1

2

)]
(7.9)

provided tn = o
(
n

1
6

)
. If (7.9) is uniform in j > d1, then (7.6) and (7.9) implies that

type I consistency holds if

d0

(
tn√

2

)−1
e−

t2n
2 → 0 (7.10)

To examine (7.10), write d0 and tn as d0 = exp
(
nb
)

and tn =
√

2nr. By large deviation
theory, (7.10) holds when r < 1

6
. Thus if 0 < 1

2
b < r < 1

6
, then

d0

(
tn√

2

)−1
e−

t2n
2 = n−r exp

(
nb − n2r

)
→ 0
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Thus d0 = exp(nb) with b = 1
3
ε for any ε > 0, is the largest d0 can be to have consistency.

For instance, if there are exactly d0 = exp
(
n

1
4

)
irrelevant variables, and we use the

threshold tn =
√

2n
1
7 , the probability of selecting any of the irrelevant variables tends

to zero at the rate
n−

1
4 exp

(
n

1
4 − n

2
7

)
7.2. Type II consistency

We now assume that for each relevant variable Xj, there is a least favorable point x(1)

such that the local efficacy s
(1)
j ≡ ζ̂(x(1)) is stochastically smaller than the importance

score sj = M−1∑M
a=1 ζ̂(x∗a). That is, we assume that for each relevant variable Xj there

exists n1 and x(1) such that for n ≥ n1

P
(
s
(1)
j ≤ tn

)
≥ P (sj ≤ tn) , j ≤ d1 (7.11)

The existence of such a least favorable x(1) is established by considering the probability
limit of

arg min{ζ̂j(x∗a) : x∗a ∈ {x∗1, · · · , x∗M}}

We again assume that R and C are fixed, so that to show type II consistency, it is
enough to show that for each (r, c) and j ≤ d1,

P
(
|T (j)
rc | ≤ tn

)
→ 0.

This is because

P

(√∑
r

∑
c

[
T

(j)
rc

]2
≤ tn

)
≤ P (minr,c

[
T

(j)
rc

]2
≤ t2n)

≤ RC maxr,c P
(
|T (j)
rc | ≤ tn

)
By Theorem 6.2,

√
n
(
s
(1)
j − τj

)
→d N(0, ν2), τj > 0. It follows that if tn and d1

are bounded above as n → ∞ and τj > 0 then P
(
s
(1)
j ≤ tn

)
→ 0. Thus type II

consistency holds in this case. To examine the more interesting case where tn and d1
are not bounded above and τj may tend to zero as n→∞, we will need to center the

T
(j)
rc . Thus set

θ(j)n =

√
n
(
p
(j)
rc − p(j)r p

(j)
c

)
√
p
(j)
r p

(j)
c

, (7.12)
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Tn(j) = T (j)
rc − θ(j)n ,

where for simplicity the dependence of T
(j)
n and θ

(j)
n on r and c is not indicated.

Lemma 7.1.

P

(
min
j≤d1
|T (j)
rc | ≤ tn

)
≤

d1∑
j=1

P

(
|T (j)
n | ≥ min

j≤d1
{θ(j)n } − tn

)
Proof.

P
(

minj≤d1 |T
(j)
rc | ≤ tn

)
= P

(
minj≤d1 |T

(j)
n + θ

(j)
n | ≤ tn

)
≤ P

(
minj≤d1 |T

(j)
n | −maxj≤d1 |θ

(j)
n | ≤ tn

)
= P

(
maxj≤d1 |T

(j)
n | ≥ minj≤d1 |θ

(j)
n | − tn

)
≤
∑d1

j=1 P
(
|T (j)
n | ≥ minj≤d1 |θ

(j)
n | − tn

)

Set
an = min

j≤d1

∣∣θ(j)n ∣∣− tn,
then by large deviation theory, if an = o

(
n

1
6

)
,

P (
∣∣T (j)
n

∣∣ ≥ an) ∝

(
an√

2

)−1
exp{−a2n/2} (7.13)

where ∝ signifies asymptotic order as n→∞, an →∞. It follows that if (7.13) holds
uniformly in j then by Lemma 7.1,

P

(
min
j≤d1

∣∣T (j)
rc

∣∣ ≤ tn

)
∝ d1

(
an√

2

)−1
exp{−a2n/2}

Thus type II consistency holds when an = o
(
n

1
6

)
and

d1

(
an√

2

)−1
exp{−a2n/2} → 0 (7.14)

In Section 7.1, tn is of order nr, 0 < r < 1
6
. For this tn, type II consistency holds if an

is of order nr, 0 < r < 1
6
, and

d1n
−r exp{−n2r/2} → 0,
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If an = O(nk) with k ≥ 1
6
, then P (

∣∣∣T (j)
(n)

∣∣∣ ≥ an) tends to zero at a rate faster than in

(7.13) and consistency is ensured. For instance, if all relevant variables Xj have p
(j)
rc

fixed as n→∞, then minj≤d1

∣∣∣θ(j)n ∣∣∣ is of order
√
n and an is of order n

1
2 − tn.

7.3. Type I and II consistency

We see from Sections 7.1 and 7.2 that consistency holds under a variety of conditions.
One set of conditions is

Theorem 7.1. Under the regularization conditions of Sections 7.1 and 7.2, if

d0 = c0 exp(nb), tn = c1n
r,

minj≤d1 ‖θ(j)‖ − tn = c2n
r, d1 = c3 exp

(
nb
)

for positive constants c0, c1, c2 and c3 and 0 < 1
2
b < r < 1

6
, then CATCH is consistent.

Appendix
Proof of Theorem 6.1

(1) Let N#
h =

∑n
i=1 I(X(i) ∈ Nh(x

(0))). Then N#
h ∼ Bi(n,

∫ x(0)+h
x(0)−h f(x)dx) and

N#
h →a.s. ∞ as n→∞.

ζ̂(x(0), h) = n−1/2
√
X 2(x(0), h)

= (N#
h /n)1/2(N#

h )−1/2
√
X 2(x(0), h).

Since N#
h ∼ Bi(n,

∫ x(0)+h
x(0)−h f(x)dx), we have

N#
h /n→

∫ x(0)+h

x(0)−h
f(x)dx. (7.15)

By Lemma 6.1, and Table (1),

(N#
h )−1/2

√
X 2(x(0), h)→

( ∑
r=+,−

C∑
c=1

(prc − prqc)2

prqc

) 1
2

, (7.16)

where

p+c = Pr(X > x0, Y = c|X ∈ Nh(x
(0))), p−c = Pr(X ≤ x0, Y = c|X ∈ Nh(x

(0)));
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for r = +,− and c = 1, · · · , C,

pr =
C∑
c=1

prc; qc =
∑
r=+,−

prc,

Actually p+ = Pr(X > x0|X ∈ Nh(x
(0))), p− = Pr(X ≤ x0|X ∈ Nh(x

(0))),
qc = Pr(Y = c|X ∈ Nh(x

(0))).

By (7.15) and (7.16),

ζ̂(x(0), h)→
(∫ x(0)+h

x(0)−h
f(x)dx

) 1
2
( ∑
r=+,−

C∑
c=1

(prc − prqc)2

prqc

) 1
2

≡ ζ(x(0), h).

(2) Since X and Y are independent, prc = prqc for r = +,− and c = 1, · · · , C, then
ζ(x(0), h) = 0 for any h. Hence:

ζ(x(0)) = sup
h>0
{ζ(x(0), h)} = 0.

(3) Recall that pc(x
(0)) = Pr(Y = c|x(0)). Without loss of generality, assume p′c(x

(0)) >
0. Then there exists h, such that

Pr(Y = c|x(0) < X < x(0) + h) > Pr(Y = c|x(0) − h < X < x(0)),

which is equivelant to p+c/p+ > p−c/p−. This shows that ζ(x(0)) > 0 since by
Lemma 6.1, ζ(x(0)) = 0 results in p+c/p+ = p−c/p− = pc.
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