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We discuss methodology for multidimensional scaling (MDS) and its implementation
in two software systems (“GGvis” and “XGvis”). MDS is a visualization technique
for proximity data, that is, data in the form of N × N dissimilarity matrices. MDS
constructs maps (“configurations”, “embeddings”) in IRk by interpreting the dissimi-
larities as distances. Two frequent sources of dissimilarities are high-dimensional data
and graphs. When the dissimilarities are distances between high-dimensional objects,
MDS acts as a (often nonlinear) dimension reduction technique. When the dissimi-
larities are shortest-path distances in a graph, MDS acts as a graph layout technique.
MDS has found recent attention in machine learning motivated by image databases
(“Isomap,” Tenenbaum et al. 2004). MDS is also of interest in view of the popularity
of “kernelizing” approaches inspired by SVMs (“kernel PCA,” Schölkopf et al. 1998).

This article discusses the following general topics: (1) the stability and multiplicity
of MDS solutions; (2) the analysis of structure within and between subsets of objects
with missing value schemes in dissimilarity matrices; (3) gradient descent for optimiz-
ing general MDS loss functions (“Strain” and “Stress”); (4) a unification of classical
(Strain-based) and distance (Stress-based) MDS.

Particular topics include the following: (1) blending of automatic optimization with
interactive displacement of configuration points to assist in the search for global optima,
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(2) forming groups of objects with interactive brushing to create patterned missing
values in MDS loss functions, (3) optimizing MDS loss functions for large numbers of
objects relative to a small set of anchor points (“external unfolding”), (4) a nonmetric
version of classical MDS.

We show applications to the mapping of computer usage data, to the dimension reduc-
tion of marketing segmentation data, to the layout of mathematical graphs and social
networks, and finally to the spatial reconstruction of molecules.

Key Words: Proximity Data, Dissimilarity Data, Multivariate Analysis, Dimension
Reduction, Multidimensional Unfolding, External Unfolding, Graph Layout, Social
Networks, Molecular Conformation, gradient descent.

1 Introduction: Basics of Multidimensional Scaling

In this section we give a short introduction to those types of MDS that are relevant for
this article. Section 2 gives an overview of interactive MDS operations, as they can be real-
ized in XGvis or GGvis. Section 3 approaches the stability and multiplicity problem of MDS
configurations with algorithm animation, direct manipulation and perturbation of the config-
uration. Section 4 gives details about the loss functions and their parameters for controlling
transformations, subsetting and weighting of dissimilarities. Section 5 describes diagnostics
for MDS. Section 6 is concerned with algorithms and large data problems. Finally, Section 7
gives a tour of applications with examples of proximity analysis, dimension reduction, and
graph layout in two and higher dimensions. An earlier article by Buja and Swayne (2002)
gives further illustrations of the methodology supported by the present framework.

1.1 Proximity Data and Stress Functions

Proximity data, the input to MDS, consist of dissimilarity information for pairs of objects.
This contrasts with multivariate data that consist of attribute information for individual
objects. If the objects are labeled i = 1, ..., N , we will assume that proximity data are given
by dissimilarity values Di,j. (If the data are given as similarities, a monotone decreasing
transformation will convert them to dissimilarities.) The goal of MDS is to map the objects
i = 1, ..., N to “configuration” or “embedding” points x1, ...,xN ∈ IRk in such a way that the
given dissimilarities Di,j are well-approximated by the distances ‖xi − xj‖. The choice of
embedding dimension k is arbitrary in principle, but low in practice: k = 1, 2, 3 are the most
frequently used dimensions, for the simple reason that the points serve as easily visualized
representors of the objects.

The dissimilarity matrices of Figure 1 are simple examples with easily recognized error-
free MDS solutions. The left hand matrix suggests mapping the five objects to an equispaced
linear arrangement; the right hand matrix suggests mapping the three objects to a right
triangle. The figure shows configurations actually found by MDS. The first configuration
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Figure 1: Simple Examples of Dissimilarity Matrices and Their Optimal Scaling Solutions.

can be embedded in k = 1 dimension, while the second needs k = 2 dimensions. In real
data, there are typically many more objects, and the dissimilarities usually contain error as
well as bias with regard to the fitted distances.

The oldest version of MDS, called classical scaling, is due to Torgerson (1952). It is,
however, a later version due to Kruskal (1964a,b) that has become the leading MDS method.
Kruskal defined MDS in terms of minimization of a loss function called “Stress”, which is
simply a measure of lack of fit between dissimilarities Di,j and fitted distances ‖xi− xj‖. In
the simplest case, Stress is a residual sum of squares:

StressD(x1, ...,xN) =

( ∑

i6=j=1..N

(Di,j − ‖xi − xj‖)2

)1/2

(1)

where the outer square root is just a convenience that gives greater spread to small values.
For a given dissimilarity matrix D = (Di,j), MDS minimizes Stress over all configurations
(x1, ...,xN)T , thought of as N × k-dimensional hypervectors of unknown parameters. The
minimization can be carried out by straightforward gradient descent applied to StressD,
viewed as a function on IRNk.

We note that MDS is blind to asymmetries in the dissimilarity data because

(Di,j − ‖xi − xj‖)2 + (Dj,i − ‖xj − xi‖)2 = 2 · ((Di,j + Dj,i)/2− ‖xi − xj‖)2 + C,

where C is an expression that does not depend on ‖xi−xj‖. We therefore assume from now
on that the dissimilarities are symmetrized. The assumption of symmetry will later be broken
in one special case, when one of the two values is permitted to be missing (Section 4.4).
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1.2 Types of Multidimensional Scaling

There exist several types of MDS, and they differ mostly in the loss function they use. Here
are two dichotomies that allow us to structure some possibilities:

• Kruskal-Shepard distance scaling versus classical Torgerson-Gower inner-
product scaling: In distance scaling dissimilarities are fitted by distances ‖xi − xj‖
(Sections 1.1 and 4.1), whereas classical scaling transforms the dissimilarities Dij to a
form that is naturally fitted by inner products 〈xi,xj〉. The transformation of dissim-
ilarity data Dij to “inner-product data” Bij satisfies D2

ij = Bii − 2Bij + Bjj, thereby
mimicking the corresponding identities for ‖xi − xj‖ and 〈xi,xj〉 (Section 4.2).

• Metric scaling versus nonmetric scaling: Metric scaling uses the actual values of
the dissimilarities, while nonmetric scaling effectively uses only their ranks (Shepard
1962, Kruskal 1964a). Nonmetric MDS is realized by estimating an optimal monotone
transformation f(Di,j) of the dissimilarities simultaneously with the configuration.

We implemented both distance scaling and classical inner-product scaling, and both met-
ric and nonmetric scaling. In all, four types of MDS are provided by crossing {metric,
nonmetric} with {distance, classical}. The unusual case of nonmetric classical scaling is
described in Section 4.2.

A difference between classical and distance scaling is that inner products rely on an
origin, while distances do not; a set of inner products determines uniquely a set of distances,
but a set of distances determines a set of inner products only modulo change of origin. To
avoid arbitrariness, one constrains classical scaling to mean-centered configurations.

Another difference between classical and distance scaling is that distance scaling requires
iterative minimization while classical scaling can be solved with inexpensive eigendecompo-
sitions. Just the same, we implemented classical scaling with iterative gradient descent on
a loss function called “Strain”, which parallels gradient descent on Stress in distance scal-
ing. This computational uniformity has advantages because it is straightforward to introduce
weights and missing values in Strain and Stress, which is not possible in eigendecompositions.

1.3 Applications of MDS

Here is an incomplete list of application areas of MDS:

• MDS was invented for the analysis of proximity data which arise in the following areas:

– The social sciences: Proximity data take the form of similarity ratings for pairs
of stimuli such as tastes, colors, sounds, people, nations,...

– Archaeology: Similarity of two digging sites can be quantified based on the fre-
quency of shared features in artifacts found in the sites.

– Classification problems: In classification with large numbers of classes, pairwise
misclassification rates produce confusion matrices that can be analyzed as similar-
ity data. An example would be confusion rates of phonemes in speech recognition.
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• A common use of MDS is for dimension reduction: Given high-dimensional data
y1, ...,yN ∈ IRK (K large), compute a matrix of pairwise distances dist(yi,yj) = Di,j,

and use distance scaling to find lower-dimensional x1, ...,xN ∈ IRk (k ¿ K) whose
pairwise distances reflect the high-dimensional distances Di,j as well as possible. In
this application, distance scaling is a non-linear competitor of principal components,
whereas classical scaling is identical to principal components. (For an interpretation
of multivariate analysis as distance approximation, see Meulman (1992).)

• In chemistry, MDS can be used for molecular conformation, that is, finding the spatial
structure of molecules. This application differs from the above in that 1) actual dis-
tance information is available from experiments or theory, and 2) the only meaningful
embedding dimension is k = 3. Configurations are here called “conformations.” Some
references are Crippen and Havel (1978), Havel (1991), Glunt et al. (1993), and Trosset
(1998a). For an example, see Figure 10.

• A fourth use of MDS is for graph layout, an active area at the intersection of discrete
mathematics and network visualization (Di Battista et al. 1999). Pioneers before
their time were Kruskal and Seery (1980). From graphs one obtains dissimilarities by
computing shortest-path lengths for all pairs of vertices. Resulting MDS configurations
can be used to draw graphs with line segments indicating graph vertices, as in Figure 9.

We will show examples of data in all four categories.

1.4 Related Developments in Machine Learning

In recent years, the machine learning community developed an interest in nonlinear dimen-
sion reduction. The problem of flattening nonlinear manifolds led to localized approaches to
dimension reduction that use small dissimilarities only, the intuition being that large dissimi-
larities reflect nonlinear warping in high-dimensional data space and should not be relied on.
The following two approaches achieve such localization by preprocessing the dissimilarities
and relying subsequently on plain classical MDS:

• In Isomap (Tenenbaum et al. 2000) one replaces large dissimilarities with shortest-path
lengths computed from small dissimilarities. Intuitively, one replaces “cordal distances”
with the lengths of shortest paths “within the manifold.” Small dissimilarities may be
defined as being among K nearest neighbors of either endpoints.

• In kernel PCA (principal components, Schölkopf et al. 1998) one creates inner-product
data Bij with “kernel tricks” such as Bij = exp(−D2

ij/(2σ
2)). The point of this transfor-

mation is to create inner-product data Bij that place two objects i and j about equally
far from each other (namely, orthogonal to each other) whenever roughly Dij > 3σ.
Localization is achieved by choosing σ small.

In both cases the resulting proximity data are subjected to classical MDS, but in the present
framework it is as easy to apply distance MDS as well as nonmetric versions of either that
achieve better embeddings by estimating an additional transformation of the dissimilarities.
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Figure 2: Rothkopf’s Morse Code Data: four 2-D configurations.

A competing method, Local Linear Embedding (LLE, Roweis and Saul 2000) is concep-
tually unrelated to MDS. A more recent approach is Local MDS (LMDS, Chen and Buja
2007) which modifies the stress function by adding penalties that spread out and flatten
manifolds.

1.5 A Classical Example: The Rothkopf Morse Code Data

For illustration we use as our running example the well-known Rothkopf Morse code data
(1957), which are to MDS what Fisher’s Iris data are to discriminant analysis. These data
originated from an experiment in which inexperienced subjects were exposed to pairs of
Morse codes in rapid order, and the subjects had to decide whether the codes in a pair were
identical. The data were summarized in a table of confusion rates.
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Confusion rates are similarity measures because two codes that are often confused are
interpreted as “similar” or “close.” For the conversion of similarities to dissimilarities one
could in principle use any monotone decreasing transformation, but we used the following:

D2
i,j = Si,i − 2Si,j + Sj,j .

In other words, we interpreted the similarities as inner product data. This yielded all non-
negative values because the confusion matrix (Si,j)i,j is diagonally dominant (most identical
code pairs are correctly judged). Unlike other conversion methods, this one has the desirable
property Di,i = 0. We also symmetrized the data (see Section 1.1).

Applying all four scaling methods in k = 2 dimensions produced the configurations shown
in Figure 2. We decorated the plots with labels and lines to aid interpretation. In particular,
we connected groups of codes of the same length, except for codes of length four which we
broke up into three groups and a singleton (“H”). We observe that, roughly, the length of
the codes increases left to right, and the fraction of dots increases bottom up. Both of these
observations agree with the many published accounts (for example: Shepard 1962; Kruskal
and Wish 1978, p. 13; Borg and Groenen 1997, p. 59). This interpretation of the axes was
achieved by rotating the configurations (which is permissible due to rotation invariance of
the distances ‖xi − xj‖ and inner products 〈xi,xj〉). While we easily obtained interpretable
axes with interactive rotations, one usually tries to achieve the same in factor analysis with
automated rotation methods such as Varimax.

The four scaling methods exhibit significant differences. Nonmetric distance scaling pro-
duces probably the most satisfying configuration, with the exception of the placement of the
codes of length 1 (“E” and “T”). Metric scaling suffers from circular bending but it places
“E” and “T” in the most plausible location. The classical scaling methods bend the config-
urations in different ways. More problematically, they overlay the codes of length 4 and 5
and invert the placement of the codes of length 1 and 2, both of which seem artifactual. In
fact they aren’t; classical scaling requires a third dimension to distinguish between these two
pairs of groups. Distance scaling tends to achieve better compromises in lower dimensions.

2 Interactive MDS Operation

The principal use of MDS configurations is for visualization. Because configurations are
essentially multivariate data, any MDS system calls for a multivariate data visualization
tool. As some of us co-authored the XGobi and GGobi systems for data visualization, it was
natural that we chose these as viewing engines (XGobi: Swayne, Cook and Buja 1998; Buja,
Cook and Swayne 1996; GGobi: Swayne, Buja and Temple Lang 2003; Swayne, Temple
Lang, Buja and Cook 2002). In effect, X/GGvis are master programs that create and feed
X/GGobi. Figure 3 shows how this presents itself in the case of GGobi: a GGvis control panel
for MDS (left), a GGobi window for viewing the configuration (center top), a GGobi control
panel (center bottom), and a GGobi window for diagnostics (right). The basic sequence of
MDS interactions is as follows:
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Figure 3: The Major GGvis Windows. On the left is the master control panel, on the right is
the GGobi window for the configuration. Below is the GGobi window for an optional Shepard
plot.

• Launch with dissimilarity data (an N×N matrix), multivariate data (an N×d matrix),
or graph data (a list of integer pairs, possibly with weights) to perform, respectively,
proximity analysis, dimension reduction, or graph layout. Provide an initial configu-
ration, or else a random configuration is generated automatically.

• Select one of the four scaling methods (default: metric distance scaling).

• Choose a configuration dimension (default: 3).

• Initiate optimization (“Run MDS”) and watch the animation of the configuration and
the progression of the Stress or Strain value. When the shape of the configuration
stops changing, slow the optimization down by lowering the stepsize interactively. Fi-
nally, stop the optimization (toggle “Run MDS”). There is no automatic convergence
criterion, and optimization does not stop on its own.

• Examine the shape of the optimized configuration: If k = 2, a plain X-Y scatterplot
will do. If k = 3, use 3-D rotations, and if k > 3, use the grand tour.
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• Interpret the configuration: Assuming informative object labels were provided with
the input data, search the configuration by labeling points. If covariates are available,
interpretation can be further aided by linked color or glyph brushing between covariate
views and configuration views. As this is only a tentative search for interpretable
structure, one should use transient (as opposed to persistent) brushing.

• Enhance the configuration: After acquiring a degree of familiarity with the configura-
tion, use persistent brushing to permanently characterize subsets of interest. Enhance
the configuration further by persistently labeling interesting points. Finally, enhance
the overall perception of shape by connecting selected pairs of nearby points with lines
and coloring the lines.

• Turn optimization back on and leave it continually running. Observe the response to

– experimenting with various transformation parameters,

– subsetting objects,

– subsetting dissimilarities,

– weighting dissimilarities,

– manually moving points and groups of points, and

– perturbing the configuration or restarting from random configurations.

• Stop optimization and perform diagnostics in a separate window that shows among
other things a “Shepard plot” of the transformed dissimilarities and the fitted distances.

We described elsewhere (Swayne et al. 1998; Cook and Swayne 2007) operations such as 3-D
rotations and grand tours, as well as (linked) brushing, labeling and line editing. Manually
moving points is also part of the viewing engine (X/GGobi), but in conjunction with MDS
optimization it takes on special importance and is therefore described in Section 3. MDS
parameters as well as weighting and subsetting of dissimilarities affect the loss function and
are therefore specific to MDS. They are the subject of Section 4.

3 Animated Optimization and Point Manipulation

Most software for MDS operates in a batch mode, even though many older programs have
been wrapped in somewhat interactive PC environments. A pioneering system that is truly
interactive is McFarlane and Young’s “ViSta-MDS” (1994) whose development overlaps with
first version of XGvis (Littman et al. 1992). Although the two systems were developed
independently, they share two important capabilities:

1. Animated Optimization: The configuration points are displayed continuously as
they are subjected to MDS optimization. A series of stills from an animated optimiza-
tion is shown in Figure 4. At the same time, the values of the loss function are also
shown in a trace plot (Figure 3).
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Figure 4: Snapshots from a MDS Animation. The figure shows nine stages of a Stress
minimization in three dimensions. It reconstructed a 5 × 5 square grid from a random
configuration. The grid was defined as a graph with 25 nodes and 40 edges. The distances
were computed as the lengths of the minimal paths in the graph (= city block-, Manhattan-,
or L1-distances). These distances are not Euclidean, causing curvature in the configuration.

2. Manual Dragging: Configuration points can be moved interactively with mouse
dragging.

McFarlane and Young call this methodology “sensitivity analysis” because moving points
and observing the response of the optimization amounts to checking the stability of the
configuration. ViSta-MDS implements an alternating mode of operation in which users switch
back and forth between animated optimization and manipulation. X/GGvis is by default in
a fluid mode of operation in which the program runs in a never-ending optimization loop,
with no stopping criterion whatsoever. The user can drag the configuration points while
the optimization is in progress. The optimizer does not attempt to move the dragged point,
but the other points “feel” the dislocation through the change in the loss function, and
they are therefore slowly pulled because they try to position themselves in a local minimum
configuration with regard to the dragged point. As soon as the dragged point is let go, it
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Figure 5: Four Local Minima Found by Moving the Group {E,T } into Different Locations.

snaps into a position that turns the configuration into a local minimum of the loss function.
The feel for the user is that of pricking and tearing the fabric of the configuration and thereby
exploring deformations of its shape.

In addition to moving one point at a time, X/GGvis permits moving groups of points
defined by shared glyphs and colors. This capability can be helpful when it has become
evident that certain points always stay together, as in the Morse code data the points
for the codes of length one (“E” and “T”). The only way to find further local minima is
by moving the points jointly. Indeed, when the Morse code data are mapped into two
dimensions with metric distance scaling and transformed by a third power (which mimics a
nonmetric solution), we found four different locally optimal locations for the codes of length
one (Figure 5). Another two local minimum configurations can be found by moving the
codes of length two.
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More local minima can be found by restarting optimization with a random configuration
such as Gaussian random point clouds. In addition, it is possible to examine local stability by
perturbing a configuration with normal random numbers by forming a convex mixture of the
present configuration and a random Gaussian configuration. The default mixing parameter is
100% random, which means a completely new random configuration is generated. A smaller
fraction of 20% or so can be used for local stability checks: if optimization always drives
the perturbed configuration back to its previous state, it is stable under 20% perturbation.
Further stability checks will be discussed below. For a discussion of the problem of local
minimum configurations, see Borg and Groenen (1997), Section 13.4.

4 Loss Functions: Stress and Strain

As mentioned, we use iterative minimization of loss functions even where eigendecomposi-
tions could be applied, the reason being that missing and weighted dissimilarities are handled
with difficulty by the latter but trivially by the former. We now describe general forms of
loss functions called Stress in distance MDS and Strain in classical MDS.

4.1 Stress

Although the simplest form of loss function for distance scaling is a residual sum of squares
as in (1), it is customary to report Stress values that are standardized and unit-free. Stress
may therefore take the form

StressD(x1, ...,xN) =

( ∑
i,j (Di,j − ‖xi − xj‖)2

∑
i,j D2

i,j

)1/2

. (2)

This, however, is not our final form of Stress. A problem with residual sums of squares,
which we gleaned from watching their optimization in real-time, is the effort spent on getting
the size of the configuration right. This effort is entirely unnecessary because we are only
interested in the shape of the configuration. Any two configurations (xi)i and (t · xi)i that
differ only by a size factor t are equivalent for practical purposes. It is therefore desirable to
use a form of Stress that has essentially the same minimum configurations as (2) except that
it is invariant under scale changes. For the particular case of residual sums of squares in linear
models the solution to the problem is well-known: minimizing a residual sum of squares in
a model with intercept is equivalent to maximizing a correlation up to a scale factor, which
is what we are looking for. A general approach to making a loss function size invariant is
by optimizing the size factor explicitly. In other words, a configuration is judged not by its
actual value of the loss function, but by the value of the loss after scaling the configuration
optimally. That is, we replace StressD(x1, ...,xN) with mint StressD(t · x1, ..., t · xN):

min
t

StressD(t · x1, ..., t · xN) =


 1 −

(∑
i,j Di,j · ‖xi − xj‖

)2

∑
i,j D2

i,j ·
∑

i,j ‖xi − xj‖2




1/2

(3)
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The ratio inside the parentheses can be interpreted statistically as an uncentered squared
correlation and geometrically as the squared cosine between the “vectors” (Di,j)i,j and (‖xi−
xj‖)i,j, and the complete right hand side is the sine between these two vectors. The size
invariance of this form of Stress gives implementations the freedom to scale the configurations
according to viewers’ convenience.

However, (3) is still not the final form we use. Additional features we incorporate include
1) power transformations of the dissimilarities in metric mode and isotonic transformations
in nonmetric mode, 2) Minkowski distances in configuration space, 3) powers of the distances,
4) weighting of the dissimilarities, and 5) missing and omitted dissimilarities.

The final form of Stress as implemented is shown below; details such as the summation
set I and the weights wi,j are discussed in Subsections 4.4 and 4.5, respectively.

——————————————————————————————————————

STRESSD(x1, ...,xN) =
(
1− cos2

)1/2

cos2 =

( ∑
(i,j)∈I wi,j · f(Di,j) · ‖xi − xj‖q

m

)2

(∑
(i,j)∈I wi,j · f(Di,j)2

) (∑
(i,j)∈I wi,j · ‖xi − xj‖2q

m

)

Di,j ∈ IR, > 0, N ×N matrix of dissimilarity data

f(Di,j) =

{
Dp

i,j , for metric MDS
s · Isotonic(Di,j) + (1− s) ·Dp

i,j , for nonmetric MDS

0 6 p 6 6, default: p = 1 (no transformation)
0 6 s 6 1, default: s = 1 (fully isotonic transformation)
Isotonic() = monotone increasing transformation

estimated with isotonic regression

x1, ...,xN ∈ IRk, configuration points; 1 6 k 6 12, default: k = 3

‖xi − xj‖q
m = (

k∑
ν=1

|xi,ν − xj,ν |m)q/m, configuration distances, (..)q

1 6 m 6 6, m = 2 : Euclidean (default)
m = 1 : City block

0 6 q 6 6, q = 1 : common Stress (default)
q = 2 : so-called SStress

——————————————————————————————————————
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4.2 Strain, Metric and Nonmetric

Classical scaling is based on inner products which, unlike distances, depend on the origin.
W.l.o.g. one can center configurations at the origin,

∑
i xi = 0, so their inner product

matrices have zero marginal means,
∑

k〈xk,xj〉 =
∑

k〈xi,xk〉 = 0. It is now easy to derive
a transformation of distance data Dij to inner-product data Bij with a heuristic:

D2
i,j ≈ ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2〈xi,xj〉

The reasoning is as follows: If ‖xi−xj‖2 approximates D2
ij, then 〈xi,xj〉 should approximate

D̃i,j := −D2
ij/2 (4)

after removing the marginal means, a process known as “double-centering”:

Bij = D̃ij − D̃i• − D̃•j + D̃•• , (5)

where D̃i•, D̃•j and D̃•• are row, column and grand means of D̃.
We call “Strain” any loss function that measures the lack of fit between inner products

〈xi,xj〉 and inner-product data Bij. A simple form of Strain analogous to the form (2) of
Stress is a standardized residual sum of squares:

StrainD(x1, ...,xN) =

(∑
i,j( Bi,j − 〈xi,xj〉)2

∑
i,j B2

ij

)1/2

.

As with Stress, it is desirable and feasible to create a size invariant version of Strain by min-
imizing over a scale factor which introduces a ratio that can be interpreted as an uncentered
correlation or a cosine:

min
t

StrainD(t · x1, ..., t · xN) =


1 −

(∑
i,j Bi,j · 〈xi,xj〉

)2

∑
i,j B2

i,j ·
∑

i,j〈xi,xj〉2




1/2

(6)

Again, this is not the final form of Strain we use. The most involved addition to Strain is
a nonmetric feature for the estimation of a monotone transformation of the dissimilarities.
Interpreting Strain as a function of the dissimilarities Dij by way of (4) and (5), the problem
is to transform the values Di,j in such a way that a better Strain is obtained. A solution was
proposed by Trosset (1998b), and we give here an alternative derivation with simplifications
that permit us to fit the nonmetric Strain minimization problem into the existing framework.
Classical nonmetric scaling is nonstandard, but it fills a conceptual gap by permitting us
to cross {metric, nonmetric} with {classical scaling, distance scaling}. The properties of
nonmetric classical scaling are not well-understood, but the implementation in X/GGvis
will hopefully remedy the situation. We start with the following observations:

Lemma: If B is constructed as above with double centering of D̃, any configuration that
minimizes the Strain (6) is centered at the origin. If, on the other hand, configurations are
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constrained to be centered at the origin, replacing B with D̃ in (6) preserves the minimizing
configurations.

Proof: If A and C are N×N matrices, denote by 〈A,C〉F = trace(AT C) =
∑

i,j Ai,jCi,j the

Frobenius inner product, and by ‖A‖2
F = 〈A,A〉 the squared Frobenius norm. Furthermore,

let e = (1, ..., 1)T ∈ IRN and I be the N×N identity matrix, so that P = I−eeT /N1/2 is the
centering projection. Then the equation Bi,j = D̃i,j− D̃i•− D̃•j + D̃•• can be re-expressed as
B = PD̃P . Finally, let X be the N × k configuration matrix whose i’th row is xT

i , so that
(〈xi,xj〉)i,j = XXT . The centering condition

∑
i xi = 0 can be re-expressed as PX = X.

Using repeatedly 〈PA, C〉F = 〈A,PC〉F one derives

〈B, XXT 〉F = 〈PD̃P, XXT 〉F = 〈D̃, P (XXT )P 〉F = 〈D̃, (PX)(PX)T 〉F ,

which proves that the numerator in (6) does not change when B is replaced with the un-
centered matrix D̃ but X is replaced with the centered matrix PX. As for the denominator
term

∑
ij〈xi,xj〉2 = ‖XXT‖2

F , using 〈PA, (I − P )C〉F = 0 one obtains the decomposition

‖XXT‖2
F = ‖PXXT P‖2

F + ‖(I − P )XXT (I − P )‖2
F ,

which proves that the Strain decreases when an uncentered X is replaced with a centered PX.
Lastly, replacing

∑
ij B2

ij = ‖B‖2
F with

∑
ij D̃2

ij = ‖D̃‖2
F in the denominator of (6) changes

the value of the criterion but it does not affect the minimum Strain configurations. ¤

The modification of the Strain (6) suggested by the Lemma is therefore:

StrainD(x1, ...,xN) =


1 −

(∑
i,j D̃i,j · 〈xi,xj〉

)2

∑
i,j D̃2

i,j ·
∑

i,j〈xi,xj〉2




1/2

,

under the constraint
∑

i xi = 0. In light of D̃ij = −D2
ij/2 being a descending transformation

of Dij, it is natural for a nonmetric approach to classical scaling to let the Strain function
determine a transformation f(−Dij). A nonmetric form of Strain is therefore:

StrainD(x1, ...,xN) =


1 −

(∑
i,j f(−Di,j) · 〈xi,xj〉

)2

∑
i,j f(−Di,j)2 ·∑i,j〈xi,xj〉2




1/2

. (7)

Similar to nonmetric distance scaling, the monotone ascending transformation f() of −Dij

can be estimated with isotonic regression of the response (〈xi,xj〉)ij on the predictor (−Dij)ij.
We have arrived at the nearly final form of Strain. As with Stress, the Strain we actually

use includes power transformations of dissimilarities in metric mode as well as weighting and
omitting of dissimilarities. The final form of Strain as implemented is shown below; again,
details such as the summation set I and the weights wi,j are discussed in Subsections 4.4
and 4.5, respectively.
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——————————————————————————————————————

STRAIND(x1, ...,xN) =
(
1− cos2

)1/2

cos2 =

( ∑
(i,j)∈I wi,j · f(−Di,j) · 〈xi,xj〉

)2

(∑
(i,j)∈I wi,j · f(−Di,j)2

)(∑
(i,j)∈I wi,j · 〈xi,xj〉2

)

Di,j ∈ IR, > 0, N ×N matrix of dissimilarity data

f(−Di,j) =

{ −D2p
i,j , for metric MDS

s · Isotonic(−Di,j) + (1− s) · (−D2p
i,j) , for nonmetric MDS

0 6 p 6 6, default: p = 1 (no transformation)
0 6 s 6 1, default: s = 1 (fully isotonic transformation)
Isotonic() = monotone increasing transformation

estimated with isotonic regression

x1, ...,xN ∈ IRk, configuration points, constrained to
∑

xi = 0

1 6 k 6 12, default: k = 3

〈xi,xj〉 =
k∑

ν=1

xi,ν · xj,ν , configuration inner products

——————————————————————————————————————

4.3 Parameters of Stress and Strain

Stress and Strain have parameters that are easily subjected to interactive user control:

• The most fundamental “parameters” are the discrete choices of metric versus nonmetric
and distance versus classical scaling. The default is metric distance scaling.

• Next in importance is the choice of the reduced or configuration dimension k. The
conventional choice is k = 2, but with 3-D rotations available it is natural to chose
k = 3 as the default. Recall that for k > 4 viewing is possible with grand tours.

• Both metric and nonmetric scaling permit transformations of the dissimilarities that
are controlled by certain parameters:

– Metric scaling uses a power transformation with a user-controlled exponent p:
Dp

ij and −D2p
ij for distance and classical scaling, respectively (default: p = 1). In

our experience powers as high as 4 have proven useful. An interesting power is
0: it describes objects that are all equally far from each other and hence form a
simplex. This is the “null case” of total indiscrimination.
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– Nonmetric scaling is defined by the use of isotonic regression to nonparametri-
cally estimate a transformation of the dissimilarities. The point of nonmetric
approaches is to use only the ranks of the dissimilarities Dij, not their actual
values. We found it useful to allow convex mixing of the isotonic transformation
with the nonmetric power transformation. The mixing value s = 1 (default) corre-
sponds to the isotonic transformation (purely nonmetric scaling), and s = 0 to the
pure power transformation (purely metric scaling). Sliding s across the interval
[0, 1] while the MDS optimization is running shows transitions between nonmetric
and metric solutions. Moving s temporarily below 1 can help a nonmetric con-
figuration recover when it gets trapped in a degeneracy (usually clumping of the
configuration points in a few locations with near-zero Stress value and an isotonic
transformation that degenerated to a step function; see Borg and Groenen (1997),
Sections 13.2-3).

• A parameter specific to distance scaling, both metric and nonmetric, is the distance
power q. We introduced this parameter to include so-called SStress, which is obtained
for p = q = 2. SStress fits squared distances to squared dissimilarities, and it is
used in the influential MDS software “ALSCAL” by Takane et al. (1977). In our
experience SStress is somewhat less robust than Stress, as the former is even more
strongly influenced by large dissimilarities than Stress.

• There is finally a choice of the distance measure in configuration space for distance
scaling. We use Minkowski (also called Lebesgue) metrics other than Euclidean and
subject the Minkowski parameter m to user manipulation. The default is Euclidean,
m = 2; the city block or L1 metric is the limiting case m → 1.

4.4 Subsetting

The loss functions can trivially handle missing values in the dissimilarity matrix: pairs (i, j)
for which Dij is missing are simply dropped from the summations. Through the deliberate
use of missing values one can implement certain extensions of MDS such as multidimensional
unfolding (see Borg and Groenen (1997), chapter 14, in particular their Figure 14.1). Missing
dissimilarities can be introduced in various ways: They can be NA coded in the input
file, or they can be introduced interactively through user-generated conditions that include
thresholding of dissimilarities, random selection with probability α, and selection based on
existing groups marked by colors or glyphs. Here is a symbolic description of the summation
set of both Stress and Strain, followed by a detailed discussion:

I = { (i, j) | i 6= j, Di,j 6= NA, T0 6 Di,j 6 T1, Runif(i, j) < α, Grpg. cond.(i, j) }

Thresholding: Threshold parameters T0 and T1 for the conditions T0 6 Di,j 6 T1 can
be used to check the influence of large and small dissimilarities. We implemented these
operations based on the received wisdom that the global shape of MDS configurations is
mostly determined by the large dissimilarities. This statement is based on a widely cited
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study by Graef and Spence (1979) who ran simulations in which they removed in turn the
largest third and the smallest third of the dissimilarities (T1 = upper tercile and T0 = lower
tercile, respectively). They found devastating effects when removing the largest third, but
benign effects when removing the smallest third. With user-chosen thresholding the degree
to which this behavior holds can be explored for every dataset individually.

Random selection of dissimilarities with a user-selected probability α is another way to
investigate the stability of configurations. By repeatedly triggering this feature while opti-
mization is continuously running, users obtain a sense of how (un)stable the configuration is
under random removal of dissimilarities. In our experience classical scaling does not respond
well to the removal of even a small fraction of distances. Distance scaling is considerably
more robust in this regard.

Group-based selection of dissimilarities constitutes an extremely powerful tool for
MDS. Groups of objects can be defined in input files by color and/or glyph attributes, or
they can be generated interactively with brushing operations on configuration points. The
following are the operations we implemented:

• Subsetting objects: Remove some objects and scale the remaining objects. Removal
is achieved by simply hiding groups. It is a common experience that subsets often reveal
new structure when freed from constraints imposed by the whole dataset. For example,
the circular structure of the digits in the Morse code data becomes fully visible only
when the digits are scaled separately (Buja and Swayne 2002).

• Within-groups scaling: Remove the dissimilarities that cross groups. This op-
tion can be useful no only for finding but also comparing group-internal structure.
We therefore found this option somewhat more powerful than the previous one. —
Within-groups scaling has slightly different behavior in classical and distance scaling:
In classical scaling the groups are linked to each other by a common origin, but oth-
erwise they are scaled independently. In distance scaling the groups can be moved
independently of each other. — We note also that nonmetric scaling always introduces
a certain dependence between groups because the isotonic transformation is obtained
for the pooled within-groups dissimilarities, not for each group separately.

• Between-groups scaling: Remove the dissimilarities within the groups. Between-
groups scaling with two groups is called multidimensional unfolding (see, for example,
Borg and Groenen 1997, chapter 14). The case of only two groups is the most prone to
degeneracies because it removes the most dissimilarities. The more groups there are,
the more dissimilarities are retained and hence stability is gained.

• Anchored scaling: The objects are divided into two subsets, which we call the set of
anchors and the set of floaters. We scale the floaters by only using their dissimilarities
with regard to the anchors. Therefore, floaters do not affect each other, and the anchors
affect the floaters but not vice versa. The configuration of the anchors is dealt with in
one of two ways:

– Fixed anchors: The anchors have a priori coordinates that determine their con-
figuration. Such coordinates can be entered in an initial position file, or they
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are obtained from previous configurations by manually moving the anchor points
(with mouse dragging).

– Scaled anchors: The anchors have dissimilarities also, hence configurations for the
anchors can be found by subjecting them to regular scaling. Internally scaling
the anchors and externally scaling the floaters with regard to the anchors can be
done in a single optimization (Section 6.2).

In practice we usually start with scaled anchors and later switch to fixed anchors.
Then, while the optimization is running, we drag the anchor points into new locations
to check the sensitivity and reasonableness of the configuration of the floaters.

The anchor metaphor is ours. Anchored scaling is called “external unfolding” in the
literature (Borg and Groenen 1997, Section 15.1). Anchored scaling is also reminiscent
of so-called Tutte scaling in graph drawing; for an application in a multivariate analysis
context, see De Leeuw and Michailidis (2000).

4.5 Weights

The loss functions are easily adapted to weights. We implemented weights that depend on
two parameters, each for a different task:

wi,j = Dr
i,j ·

{
w , if color/glyph of i, j is the same
(2− w) , if color/glyph of i, j is different

−4 6 r 6 +4, r = 0 : ignore dissimilarities (default)
r = −1 : Sammon’s mapping

0 6 w 6 2, w = 1 : ignore groups (default)
w = 2 : within-groups scaling
w = 0 : between-groups scaling

The first factor in the weights can depend on a power r of the dissimilarities. If r > 0, large
dissimilarities are upweighted; if r < 0, large dissimilarities are downweighted. This is a
more gradual form of moving small and large dissimilarities in and out of the loss function
compared to lower and upper thresholding. — For metric distance scaling with r = −1,
Sammon’s mapping (1969) is obtained, an independent rediscovery of a variant of MDS.

The second factor in the weights depends on groups: The parameter w permits continuous
up- and downweighting of dissimilarities depending on whether they link objects in the same
or different groups. This is a gradual form of moving between conventional scaling, within-
groups scaling, and between-groups scaling. The latter are our ideas, while the weight-based
gradual version is due to Priebe and Trosset (personal communication).

Weighting is computationally more costly than subsetting. The latter saves time because
some dissimilarities do not need to be looked at, while weights are costly in terms of memory
because they are stored to save power operations in each iteration.
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Figure 6: Two Diagnostic Plots for Configurations from Metric Distance Scaling of the Morse
Code Data. Left: raw data, power p = 1; right: transformed data, power p = 6. An outlier
is marked in the right hand plot: the pair of codes (I, 2) ∼ ( · · , · · − − − ) have a fitted
distance that is vastly larger than the target dissimilarity.

5 Diagnostics

A standard diagnostic in MDS is the Shepard plot, that is, a scatterplot of the dissimilarities
against the fitted distances, usually overlayed with a trace of the isotonic transform. See for
example Borg and Groenen (1997, Sections 3.3 and 4.1) or Cox and Cox (1994, Section 3.2.4).
The plot provides a qualitative assessment of the goodness of fit, beyond the quantitative
assessment given by the Stress value.

Diagnostics such as the Shepard plot are of a very different nature from the display of
the configuration. For one thing they may be much more expensive because they may show(

N
2

)
points for N configuration points. They therefore call for a separate viewing engine

(X/GGobi window) that is not continuously updated but represents a fixed snapshot at
a given time. We found it useful to expand on the diagnostic variables and provide the
following whenever diagnostics are generated:

• the dissimilarities: Di,j;

• the fitted quantities: di,j = ‖xi−xj‖ for distance scaling and bi,j = 〈xi,xj〉 for classical
scaling;

• the transformation of the dissimilarities: f(Di,j) for distance scaling and f(−Di,j) for
classical scaling, which is a power for metric scaling and an isotonic transformation for
nonmetric scaling;
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• the residuals: ri,j = f(Di,j)− di,j;

• the weights: wi,j, which may be a power of the dissimilarities;

• the row index: i;

• the column index: j.

Selecting the variables di,j and Di,j yields the Shepard plot for distance scaling, and an obvi-
ous analog for classical scaling. Selecting Di,j and f(Di,j) yields a plot of the transformation
of the dissimilarities. Selecting di,j and f(Di,j) is possibly even more informative because
the strength of the visible linear correlation is a qualitative measure for the goodness of fit.
An example is shown in Figure 6.

The residuals are provided for users who prefer residual plots over plots of fits. The
weights are occasionally useful for marking up- and down-weighted dissimilarities with colors
or glyphs. The row and column indices are useful for those MDS modes in which dissimi-
larities have been removed from the Stress or Strain or if some dissimilarities are otherwise
missing. Plotting i versus j provides a graphical view of the missing and removal pattern of
the dissimilarity matrix as it is used in the current loss function.

If the objects are given labels, the labels of the diagnostics window are pairs of object
labels. In Figure 6, for example, an outlying point is labeled “I..,2..- - -”, showing two Morse
codes, “..” for “I” and “..- - -” for “2”, whose dissimilarity is not fitted well.

6 Computational and Systems Aspects

6.1 Optimization and the Fluid Mode of Operation

For minimization of Stress and Strain we mostly use Kruskal’s (1964b) gradient descent
method. This choice was based on the simplicity with which gradient methods generalize to
loss functions with arbitrary weights and non-Euclidean Minkowski metrics. An alternative,
not currently implemented, would be the popular SMACOF algorithm (Borg and Groenen
1997, and references therein). For metric scaling, Kruskal’s method is plain gradient descent
on the loss function with regard to the configuration. For nonmetric scaling, Kruskal’s
method consists of alternation between gradient descent on the configuration and estimation
of the isotonic transformation. The latter is based on a convex least squares problem that
can be solved with Kruskal’s pool-adjacent-violators algorithm.

An important part of Kruskal’s method is a stepsize strategy. This, however, we do not
use because we submit the stepsize to interactive user control. It is scaled in relation to the
size of the configuration such that, for example, a stepsize of 0.05 means that the gradient is
5% the size of the configuration, where size of the configuration and the gradient is measured
as the sum of the distances of the N row vectors from their respective mean vectors in IRk.

As indicated earlier (Section 3), the main reason for not providing an automated stopping
criterion is to enable a fluid mode of operation whereby users continously manipulate param-
eters and configurations and receive instantaneous feedback from the ongoing optimization.
Another reason for the absence of a stopping criterion is that non-trivial local movement in
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the configuration may be visually apparent even when the descent in the loss function has
become negligible. User decision based on visual feedback provides a superior method of
stopping that avoids premature as well as wasteful optimization.

6.2 Gradient Descent on the Configuration and Force Graphs

We describe details of the gradient descent step with a fixed transformation. The goal is to
bring conventional MDS and anchored MDS (Section 4.4) into a single computational frame-
work. The discussion is somewhat arcane but there is reward in the achieved unification. We
first note that minimizing Stress and Strain is equivalent to maximizing the respective cosine
expressions of Sections 4.1 and 4.2. Omitting terms that do not depend on the configuration,
we are to maximize a ratio of the form

Num

Denom
=

∑
(i,j)∈I wi,j · g(Di,j) · s(xi,xj)

(∑
(i,j)∈I wi,j · s(xi,xj)2

)1/2
, (8)

where s(xi,xj) is a Minkowski distance to the q’th power for distance scaling, and the inner
product for classical scaling. All terms are (or are assumed) symmetric in i and j. The
gradient of the ratio with regard to the configuration X = (xi)i=1..N is the collection of
partial gradients with regard to configuration points xi:

∂

∂X

Num

Denom
=

(
∂

∂xi

Num

Denom

)

i=1..N

.

Because we determine the size of gradient steps as a fraction of the size of the configuration,
we only need the partial gradients up to a constant factor:

∂

∂xi

Num

Denom
∝

∑

j∈{j|(i,j)∈I}
wi,j

(
g(Di,j)− Num

Denom2
s(xi,xj)

)
∂

∂x

∣∣∣∣
x=xi

s(x,xj) , (9)

In the derivation of this formula we used symmetry of all terms in i and j and also symmetry
of the set I: (i, j) ∈ I ⇒ (j, i) ∈ I. The summation should really extend over the set
{j| (i, j) ∈ I or (j, i) ∈ I }, but if I is symmetric it is sufficient to sum over the reduced set
{j | (i, j) ∈ I}. Reduced summation lends an intuitive interpretation to partial gradients:
The summand indexed by j is the contribution of xj to the gradient movement of the point
xi. As such, it can be interpreted as the “force” exerted by xj on xi. The reduced summation
means that under the symmetry assumptions it is sufficient to consider the force exerted by
Di,j on xi only, although strictly speaking both Di,j and Dj,i exert force.

We now carry reduced summation over to certain types of non-symmetric sets I, and
we start with a simple illustration. Consider the case where the first column is missing:
Di,1 = NA ∀i or, equivalently, I = {(i, j) | 1 6 i 6 N, 2 6 j 6 N}. The missing first column
means that x1 does not contribute to the partial gradient (9) of any point whatsoever, but
its own partial gradient has contributions from those points for which D1,j is not missing.
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Intuitively, x1 does not exert force but it “feels” force from other points; it does not “push,”
but it is being “pushed.” In other words, x1 is a floater, and its anchors are {j |D1,j 6= NA} =
{j | 2 6 j 6 N}. This example shows that a suitable NA pattern in the dissimilarities
permits us to implement anchored scaling in addition to conventional scaling, but reduced
summation in combination with general summation sets I is of much greater generality as
the following discussion of the group-based scaling methods of Section 4.4 shows:

• Within-groups scaling, illustrated with two groups:

group1 group2

D =

(
Dgrp1,grp1 NA

NA Dgrp2,grp2

)
group1
group2

Group 1 gets scaled internally, and so does group 2. The forces are confined within
the groups. The summation set I is symmetric.

• Between-groups scaling, illustrated with two groups (multidimensional unfolding):

group1 group2

D =

(
NA Dgrp1,grp2

Dgrp2,grp1 NA

)
group1
group2

The two groups exert force on each other, but there is no force within the groups. The
summation set I is again symmetric.

• Anchored scaling with scaled anchors (a form of external unfolding):

anchors floaters

D =

(
Dancr,ancr NA
Dfltr,ancr NA

)
anchors
floaters

Here the summation set I is no longer symmetric. The top left submatrix causes
conventional scaling of the anchors. The bottom left submatrix exerts the push of the
anchors on the floaters. The two blocks of NA’s on the right imply that the columns
for the floaters are absent, that is, the floaters do not push any points.

• Anchored scaling with fixed anchors (another form of external unfolding):

anchors floaters

D =

(
NA NA

Dfltr,ancr NA

)
anchors
floaters

Again the summation set I is not symmetric. The two top blocks of NA’s imply that
the anchors are fixed: they are not being pushed by anyone. The only push is exerted
by the anchors on the floaters through the matrix on the bottom left.
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It becomes clear that NA patterns and the corresponding summation sets I form a lan-
guage for expressing arbitrarily complex constellations of forces. This idea can be formalized
in terms of what we may call a “force graph”, defined as the directed graph with nodes
{1, ..., N} and edges in the summation set

I = {(i, j) |Di,j 6= NA} .

An edge (i, j) stands for “j pushes i”. Conventional MDS is represented by a complete
graph, where every point pushes every other point. For within-groups scaling the force
graph decomposes into disconnected complete subgraphs (cliques). Between-groups scaling
has a complete bi-directional, multi-partite graph, that is, the node set is decomposed into
two or more disjoint partitions, and the edge set is the set of edges from any one partition to
any other. Anchored MDS with fixed anchors has a uni-directional complete bipartite graph,
that is, the two partitions have asymmetric roles in that the edges go only from one of the
partitions to the other. In anchored MDS with scaled anchors, the latter form in addition
a clique. One can obviously conceive of more complex force graphs, such as multi-partite
graphs with layered anchoring, or graphs with selected force cycles, but this is not the place
to pursue the possibilities in detail.

6.3 MDS on Large Numbers of Objects

MDS is based on N2 algorithms, a fact that limits its reach for large N . On the hardware at
our disposal, interactive use of X/GGvis is possible up to about N = 1000. Larger N can be
processed also, but the user will leave the optimization to itself for a while. The largest N
we have scaled with X/GGvis was N = 3648, but larger N are feasible with more patience.

Among the four types of MDS, the nonmetric varieties are not recommended for N
greater than a few hundred because setting up the isotonic regression adds initially a con-
siderable computational burden. Among the two metric varieties, classical scaling is faster
than distance scaling. It is therefore a common strategy to use classical scaling solutions
as initial configurations for distance scaling. It should be kept in mind, however, that our
implementation of classical scaling minimizes Strain, which is more flexible but also more
costly than eigendecompositions that could be used if one assumed no nonmetric option, no
missing dissimilarities, and no weights.

We mentioned in Section 4.5 that weighted MDS is costly. When N is large, one should
abstain from the use of weights for space reasons. Our implementations do not allocate a
weight matrix if the weights are identical to 1.

The reach of MDS extends when a substantial number of terms is trimmed from the
Stress function. Such trimming is most promising in anchored MDS (Section 4.4), which
can be applied if an informative set of anchors can be found. The choice of anchors can be
crucial; in particular, a random choice of anchors often does not work. But we have had
success with the example of size N = 3648 mentioned earlier: satisfying configurations were
found with an anchor set of size 100, which reduced the time needed for a single gradient
step from 100 seconds to 6 seconds.
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7 Examples of MDS Applications

We give some data examples that demonstrate the wide applicability of MDS and the use-
fulness of X/GGvis.

• Dissimilarity data from computer usage: As part of a project on intrusion detec-
tion at AT&T Labs (Theus and Schonlau 1998), users were characterized by their logs
of UNIX R©operating system commands that they typed during a number of work days.
From each log, pairs of commands were characterized by a dissimilarity value that
measured how far spaced the commands were on average (for example, there might
be 3.2 other commands between the commands “spell” and “eqn” on average). Each
dissimilarity matrix was considered as the signature of a user. MDS was used to create
2-D maps of the commands for a particular user. Examples from two users are shown
in Figure 7. One user was a member of technical staff, the other an administrative as-
sistant. The maps differ in characteristic ways, and they have very intuitive meanings
in terms of general activities such as start up at the beginning of the day, followed by
clusters of programming and data analysis activities by the member of technical staff,
and by clusters of e-mailing and word processing by the administrative assistant.

• Dimension reduction: From a multivariate dataset with eight demographic and
telephone usage variables for 1926 households we computed a Euclidean distance matrix
after standardizing the variables. Distance MDS was used to reduce the dimension from
eight to two by creating a 2-D configuration. Figure 8 shows the result, side by side
with a 2-D principal component projection (equivalent to classical MDS in this case).
While distance scaling squeezes 20% more variance into two dimensions than PCA, its
map shows rounding on the periphery that may be artifactual. On the other hand,
MDS seems to be better than PCA at spreading out four market segments (marked
by glyphs) that were found with k-means. This example indicates that comparison of
methods on the same dataset may be useful for detecting trade-offs.

• Social networks of phone callers: The development of XGvis was originally mo-
tivated by the problem of laying out graphs and in particular social networks such as
telephone call graphs in more than two dimensions and using XGobi as a display device
(Littman et al. 1992). In order to lay out a graph with MDS, one enters it as a list of
object pairs and the software computes a dissimilarity matrix as a “shortest-path met-
ric” (the smallest number of steps from one vertex to another within the graph). All
configurations are then shown with line segments between points that are connected
by an edge. Figure 9 shows an example of a call graph with 110 nodes layed out in
2-D by both classical and distance scaling. It is obvious that distance scaling succeeds
in spreading out the vertices while classical scaling collapses some due to the integer
nature of the dissimilarities.

UNIX is a registered trademark of The Open Group.
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• Molecular Conformation: This is the task of embedding molecules in 3-D based on
partial information about the chemical bonds. We give an example that amounts to a
graph layout: D. Asimov (1998) devised a method for describing all possible capped
nanotubes. His construction produces graphs with carbon atoms as nodes and bonds as
edges. We show the graph layout generated with distance scaling of one such nanotube
in Figure 10. Although the shortest-path metric of this molecular graph is far from
Euclidean, the embedding reflects the intrinsic curvature quite well and certainly makes
an excellent start for a more specialized chemical bond optimizer.

Software availability

The XGvis and GGvis systems can be freely downloaded from:

www.research.att.com/areas/stat/xgobi/
www.ggobi.org

GGvis is more recent and programmable from other languages such as R, Perl and Python.
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Figure 7: Maps of Computer Commands for Two Individuals.
Left: a member of technical staff who programs and manipulates data (Stress=0.29).
Right: an administrative assistant who does e-mail and word processing (Stress=0.34).
The labels show selected operating system commands used by these individuals.

Figure 8: Marketing Segmentation Data. Left: MDS reduction to 2-D; right: largest two
principal components. The glyphs represent four market segments constructed with k-means
clustering using four means.
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Figure 9: A Telephone Call Graph, Layed Out in 2-D. Left: classical scaling (Stress=0.34);
right: distance scaling (Stress=0.23). The nodes represent telephone numbers, the edges
represent the existence of a call between two telephone numbers in a given time period.

Figure 10: Nanotube Embedding. One of Asimov’s graphs for a nanotube is rendered with
MDS in 3-D (Stress=0.06). The nodes represent carbon atoms, the lines represent chemical
bonds. The right hand frame shows the cap of the tube only. The highlighted points show
some of the pentagons that are necessary for forming the cap.
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