
Computational Statistics & Data Analysis 40 (2002) 27–37
www.elsevier.com/locate/csda

Using k-nearest-neighbor classi&cation in
the leaves of a tree

Samuel E. Buttrey∗, Ciril Karo
Department of Operational Research OR=Sb, Naval Postgraduate School, Monterey CA 93943, USA

Received 1 May 2001; accepted 1 October 2001

Abstract

We construct a hybrid (composite) classi&er by combining two classi&ers in common use—
classi&cation trees and k-nearest-neighbor (k-NN). In our scheme we divide the feature space
up by a classi&cation tree, and then classify test set items using the k-NN rule just among
those training items in the same leaf as the test item. This reduces somewhat the computational
load associated with k-NN, and it produces a classi&cation rule that performs better than either
trees or the usual k-NN in a number of well-known data sets. c© 2002 Elsevier Science B.V.
All rights reserved.

Keywords: Nearest neighbors; Classi&cation; Hybrid classi&ers

1. Introduction

In the general classi&cation problem, we are given a training set of, say, n items,
on which we have p measurements each, with measurement j for observation i be-
ing denoted by xij; i = 1; : : : ; n; j = 1; : : : ; p. We also have the class to which each
observation belongs, denoted yi where yi takes on one of a (typically) small set of
labels. For example, the (row) vector xi might be a set of pixel brightness measure-
ments for a particular hand-written digit, say, after the image is digitized, and yi the
actual digit that was written. The object is to predict the class memberships of a new
item, or generally a whole set of items (the “test set”), for which the x’s are given.
For this paper, we will assume that each of the measurements is continuous rather

∗ Corresponding author.
E-mail address: buttrey@nps.navy.mil (S.E. Buttrey).

0167-9473/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167 -9473(01)00098 -6

28 S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37

than categorical. We will denote the column vector of measurements for variable j as
x[j] = (x1j; x2j; : : : ; xnj).

In this paper, we describe a new classi&cation technique that is a hybrid of two
well-known approaches: the classi&cation tree and k-nearest-neighbors (k-NN). Specif-
ically we &t a classi&cation tree, and then apply k-NN within the leaves of the
tree. That is, a test set item that falls into a particular leaf of the tree is classi&ed
by k-NN; only training set items that fall into that leaf are considered as possible
neighbors.
The remainder of this paper is organized in this way: the rest of this section describes

the two classi&cation techniques we are combining, and the way in which we have
combined them. In Section 2, we describe the data we use and discuss the estimation
of misclassi&cation rates. Section 3 gives the results of our technique, and Section 4
oKers some conclusions and ideas for further re&nement.

1.1. k-nearest-neighbor classi3cation

The well-known k-NN approach to classi&cation has proven successful in many ap-
plications. In this method, we measure the distance from a test set item to each of the
training set items, noting the k training set items that are nearest. We then classify the
test set item by whichever class is most common among those k “nearest neighbors,”
letting each neighbor “vote.” (In case of ties, we have chosen to include all training
set items no farther away than the kth nearest neighbor, so in this case there will
be more than k voters.) A number of investigators have considered the question of
how best to measure distance: approaches have included global metrics (Fukunaga and
Flick, 1984), local metrics (Short and Fukunaga, 1980), metrics that are speci&c to the
problem (Simard et al., 1993) and so on. By far the most common metric, though,
has been Euclidean distance, under which the distance between two points xr and
xs, say, is given by the square root of the (possibly weighted) sum of the squared
distances over each co-ordinate. Although generalizations are possible, we use the
simple form:

d(xr ; xs) =

[p∑
i=1

ci(xri − xsi)2
]1=2

: (1)

In ordinary Euclidean distance, the weights ci; i = 1; : : : ; p are all equal to 1. How-
ever, experience suggests that two related steps can improve classi&cation accuracy.
First, we might expect some of the measurements to be irrelevant to the problem.
Naturally we hope to be able to give weights of zero to these irrelevant columns. This
echoes, of course, the variable selection problem that appears in almost every statistical
model.
Second, relevant variables may be measuring similar quantities on quite diKerent

scales. Under these circumstances, it seems obvious that reducing each of the vari-
ables to a common scale may help k-NN classi&cation by preventing one of the
measurements from dominating all the others. A third problem that needs to be tack-

S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37 29

led is that of selecting the best value of k, the number of neighbors to be
considered.
In our approach, we attack the choices of k and of which variables to include

by using a stepwise approach. Our implementation permits either forward or back-
ward selection; for reasons of speed and parsimony we usually use the former. In this
scheme, we start with every variable out of the model, plus a vector of possible val-
ues of k. Currently, this set is not chosen by reference to the data; we merely use
the set 1; 3; 5; : : : ; 31 since this has a “reasonably large” range. We use leave-one-out
cross-validation to estimate the misclassi&cation rate of the classi&er for each choice
of k. That is, each element of the training set is classi&ed by all the others, using the
current set of variables in the model and the entire vector of k’s. Of course, at the very
beginning of this process when every variable is “out” of the model, every training set
item is equidistant from every test set item, and regardless of k, every training item
gets to vote. This gives us the so-called “naMNve classi&er,” in which every test set item
is simply given the most frequent training set classi&cation.
Then one of the variables is added to the model and a new set of misclassi&cation

rates, one for each k, is computed. This is done for each variable in turn. At the end
of this process we choose the combination of k and added variable that produces the
lowest misclassi&cation rate. If no addition produces an improvement then the process
is &nished; the current set of variables and the best k are used. If the addition of a
variable produces a misclassi&cation rate strictly better than that of the current set,
then that variable is added to the current set and the process continues. Our approach,
as with other “greedy” algorithms, is reasonable but not guaranteed to produce an
optimal set of variables. Since we require strict improvement at each stage we expect
our routine to be resistant to the presence of “noise” variables, and we have seen this
in an example (see “noise resistance” below).
Finally, we perform this entire stepwise routine twice: once with the data in its

original form and once with each column scaled to have standard deviation equal to
1. (We have also looked at scaling by median absolute deviation but in our exam-
ples we have found it makes little diKerence.) Of course we choose whichever of
the scaled and unscaled results has the lower misclassi&cation rate. Thus when we
talk about k-NN classi&cation, we are referring to a process that does all three of
(i) variable selection; (ii) choice of k; and (iii) choice of using scaled or unscaled
data.

1.2. Tree classi3cation

The classi&cation tree technique (Breiman et al., 1984) divides the training set into a
number of mutually exclusive subsets. At any point the tree program chooses a “split”
which divides the data into two pieces, based on the value of one of the columns
of x. This produces two subsets, which may or may not then be split further. (There
are other implementations, but in ours, every split is of the form x[j]¡t.) Continuing
the tree metaphor, the &nal subsets produced by this process are called “leaves.” We
observe that some of leaves are relatively “pure” (that is, they consist of observations
primarily of one class); others are more mixed. A tree classi&es a new observation by

30 S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37

the most common class among observations in the leaf into which that item falls, so
most classi&cation errors will occur in these mixed leaves.
Each split is made so as to maximize the change in some splitting criterion. There

are several criteria in common use; since we are using the S-Plus statistical package, we
use its default, which is the multinomial deviance, that is, −2 times the log-likelihood
under a multinomial model. If there are n items in a node, of which nj are in class j,
the deviance is then −2

∑
j nj log(nj=n), taking 0 log 0 = 0.

At each node, the tree program &nds the split which reduces the total deviance
the most and implements it. Splitting continues until some stopping rule is met (for
example, by default the program will not split a node with fewer than ten entries).
The stopping rules are constructed so that the resulting trees are typically over-&t. Then
cross-validation is used to &nd the “optimal” size. (The size of a tree is simply the
number of leaves it has.) So suppose that the original tree has m leaves. Then trees of
every size from 1 to m are constructed with 90% of the data, and the numbers of errors
they make when classifying the remaining 10% are stored. This process is repeated
nine more times until each 10% of the data has been used as the test set. Finally, we
choose the “optimal” size with the “one SE rule” (Breiman et al., 1984). We identify
the minimum misclassi&cation rate among all the tree sizes, say r∗. Then looking at
classi&cations as Bernoulli events, we choose as “optimal” the smallest size for which
the misclassi&cation rates is no more than one estimated standard error above this
minimum. That is, we choose the smallest size whose misclassi&cation rate is smaller
than r∗ + (r∗(1− r∗)=n)1=2.

1.3. Combining k-NN and tree models

Our approach is to apply k-NN classi&cation separately within every leaf of a tree.
That is, &rst we build a classi&cation tree (whose size will be determined below).
Then, given a test item we (i) determine the leaf into which the item falls; and (ii)
perform k-NN classi&cation using only the training set items that fall into that leaf.
By restricting the population of training set items to those within the same leaf as the
test set item, we reduce the computational burden.
Furthermore, it is often the case that the structure of the tree is too “coarse,” that

is, that the optimally sized tree produces leaves inside of which there is still some
information that can be exploited. As a simple example consider a population with two
variables distributed uniformly on the vertices of the unit square, so that x[1] ∈{0; 1}
and x[2] ∈{0; 1}. Suppose that all items at (0,0) and (1,1) belong to class A and that all
items at (0, 1) and (1, 0) belong to class B, and suppose that each vertex has exactly
the same number of observations. A leaf with this population will have an error rate
of 0.50. The tree method will consider the two splits x[1]¡ 0:5 and x[2]¡ 0:5, and
since neither of those produce a decrease in deviance, no split will be made. However,
assuming at least one training set item at each of the four vertices, the 1-NN classi&er
with have an error rate of 0. This is the sort of structure we hope will be visible
to the k-NN classi&er. The performance of a global k-NN classi&er is harmed by
heterogeneity in the data: the tree, by dividing the training set into more-homogeneous
subsets, helps protect against this.

S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37 31

Root

Node 2 Node 3

Node 6 Node 7

Leaves

Fig. 1. Schematic of k-NN classi&cation inside leaves. The tree is constructed in the usual way. Then a
separate k-NN classi&er is produced in each leaf. Each k-NN classi&er may have a diKerent k, a diKerent

set of included variables, and a diKerent choice of scaling.

Fig. 1 shows a schematic of our process. The usual tree procedure divides the “root”
node into two child nodes. The left is divided further into two leaves; then k-NN
classi&cation is performed separately inside each of those leaves. (That is, only items
falling into that leaf are considered as possible “neighbors.”) Similarly, the right side
is itself divided into two nodes; one of these is a leaf and supports k-NN; the other is
divided into two more leaves and in those, too, k-NN is performed.
In the ordinary tree model, the best size of the tree (call it sOPT) is chosen by

cross-validation. It is not clear that this size should be best for this work, but it seems
intuitive that the best tree for our purposes will be no larger. We therefore choose
the “best” size for the tree by our own cross-validation, choosing from among trees
of size 1; 2; : : : ; sOPT using the “one SE” rule. Our tree size will be denoted by sk-NN.
Our experience has been that sk-NN is often, but not always, strictly smaller than
the sOPT. For large problems the computational burden grows quickly and we might
use a smaller maximum than sOPT or base the choice of sk-NN on a subset of the
training set.
The use of composite classi&cation rules goes back at least 20 years (Dasarathy

and Sheela, 1979). The approach in that paper was to optimally partition the training
set feature space so as to allow the deployment of the best classi&er in each region.
DiKerent regions might be assigned diKerent classi&ers under this scheme. The ad-
vantage of this method was that the computationally expensive techniques like k-NN
could be foregone in regions where a simple linear discrimination function, say, could
be used. This technique might be called “nested” since the classi&ers operate within
non-overlapping subsets of the original data space. Our method uses a carefully chosen
k-NN classi&er inside every leaf. This approach includes the usual k-NN classi&er as
the special case corresponding to sk-NN = 1. It also includes the ordinary tree classi&er
as the special case in which no leaf has had any variable added, leaving the “naMNve”
classi&er in every node.
Another technique that combines trees and k-NN classi&cation is the “machete”

(Friedman, 1984). In that approach a tree-like procedure is used to select a “relevant”

32 S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37

predictor, and the training set is divided into a set of items that are “close” to the test
item on this predictor and a set that is not. This process is repeated until only k items
remain, and then those items are used in a k-NN classi&cation. Our procedure diKers
in that only one tree is ever constructed. Therefore some of the interpretability of the
tree remains, even as the k-NN technique tries to decrease misclassi&cation rates inside
the leaves.

1.4. Implementation

Our work was done with the tree routines from the S-Plus statistical package (Math-
Soft Inc., 1999) and our own C-language code for k-NN linked in. (This code is
available from the authors.) It may be worth noting that, other than linking C code,
we made no particular eKort to produce code that would run quickly. The time required
by the algorithm grows very quickly in the size of the training set. For example, get-
ting one estimate of the cross-validated misclassi&cation rate for a relatively small
data set like the image segmentation data (see below) took between 5 and 10 min
on a Pentium 500 MHz machine. Of course the problem is readily parallelizable and
indeed we use a primitive parallelization scheme to grow diKerent trees on diKerent
machines simultaneously. We assume that careful coding would produce further per-
formance improvements. In any case the time required to do prediction is very much
less than the time needed to construct the classi&er; in the image segmentation case
(where the number of leaves is small), the entire test set can be categorized in a few
seconds.

2. Data

2.1. Source

Data sets for this article come from the UC Irvine Machine Learning Repository
(Merz and Murphy, 1996). For simplicity we required that all the predictor variables
be continuous, that there be no or hardly any missing data, and that the data set
be “mid-size”—that is, that there be on the order of 200–1000 items. Data sets in
the repository meeting these criteria include “breast”, “diabetes”, “glass”, “image seg-
mentation”, “sonar”, “vehicle” and “vowel”. We also used the well-known simulated
“wave” data set (Breiman et al., 1984).
A benchmark study of classi&cation techniques called the Statlog project (Michie

et al., 1994) has studied these same data sets and more (with one exception), so
error rates for our classi&er can be compared to those for a number of competitors.
In the nearest neighbor case, however, Michie et al. (1994) appear to have restricted
themselves to 1-NN, without scaling or variable selection. A more recent comparison
study (Lim et al., 2000) is also valuable, though they do not make clear how the k
in k-NN was chosen. Their k-NN classi&er used Mahalanobis distance with a pooled
covariance matrix, and did not incorporate variable selection. As the latter paper did,
we used the “sonar” data set which does not appear in Michie et al. (1994). We also

S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37 33

Table 1
Data sets

Data set Trg. size Test size No. of vars No. of classes

Breast 683 (10 cv) 9 2
Diabetes 768 (10 cv) 7 2
Glass 214 (5 cv) 9 6
Image 210 2100 19 7
Sonar 208 (5 cv) 60 2
Vehicle 846 (10 cv) 18 4
Vowel 528 462 11 11
Wave 300 3000 21 3

note somewhat diKerent treatment of missing values in the breast and diabetes data sets
in the two sources which precludes direct comparison of results from the two sources
on those datasets.
Table 1 shows the data sets used, the sizes of the training and test sets, the number

of predictor variables, and the number of classes. Where there is no test set, we used
cross-validation to estimate the error rate, choosing the number of cross-validations to
agree with Michie et al. (1994).

2.2. Estimating misclassi3cation rates

In general our interest lies in the misclassi&cation rate of the classi&ers. A test
set item is classi&ed by &nding the leaf in which it falls, then &nding its k-nearest
neighbors just among training set items that also fell into that leaf. Of course k will be
speci&c to that leaf, as will the set of variables on which distance is being measured.
These variables will be scaled for training and test items, if necessary, by using the
SDs for those variables (computed only from the training set).
The act of constructing the classi&er requires two levels of cross-validation. In the

“outer” loop, we use n-fold cross-validation. In this technique the data is broken into n
“chunks” of approximately equal size. Each chunk is held out in turn, and the remaining
n− 1 chunks used to build the classi&er. Then in the “inner” loop, we construct trees
of every size, using leave-one-out cross-validation to choose the best variable subset,
scaling, and k within each leaf. After these are chosen, the number of errors made by
each of the trees on the chunk left out is computed. Finally, after all chunks have been
set aside in this way, the best size is determined with the “one SE” rule and the &nal
model of that size (using all the data) is constructed.
When a test set is provided, as for the image, vowel, and waveform data sets, the

misclassi&cation rate on the test set can then be determined directly. When no test set
is provided, we need a third, outermost, layer of cross-validation to compute the overall
error rate. (Here we chose the number of chunks to agree with Michie et al. (1994).)
In this case, the algorithm for computing the misclassi&cation rate of our classi&er is
as shown in Algorithm 1:

34 S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37

Algorithm 1. Three layers of cross-validation are used to estimate error rates when no
test set is supplied. The innermost chooses the best k-NN classi&er within a leaf; the
middle selects the best size of tree; the outermost uses the best tree; constructed on
90% (say) of the data; to estimate the error rate from the remaining 10%.

1: Break data into n1 subsets
2: Loop, omitting subset i; i = 1; : : : ; n1, in turn

i: Break data into n2 subsets
ii: Loop, omitting subset j; j = 1; : : : ; n2, in turn

a: Build tree to “full size”
b: For tree size = 1 to “full size”

→ Find best tree of that size
→ For each leaf

Find best k, variable subset, and scaling in each leaf by
leave-one-out cross-validation

→ Classify subset j, count misclassi&cations
c: Choose tree size with fewest misclassi&cations

iii: Construct “best-sized” tree and k-NN classi&ers in leaves
using all n2 subsets
iv: Use this to classify subset i; accumulate misclassi&cations

3: Report misclassi&cation rate across all n1 subsets

2.3. Comparing misclassi3cation rates

As we have noted, certain data sets come equipped with a pre-speci&ed test set. For
these data sets we report the misclassi&cation rate on that test set. In data sets with no
pre-speci&ed training set, we have, like Michie et al. (1994), used cross-validation to
get an estimate of misclassi&cation rate. Of course, this estimate is random; a diKerent
division of the data into chunks would produce a diKerent estimate. Michie et al.
(1994) appear to have run only one cross-validation for each classi&er. We ran each
cross-validation ten times by choosing, at random, ten random number seeds from the
set of available seeds. We could therefore ensure the same division of the data for the
diKerent classi&ers on each replication.

3. Results

Table 2 shows the results achieved by our method (“k-NN-i-l”) and by “regu-
lar” k-NN and classi&cation trees on these data sets. For “regular” k-NN, the num-
ber of nearest neighbors was chosen with leave-one-out cross-validation from the set
1; 3; : : : ; 31; for classi&cation trees the best tree size was chosen with cross-validation
and the “one SE” rule. When error rates were estimated by cross-validation, the num-
bers of leaves for the tree and the k-NN-in-leaf are the averages of the numbers of
leaves in the trees built during cross-validation.

S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37 35

Table 2
Misclassi&cation rates

Data set k-NN Tree Leaves k-NN-i-l Leaves
rate (%) rate (%) rate (%)

Breast 3.94 5.39 5.55 3.95 1.01
Diabetes 27.6 25.7 4.41 27.5 1.39
Glass 34.8 37.8 7.46 35.0 1.28
Image 39.4 12.5 9 9.47 3
Sonar 22.7 27.2 4.92 22.5 1.04
Vehicle 36.6 28.7 21.4 30.8 4.35
Vowel 45.9 60.4 31 45.9 1
Wave 20.8 28.7 17 20.8 1

We note that in four cases the composite classi&er is lowest or tied for lowest in
misclassi&cation rate. In two examples the “optimal” k-NN-in-leaf tree has only one
leaf, in which case, of course, our classi&er is identical to the k-NN one. Our model for
the “image” data shows a large increase in quality over both the competitors. For the
other data sets, our classi&er falls strictly between the other two in misclassi&cation rate.

3.1. Noise resistance

One problem with the usual k-NN classi&er is its susceptibility to “noise” variables.
This is a consequence of the lack of variable selection in that implementation. Of
course when variables with no predictive power are included in the model they con-
tribute only noise to the Euclidean distance; when there are lots of noise variables,
accurate classi&cation becomes impossible. To ensure that our technique was holding
up under noise, we used the simulated “wave” data with ten added variables that were
iid Normals generated from the random number generator in S-Plus. Each of the ten
added variables had the same SD; the experiment was performed with those SDs set
at 0.1, 1.0, and 10.0. In each case the algorithm included precisely those variables that
had been included with it was run on the original data sets. We conclude that the
forward selection algorithm is eKective, at least in these cases, in excluding “noise”
variables from the model.
Our (somewhat limited) experience suggests that our technique will show greatest

improvement over the classi&cation tree or the k-nearest-neighbor classi&er when the
tree does “reasonably well.” When the tree does poorly, the division of the measure-
ment space does not improve classi&cation much, so using k-nearest-neighbors inside
the leaves cannot be expected to show improvement. Naturally, when the tree does
well, there is little improvement to be made: the leaves are relatively “pure,” and no
technique can be expected to help classi&cation accuracy much.

4. Conclusions

The &rst thing we notice is that the performance of the usual k-NN is greatly im-
proved when scaling, variable selection and choice of k are included. (In an earlier

36 S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37

draft of this paper we used a more naMNve k-NN classi&er that did not perform nearly as
well.) Using separate k-NN classi&ers inside the leaves of a classi&cation tree seems
often to reduce misclassi&cation error over using the tree alone, using the usual k-NN
classi&er, or both. Indeed in the data sets we looked at our approach was never worse
than both the classi&cation tree and the ordinary k-NN classi&er.
We believe that our approach is successful when some leaves in the tree have

information left in them that the tree, because it makes linear splits, cannot exploit.
k-NN, conversely, relies on a global approach to “distance” that may not be reasonable
in some heterogeneous data sets. Our technique uses the local nature of the tree &t but
adds a more sophisticated model within leaves than the simple “plurality vote” rule.
Cross-validation suggests that the “best” tree for this work will often be smaller than
the optimal classi&cation tree. We expect our approach to be weakest where there are
noise variables, so a variable selection rule would be useful here.

4.1. Future work

This work raises a number of interesting questions. The notion of dividing the mea-
surement space into pieces and applying a separate classi&er inside each piece is not a
new one. We have shown that combining k-NN and trees in this way can reduce both
the computational load associated with k-NN and the misclassi&cation rate.
One modi&cation is to re-consider the use of the Euclidean distance in the nearest-

neighbor metric. For example we might choose a Minkowski-type distance like
d(xr ; xs) = [

∑p
i=1 ci|xri − xsi|q]1=q, in which not only the set of ci but also q are

chosen by cross-validation. Further, there is no reason to restrict ourselves to using a
k-NN classi&er in each of the leaves. In pure leaves, there is no reason to use any
additional classi&er, and certainly there may in general be some leaves where, say, a
linear discriminant might be best, others where a neural network might be best and so
on. Future work to determine which classi&er should be used in each piece is neces-
sary. Of course, this echoes the general question often asked in classi&cation problems:
given a data set, which classi&er ought to work best? There is no general answer to
this of which we are aware.
While hybrid classi&ers of this sort have promise, it must be noted that there is a

cost in interpretability. Separately both trees and k-NN are fairly easy to understand;
in this hybrid form the resulting classi&er is more diTcult to describe. Might a more
general hybrid be even more diTcult to understand? In a memorable recent address,
Leo Breiman postulated that no classi&er can be both simple and accurate. Where
accuracy is required, it may be that hybrid classi&ers are one way to achieve that.

References

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classi&cation and Regression Trees. Wadsworth and
Brooks, Monterey, CA.

Dasarathy, B., Sheela, B., 1979. A composite classi&er design: concepts and methodology. In: Proceedings
of the IEEE (Special Issue on Pattern Recognition and Image Processing), Vol. 67, pp. 708–715.

Friedman, J., 1984. Flexible metric nearest-neighbor classi&cation. Technical Report, Stanford University.

S.E. Buttrey, C. Karo / Computational Statistics & Data Analysis 40 (2002) 27–37 37

Fukunaga, K., Flick, T., 1984. An optimal global nearest neighbor metric. IEEE Trans. Pattern Anal. PAMI-6
(3), 314–318.

Lim, T., Loh, W., Shih, Y., 2000. A comparison of prediction accuracy, complexity, and training time of
thirty-three old and new classifcation algorithms. Mach. Learning 40, 203–228.

MathSoft Inc., 1999. S-Plus 2000 Guide to Statistics, Data analysis Products Division, MathSoft, Seattle,
WA.

Merz, C., Murphy, P., 1996. U.C. Irvine Repository of Machine Learning Databases,
(www.ics.uci.edu.∼mlearn/∼MLRepository.html) Department of Information and Computer Science,
Irvine, CA: University of California.

Michie, D., Spiegelhalter, D., Taylor, C., 1994. Machine Learning, Neural and Statistical Classi&cation. Ellis
Horwood, New York.

Short, R., Fukunaga, K., 1980. A New Nearest Neighbor Distance Measure. In: Proceedings of the Fifth IEEE
Computer Society Conference on Pattern Recognition and Image Processing. IEEE Computer Society,
Silver Spring, MD.

Simard, P., LeCun, Y., Denker, J., 1993. ETcient pattern recognition using a new transformation distance.
In: Advances in Neural Information Processing Systems. Morgan Kaufman, Los Altos, CA.

http://www.ics.uci.edu.~mlearn/~MLRepository.html

	Using k-nearest-neighbor classification inthe leaves of a tree
	Introduction
	 k-nearest-neighbor classification
	Tree classification
	Combining k-NN and tree models
	Implementation

	Data
	Source
	Estimating misclassification rates
	Comparing misclassification rates

	Results
	Noise resistance

	Conclusions
	Future work

	References

