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The k-nearest neighbors classifier is one of the most widely used methods of classification due to several
interesting features, such as good generalization and easy implementation. Although simple, it is usually
able to match, and even beat, more sophisticated and complex methods. However, no successful method
has been reported so far to apply boosting to k-NN. As boosting methods have proved very effective in
improving the generalization capabilities of many classification algorithms, proposing an appropriate
application of boosting to k-nearest neighbors is of great interest.

Ensemble methods rely on the instability of the classifiers to improve their performance, as k-NN is
fairly stable with respect to resampling, these methods fail in their attempt to improve the performance
of k-NN classifier. On the other hand, k-NN is very sensitive to input selection. In this way, ensembles
based on subspace methods are able to improve the performance of single k-NN classifiers. In this paper
we make use of the sensitivity of k-NN to input space for developing two methods for boosting k-NN. The
two approaches modify the view of the data that each classifier receives so that the accurate classification
of difficult instances is favored.

The two approaches are compared with the classifier alone and bagging and random subspace methods
with a marked and significant improvement of the generalization error. The comparison is performed
using a large test set of 45 problems from the UCI Machine Learning Repository. A further study on noise
tolerance shows that the proposed methods are less affected by class label noise than the standard
methods.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A classification problem of K classes and n training observations
consists of a set of instances whose class membership is known. Let
S ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞg be a set of n training samples
where each instance xi belongs to a domain X. Each label is an inte-
ger from the set Y ¼ f1; . . . ;Kg. A multiclass classifier is a function
f : X ! Y that maps an instance x 2 X � RD into an element of Y.
The task is to find a definition for the unknown function, f ðxÞ, given
the set of training instances.

k-Nearest neighbors (k-NN) rule is a well-known and widely
used method for classification. The method consists of storing a
set of prototypes that must represent the knowledge of the
problem. To classify a new instance x the k prototypes that are
nearest to x are obtained, the k-nearest neighbors, and x is classified
into the class most frequent in this set of k neighbors. k-NN method
is used mainly because of its simplicity and its ability to achieve
error results comparable with much more complex methods.
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It is noticeable that the performance k-NN has not been able to
be improved by ensemble methods as much as for other classifiers.
An ensemble of classifiers consists of a combination of different
classifiers, homogeneous or heterogeneous, to jointly perform a
classification task.

In a classifier ensemble framework we have a set of classifiers
F ¼ fF1; F2; . . . ; Fmg, each classifier performing a mapping of an
instance vector x 2 RD into the set of labels Y ¼ f1; . . . ;Kg. The
design of classifier ensembles must perform two main tasks: con-
structing the individuals classifiers, Fi, and developing a combina-
tion rule that finds a class label for x based on the outputs of the
classifiers fF1ðxÞ; F2ðxÞ; . . . ; FmðxÞg.

Among the different methodologies for constructing ensembles
of classifiers, boosting (Freund & Schapire, 1996) is one of the most
widely used. Boosting methods adaptively change the distribution
of the training set based on the performance of the previous classifiers.
The most widely used boosting method is ADABOOST and its numerous
variants. Boosting methods ‘‘boost” the accuracy of a weak classifier
by repeatedly resampling the most difficult instances. Boosting
methods construct an additive model. In this way, the classifier
ensemble FðxÞ is constructed using M individual classifiers, fiðxÞ:

FðxÞ ¼
XM

i¼1

aifiðxÞ; ð1Þ
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Fig. 1. Sensitivity to subspace selection. We have a test instance, q, and three training instances, p, s and r, belonging respectively to classes 1, 2 and 3. Using a 1-NN rule, q can
be classified either into class 1 (a), using variables x and y, class 2 (c), using variable y, or class 3 (b), using variable x.
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where the ai are appropriately defined. The basis of boosting is
assigning a different weight to each training instance depending
on how difficult it has been for the previous classifiers to classify
it. Thus, for ADABOOST, each instance j receives a weight wk

j for train-
ing the k classifier. Initially all the instances are weighted equally
w1

j ¼ 1=N;8j. Then, for classifier kþ 1 the instance is weighted
following:

wkþ1
j ¼

wk
j expð�ak½½fkðxjÞ ¼ yj��ÞPN

i¼1wk
i ð1� bkÞ

; ð2Þ

where ½½p�� is 1 if p is true and 0 otherwise, bk ¼ �k
ð1��kÞ

, and �k is the
weighted error of classifier k when the weight vector is normalizedPN

j¼1wk
j ¼ 1.

An alternative method, the random subspace method (RSM)
was proposed by Ho (1998b). This method trains each classifier
in a random subspace of the original input space. Combination
methods, such as voting or bagging, are usually not useful when
applied to k-NN, as this method is fairly stable with respect to
modification of the training set. On the other hand, k-NN is very
sensitive to input perturbations, such as subspace selection or
non-linear projections. Fig. 1 illustrates with a simple example
the sensitivity to subspace selection. The test pattern, q, can be
classified in three different classes depending on the subspace con-
sidered. In this way, results using random subspaces and k-NN
have been reported (Ho, 1998a) showing improved performance
on hand-written digit recognition. In a further step, Tremblay, Sab-
ourin, and Maupin (2004) used a multiobjective genetic algorithm
to obtain a set of k-NN in different subspaces that jointly maxi-
mized individual accuracy and ambiguity.

Although boosting is a very successful method for improving
the performance of any classifier, its application to k-NN methods
is troublesome. The reweighting approach is not useful, as weight-
ing an instance affects the classification of its neighbors, but not
the classification of the instance itself. If we use resampling, we
can sample the instances using the distribution given by the boost-
ing method. However, this approach is not likely to produce an
improvement in the testing error.1

Our methodology is based on previous works (García-Pedrajas,
in press; García-Pedrajas & Ortiz-Boyer, 2008), where we have
shown that the distribution of instances given by boosting can be
used in different ways to improve the performance of the ensem-
ble. One of the side effects of this approach is that boosting can
be applied to classifiers, as k-NN, to which the standard methodol-
ogy of boosting is not easily introduced. Following the same under-
lying ideas we develop two methods for boosting k-NN classifiers.
Both methods are based on changing the view that each classifier
of the ensemble has of the instances, modifying the input space
1 As a matter of fact, this approach is tested in the experiments, as a contro
method, with very poor results.
l

in a way that favors the accurate classification of difficult
instances.

Thus, the basic idea of the two methods is modifying the view of
the data each classifier sees in a way that improves the weighted
accuracy over the instances. That is, if for ith boosting step we have
a weight assigned to each instance given by vector w we can define
the weighted error � ¼ E½wðy–f ðxÞÞ�. The objective is to provide the
classifier with a view of the data that is more likely to minimize
�. Given a training set we can act either on the rows, selecting a
certain subset of instances, or on the columns, selecting certain in-
puts or transforming the inputs. As we have stated that k-NN is
hardly sensitive to modifications in the training set rows, we focus
on the latter approach. Thus, we present here two methods, both of
them based on the second alternative: (i) selecting a subset of the
inputs; and (ii) transforming the inputs by means of a non-linear
projection.

This rest of this paper is organized as follows: Section 2 surveys
some related work; Section 3 explains in depth the proposed meth-
ods; Section 4 shows the experimental setup and Section 5 shows
the results of experiments carried out; and finally Section 6 states
the conclusions of our work.
2. Related work

The interest on how boosting can be used with k-NN rule is not
new. Bauer and Kohavi (1999) cited it as one of the interesting re-
search lines in voting classifier. They also noticed that the standard
interpretation of counting a highly weighted instance more would
not work, as increasing the weight of an instance helps to classify
its neighbors, not to classify itself.

It has been shown that k-NN classifiers are not effective when
used in bagging type methods (Breiman, 1996a). The reason is
the stability of k-NN with respect to variations on the training in-
stances. As the different bagged training sets have a large overlap-
ping, the errors of the different classifiers are highly correlated and
voting them is inefficient.

Grabowski (2002) constructed an ensemble of k-NN classifiers
using cross-validated values of k for each member which were
trained in a random partition of the whole dataset in the same
way as bagging. The results reported are slightly above a single
k-NN classifier. Athitsos and Sclaroff (2005) used ADABOOST algo-
rithms for learning a distance measure for multiclass k-NN classi-
fier, but the k-NN classifier itself is not boosted in the standard
sense.

Bay (1999) applied RSM to nearest neighbor classifier, calculat-
ing the closest neighbor to the test instances in different subsets
of the input space. Zhou and Yu (2005a) developed an approach
to apply bagging to nearest neighbor classifier. In order to add insta-
bility to the learning process to favor diversity of classifier, they
used Minkowsky distance with a different randomly selected value
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of p for each classifier. In a subsequent work (Zhou & Yu, 2005b) this
method was coupled with boostrap sampling and attribute filtering,
and tested on 20 datasets with improved performance.

To avoid the damaging effect of the use of random subspaces
when the selected subspace lacks the necessary discriminant
information, Domeniconi and Yan (2004) first estimated the rele-
vance of each feature and then sampled the features using that
distribution. In this way, relevant inputs are less likely to be over-
looked. Viswanath, Murty, and Bhatnagar (2004) developed an
ensemble of approximate nearest neighbor classifiers by majority
voting. This model is a hybrid with features of bagging and sub-
space methods, as each nearest neighbor classifier obtains an
approximate neighbor depending on the partition chosen for each
class and the ordering of features within each block.

François, Grandvalet, Den�ux, and Roger (2003) developed
ensembles using bagging and evidential k-NN and reported
improved performance. Altinçay (2007) used a genetic algorithm
to evolve an ensemble of evidential k-NN classifiers introducing
multimodal perturbation. In his approach each chromosome codi-
fied a complete ensemble.

Very few previous works have undertaken the task of introduc-
ing boosting into k-nearest neighbor classifiers. Lazarevic, Fiez,
and Obradovic (2000) used principal components analysis (Jolliffe,
1986) applied to the inputs weighted by means of a neural network
at each boosting step. The authors coupled this method with
spatial data block resampling using the distribution given by
ADABOOST.

Freund and Schapire (1996) developed a boosting version of
nearest neighbor classifier, but with the goal of speeding it up
and not of improving its accuracy. Amores, Sebe, and Radeva
(2006) developed a boosted distance function and applied it to
k-NN. However, boosting is used for constructing the distance
function and the k-NN algorithm is a standard one. O’Sullivan,
Langford, Caruna, and Blum (2000) applied a feature boosting
method called FEATUREBOOST to a k-NN classifier. The reported results
showed improved performance over standard ADABOOST on three
used datasets. FEATUREBOOST is aimed at applying boosting principles
to sample features instead of instances.

k-NN has been used as part of an hybrid ensemble (Woods,
Kegelmeyer, & Bowyer, 1997), combined with neural networks,
decision trees, and Quadratic Bayes classifiers in a single ensemble.
In Todorovski and Dzeroski (2003) it was combined with two algo-
rithms for learning decision trees, a rule learning algorithm, and a
naive Bayes algorithm.
2 k-NN is also sensitive to the distance function (Domeniconi, Peng, & Gunopulos,
002; Hastie & Tibshirani, 1996), and previous works have focused in this feature to

prove ensembles of k-NN classifiers (Bao, Ishii, & Du, 2004). This feature is not
nsidered on this paper. Nevertheless, a similar approach to the one presented in

this paper dealing with the distance function might be an interesting research line.
3. Boosting k-nearest neighbors

As we have stated in the introduction, the direct application
of boosting to k-NN classifiers is either not available, when
using reweighting, or not useful, when using resampling. Thus, in
order to ‘‘boost” k-NN classifiers we must develop another ap-
proach, which uses the boosting philosophy in a new way. As
k-NN is instable with respect to inputs we will act on the input
space, modifying it by means of subspace selection or projection.

The central issue in boosting algorithms is the different distri-
bution of the training instances that receives each classifier. At
each boosting step, a new distribution of the instances is given
by a vector of weights, w. This distribution is biased towards the
instances that have been more often missclassified by the previous
classifiers. The rationale of our work is that this distribution can be
used advantageously to improve the performance of k-NN,
although its direct use is not available. In this way we propose
two different methods, both of them based on the philosophy
whose general outline is depicted in Algorithm 1. In Algorithm 1
at is obtained as in standard ADABOOST.
Algorithm 1: Outline of the proposed methodology
Step 3 of the algorithm is the key point in our methodology. We
must modify how the k-NN classifier at step t views the training
data, to bias that view for focusing on missclassified instances.
Thus, we present here two methods that act on the columns of
the training data, by means of feature selection and feature trans-
formation. These two methods follow the general idea of Algorithm
1 and differ on how each one performs step 3.

The key idea for boosting k-NN is that this method is highly sta-
ble with respect to resampling, but unstable with respect to input
selection. Thus, any method for boosting k-NN must focus on using
boosting weight in a different way, not to resample or reweight in-
stances but to modify the input space.2

The first of the two methods is based on searching for subspaces
of the original input space where missclassified instances are more
likely to be correctly classified. The second method is based on pro-
jecting the original variables into a new space using a supervised
non-linear projection. The following sections explain each one of
these two methods.

3.1. k-NN boosting by means of optimal subspace search

The use of different spaces for ensemble construction has been
extensive in recent research. RSM has shown that the random fea-
ture selection improves accuracy without, in general, seriously
affecting error rates. The experiments reported in this paper show
how RSM is able to achieve good results, better than other ensem-
ble methods such as bagging. However, RSM has some serious
drawbacks. Random selection of features does not guarantee that
the selected inputs have the necessary discriminant information.
If such is the case, poor classifiers are obtained that damage the
ensemble, especially when k-NN is used, as it is highly sensitive
to subspace selection. In a previous work (García-Pedrajas &
Ortiz-Boyer, 2008) we developed a new approach based on obtain-
ing, before training a classifier, the subspace where the classifica-
tion error weighted using the distribution obtained by boosting
is minimized. In this way, we avoid training the classifier using
a subspace without the needed discriminant information. Then,
the new classifier added to the ensemble is trained using the
obtained subspace and a new boosting step is performed. This
method avoids the use of subspaces that are not able to discrimi-
nate between the classes and also obtains for each classifier
the subspace that is more likely to get a good classification accu-
racy.

Thus, our approach is based on using different subspaces for
each k-NN classifier, but these subspaces are not randomly chosen.
2
im
co
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Instead, we select the subspace that minimizes the weighted error
for each boosting step. A general outline of the method is shown in
Algorithm 2. We have called this method k-NN Not so Random Sub-
space Method (kNN.NSRSM). The basic idea underlying the method
is that for each boosting iteration, as the distribution of the
instances is different, a different subsets of inputs should be rele-
vant (Lazarevic et al., 2000). Our algorithm is aimed at finding that
relevant subset of inputs.

Algorithm 2: Outline of k-NN not so random subspace method
(kNN.NSRSM)
Central to our method is how the optimal subspace is obtained.
The problem can be stated as follows: Obtain a subspace RDt ;Dt < D,
where the weighted error � ¼ E½wðy–f ðxÞÞ� is minimized. We may
approach the problem as one of feature selection. That approach
has two problems: first, most of the algorithms for feature selection
do not admit weighting the instances, and second, the feature
selection algorithm may not be appropriate for k-NN method,
selecting inputs that do not improve its performance. So, we have
opted for a wrapper approach, a subspace is evaluated using a
k-NN method which considers only the inputs included in the sub-
space, and obtaining its weighted training error. This approach con-
verts our problem into a combinatorial optimization problem.
However, due to the large number of combinations, 2n for an input
space of n dimensions, we cannot perform an exhaustive search.
The solution must be the use of a combinatorial optimization
algorithm.

Among the different optimization algorithms available, we
have chosen a genetic algorithm because it is easy to implement,
achieves good results and the authors are familiar with it.3 In a
binary coded genetic algorithm each solution is codified as a binary
vector. Thus, in our problem each subspace is codified as a binary
vector, s, where si ¼ 1 means that the corresponding ith input is
used. The algorithm begins with a set of randomly generated solu-
tions, a population. Then, new solutions are obtained by the combi-
nation of two existing solutions, crossover operator, and the random
modification of a previous solution, mutation operator. All the indi-
viduals are then evaluated assigning to each one a value, called
fitness, that measures its ability to solve the problem. After this
process, the best individuals, in terms of higher fitness, are selected
and an evolution cycle is completed. This cycle is termed a genera-
tion.

We have chosen a CHC genetic algorithm (Eshelman, 1990)
because it is usually able to achieve good solutions using small
populations. CHC stands for Cross generational elitist selection, het-
erogeneous recombination and cataclysmic mutation. Although in
the standard CHC algorithm mutation is not used, we have intro-
duced random mutation. Random mutation randomly modifies
3 As the form of the combinatorial optimization algorithm does not affect the
proposed approach, any other algorithm, such as, simulated annealing or particle
swarm optimization could be used as well.

4 k is obtained by n-fold cross-validation as it is explained in the experimenta
setup.
some of the bits of an individual. The process for obtaining the
optimal subspace for each k-NN classifier using CHC method is
shown in Algorithm 3.

Algorithm 3: Outline of the CHC genetic algorithm for obtaining
the optimal subspace given a vector of weights for each instance
As stated, the evaluation of the individuals follows a wrap-
per approach. In our population each individual represents a
subspace of the input space. This individual is represented by a
vector, s, of 1’s and 0’s, where a 1 indicates that the corresponding
input is used. Mathematically we can represent the projection
into this subspace by a matrix, P, whose main diagonal is s
and the rest of the elements are 0. To evaluate an individual we
apply a k-NN4 classifier using the projected training set SP ¼
fzi; zi ¼ Pxig. Then the weighted accuracy, E½wðy¼f ðzÞÞ�, of this classi-
fier is obtained and this value is assigned as fitness to the individ-
ual.

3.2. Boosting by means of supervised projections

In the previous method we selected subspaces of the original in-
put space to favor difficult instances. A second choice is modifying
the input space by means of non-linear projections. In two previ-
ous papers (García-Pedrajas, García-Osorio, and Fyfe, 2007; Gar-
cía-Pedrajas, in press) we have shown how non-linear
projections are an efficient tool for approaching boosting of classi-
fiers. We avoid the harmful effect of maximizing the margin of
noisy instances using the adaptive weighting scheme of boosting
methods not to train the classifiers but to obtain a supervised pro-
jection that is the one that actually receives the classifier. The
supervised projection is aimed at optimizing the weighted error gi-
ven by w. The classifier is then trained using this supervised pro-
jection with a uniform distribution of the instances. Thus, we
obtain a method that benefits from the adaptive instance weight-
ing of boosting and that can be applied to k-NN classifier. As in
standard boosting methods, we construct an additive model:

FðxÞ ¼
XM

i¼1

aifiðziÞ; ð3Þ

where zi ¼ PiðxÞ and Pi is a non-linear projection constructed using
the weights of the instances given by the boosting algorithm. In this
way, i-th k-NN classifier is constructed using the original instances
projected using Pi and all of them equally weighted.

The presented methodology for constructing an ensemble of
k-NN classifiers can be applied to most existing boosting methods.
In the reported experiments we have used the variant of the
l
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standard ADABOOST algorithm reported in Bauer and Kohavi (1999)
to obtain instance distribution vector w. Algorithm 4 shows a gen-
eral definition of the algorithm. The algorithm is named k-NN Boost-
ing based on Supervised Projections (k-NN.BSP).

Algorithm 4: k-NN Boosting based on Supervised Projection
(kNN.BSP) algorithm
Table 1
Summary of data sets. The inputs column shows the number of inputs to the classifier
that depends on the number of input features and their type.

Data set Cases Features Classes Inputs

Cont. Binary Nominal

Arrhythmia 452 279 – – 13 279
Audiology 226 – 61 8 24 93
Autos 205 15 4 6 6 72
Breast-cancer 286 – 3 6 2 15
Car 1728 – – 6 4 16
Card 690 6 4 5 2 51
Dermatology 366 1 1 32 6 34
Ecoli 336 7 – – 8 7
Gene 3175 – – 60 3 120
German 1000 6 3 11 2 61
Glass 214 9 – – 6 9
Glass-g2 163 9 – – 2 9
Heart 270 13 – – 2 13
Hepatitis 155 6 13 – 2 19
Horse 364 7 2 13 3 58
Ionosphere 351 33 1 – 2 34
Isolet 7797 617 – – 26 34
Letter 5000 16 – – 26 16
Liver 345 6 – – 2 6
Lrs 531 101 – – 10 101
Lymphography 148 3 9 6 4 38
Mfeat-fac 2000 216 – – 10 216
Mfeat-fou 2000 76 – – 10 76
Mfeat-kar 2000 64 – – 10 64
Mfeat-mor 2000 6 – – 10 6
Mfeat-pix 2000 240 – – 10 240
Mfeat-zer 2000 47 – – 10 47
Optdigits 5620 64 – – 10 64
Page-blocks 5473 10 – – 5 10
Phoneme 5404 5 – – 2 5
Pima 768 8 – – 2 8
Primary-tumor 339 – 14 3 22 23
Promoters 106 – – 57 2 114
Satimage 6435 36 – – 6 36
Segment 2310 19 – – 7 19
Sick 3772 7 20 2 2 33
Sonar 208 60 – – 2 60
Soybean 683 – 16 19 19 82
Vehicle 846 18 – – 4 18
Vote 435 – 16 – 2 16
Vowel 990 10 – – 11 10
Waveform 5000 40 – – 3 40
Yeast 1484 8 – – 10 8
Zip (USPS) 9298 256 – – 10 50
Zoo 101 1 15 – 7 16
We have stated that our method is based on using a supervised
projection to train the classifier at round t. But, what exactly do we
understand as a supervised projection? The intuitive meaning of a
supervised projection using a weight vector wt , is a projection into
a space where the weighted achieved by a k-NN classifier trained
using the projection is minimized. More formally we can define a
supervised projection as follows:

Definition 1. Supervised projection. Let S ¼ fðx1; y1Þ; ðx2; y2Þ; . . .

ðxn; ynÞg be a set of n training samples where each instance xi

belongs to a domain X, and w a vector that assigns a weight wi to
each instance xi. A supervised projection U is a projection into a
new space where the weighted error �k ¼

Pn
j¼1wkIðf ðUðxkÞÞ–ykÞ

for a k-NN classifier f ðxÞ is minimized.

The intuitive idea is to find a projection that improves the
weighted error of the classifier. However, the problem of obtaining
a supervised projection is not trivial. Methods for projecting data
are focused on the features of the input space, and do not take into
account the labels of the instances, as most of them are specifically
useful for non-labelled data and aimed at data analysis. Our ap-
proach is based on the use of the projection carried out by the hid-
den layer of a multilayer perceptron neural network when it is
used for classification purposes and trained using vector w to
weight the instances.

Each node of the hidden layer of a neural network performs
a non-linear projection of the input vector. So, h ¼ fðxÞ, and
the output layer obtains its output from vector h. This projec-
tion performed by the hidden layer of a multilayer perceptron
distorts the data structure and inter-instance distances (Lerner,
Guterman, Aladjem, & Dinstein, 1999) in order to achieve a better
classification.

Thus, the projection performed by the hidden layer focuses on
making the classification of the instances easier. The number
of hidden nodes of the network is the same as the number of
input variables, so the hidden layer is performing a non-linear
projection into a space of the same dimension as the input space.
As the network has been trained with a distribution of the train-
ing instances given by the boosting algorithm, the projection
performed by the hidden layer focuses on optimizing the
weighted error given by vector w. Once the network is trained,
the projection implemented by the hidden layer is used to project
the training instances, and these projections are fed to the
new k-NN classifier added to the ensemble. The proposed method
for constructing the supervised projections is shown in Algorithm
5.
Algorithm 5: Algorithm for obtaining a supervised projection
The combination of the individual k-NN classifiers in both
methods is made using a weighted voting approach. The weight
of each vote is given by standard ADABOOST. Although there are
other more sophisticated methods (Kittler & Alkoot, 2002) they
are not able to consistently beat simple voting.
4. Experimental setup

For the comparison of the different methods we selected 45
datasets from the UCI Machine Learning Repository (Hettich, Blake,
& Merz, 1998). A summary of these datasets is shown in Table 1.
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The experiments were conducted following the 5 � 2 cross-val-
idation set-up (Dietterich, 1998). We perform five replications of a
two-fold cross-validation. In each replication the available data is
partitioned into two random equal-sized sets. Each learning algo-
rithm is trained on one set at a time and tested on the other set.
Fig. 2. Testing accuracy results for the standard and proposed methods.

Table 2
Comparison of results in terms of generalization error. Win/draw/loss record (row s) of th
Wilcoxon test (row pw).

k-NN k-NN RSM k-N

Mean all 0.1942 0.1900 0.19
k-NN s 34/0/11 17/1

ps 0.0008 0.17
pw 0.0002 0.18

k-NN RSM s 11/0
ps 0.00
pw 0.00

k-NN Bagging s
ps

pw

k-NN ADABOOST s
ps

pw

k-NN.NSRSM s
ps

pw
Following Demšar (2006) we carry out in a first step an
Iman–Davenport test, to ascertain whether there are significant
differences among all the methods. Then, pairwise differences are
measured using a Wilcoxon test. This test is recommended because
it was found to be the best one for comparing pairs of algorithms
Datasets are ordered with respect to accuracy to allow a better plot.

e algorithms against each other and p-value of the sign test (row ps), p-value of the

N Bagging k-NN ADABOOST k-NN.NSRSM k-NN.BSP

39 0.2344 0.1810 0.1756
/27 3/0/42 40/0/5 37/0/8
42 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000

/34 2/0/43 32/0/13 35/0/10
08 0.0000 0.0066 0.0002
02 0.0000 0.0155 0.0019

4/0/41 37/0/8 36/0/9
0.0000 0.0000 0.0001
0.0000 0.0000 0.0000

42/0/3 44/0/1
0.0000 0.0000
0.0000 0.0000

26/0/19
0.3713
0.2123
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(Demšar, 2006). Iman–Davenport test is based on v2
F Friedman test

(Friedman, 1940), which compares the average ranks of k algo-
rithms.
Fig. 3. Testing accuracy results for the ensemble and subspace based methods and pro

Table 3
Comparison of results in terms of generalization error. Win/draw/loss record (row s) of th
Wilcoxon test (row pw).

k-NN. NSRSM k-NN. BSP AW

Mean all 0.1810 0.1756 0.1849

k-NN. NSRSM s 22/0/23 18/0/2
ps 1.0000 0.2327
pw 0.2293 0.2041

k-NN. BSP s 14/0/3
ps 0.0161
pw 0.0251

AW s
ps

pw

Adamenn s
ps

pw

NNE s
ps

pw

FEATURE BOOST s
ps

pw
In all the tables the p-values of the corresponding tests are
shown. The error measure is � ¼ E½1ðy–f ðxÞÞ�. As a general rule, we
consider a confidence level of 0:05. As further information of the
posed ones. Datasets are ordered with respect to accuracy to allow a better plot.

e algorithms against each other and p-value of the sign test (row ps), p-value of the

Adamenn NNE FEATURE BOOST F&S

0.2070 0.1888 0.1906 0.1923

7 10/0/35 18/0/27 19/0/26 12/1/32
0.0002 0.2327 0.3713 0.0037
0.0000 0.0463 0.0324 0.0005

1 4/0/41 14/0/31 15/0/303 10/0/35
0.0000 0.0161 0.0357 0.0002
0.0000 0.0039 0.0073 0.0001

11/3/31 17/0/28 17/0/28 13/0/32
0.0029 0.1352 0.1352 0.0066
0.0009 0.3941 0.0416 0.0463

35/0/10 32/0/13 31/0/14
0.0002 0.0066 0.0161
0.0001 0.0021 0.0170

21/0/24 22/0/23
0.7660 1.0000
0.8700 0.9865

19/1/25
0.4514
0.3879
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relative performance of each pair of algorithms, comparison tables
also show a sign test on the win/loss record of the two algorithms
across all datasets. If the probability of obtaining the observed re-
sults by chance is below 5% we may conclude that the observed
performance is indicative of a general underlying advantage of
one of the algorithms with respect to the type of learning task used
in the experiments.

The source code, in C and licensed under the GNU General Pub-
lic License, used for all methods as well as the partitions of the
datasets are freely available upon request to the authors.
5. Experimental results

As we are proposing two boosting methods for k-NN classifiers,
we must test these methods against known algorithms for con-
structing ensembles of k-NN classifiers as well as a k-NN classifier
alone. Thus, we have chosen as base algorithms to compare our
method a k-NN alone, ensembles of k-NN classifiers using RSM
and bagging and an implementation of ADABOOST by means of
resampling. As we have said, it is very unlikely that this last algo-
rithm would be able to obtain good results, and it is included here
for the sake of completeness.

One of the key parameters for any k-NN classifier is which value
of k to use. The value of k greatly affects the performance of the
algorithm. To avoid any bias produced by a bad choice of k, we
have adjusted this value by cross-validation for every partition of
every dataset and for every classifier, so each time a k-NN algo-
rithm is used, the value of k is previously obtained by 10-fold
cross-validation of the training set.

Fig. 2 shows a bar plot of the results for the 45 datasets of the
four standard methods and the two proposed ones in terms of test-
ing accuracy. Table 2 shows the comparison among the 6 methods.
For the four standard methods the Iman–Davenport test has a
p-value of 0.000, showing significant differences between them.
In all the comparison tables significant differences are marked with
a , 95% confidence, or U, 90% confidence.

The first noticeable fact is the poor performance of boosting k-
NN by means of a resampling version of ADABOOST. This algorithm
Fig. 4. Testing accuracy results for the best two standard methods and the two propos
accuracy to allow a better plot.
performs significantly worse than the rest of algorithms. Bagging
performs just as well as k-NN alone. As we have said, this is a known
fact, as k-NN is fairly stable to resampling of instances, ensembling
bagged classifiers does not improve its performance. The best per-
forming standard method is RSM, which is able to significantly out-
perform all the other three standard algorithms. Similar behavior of
RSM and k-NN has been reported before (Bay, 1999).

Considering the best two standard algorithms and the two pro-
posed approaches, Iman–Davenport test shows a p-value of 0.0000.
The comparison in Table 2 shows that both methods, kNN.NSRSM
and kNN.BSP are able to significantly outperform k-NN and RSM.
The differences with the standard methods are very marked with
win/loss records of 32/13 and 35/10 respectively for the worst
case. These results show a marked advantage of the two proposed
methods. The differences are all significant at a confidence level
above 98%.

The previous results show the comparison between our methods
and the most common ensemble methods. However, in the previous
sections we have shown alternative ways of trying to improve k-NN
performance. We performed an additional comparison between our
methods and those intended to boost k-NN and those based on sub-
space methodologies. Namely, we have tried the attribute weighting
(AT) method of Lazarevic et al. (2000), the Adamenn algorithm
(Domeniconi et al., 2002), the nearest neighbor ensemble (NNE)
based on Adamenn (Domeniconi & Yan, 2004), FEATUREBOOST algo-
rithm (O’Sullivan et al., 2000), and the combination of ADABOOST

and k-NN proposed by Freund and Schapire (1996) (F&S). The
parameters chosen for these experiments were the suggested in
the papers by the authors. As for the other methods, k was always
obtained by cross-validation. Fig. 3 shows the testing accuracy of
these methods together with the two proposed ones. Table 3 shows
the comparison among these methods.

The comparison shows that kNN.BSP is still able to achieve a
better performance than these more sophisticated methods.
Furthermore, we must take into account that these methods, with
the exception of AW, are more computationally demanding than
kNN.BSP. With respect to k-NN.NSRSM, it is able to perform signifi-
cantly better than all the methods, excepting AW. The differences
als for boosting k-NN for a noise level of 5%. Datasets are ordered with respect to
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between k-NN.NSRSM and AW are not significant according to Wilco-
xon test, although the win/loss record, 28/17, is favorable to k-NN.N
SRSM.

5.1. Noise effect

Several researchers have reported that boosting methods,
among them ADABOOST, degrade their performance in the presence
Fig. 5. Testing accuracy results for the best two standard methods and the two proposa
accuracy to allow a better plot.

Fig. 6. Testing accuracy results for the best two standard methods and the two proposa
accuracy to allow a better plot.
of noise (Quinlan, 1996; Bauer & Kohavi, 1999). Dietterich (2000)
tested this effect introducing artificial noise in the class labels of
different datasets and confirmed this behavior. However, RSM
method has been shown to be less affected by noise. Breiman
(2001) reported that random forests were less affected by noise
in the class labels of the instances. As our proposed methods share
common ideas with RSM and ADABOOST it is interesting to study
their behavior in the presence of noise. In this section we study
ls for boosting k-NN for a noise level of 10%. Datasets are ordered with respect to

ls for boosting k-NN for a noise level of 20%. Datasets are ordered with respect to
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the sensitivity of our methods to noise and compared it with the
best two standard algorithms.

To add noise to the class labels we follow the method of Diette-
rich (2000). To add classification noise at a rate r, we chose a frac-
tion r of the training instances and changed their class labels to be
incorrect choosing uniformly from the set of incorrect labels. We
chose all the datasets and rates of noise of 5%, 10% and 20%. With
these levels of noise we performed the experiments using the
5 � 2cv setup and the best two standard methods, k-NN and
k-NN + RSM, and the two proposed methods. Figs. 4–6 show a
bar plot of the results for the methods and the three levels of noise
respectively, and Tables 4–6 show the comparison of the methods.
Error ratio row shows the ratio of the average error using noise
with respect to the same method applied to original datasets.
Table 4
Comparison of results in terms of generalization error for a nose level of 5%. Win/draw/loss r
p-value of the Wilcoxon test (row pw).

k-NN

Mean all 0.2060

Error ratio 106.05%

k-NN s
ps

pw

k-NN+RSM s
ps

pw

kNN.NSRSM s
ps

pw

Table 5
Comparison of results in terms of generalization error for a noise level of 10%. Win/draw/lo
ps), p-value of the Wilcoxon test (row pw).

k-NN

Mean all 0.2140

Error ratio 110.18%

k-NN s
ps

pw

k-NN+RSM s
ps

pw

kNN.NSRSM s
ps

pw

Table 6
Comparison of results in terms of generalization error for a noise level of 20%.

k-NN

Mean all 0.2347

Error ratio 120.86%

k-NN s
ps

pw

k-NN+RSM s
ps

pw

kNN.NSRSM s
ps

pw

Win/draw/loss record (row s) of the algorithms against each other and p-value of the si
For a noise level of 5%, Table 4 shows that the two proposed
methods are less affected by noise than k-NN and k-NN + RSM
methods. The average increment of the error of kNN.NSRSM and
kNN.BSP is below the increment of the two standard methods. Both
proposed methods increment their error in about 2%, meanwhile
k-NN increment its error in a 6% and k-NN combined with RSM
almost a 4%. Furthermore, the two proposed methods also improve
their win/loss record compared to standard methods.

For a noise level of 10%, Table 5, the behavior is similar but with
the differences less marked. Although, the average increment of
the error of k-NN.NSRSM and kNN.BSP is below the increment of
the two standard methods, the differences are about 1% with
RSM and 2% with k-NN alone. For a noise level of 20%, the standard
methods behave slightly better than the proposed ones. It seems
ecord (row s) of the algorithms against each other and p-value of the sign test (row ps),

k-NN + RSM kNN.NSRSM k-NN.BSP

0.1971 0.1848 0.1787

103.73% 102.11% 101.75%

35/1/9 39/0/6 38/0/7
0.0001 0.0000 0.0000
0.0016 0.0000 0.0000

33/1/11 36/0/9
0.0013 0.0001
0.0041 0.0001

28/0/17
0.1352
0.0210

ss record (row s) of the algorithms against each other and p-value of the sign test (row

k-NN + RSM kNN.NSRSM k-NN.BSP

0.2070 0.1959 0.1881

108.97% 108.24% 107.09%

35/0/10 34/0/11 37/0/8
0.0002 0.0008 0.0000
0.0044 0.0010 0.0000

29/0/16 35/0/10
0.0725U 0.0002
0.0383 0.0001

27/0/18
0.2327
0.0223

k-NN + RSM k-NN.NSRSM k-NN.BSP

0.2228 0.2206 0.2093

117.26% 121.89% 119.17%

37/0/8 33/0/12 37/0/8
0.0000 0.0025 0.0000
0.0002 0.0069 0.0000

28/1/16 34/1/10
0.0725U 0.0004
0.2760 0.0004

30/1/14
0.0226
0.0010

gn test (row ps), p-value of the Wilcoxon test (row pw).



Fig. 7. Bias/variance decomposition of the methods for 23 datasets for k-NN, k-NN and RSM, k-NN.NSRSM, and k NN.BSP.
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that at this high level of noise the boosting component of the
proposed methods harms their performance. However, it is notice-
able that even at this high level of noise two methods based on
boosting are not significantly more damaged by noise than meth-
ods that do not use boosting. We must remark that with the excep-
tion of the comparison of k-NN and RSM and k-NN.NSRSM, all the
differences between our two proposals and the standard algo-
rithms are still significant in presence of noise at a confidence level
of 95%.

5.2. Bias/variance decomposition

Many of the papers studying ensembles analyze error perfor-
mance in terms of two factors: bias and variance. The bias of a



Table 7
p-value of the Wilcoxon test for the bias/variance terms of the error for the 23 datasets used for this experiment.

k-NN k-NN+RSM k-NN.NSRSM k-NN.BSP

Bias

Mean all 0.1757 0.1972 0.1563 0.1641

k-NN 0.1529 0.0001 0.0285
k-NN+RSM 0.0003 0.0177
k-NN.NSRSM 0.0885

Variance

Mean all 0.0430 0.0360 0.0540 0.0436

k-NN 0.0658 0.0014 0.7843
k-NN+RSM 0.0003 0.0777
k-NN.NSRSM 0.0011
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learning algorithm is the contribution to the error of the central
tendency when it is trained using different data, and the variance
is the contribution to the error of the deviations from the central
tendency. These two terms are evaluated with respect to a distri-
bution of training sets T usually obtained by different permuta-
tions of the available data.

In addition, there is an irreducible error that is given by the de-
gree to which the correct answer for a pattern can differ from that
of other patterns with the same description. As this error cannot be
estimated in most real world problems, the measures of bias and
variance usually include part of this error.

Bias–variance decomposition is rooted in quadratic regression
where averaging several independently trained regressors can
never increase the expected error. In this framework, bias and var-
iance are always nonnegative and averaging decreases variance
without modifying bias. However, in classification, majority voting
can yield an increase in expected error. This fact suggests that it is
more difficult to obtain a bias–variance decomposition for classifi-
cation as natural as for regression. In this way, several authors have
suggested different proposals for estimating the decomposition of
the classification error into bias and variance terms (Kong & Diette-
rich, 1995; Kohavi & Wolpert, 1996 & Breiman, 1996c).

Let us assume that the training pairs, ðx; yÞ are drawn from a
test instance distribution X;Y , and that the classification of pattern
x by means of classifier L for a distribution of training data sets T

is LðTÞðxÞ. We used the decomposition of Breiman (1996b) which
is defined as:5

biasB ¼ PðY ;XÞ;TðLðTÞ – Y ^LðTÞðXÞ ¼ C0
L;TðXÞÞ;

varianceB ¼ PðY ;XÞ;TðLðTÞ– Y ^LðTÞðXÞ– C0
L;TðXÞÞ; ð4Þ

where the central tendency, C0
L;TðXÞ, for learner L over the distri-

bution of training data sets T is the class with the greatest proba-
bility of selection for pattern x by classifiers learned by L from
training sets drawn from T, and is defined:

C0
L;TðXÞ ¼max

y
PTðLðTÞðxÞ ¼ yÞ: ð5Þ

For estimating these measures we have basically followed the exper-
imental setup used in Webb (2000). We divided our data set into
four randomly selected partitions. We selected each partition in turn
to be used as the test set and trained the learner with the other three
partitions. This method was repeated ten times with different ran-
dom partitions, making a total of 40 runs of the learning algorithm.

The central tendency was evaluated as the most frequent classi-
fication for a pattern. The error was measured as the proportion of
incorrectly classified patterns. This experimental setup guarantees
5 Although not reported here, similar conclusions about the behavior of the
methods are obtained using either Kohavi and Wolpert or Kong and Dietterich
measures.
that each pattern is selected for the test set the same number of
times, and alleviates the effect that the random selection of patterns
can have over the estimations.

Fig. 7 shows the bias–variance decomposition for k-NN alone,
k-NN and RSM and the two proposed methods, kNN.BSP and
k-NN.NSRSM. Only a subset of datasets is chosen for each base lear-
ner due to the high computational cost of estimating bias and
variance, as 40 runs of the algorithms are required for each dataset.
For k-NN classifier, we can see that the stability with respect to
training set sampling directly translates into a low variance term,
concentrating most of the error in the bias term. The behavior of
k-NN combined with RSM yields a reduction of variance term, in
fact, a Wilcoxon test on the bias/variance terms of the error shows
that the variance term for k-NN and RSM is significantly smaller
than the other three methods (see Table 7).

The two proposed methods behave in the same way with re-
spect to bias term, both of them are able to significantly improve
bias term of the error. However, with regard to variance term
kNN.NSRSM obtains worse results, while kNN.BSP achieves a vari-
ance term similar to k-NN and not significantly worse than k-NN
and RSM. Nevertheless, the bad behavior of the variance term of
kNN.NSRSM is compensated with the best bias term of the four
methods. As a summary, we may say that the good results of the
two proposed methods are based on their ability to reduce bias
term of error, which is the main source of error for k-NN based
methods.

6. Conclusions and future work

In this paper we have proposed two approaches for boosting
k-NN classifier. The usual method for boosting algorithms of mod-
ifying instance distribution during the learning process is not effec-
tive with k-NN classifiers, as this distribution is not easy to adapt to
this classifier and, furthermore, k-NN is fairly stable with respect to
instance selection.

Thus, we have proposed two methods that take advantage of
the instability of k-NN with regard to input space modifications.
The input space is modified, by input selection or projection, to fa-
vor difficult instances to be accurately classified. In this way, boost-
ing of k-NN is achieved. We have shown in an extensive
comparison using 45 real-world problems that the two proposed
approaches are able to improve the performance of k-NN alone
and the different ensemble methods used so far. The conclusions
are based on an large comparison with 9 state-of-the-art methods.

A further study on noise effect on classifier performance has
shown that the proposed methods are more robust in presence
of noise at low level, 5%, and as robust as k-NN when the level of
noise in the class labels is increased to 10% and 20%. In a final study
we have shown that the proposed methods are able to improve
k-NN performance by means of reducing bias term of the error.
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