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ABSTRACT

A univariate structural time series model based on the traditional
decomposition into trend, seasonal and irregular components is defined. A
number of methods of computing maximum likelihood estimators are then
considered. These include direct maximization of various time domain
likelihood function. The asymptotic properties of the estimators are given
and a comparison between the various methods in terms of computational
efficiency and accuracy is made. The methods are then extended to models
with explanatory variables.
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INTRODUCTION

A univariate economic time series model can be formulated directly in terms of the traditional
components of trend, seasonal, cycle and irregular. A model of this kind is called a structural
time series model. The attraction of such a formulation is that it has an immediate
interpretation and so is a natural vehicle for making forecasts. Harvey and Todd (1983)
compare the forecasts made by a basic form of the structural model with the forecasts made
by ARIMA models, and conclude that there may be strong arguments in favour of using
structural models in practice. In another paper, Harvey (1985) shows how structural models
can be used to model cycles in macroeconomic time series. Other studies include Kitagawa and
Gersch (1984).

The forecasts obtained from a particular structural model depend on certain variance
parameters. These parameters play a similar role to the autoregressive and, more particularly,
the moving-average parameters in an ARIMA model. The aim of the present paper is to set
out various methods for computing the maximum likelihood estimators of these parameters.
The methods are then compared in terms of sample properties and computational tractability.
Note that Harrison and Stevens (1976) make structural models the basis of their Bayesian
approach, but tend to fix the variance parameters a priori rather than to estimate them.
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The class of structural models is introduced briefly in the next section. It is shown how the
state space form can be used to handle the model and to make predictions of future
observations. The third section considers ML estimation in the time domain, with attention
being focused on direct maximization of the prediction error decomposition form of the
likelihood function and on indirect maximization via the EM algorithm. The role of initial
conditions for the Kalman filter is explored in some detail. Maximum likelihood estimation in
the frequency domain is discussed in the fourth section, while the asymptotic properties of the
estimators are set out in the fifth. The sixth section reports practical experience with the
estimators. The estimation procedures are extended to models with explanatory variables in the
seventh section and new developments outlined in the final section.

STRUCTURAL TIME SERIES MODELS

The essence of a structural model is that it is formulated in terms of independent components
which have a direct interpretation in terms of quantities of interest. One of the most important
models for economic time series is the basic structural model: this consists of a trend, a seasonal
and an irregular component. Our computational results are centred on this model, though they
have clear implications for other models within the structural class.

The basic structural model is :

\', = yit + yt + et t=\,...,T (1) ;

where /i,, 7, and f, are the trend, seasonal and irregular components, respectively.
The process generating the trend can be regarded as a local approximation to a linear trend, •

i.e. i

^r = /3,_, + r, t=l,...,T (2b)

where rj, and f, are distributed independently of each other and over time with mean zero and
variances a^ and a/, respectively. The process generating the seasonal component is

5 - 1

7,= - 2 yi-j + <^i t^ \,--,T (3)
7=1

where w, is an independently distributed disturbance term with mean zero and variance al and
s is the number of 'seasons' in the year. The seasonal pattern is therefore slowly changing, but
by a mechanism which ensures that the sum of the seasonal components over any 5 consecutive
time periods has an expected value of zero and a variance which remains constant over time.
Writing out equation (3) in terms of the lag operator, L, gives

= a;, t=\,...,T (4)

However, since

A,= 1 -Z.^ = (1 + L + - - + L ' - ' ) ( 1 - L ) = 5(Z.)A (5)

the model can also be expressed in terms of the seasonal difference operator as

A 5 7 < - ( 1 - ^ M (6)

Unlike the trend and seasonal components, the irregular component is assumed to be

t
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stationary. In the basic model it is a white-noise disturbance term with mean zero and variance.

Multiplying equation (1) through by the first and seasonal difference operators renders the
model stationary, i.e.

/ = 5 + 2 , . . . , r (7)

The right-hand side is an MA(5+ 1) process, but with a number of non-linear restrictions on
the parameters. The ARIMA model corresponding to a particular structural model is called the
reduced or canonical form; see Engle (1978) and Nerlove et al. (1979).

State space, prediction and smoothing
The state space form of a univariate time series model consists of a transition equation

a, =
and a measurement equation

t = z/a, + t=\,...,T

(8a)

(8b)

in which a, is an m x 1 state vector, z, is an w x 1 fixed vector, T, is a fixed matrix of order
mxm and f, and ij, are, respectively, a scalar disturbance term and an m x 1 vector of
disturbances which are distributed independently of each other. It is assumed that c, is white
noise with mean zero and variance, ht, and ij, is multivariate white noise with mean vector zero
and covariance matrix Q,. In the models considered here, Ct and ij, will also be assumed to be
normally distributed.

Let a,_i be the minimum mean square estimator (MMSE) of a,-i at time / - 1 and let P,-i
be the covariance matrix of the estimation error, a,-i - a^-i. When yt becomes available, a,-1
and P,-i can be updated by the Kalman filter. If ao ~ N(ao, Po) and ao and Po are known, the
Kalman filter produces a set of 7"one-step-ahead prediction errors vt, t = \, ...,T, together with
their variances, / , . Estimates of future observations, together with their MSEs, can be made
using the Kalman filter, while MMSEs of the elements of each ar based on all the observations
can be computed by a smoothing algorithm; see Anderson and Moore (1979) and Harvey
(1981a, Chapter 4).

The basic structural model can be put in state space form very easily. Suppose, for simplicity,
that 5 = 4. The transition equation is then

at =

lit

7'
7'-1

1
0

1
1

0
- 1

1
0

0

_ 1
0
1

- 1
0
0

while the measurement equation is, from equation (2),

z\
7'-i

7'-2

7^-3

-1-

0
0

L» —J

(9a)

c, t=\,...,T (9b)

Both ht and Q, are time invariant with ht - al and Q, = diag. {a^, af, al, 0,0). In order to run
the Kalman filter it is necessary that these parameters be known, and it is the question of how
they should be estimated which is taken up in the next section onwards. Another important
question concerns starting values for the Kalman filter. Since the components of the state vector
are non-stationary, Po cannot simply be taken to be the covariance matrix of a stationary vector
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AR(1) process as in Gardner et al. (1980). There are several solutions and these are discussed
in the next section. However, one possibility is to let ao have a diffuse prior, i.e. Po = xl where
x = oo. In practice, H may be set equal to a large but finite number.

The state space model in equation (9) is time invariant since T,, z,, Q, and /?, do not change
over time. When a time invariant state space model is completely detectable and completely
stabiiizable, it can be shown that the Kalman filter converges to a steady state in the sense that
P, becomes a time-invariant positive definite matrix P; see Chan et al. (1984).

MAXIMUM LIKELIHOOD ESTIMATION IN THE TIME DOMAIN

If the disturbances c, and t}, in equation (8) are normally distributed, the likelihood function
for the observations may be obtained from the Kalman filter via the prediction error
decomposition. This may then be maximized with respect to any unknown parameters
contained in T,, z,, Q, or /?, using a suitable numerical optimization procedure. However, within
the present context there are a number of different ways of defining the likelihood function,
depending on the assumptions made about initial conditions. All are equivalent asymptotically,
although they may have very different small sample properties.

The first three methods described below are all based on direct maximization of the likelihood
function. As regards initial conditions, the first assumes a diffuse prior for ao, the second
assumes ao is fixed (but unknown) while the third assumes a steady-state Kalman filter from
the outset. After a brief subsection on estimation via the reduced form ARIMA model, the
relationship between the various methods is discussed and a parallel is drawn with ML
procedures for ARIMA models, i.e. exact ML, conditional sum of squares (CSS) and so on.
The last time domain ML estimation procedure described is the EM algorithm. This provides
an alternative approach to computing ML estimates in which the likelihood function is
maximized indirectly as a result of a stepwise procedure.

The basic structural model contains four unknown variance parameters, a^, a^-, al and ai.
However, non-linear optimization need only be carried out with respect to three of these since
the fourth may be concentrated out of the likelihood function. This is done by redefining ht
and Q, and hence P,. The Kalman filter can then be run as a function of the relative values of
the three parameters, and the fourth estimated from the prediction errors at the end. This may
be done whatever estimation procedure is adopted.

In describing the first three methods it will be assumed that the state vector contains k non-
stationary elements. For the basic structural model k = s+ 1.

Prediction error decomposition I: diffuse prior
If ao is taken to have a diffuse prior, starting values can be constructed from the first k
observations, i.e. â^ and P*. The likelihood function for the observations yk + i,..., vrcan then
be defined conditional on yi,...,yk- In terms of the prediction error decomposition the
likelihood is

log Z. = ^^^-~^log27r-^ t log ft-\ t ^'If'
^ ^ t = k+1 ^ t = k+1

where vt is the one-step-ahead prediction error and / , is its variance. Both quantities are given
by the Kalman filter. Further justification for setting up the likelihood function in this way can
be found in de Jong (1988).

There are several ways of computing equation (10). The easiest, both conceptually and



A. C. Harvey and S. Peters Structural Models 93

computationally, is to initialize the Kalman filter al t = 0 with ao = 0 and Po = xl, where H is
a large but finite number. Close approximations to a* and ¥k are then obtained after k
iterations of the Kalman filter. Alternatively, a* and Pk may be computed explicitly by writing
out equations for the first k observations in terms of a*. Computing a* and Pk is then an
exercise in generalized least squares (GLS); see Harvey (1982) for further details. More general
ways of avoiding the 'large x' approximation include the methods due to Ansley and Kohn
(1985) and de Jong (1988).

The above methods can all be generalized to cover cases where the state vector contains a
subvector of elements generated by a stationary process with a known mean and a covariance
matrix V. The 'large x' method, for example, has

Finally, if the Kalman filter is monitored, it is possible to switch to steady-state recursions
once a steady state is reached. A device of this kind was used with some success in Gardner
et al. (1980).

Prediction error decomposition II: fixed initial state vector
If the initial state vector, a is taken to be fixed, the observations in equation (8) may be
expressed in terms of ao by repeated substitution. Thus, with T, assumed time invariant for
simplicity

V, = x;ao+»v, t^l,...,T (12)

where \, = T'z, and

u', = z/ Z T^% + e, t= \,...,T (13)
7 = 1

The disturbance term, w,, has mean zero and a covariance matrix, Oo, which in the basic
structural model depends on a^, a}, al and a}; compare Franzini and Harvey (1983). The ML
estimator of ao, ao, conditional on the other parameters in the model can be computed by GLS.
It can therefore be concentrated out of the likelihood function so that

log L= - ^ l o g 2Tr-^ log |«o | - ^ (y-Xo<io)'Qo"'(y-Xo(iu) (14)

where

no (15)

denotes equation (12) written in matrix terms, with y a Tx 1 vector and so on; compare Sarris
(1973, 505-8). Fortunately, the repeated construction and inversion of the Tx r matrix, Oo,
can be avoided by using the methods of Rosenberg (1973) or Wecker and Ansley (1983). Both
methods are based on the state space form.

Prediction error decomposition III: steady-state Kalman filter
A third possibility for a time-invariant model is to compute a/t trom the first k observations
as in method I, but to set the covariance matrix of the estimation error, P*, equal to the steady-
state covariance matrix P. The Kalman filter can then be run without the recursions for the P,
matrix, and the likelihood function can be expressed in the prediction error decomposition
form (10). However, since / , is time invariant, concentrating a parameter, say al, out of the



94 Journal of Forecasting Vol. 9, Iss. No. 2

likelihood in the basic structural model leads to ML estimates being computed by minimizing
the sum of squares function

T

S= YJ V} (16)
t = kJr\

In order to run the steady-state Kalman filter it is, however, necessary to first solve the Riccati
equations to compute P. A number of ways of doing this are given in Anderson and Moore
(1979, 156-8).

Estimation via the reduced form
As noted below equation (7), for the basic structural model, AAjj", will follow an ARMA
process in which the parameters are subject to a number of non-linear constraints. The
likelihood function of this ARMA process can be computed in a number of ways, but
whichever is adopted it must be maximized with respect to the original parameters in the model.
Nerlove et al. (1979, 125-31) discuss methods for computing the ARMA parameters from the
original parameters and vice versa. These appear to be relatively complex and time consuming,
in general, although some simplification is possible for certain structural time series models.
In such cases exact ML of the reduced form ARMA model via an efficient algorithm, such as
that of Melard (1984), may yield a competitive estimation procedure. Approximate ML
estimation based on minimizing the conditional sum of squares (CSS) function of the ARMA
model may also have some attraction: note that the minimizing CSS function is equivalent to
direct estimation via method III above.

Relationship between different methods
Prediction error decomposition I corresponds to the usual definition of the exact likelihood
function for an ARIMA model. Method II gives the exact likelihood function if ao is regarded
as being fixed, but there seems to be no theoretical reason for preferring this assumption to the
assumption implicit in method I. It is interesting to note, however, that the numerical values
of the two likelihood functions (10) and (14) only differ because of their determinantal terms.
It is shown in Appendix 2 that the sum of squares terms are identical.

The three ML estimators defined above all have the same asymptotic properties. However,
as is well known from studies of ARMA models, the small sample properties of, say, CSS and
exact ML procedures, may differ considerably; see inter alia, Harvey (1981a, Chapter 6) and
Ansley and Newbold (1980).

Finally, note that the method used by Kitagawa (1981) contains elements of all three methods
I-IIl. He first computes an estimator of ao by smoothing, using a diffuse prior starting value
and an information filter. He then uses this estimator together with the steady-state covariance
matrix P as starting values for a second, steady-state, Kalman (information) fiher which gives
a likelihood function in terms of prediction errors from / = 1 to 7.

EM algorithm
Watson and Engle (1983) have used the EM algorithm to estimate the unknown parameters in
an unobserved components model, and the algorithm for the basic structural model is
essentially a special case of the one they use. The application of the EM algorithm to a state
space model requires the MMSEs of the state vector based on all the observations up to time
T. These estimates will be denoted by a/| r, ^ = 1,..., T, while the covariance matrix of the
corresponding estimation errors will be denoted by P î r, / = 1, • . , T'. Both quantities can be
computed by applying a fixed interval smoothing algorithm. This requires a forward and a
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backward pass through the data. The forward pass is simply the Kalman filter. As it is applied,
a, and P, are stored and used when the backward, smoothing, pass is made. An alternative way
of carrying out these calculations is by means of an information filter as in Kitagawa (1981).

Consider the state space model with a time invariant covariance matrix Q, and suppose,
initially, that Q is unrestricted and that ao ~ /V(ao, Po) with ao and Po known. If the elements
in the state vector for r = 0,..., 7 were observed, the log-likelihood function for the >','s and
a,'s would be

T T 1 ^
log L(y,a) = - - log 27r - - log oi -—^ ^ {y, - z/a,)'

2 2 2ac t=i

•̂  z . ^ / = I

1 1

- - log 27r - - log |Po| - - (ao-ao) 'P6" ' (ao-ao) (17)

Let the unknown parameters in the model be denoted by the vector \J/. The EM algorithm
proceeds iteratively by evaluating

(18)

conditional on the latest estimate of \J/. The expression is then set equal to a vector of zeros
and solved to yield a new set of estimates of rp. The procedure is repeated until convergence.
It can be shown that, under suitable conditions, the likelihood will remain the same or increase
at each iteration and it will converge to a local maximum; see Dempster et at. (1977), Wu (1983)
and Boyles (1983).

Applying equation (18) to the likelihood function in equation (17) gives the following
expression for the estimator' of al,

5}=T-' tj {er\T+z;Pnn'\ (19)
t= 1

where

t^\,...,T (20)

Note that since z, is time invariant its effect on equation (19) is simply to pick out certain
elements from Xi P,\T. The estimator of Q is

T

0 = 7 " - ' i ; [n , |7-n/ | r+P, | r+T,P, - i | rT/ -T,P, . , - , | r -P , . , - i |7-T;] (21)
/ = i

where

n,|7-= a/|7--T,a,-i | r t=\,...,T (22)

and

, | r - a , - i ) ' ] t^\,...,T (23)

As Watson and Engle (1983) point out, a relatively straightforward way of computing P/,,- 11 r
is to augment the state vector by the vector of lagged values, a/- i . The matrix P,,,- 11 T then
appears as the off-diagonal block of the P/| T matrix of the augmented state vector.
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For the specification of the initial state vector, ao and Po will, in general, be unknown. The
simplest way to proceed is to set ao equal to some arbitrary vector, say ao - 0, and to let Po = xl,
where H is a large but finite number. If an information filter is used to compute the smoothed
estimates of the a,'s the approximation involved in the use of the large x device is avoided by
the use of Po"' = 0.

The application of the EM algorithm to the basic structural model requires some
modifications. All but the first three equations in the transition equation are identities, and the
only unknown elements in Q are a,̂ , a^ and al. Thus, in equation (3.17), n is three and Q is
diagonal. Furthermore, because the only elements in a/-i which do not appear in a, are nt-i,
(3,- 1 and 7/-,, it is only necessary to augment a, by these three elements. Thus, the augmented
state vector is an (5 -f 4) x 1 vector defined by a | = (a/, 7,-5, M'- l' /3r- 1)' • Let ni,,\ 7- denote the
/th element of n, 7- and define three vectors, di, d: and d\ such that the first element of di is
unity, the last two are both minus one and the remainder are zero, the second element of d2
is one, the last is minus one and the remainder are zero, and all the elements in d3 are unity
apart from the first two and the last two, that is, d i = ( 1 0 ' - 1 - 1 ) , d2 = (010' -1 ) and
d., = (00 1 ... 100) ' . Then

Vu\T=d;ahT / • = 1 , 2 , 3 , t=l,...,T (24)

and

' f t "?,,I r + d/

where af = a^, al = a^ and al = al.

t "?,,I r + d / l i : Plirjd,] /=1,2,3 (25)

Three minor points may be made concerning the implementation of the algorithm. First,
since m 1 r = 0, equation (3.25) can be written with a divisor of T- \ and a summation running
from t = 2\.o T. Second, if the Kalman filter reaches a steady state, considerable computational
savings can be effected in the smoothing algorithm, because P, is effectively time invariant.
Third, if the variances of T7,, f, and w, are expressed relative to al, the latter may be
concentrated out of the likelihood function, as in the prediction error decomposition methods.

Finally, note that the form of equations (3.19) and (3.25) is such that the estimates of the
variances will always satisfy the non-negativity constraints. This is a reflection of the self-
consistency property of the EM algorithm; see Efron (1982, Remark H).

MAXIMUM LIKELIHOOD ESTIMATION IN THE FREQUENCY DOMAIN

Consider the stationary form of the basic structural model, equation (7), and let 7"* = T - 5 - 1.
Let \j, j = 0, ...,T* - 1, be equally spaced frequencies over the interval [-7r, 7r], let f(\j)
denote the spectral density of AAj>', at frequency X> and let I{\j) denote the corresponding
periodogram (sample spectral density) ordinate. By making appropriate circularity assumptions
for AAs v, it can be shown that the likelihood function can be written in the form

log L = - T* log 27r- i ' E ' log / ( X , ) - i ' s ' ^ (26)
2 j=o 2. j=o J{^)

Since the circularity assumption cannot really be taken seriously in this context, equation (26)
is best regarded as an approximation to one of the exact likelihood functions defined earlier.

The likelihood in equation (26) can be written in terms of the autocovariance-generating
function, g(L), by noting that setting L - e\p{i\j) and dividing by 27r yields the spectral density
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at X̂ , i.e.

/ (X ) l / 2 )g , (27)

where gj denotes g(e\p{i\j)). Substituting in equation (26) then gives

log Z,= - ^ - I o g 2 7 r - | 2 l o g ^ . - T T i ; ^^^ (28)
- 2 ,=0 > o gj

The autocovariance-generating function for the basic structural model is

+ (1 - L ) ' ( l - L - ' ) - a i + (l - L ) ( l - Z , - ' ) ( l - L')(l - L-')al (29)

and setting L = exp(/Xy) yields

g, = 2(1 - c o s \js)a^ ^ ( 1 c o s X,5)^2 + (^ _ g ^os X,
1 - cos X̂

+ 2 cos 2Xy)a; + 4(1 - cos Xy)(l - cos \jS)al (30)

Note that since Aj/A = S{L), the term involving CT^ can also be expressed as
5 - 1

(1 -cos \jS)l{I-COS \j) = s + 2 X (s-h)cos \jh (31)
= t

The right-hand side of equation (31) can be used to evaluate the left-hand side when \j = 0.
As in the time domain, one of the parameters, usually al or CT,f, may be concentrated out

of the likelihood function. If this parameter is, say, al, then g(L) - a'gi:(L), and following
Nerlove et al. (1979, 135) we have

aN(2Tr/r*) 1] /(X,)/g, (32)

Expression for the first and second derivatives of the frequency domain likelihood are derived
in Appendix 1. A large sample approximation to the information matrix has as its /7?th element

2 i gj d^p, d^P, ^''^
where \pi denotes a typical element in the parameter vector yp. (In the basic structural model ^
consists of a,", a/, al, and al.) Since equation (33) depends only on first derivatives a scoring
algorithm^ is an attractive proposition. However, in the results reported in the next section we
used the same general Gill-Murray-Pitfield algorithm as was used for computing the time
domain ML estimators.

It is important to note that each periodogram ordinate, /(Xy) need be calculated only once,
rather than at each iteration of a numerical optimization procedure. Furthermore, the same
values can be used in the estimation of different models. In calculating the periodogram or-
dinates it pays to make use of various trigonometric identities. This was done in the calculations
reported below. For moderate and large sample sizes considerable further saving can be made
by breaking down the computation of the periodogram ordinates into several parts; see
Priestley (1981, 575-7). Since our computations were primarily for short time series this option
was not used.

Nerlove et al. (1979) made considerable use of frequency domain ML estimation in
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estimating unobserved components ARIMA models. They found it to be much more efficient
and reliable than estimating the models in the time domain via a reduced-form ARMA model.
However, they did not consider time domain methods based on the Kalman filter.

ASYMPTOTIC THEORY

The asymptotic properties of the ML estimators of structural models can be determined most
easily in the frequency domain. The relevant results are given by Walker (1964) and are
summarized in Hannan (1970, 395-8). They relate to a stationary Gaussian process with a
continuous spectral density, /(X) in [ - TT, T ] which is nowhere zero in that range. The spectral
density is assumed to depend on a set of n unknown parameters which are contained in a vector
\l/. It is shown that:

(1) <̂ , the ML estimator, converges in probability to ^;
(2) Under the assumptions of continuity for the derivatives up to order three w.r.t. ]p of the

function l/g(Z.) in the neighbourhood of the true parameter value, rj/o, and assuming that
the parameters dr in the MA representation of a stationary process

uv= S dr^t~r, ^,~NID(O,af') (34)
T = 0

are such that
oo

T r\<<X> (35)

the vector ^T(\l/ - ^o) has a limiting distribution with zero mean vector and covariance
matrix IA- ' (^ ) , where the //th element of IA(^) is:

47r J
,36)

evaluated at \po. (It is assumed that IA is non-singular, that is, the model is identifiable.)

In the case of the basic structural model, /(X) is proportional to the expression given in equa-
tion (30). The conditions for /(X) to be everywhere non-zero in the range [ - 7r, IT] are that
fff and al should be strictly positive. This can be seen by first considering \j = 0. In this case
all the components of equation (30) are zero except for the term involving CT/. Similarly, for
the seasonal frequencies, \j = lirjjs, j - \ , ...,sjl, all the terms disappear except for the one
involving al. The conditions al> 0 and aj > 0 are also sufficient to ensure the continuity of
the derivatives of XjgiL).

The following points should be noted:

(1) The frequency domain likelihood function for the basic structural model is unbounded if
either al-Q o\ a^ - 0. The exact time domain likelihood is not unbounded at this point,
and therefore estimates of al and aj equal to zero can arise in practice. In fact, the result
in the next section show that it is not unusual for this to happen. The situation parallels
that which occurs in MA models. For example with an MA(1) model,

yt = it + ekt-x, ^,~NID(O,a|) (37)

the usual asymptotic theory is not valid when the model is strictly non-invertible, i.e. when
I 9 I = I. Furthermore, when | ̂  | < 1, there is a finite probability that the ML estimator of
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Q will be exactly equal to plus or minus one; see Sargan and Bhargava (1983) and Cryer
and Ledolter (1981). In the very simple random walk plus noise structural model

ĉ ) (38a)

lit = iit-\ + r]i, T;, ~NID(O, CT,^) (38b)

the condition for /(X) to be everywhere non-zero is that a^ > 0. The reduced form of
equation (38) is an ARIMA (0, 1, 1) model with - 1 ^ 0 ^ 0, and 6^ -\ when a^ = 0.

(2) The information matrix can be approximated by equation (33) in finite samples.
(3) Likelihood ratio, Lagrange multiplier and Wald tests of a null hypothesis in which either,

or both, of the parameters af and al are set equal to zero cannot be based on the usual
asymptotic theory. Tests can, however, be constructed using the principle of a most
powerful invariant test; see Franzini and Harvey (1983).

(4) The situation with regard to testing hypothesis in which either a^ or CTC is equal to zero
is somewhat different. A likelihood ratio test can be employed here provided that account
is taken of the fact that values of CT,^ or al equal to zero lie on the boundary of the
parameter; space see Chernoff (1954). Thus, if, for example, a^^O under the null
hypothesis, the distribution of the likelihood ratio statistic is a mixture of a x? distribution
and a value of zero, both with a probability of one-half. The Wald statistic has a similar
distribution, while the Lagrange multiplier statistic is x"̂  as usual. However, a more power-
ful one-sided LM test based on an asymptotic normal distribution can also be constructed.
The formulation of LM tests in the frequency domain is described in Harvey and Hotta
(1982).

(5) For the basic structural model, having CT^ and a^ strictly positive is necessary and sufficient
for the model to be detectable and stabiiizable; compare the conditions needed for the
asymptotic theory to go through in the time domain as discussed in Pagan (1980).

(6) The identifiability of the basic structural model can be demonstrated by deriving the
autocovariance function for the stationary process, AA v̂v, of equation (7); see Harvey and
Todd"* (1983, 201) for 5 = 4. In general, there are 5 + 2 equations in four unknowns and
consistent estimators of the four unknown parameters can be obtained by solving four of
these. (There is more than one way of selecting the four equations). See also de Jong
(1984).

ESTIMATION RESULTS WITH REAL AND SIMULATED DATA

This section reports the results of applying the various ML estimation procedures to various
data sets. The aim was to obtain some insight into the properties, both with regard to the values
of the estimates produced and the time required to compute them. Table 1 shows the results.
The first series is the well-knoWn airline passenger series—see, for example. Box and Jenkins
(1976, 531)—aggregated to give 48 quarterly observations. The first 40 were used to estimate
the model and the last eight were retained for post-sample prediction. The remaining six series
are the quarterly UK macroeconomic time series used in the study by Harvey and Todd (1983).
These each consist of 37 observations from 1957/3 to 1966/3, with the next eight observations
used for post-sample predictive testing.

Estimation procedures
Estimates of the unknown parameters in the basic structural model were computed by five ML
procedures.
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(1) TD—The time domain prediction error decomposition form of the likelihood function,
equation (10), maximizing using the variable metric Gill-Murray-Pitfield algorithm,
EO4JBF in the NAG library.

(2) EM—The EM algorithm, modified by incorporating a line search procedure into it. This
was found to be essential, since otherwise the EM algorithm was very slow indeed.
The stopping criterion used was L*- L^ < \Q~^, where L^ is the 'likelihood' function
obtained using the parameters when the EM is called and L* is the corresponding function
obtained from the first line search.

(3) EM*—As (2) but with a stopping value criterion based on the estimate of the one-step-
ahead prediction error variance, CT^ (see the sub-section below). The algorithm stopped
when (CT̂  - CT*')/o*^ < 10 "*, where a^ is the prediction error variance from the EM
algorithm and CT*' is the corresponding quantity from the first line search.

(4) FD—The frequency domain likelihood, equation (28), maximized using the Gill-
Murray - Pitfield algorithm.

The computations were carried out on the University of London CDC 7600 and Cray
machines. There were some differences between the two machines with respect to timings but
the general picture was the same in both cases.

For all estimation procedures, al was concentrated out of the likelihood function and the
iterations were started off with the relative variances of a^, a}, and CT; all set at unity.

Prediction error variance and post-sample predictions
The prediction error \ariance, CT', can be estimated from the Kalman filter as CT' - fr, or alfr
if CTC' is concentrated out of the likelihood function;^ see also Harvey and Todd (1983). Of
course, CT' is the variance of the disturbances in the reduced form ARIMA model; see the discus-
sion in Harvey (1981b). Hence CT^ corresponds to a standard measure of goodness of fit.

The prediction error variance can also be estimated in the frequency domain. If al is concen-
trated out of the likelihood function, the appropriate formula is

^/Y! log g} (39)
^ 7=0 J

where al is defined by equation (32). Expression (39) can be obtained as a simple transforma-
tion of the maximized frequency domain likelihood function.

For all the estimation procedures considered, the likelihood surfaces are relatively flat for
small samples. Hence differences between estimates of the unknown parameters are likely to
be the exception rather than the rule. In order to assess the practical importance of these
differences it is helpful to look at the predictions obtained in a post-sample period. We
therefore calculated the sum of squares of one-step-ahead post-sample prediction errors and
the sum of squares of the prediction errors from the unconditional predictions. Both quantities
are presented in Table 1 divided by the number of post-sample observations.

Results
(1) The EM* algorithm gives similar results to the EM algorithm in most cases, but it usually

required less iterations. In some cases this difference was quite significant, with EM taking
ten or twenty times as long as EM*. In other cases the time was the same.

(2) There are some differences in the estimates obtained by the TD and FD procedures. In
particular, the FD procedure always yields positive estimates aj. As observed, this is
because the FD likelihood function becomes unbounded if af is zero. Similarly, al is
always positive for FD.
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Table 1. Quarterly airline data and UK macroeconomic time series'
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Series

Airline
(all estimates x lO')

Consumer
durables

Other
expenditure

Investment

Inventory
investment

Imports

GDP

procedure

TD
EM
EM*
FD

TD
EM
EM*
FD

TD
EM
EM*
FD

TD
EM
EM*
FD

TD
EM
EM*
FD

TD
EM
EM*
FD

TD
EM
EM*
FD

ol

66
103
48
83

408
413
427
310

306
305
299
243

1392
1389
1393
1240

1204
1204
1191
1149

880
880
882
885

3375
3593
3594
2966

Parameter

ol

0.39
0.00
8.43
0.30

0
0
0
4.76

0
0
0
0.19

0
0
0
4.19

0
0
0
1.40

0
0
0
0.62

0
0
0
2.35

ol

13
10
0
9

181
177
168
188

30
30
30
75

1
0
0
20

169
169
165
89

0
0
0
11

600
444
444
146

values

ol

0
0
0
0

0
6
21
11

182
182
190
264

112
118
118
273

371
372
397
655

268
268
268
320

0
249
249
1432

a'

185
179
191
188

1349
1350
1353
1439

924
921
920
965

1823
1817
1815
1975

3274
3274
3270
3281

1532
1533
1533
1609

7663
7709
7708
7605

Average

One-step

46
44
60
99

8963
8937
8646
9943

2526
2542
2540
2752

1706
1781
1779
1363

7835
7858
7815
7382

7179
7266
7282
6645

5911
5550
5549
4563

post-sample SS

Unconditional

176
73
111
154

5777
5741
5654
5746

2757
3132
2778
3182

944
953
953
854

9616
9617
9625
9724

4279
4279
4279
4276

7011
7049
7049
7694

•"A zero entry for a^ indicates a value less than 0.005. A zero entry for ans other parameter indicates a value less
than 0.5.

(3)

For the macroeconomic series, the estimates of the slope variance, ai, are typically very
close to zero, and in the case of TD estimation are often exactly equal to zero. A constant
slope appears to be a fairly general feature for macroeconomic series of real, as opposed
to monetary, variables. Much of the difference between TD and FD estimates arises
because the FD estimates of CT/ must be positive. Had the slope been constrained to be
zero, the estimates of the remaining parameters would have been much closer.
Computing times for the TD and FD procedures have not been given because of the
different performance likely to be encountered on different machines. However, on the
machines we used, the FD method was generally considerably faster than the TD method,
with one function evaluation of TD taking anything between five and ten times as long
as an FD function evaluation for a sample of size 50. The time taken to compute the
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periodogram was typically about one-tenth of that required to maximize the TD likelihood
functions. Since there was no indication of TD requiring fewer iterations than FD, the
computational advantage appears to rest firmly with FD.

(4) The estimates obtained by the two LM algorithms are fairly close to the TD estimates in
most cases.

(5) One function evaluation for EM or EM* takes roughly two or three times as long as for
TD. Furthermore, the smoothing algorithm has certain storage requirements. There is
therefore only a good case for using the EM algorithm if it can be shown to converge in
a relatively small number of iterations. Our results seem to indicate that the EM*
algorithm does converge faster than TD, but the convergence is not rapid enough to yield
an algorithm which is faster than TD by an order of magnitude. Furthermore, it is quite
clear that FD is faster than EM* overall, being from two to ten times as quick.

We had hoped, following the experience of Watson and Engle (1983), that the EM
algorithm would yield estimates in the vicinity of the ML estimates in a relatively small
number of iterations. Such estimates would be useful as starting values for direct max-
imization of the likelihood function. However, for our model this did not appear to be
the case.

(6) For the series examined here, the estimates of CT^ tend to dotninate those of al. Further-
more, the estimates of al are sometimes close to zero, as, for example, in the airline data.
As a general rule, therefore, it may be preferable to concentrate a^, rather than al, out
the likelihood function.

(7) Asymptotic standard errors for the estimates of the variance parameters were computed
from the inverse of equation (33). Since the sample sizes are rather small, the standard
errors are relatively large and it is not clear to what extent they are an accurate reflection
of the true standard errors. In order to give some idea of the order of magnitude of the
estimated standard errors we present the values we computed for inventory investment
and imports in Table 2.

If CT/ is zero, the asymptotic theory does not apply. When the estimate of CT/ was zero
the standard errors for the other parameters were computed by setting CT/ equal to 10"'°
in expression (33). The standard errors computed in this way were found to be close to
those computed by numerically evaluating the Hessian of the time domain likelihood
under the assumption that CT/ was fixed. These numerical standard errors are shown in
parentheses in Table 2 under the estimated standard errors for the time domain (TD)
estimates.

Table 2. Estimated asymptotic standard errors for inventory investment
and imports

Series

Inventory
investment

Imports

Estimation
procedure

TD

FD
TD

FD

ol

514
(492)
619
264

(248)
345

Parameters

o;

673
(559)
1005
472

(446)
686

a/

—

65
—

47

al

123
(155)

70
—

9
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Conclusions
The estimates obtained by the TD and FD methods are comparable, and even when the actual
values are not very close the forecasting performance is similar. The differences which do arise
may be a reflection of the properties of exact as opposed to approximate MI estimators rather
than of the difference between time and frequency domain estimators. Thus the use of a steady-
state Kalman filter in the time domain may give estimates closer to those obtained in the fre-
quency domain; compare the situation for ARMA models with exact ML, conditional sum of
squares and frequency domain estimators.

Despite the necessary caveats concerning program structure and machine dependency it does
appear that the FD method is computationally faster than TD. Furthermore, our results are
based on quarterly observations, and with monthly observations the balance may swing even
further to the frequency domain method. Against this there is an argument that the Kalman
filter could be speeded up considerably by switching over to steady-state recursions at a suitable
point. Of course, one possibility is to compute estimates by the FD method and then use these
as starting values in TD.

The EM algorithm was not as fast as we had hoped, even given the modifications such as
line searches and prediction error variance stopping rules which we introduced into it. It is
slower than FD, and although EM* appears to be faster than TD it is not significantly so. This
might seem to contradict the findings of Watson and Engle (1983), but we note that their model
was a multivariate one with a relatively large number of parameters. It may well be that the
EM algorithm becomes relatively more attractive in such cases.

EXPLANATORY VARIABLES

The basic structural model may be extended by the introduction of explanatory variables. For
a single explanatory variable this yields

\, + €t (40)

where 6(L) is the polynomial in the lag operator,

+ bn,L"' (41)

Estimation in the time domain can be carried out by letting the lag coefficients be part of
the state vector as in Harvey and Phillips (1979). Alternatively, the GLS method of Wecker and
Ansley (1983) may be used. The attraction of the first method is that it can be readily adapted
to handle the case when the 6/,'s are time varying. Note that in both cases the 6's are effectively
concentrated out of the likelihood function when they are time invariant. Thus numerical
optimisation is only carried out with respect to the variance parameters of the basic structural
model.

In the frequency domain, the likelihood function for equation (40) is of the form (28), but
with the periodogram defined by

^ *' exp(-/Xy/)-6(exp(-/X;)) 2 •^'^sA'exp(-/X//) (42)

Let h{\j), Ixi^^j) and Av(Xy) denote the periodograms of lAsyt and AA,.v, and the cross
periodogram, respectively. Then

/(X,) = A.(X,) - 26' Re (e//,.(X,) | + 6'ejejd/> (X;) (43)
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where 6 = (6o, . . . , 8 , , , ) ' and e> is an (w-i- l ) x 1 vector with e x p ( - \j(h - l ) ) i n the Ath posi t ion.
For given values of the pa rame te r s in g(.), differentiat ing equa t ion (43) and sett ing to zero gives

- Re |e , / , , . (X, )1 (44)
Sj

compare Fishman (1969, 154). Substituting 6'in equation (43) therefore enables 6 to be concen-
trated out of the likelihood function. Note that the periodograms and cross-periodograms need
be calculated only once, even if the specification of the lag length is changed.

All the above methods can be applied when there are several explanatory variables or the lag
structure is modelled by an Almon polynomial distributed lag.

Lagged dependent variables can also be brought into the model. Thus
;• III

Yi fiyi-l = M' + 7' + S bhXt-h + €t (45)
/=o /i = o

with v̂o = 1. The time domain method can again be used with ipi,...,ipt added to the state
vector. The yj/'s can also be allowed to be time varying even though stochastic time variation
makes the model non-linear; see Anderson and Moore (1979; 43-4) and Liptser and Shiryayev
(1978, 62). When the tpfs and 6/,'s are time invariant the frequency domain method can be
applied using methods similar to those described above. An application involving explanatory
variables may be found in Harvey et al. (1986).

NEW DEVELOPMENTS

The results reported above were computed several years ago on a University of London main-
frame computer. The programs for computing time domain and frequency domain ML
estimators have now been successfully adapted for use on an IBM personal computer, and a
menu-driven program for estimating models for univariate time series, with and without
explanatory variables, has been written. Frequency domain estimates may be computed by the
method of scoring, which is generally very rapid. The TD estimates are computed by a quasi-
Newton algorithm, with starting values normally obtained from the FD scoring algorithm.
Once estimated, the model may be subjected to diagnostic checking, and smoothed estimates
and predictions may be made and graphed.

The PC program is known as STAMP, that is. Structural 71me series /Inalyser, A/odeller and
Predictor. Further details may be obtained by writing to the first author.

APPENDIX 1: DERIVATIVES FOR THE FREQUENCY DOMAIN ESTIMATOR

Let \1/, be a typical parameter in a structural model. Differentiating equation (28) with respect
to \pi gives

2 7 r - - -
g ' d^Pi 2 — L g

where g - gj and the summations run from y = 0 to 7"*- 1. Differentiating with respect to a
second parameter \J/h gives

d^ log L s
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The derivatives of g will normally be quite easy to obtain. For example, in the case of equation
(30) they can be written down immediately.

Second derivatives of g are more complicated. However, if expectations are taken in equa-
tion (A1.2) the first term effectively disappears if the sample size is reasonably large as

lim £l / (X,)! = g,/27r (A 1.3)
T-oo

This leaves equation (33) as an estimate of the /th element of the information matrix, cf. Whittle
(1954, p. 214).

APPENDIX 2: COMPARISON OF LIKELIHOOD FUNCTIONS

Consider a state space model of the form (8), with ^ ^ m non-stationary elements in the state
vector. Let y, denote the ^ x 1 vector containing these non-stationary elements. The model can
be written conditional on 7, at any particular point in time, t = T. This can include values of
t outside the range 1 to T. Thus

y = Xr7r-i-WT (A2.1)

where y is the Tx 1 vector (y\,..., yr)', \T '\S a Txk matrix of fixed values and w, is a Tx 1
vector of disturbances with mean zero and covariance matrix Q,; cf. equation (15). The subscripts
on \r, OT and w^ stress their dependence on the chosen value of T.

Let 7T be the GLS estimator of yr, conditional on the other parameters in the model. The
general result to be proved is that, for all T,

T

(y -x ,7 . ) ' n ; ' ( y -x ,7 , ) - ^ vfjf, (A2.2)
t = k + \

where vt is the one-step-ahead prediction error obtained by applying the Kalman filter to equa-
tion (8) with starting values constructed from the first k observations (diffuse prior) and / , is
its variance; compare the final term in equation (10).

Given that Q îs a p.d. matrix there exists a lower triangular matrix, LT, with positive diagonal
elements such that

LXr = Qr' (A2.3)

Multiplying equation (A2.1) through by L^ yields a transformed regression model in which the
disturbances have a scalar covariance matrix. Estimating y^ in this model by recursive least
squares yields a set of 'recursive residuals', denoted by v^, t ̂  k + 1,..., Tand it may be shown
that

T

YJ V} = (L,y - L,Xr77)'(L,y - L.x,7.) = (y - x,7.)'n;'(y - x.yr) (A2.4)
t = k-¥ \

cf. Brown et al. (1975)
The rth recursive residual in the transformed model will be equal to a fixed quantity

multiplied by the prediction error

i>i^y,-yt\t I (A2.5)

where >"/ and Xt are the /th set of transformed variables and _v,|,_ 1 is the MMSE of y, based on
the first / - 1 transformed observations. However, in view of the lower triangular nature of LT,
yt\i -1 depends only on the first t — 1 untransformed observations while y, is equal to y.
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multiplied by the rth diagonal element of LT which is fixed, plus a linear combination of
(VV 1,..., V:). Therefore the prediction error for the original observation y,, given
(v , , Vi), is

v?= y t - g , ( y , ~ \ , . . . . y \ ) t = k + l , . . . , T (A2.6)

where g , ( v , - i , . . , v,) is a linear function of (.v,-i >'i). Now gtiyt-\, .•.,yi) must be the
MMSE of v, based on (.v,-i , . . . , .Vi) since if it were not it would be possible to construct a better
estimator of y, than the one implied by equation (A2.5). Since gt(yi-i,..., y\) is the MMSE
of y, given (.v, i , . . . , vi), its values must be independent of the choice of T. Therefore the recur-
sive residuals in the transformed system must be identical for all values of T, and so it follows
from equation (A2.4) that the generalized residual sum of squares does not depend on T.

Consider the prediction errors

l', = yt~ytt-^ t = k+\,...,T (A2.7)

obtained from the Kalman filter with starting values constructed from the first k observations
as in method (la). The quantity v, ,_i is the MMSE of v, and so it must be identical to
g,( V',-1,..., Vi). Therefore v, - vf is equal to the tth recursive residual multiplied by a fixed
quantity, it follows that when the J','S are standardized they will be identically equal to the
recursive residuals in the transformed system, i.e.

v,= v,jfy^ t = k+l,...,T (A2.8)

Taking equations (A2.1) and (A2.8) together proves the result in equation (A2.2)
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NOTES

1. It is interesting to note that if Q = 0, ^P,]T=oh'l^ z,z;)"'. Since ^[z,'(~ z,z/)z,] =n, it follows that
if Q = 0, the ML estimator of al is

where e, is the nh OLS residual from a regression of yi on z,. The reason for obtaining the unbiased
estimator of al, rather than the usual biased estimator, is that ao is regarded as being a random
variable.

2. De Jong (1984) has recently shown that an asymptotically efficient two-step estimator may be con-
structed by a two-step frequency domain regression. This estimator is equivalent to carrying out one
iteration of the method of scoring starting from consistent estimates.

3. However, note that the coefficient of al in the expression for 7(0) should be 6, not 4.
4. Note that / r will be greater than or equal to the steady-state value/. However, unless the sample size

is very small, fr a n d / a r e very close.
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