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SUMMARY. In this paper, we propose an alternative covariance estimator to the robust covariance estimator 
of generalized estimating equations (GEE). Hypothesis tests using the robust covariance estimator can have 
inflated size when the number of independent clusters is small. Resampling methods, such as the jackknife 
and bootstrap, have been suggested for covariance estimation when the number of clusters is small. A 
drawback of the resampling methods when the response is binary is that the methods can break down when 
the number of subjects is small due to zero or near-zero cell counts caused by resampling. We propose a 
bias-corrected covariance estimator that avoids this problem. In a small simulation study, we compare the 
bias-corrected covariance estimator to the robust and jackknife covariance estimators for binary responses 
for situations involving 10-40 subjects with equal and unequal cluster sizes of 16-64 observations. The bias- 
corrected covariance estimator gave tests with sizes close to the nominal level even when the number of 
subjects was 10 and cluster sizes were unequal, whereas the robust and jackknife covariance estimators gave 
tests with sizes that could be 2-3 times the nominal level. The methods are illustrated using data from a 
randomized clinical trial on treatment for bone loss in subjects with periodontal disease. 
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1. Introduction 
Correlated observations are common to many biomedical ap- 
plications due to multiple observations of a response from an 
individual. The generalized estimating equation methodology 
(GEE) has gained considerable popularity since its introduc- 
tion (Liang and Zeger, 1986) as a regression method for corre- 
lated responses. GEE uses an empirical or robust covariance 
estimator of sandwich form to estimate the covariance matrix 
of the regression coefficients (Liang and Zeger, 1986). The 
estimator is robust with respect to misspecification of the co- 
variance matrix of the correlated responses, which is typically 
unknown, and allows valid inference provided the number of 
individuals is sufficiently large. However, the robust estimator 
may be biased when the number of subjects is small since or- 
dinary residuals (observed value minus fitted value) are used 
to estimate the unknown covariance matrix. The data exam- 
ple we focus on is a randomized clinical trial on radiographic 
bone loss in periodontal disease, in which measurements of 
bone loss and probing depth were taken at two locations on 
each tooth for 30 subjects. Because of the time and expense 
involved in obtaining the measurements on a subject, dental 
studies often involve relatively small numbers of subjects with 
a moderate to large number of observations per subject. 

Several authors have studied the performance of GEE for 
binary responses for sample sizes involving 10-50 subjects 
(Lipsitz, Laird, and Harrington, 1990; Emrich and Piedmonte, 
1992; Sharples and Breslow, 1992; Lipsitz et al., 1994; Qu, 

Piedmonte, and Williams, 1994; Gunsolley, Getchell, and 
Chinchilli, 1995; Sherman and le Cessie, 1997). In addition, 
the small-sample performance of GEE has been investigated 
by Paik (1988) for first-order autoregressive gamma responses 
and Feng, McLerran, and Grizzle (1996) for multivariate nor- 
mal responses. The simulation studies have shown that the 
robust estimator tends to underestimate the variance of re- 
gression coefficients to a varying degree when the number of 
subjects is less than 50 and that hypothesis tests and con- 
fidence intervals using the robust estimates are too liberal. 
Paik (1988), Lipsitz et al. (1990), and Qu et al. (1994) stud- 
ied various jackknife estimators, and Sherman and le Cessie 
(1997) studied several bootstrap estimators as alternative co- 
variance estimators to the GEE robust estimator, which are 
also robust to misspecification of the covariance matrix. Both 
jackknife and bootstrap methods tend to perform better than 
GEE with the robust covariance estimator with respect to 
maintaining the nominal test size except when the number 
of subjects is 20 or less and the response is binary. The poor 
performance of the resampling methods is probably related to 
zero or small cell counts caused by resampling (Lipsitz et al., 
1990; Sherman and le Cessie, 1997). 

In this paper, we propose and evaluate a bias-corrected co- 
variance estimator that avoids the small cell count problem of 
the resampling methods. In Section 2, we briefly review the 
GEE methodology. In Section 3, we derive a bias-corrected 
covariance estimator. In Section 4, we give alternative ap- 
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proaches to covariance estimation, and in Section 5 we illus- 
trate the methods with a data example on radiographic bone 
loss. In Section 6, we present the results of our simulation 
study on test-size accuracy, and we provide a discussion in 
Section 7 .  

2. Generalized Estimating Equations 
The data consists of correlated observations {yij,xij}, j = 
1 , 2 , .  . . , ni, for each of the i = 1 , 2 , .  . . , K subjects, where yij 
is the response measure and xij is a p x 1 vector of covariates. 
Of scientific interest is the relationship of the covariates with 
the response mean, whereas the correlation between observa- 
tions is considered a nuisance. The mean pi j  = E(yij 1 x i j )  is 
related to zij by g ( p , j ( P ) )  = xGP, where g is a known link 
function and P is a p x 1 vector of unknown regression coef- 
ficients. The variance of yij is given by var(yij) = 4 .  h ( p i j ) ,  
where h is a known function of pij and 4 is a possibly un- 
known scale parameter. Let Ai = diag{h(pil), . . . , h ( p i n i ) }  

and Vi = 4 A i " R i ( ~ r ) A f ' ~  define the working covariance 
matrix for yi = (yil, . . . , yzn,)T, where Ri(a) is the ni x ni 
working correlation matrix for yi. Ri is assumed to be fully 
specified by an unknown parameter vectpr, a, which is the 
same for all subjects. GEE estimates, 0, are given by the 
solution to the estimating equations 

z = 1  

where p, = ( p z l , .  . . , p,n,)T and D, = c9pz/d,BT (Liang and 
Zeger, 1986). Liang and Zeger (1986) proposed a sandwich 
estimator to estimate the covariance matrix of f i ,  

\ 

/ K  \ - I  

where (y,-fiz)(yz-fiz)T is typically used to estimate cov(y,). 
This estimate is commonly called the robust covariance esti- 
mator since it is consistent even if the working covariance ma- 
trix is not the true covariance matrix of y,. The bias-corrected 
robust covariance estimator described in the next section is 
also robust to misspecification of the covariance matrix of yz.  
If V, correctly specifies the covariance matrix of y,, then a 
consistent estimator for the covariance matrix of P is given 
by (CE'=, DTVL1D2)-1, which is called the model-based or 
naive covariance estimator. 

3. Bias-Corrected Robust Covariance Estimator 
In practice, to calculate the GEE robust covariance estimator, 
(2) the residuals, r, = y, -@,, are used to estimate cov(y,). It 
is well known that the residuals tend to be too small (i.e., the 
fitted values tend to be closer to the observed values than the 
true values). Hence, the robust estimator would be expected 
to underestimate the covariance of 0, and the bias of the 
robust estimator due to underestimation of cov(yz) would be 
large when the bias of the residuals is large (e.g., when the 
number of subjects is small). 

An alternative robust covariance estimator for f i  is pro- 
posed that is intended to reduce the bias of the residual esti- 

mator, r,rT. To derive an approximation for the bias of r2rir, 
consider a first-order Taylor series expansion of the residua.1 
vector, r,, about P given by 

(3) 

where ei = ei(P) = yi - pi and i = 1 , 2 , .  . . , K .  By squaring 
(3) and taking the expectation, one obtains 

Using the first-order approximation 

/ K  \ -' K 

the expectation is approximated by 
T T E[riri ] M cov[yi] - cov[yi]Hii - Hii COV[Y~]  

K 

where H,, = D,(C,=, Dz V, - l D ~ ) - l D ~ V ~ ' ,  I, is an iden- 
tity matrix of the same dimension as H,, and the summation 
C,+, is over all 1 = 1,2, .  . . , K  # z. In order to derive a 
tractable approximation to  the bias, we assume that the con- 
tribution to the bias of the sum in expression (4) is negligible. 
By definition, the elements of H,, are between zero and one, 
usually close to zero, so it may be reasonable to assume that 
the summation makes only a small contribution to the bias. 
The matrix H,, is an expression for the leverage of the zth 
subject (Preisser and Qaqish, 1996). 

Assuming the expected value of the residual estimator is 
approximated by 

gives the bias-corrected covariance estimator 

Varbias-corrected (8) 
f K  

I z = 1  

x (I, - Hz)-lV,TIDi F-' , (6) 1 
where F = CzlDTV,lDi .  Keener, Kmenta, and Weber 
(1991) have proposed an analogous bias-corrected covariance 
estimator to reduce the bias of White's (1980) heteroskedasti- 
city-consistent estimator for covariance matrix of the least- 
squares coefficients under heteroskedasticity of unknown form. 
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It is possible to derive an approximation of the expected 
value of the residual estimator involving the elements of Hi,, 
a # j .  Let r = (rT,r: , . . . ,  rTf;)', then using an approach 
analogous to the derivation of approximation (4), one can 

DT,. . . ,D:)*, V = block diagonal (V1,Vz,. . . ,VK) ,  and I 
is an identity matrix of the same dimension as H. Computa- 
tion of a bias-corrected estimator based on the full hat matrix 
H was problematic due to the near singularity of the matrix 
(I - H). However, the simulation results presented in Sec- 
tion 5 indicate that approximation ( 5 )  provides an adequate 
correction for the bias of the robust covariance estimator. 

4. Other Approaches to Covariance Estimation 
For comparison purposes, we include a jackknife covariance 
estimator in our simulation study. Several authors have pro- 
posed jackknife estimators for GEE (Paik, 1988; Lipsitz et al., 
1990; Qu et al., 1994). Delete-one jackknife estimators are typ- 
ically used, where subsets of the data are obtained by delet- 
ing a single subject's response vector, but delete-two or -three 
jackknife estimators have also been studied (Qu et al., 1994). 
The optimal choice for the number of responses to delete when 
using the jackknife method is a topic for further research. A 
delete-one jackknife method was used in this study because of 
the potential convergence problems with the estimation pro- 
cedure based on subsets of the data when cell counts are zero 
or near zero and because the delete-one method has been the 
most widely used. 

Delete-one estimates, a(,), are obtained by computing the 
GEE estimates for each of the K subsets of data. The jack- 
knife estimate, P J ,  is defined by 

K 
* (K-1)  

P J  = P - ~ K c (a@) -a> , (7) 
i=l 

where a is the full-data estimate using GEE (Wu, 1986). The 
estimated covariance of P J  is given by 

,=I 

where @( ) = (C,"=, p(,))/K (Efron, 1982). Weighted jackknife 
estimators have also been studied, where delete-one estimates 
are weighted by w, = IC,#,D:V,lD,I. Paik (1988) found 
the unweighted and weighted jackknife estimators performed 
similarly. We studied only the unweighted jackknife estimator. 

Lipsitz et al. (1990) have studied a one-step jackknife co- 
variance estimator defined by performing one iteration of 
delete-one-subject jackknife estimation starting from the full- 
data GEE estimates. The one-step jackknife covariance es- 
timator is equal to the bias-corrected covariance estimator 
(6) minus the additional term (C,", Jz)(C,", J , ) T / K ,  where 

sitz et al. (1990) have shown that the one-step jackknife co- 
variance estimator, and therefore the bias-corrected covari- 
ance (6), is asymptotically equivalent to the robust covariance 
estimator (2). 

We also evaluate a simple-to-implement modification to 
the GEE robust estimator (degrees-of-freedom-adjusted es- 

J, = (c,"=, D~v~~D,)-~D~v~~(I,-H,,)-~(~~-~,). Lip- 

timator), which consists of multiplying the GEE robust es- 
timator by K / ( K  - p ) ,  where K is the number of subjects 
and p is the number of regression parameters. MacKinnon 
and White (1985) have considered a similar modification to 
White's (1980) heteroskedasticity-consistent estimator using 
a degrees-of-freedom correction conventionally used to ob- 
tained unbiased estimates of the scale parameter, 4. 

Another approach that has been used with the GEE robust 
estimator and jackknife estimators to improve the accuracy 
of the test size is to use a Student's t- or F-distribution in- 
stead of the asymptotic normal (or chi-square) distribution to 
compute the statistical significance (Paik, 1988; Lipsitz et al., 
1990; Lipsitz et al., 1994; Qu et al., 1994). The determination 
of the degrees of freedom has been rather arbitrary, but if it is 
desired to have the test size equal to or less than the specified 
nominal level, it is reasonable to use the number of subjects 
minus the number of coefficients in the regression model as 
the denominator degrees of freedom and the number of pa- 
rameters in the null hypothesis as the numerator degrees of 
freedom. Our simulation results indicated that the test size is 
more dependent on the number of subjects than the cluster 
size or the correlation. 

5. Data Example 
The data comes from a randomized clinical trial designed 
to measure the effect of a systemically administered drug 
on radiographic bone loss in subjects with moderate to se- 
vere periodontal disease. Thirty subjects were randomized to 
treatment regimens that involved oral ingestion of placebo or 
drug and were followed over a 2-year period, with radiographs 
taken of the upper and lower jaw every 6 months. The percent 
bone remaining was measured separately at two sites on each 
tooth for every subject. Because subjects did not have the 
same number of teeth, the number of sites per subject ranged 
from 34 to 64 and the average was 50 sites per subject. For 
this example, a binary response is used to indicate if there 
was bone loss over the follow-up period at a particular site, 
and the probability of bone loss at a site (pZJ  = E(y,, I z,,)) 
was modeled as logit(p,,) = aSzi ,&rea tment  +QPprior dlseaser 

where the covariates are a subject-level covariate (zl) indicat- 
ing whether the subject was randomized to placebo or drug 
and a site-level covariate (z2) indicating whether the site had 
clinical indications of prior disease activity based on probing 
depth at baseline. The regression parameters were estimated 
using GEE with independence and dental working correla- 
tion structures. The dental correlation structure is motivated 
in part due to the experience that the pairwise correlation 
varies within a mouth and that sites from the same tooth or 
quadrant, and to a lesser extent, from opposing and symmet- 
rical sites tend to show a stronger dependence than sites from 
other locations in the mouth. 

Table 1 shows the regression results for bone loss using GEE 
with independence and dental working correlation structures. 
The magnitude of the estimated treatment effect is similar 
between the two working correlations, but the treatment ef- 
fect is highly significant if you ignore the correlation (i.e., if 
you use the model-based variance estimate for an indepen- 
dence working correlation) and it is not significant if you ac- 
count for the correlation. It is also noteworthy that the esti- 
mated effect of prior disease activity on bone loss depends on 
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Table 1 
Logistic regression results f o r  radiographic bone loss using GEE with the robust, 

degrees-of-freedom-adjusted, bias-corrected, jackknife, and model-based covariance estimators. 
P-values computed using the asymptotic chi-square distribution and F-distribution with 1 and 27 d.f. 

Parameter Covariance SE 
Method Parameter estimate estimator estimate 

GEE with independence Treatment 0.381 Robust 
working correlation 

Prior disease 

GEE with dental Treatment 
working correlation 

Prior disease 

Degrees-of-freedom 
adjusted 

Bias corrected 
Jackknife 
Model based 

0.319 Robust 
Degrees-of-freedom 

adjusted 
Bias corrected 
Jackknife 
Model based 

0.377 Robust 
Degrees-of-freedom 

adjusted 
Bias corrected 
Jackknife 
Model based 

0.359 Robust 
Degrees-of-freedom 

adjusted 
Bias corrected 
Jackknife 
Model based 

0.327 
0.345 

0.352 
0.358 
0.130 

0.205 
0.216 

0.220 
0.220 
0.144 

0.323 
0.341 

0.347 
0.353 
0.333 

0.166 
0.175 

0.174 
0.179 
0.142 

P-value 

X 

0.24 
0.27 

0.28 
0.29 
0.0035 

0.12 
0.14 

0.15 
0.15 
0.027 

0.24 
0.27 

0.28 
0.31 
0.26 

0.031 
0.040 

0.039 
0.045 
0.011 

F 

0.25 
0.28 

0.29 
0.30 
0.0070 

0.13 
0.15 

0.16 
0.16 
0.035 

0.25 
0.28 

0.29 
0.32 
0.28 

0.040 
0.050 

0.049 
0.055 
0.018 

which correlation matrix is used in GEE. The magnitude of 
the effect is smaller and nonsignificant with an independence 
working correlation and larger and significant with a dental 
working correlation matrix. The dental correlation structure 
estimates were 0.32 for observations from the same tooth, 0.18 
for observations from symmetrical teeth, 0.09 for observations 
from the quadrant, and 0.11 for observations from opposing 
teeth and from other teeth. The difference in the estimates 
for the effect of prior disease activity between the two work- 
ing correlations is due to differences in the weighting of the 
between-sub ject and within-subject information of the prior 
disease activity effect (Mancl and Leroux, 1998; Neuhaus and 
Kalbfleisch, 1998). In this case, the within-subject compar- 
isons are most relevant, and hence, it would be appropriate 
to report the results based on a dental working correlation 
since the dental working correlation puts greater weight on 
the within-subject comparisons than the independence work- 
ing correlation. 

The standard error estimates and p-values for Wald-type 
tests are shown in Table 1 for the GEE robust estimator and 
the alternative robust covariance estimators. The alternative 
estimators all give standard error estimates larger than the 
GEE robust estimator, as would be predicted from the sim- 
ulation results in the next section. Use of the alternative co- 
variance estimators had only a small effect on the standard 

error estimates and pvalues. An important finding is that the 
statistical significance of the effect of prior disease activity on 
bone loss using the GEE robust estimator and dental working 
correlation was confirmed with the alternative covariance es- 
timators, which strengthens the conclusion that prior {disease 
activity is associated with bone loss. 

6. Simulations 
The small-sample performance of the covariance estimators 
was investigated for binary responses by simulation. Corre- 
lated binary responses were generated using the method of 
Emrich and Piedmonte (1991) for samples sizes of LO, 20, 
30, and 40 subjects ( K )  with 16, 32, or 64 observations per 
subject (n). Simulations were run with equal and unequal 
cluster sizes. For the cases of unequal cluster sizes, data were 
generated to have an average of 32 observations per subject. 
Cluster sizes of 16, 32, and 64 observations per subject mimic 
studies in which 2, 4, and 8 teeth from each quadrant of the 
mouth are monitored with observations taken at two sites on 
each tooth. Correlated binary responses were generated from 
specified underlying dental correlation structures between ob- 
servations within a mouth. The values of the correlations were 
chosen so that the average correlation ( p )  between observa- 
tions within a mouth was approximately 0.1 or 0.3 (see foot- 
note to Table 2). An average correlation of 0.1 is typical of 
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Table 2 
Observed fraction of Wald-type test statistics rejecting individual hypothesis Ho: Pl = 

Pl(true), 1 = 1 or 2, at a nominal 0.05 level and an average of32 observations per subject 

Working correlation" 

p = 0.1" p = 0.3" 

Independence Dental Independence 
Covariance 

K n estimator P1 P2 P1 P Z  P1 P2 

10 

10 

20 

20 

30 

30 

40 

40 

Equal 

Unequal 

Equal 

Unequal 

Equal 

Unequal 

Equal 

Unequal 

Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 
Robust 
Degrees-of-freedom adjusted 
Bias corrected 
Jackknife 
Model based 

0.132 
0.085 
0.063 
0.100 
0.327 
0.179 
0.121 
0.064 
0.081 
0.381 
0.071 
0.051 
0.042 
0.056 
0.302 
0.104 
0.080 
0.060 
0.063 
0.360 
0.072 
0.058 
0.047 
0.059 
0.322 
0.083 
0.070 
0.055 
0.056 
0.380 
0.066 
0.058 
0.054 
0.060 
0.330 
0.075 
0.064 
0.055 
0.055 
0.336 

0.140 
0.092 
0.071 
0.117 
0.164 
0.158 
0.107 
0.069 
0.085 
0.197 
0.089 
0.069 
0.058 
0.078 
0.160 
0.111 
0.087 
0.064 
0.069 
0.240 
0.079 
0.064 
0.060 
0.070 
0.169 
0.088 
0.078 
0.062 
0.063 
0.203 
0.063 
0.054 
0.051 
0.057 
0.161 
0.087 
0.076 
0.064 
0.064 
0.218 

0.122 
0.074 
0.064 
0.098 
0.120 
0.167 
0.112 
0.066 
0.085 
0.147 
0.066 
0.047 
0.044 
0.058 
0.067 
0.085 
0.067 
0.059 
0.057 
0.104 
0.069 
0.052 
0.049 
0.058 
0.068 
0.072 
0.061 
0.058 
0.053 
0.069 
0.063 
0.057 
0.052 
0.058 
0.065 
0.064 
0.052 
0.050 
0.047 
0.067 

0.125 
0.073 
0.081 
0.107 
0.073 
0.167 
0.113 
0.095 
0.092 
0.097 
0.081 
0.062 
0.066 
0.070 
0.055 
0.115 
0.095 
0.091 
0.081 
0.082 
0.075 
0.064 
0.065 
0.069 
0.054 
0.096 
0.077 
0.072 
0.068 
0.054 
0.071 
0.058 
0.060 
0.072 
0.054 
0.082 
0.074 
0.074 
0.064 
0.064 

0.139 
0.091 
0.072 
0.114 
0.553 
0.165 
0.121 
0.069 
0.143 
0.544 
0.093 
0.068 
0.061 
0.066 
0.527 
0.109 
0.087 
0.063 
0.058 
0.586 
0.069 
0.058 
0.054 
0.056 
0.538 
0.088 
0.078 
0.063 
0.058 
0.562 
0.072 
0.061 
0.057 
0.060 
0.536 
0.074 
0.065 
0.051 
0.050 
0.576 

0.154 
0.098 
0.066 
0.112 
0.282 
0.179 
0.101 
0.065 
0.127 
0.342 
0.105 
0.081 
0.057 
0.073 
0.308 
0.136 
0.107 
0.072 
0.077 
0.411 
0.084 
0.065 
0.054 
0.062 
0.305 
0.089 
0.079 
0.054 
0.054 
0.378 
0.064 
0.053 
0.046 
0.051 
0.302 
0.094 
0.086 
0.068 
0.068 
0.380 

Dental 

P1 P2 

0.123 
0.083 
0.070 
0.105 
0.098 
0.144 
0.098 
0.070 
0.129 
0.129 
0.091 
0.071 
0.060 
0.069 
0.081 
0.087 
0.075 
0.059 
0.051 
0.098 
0.064 
0.057 
0.052 
0.054 
0.062 
0.076 
0.062 
0.055 
0.051 
0.078 
0.074 
0.065 
0.061 
0.063 
0.070 
0.060 
0.046 
0.043 
0.042 
0.065 

0.116 
0.069 
0.078 
0.108 
0.065 
0.204 
0.134 
0.118 
0.163 
0.124 
0.089 
0.068 
0.073 
0.075 
0.058 
0.158 
0.128 
0.103 
0.077 
0.121 
0.071 
0.054 
0.063 
0.069 
0.047 
0.115 
0.105 
0.086 
0.073 
0.094 
0.061 
0.052 
0.055 
0.055 
0.051 
0.101 
0.090 
0.075 
0.064 
0.098 

a An average correlation of 0.1 was given by specifying the correlation between observations from the same tooth as 0.3, from the 
same quadrant as 0.2, from symmetrical teeth as 0.15, from opposing teeth as 0.08, and from other teeth as 0.06. An average Correlation 
of 0.3 was given by specifying the correlation between observations from the same tooth as 0.5, from the same quadrant as 0.4, from 
symmetrical teeth as 0.3, from opposing teeth as 0.28, and from other teeth as 0.25. 

the correlation between sites for measures of naturally occur- 
ring periodontal disease, whereas an average correlation of 
0.3 represents a strong correlation between sites that can be 
produced by experimentally induced disease (e.g., ligature- 
induced periodontal disease in animal studies). An additional 

set of simulations run with an exchangeable correlation of 0.5 
indicated that the results on test size presented in Tables 2 
and 3 will hold for higher correlation values. The choice of us- 
ing the correlation coefficient to parameterize the dependence 
between observations is arbitrary, but a set of simulations run 
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Table 3 
Observed fraction of Wald-type test statistics rejecting individual hypotheses Ho: ,bl = pl(true), 1 = 1 or 2, 
and joint hypothesis Ho: pi ,  P2 = Pl( t rue) ,  &(true) at a nominal 0.05 level, an average of 32 observations 

per subject, and a dental working correlation. Critical values computed using chi-square and F-distribution. 
~~~~~ 

p = 0.1 ji = 0.3 Covariance Critical 
K n estimator value P1 P2 P l , P 2  PI P2 P1,PZ 

10 Equal Robust 

Degrees-of-freedom adjusted 

Bias corrected 

Jackknife 

Model based 

Unequal Robust 

Degrees-of-freedom adjusted 

Bias corrected 

Jackknife 

Model based 

40 Equal Robust 

Degrees-of-freedom adjusted 

Bias corrected 

Jackknife 

Model based 

Unequal Robust 

Degrees-of-freedom corrected 

Bias corrected 

Jackknife 

Model based 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

X 
F 

0.122 
0.073 
0.074 
0.047 
0.064 
0.031 
0.098 
0.059 
0.120 
0.066 
0.167 
0.109 
0.112 
0.070 
0.066 
0.039 
0.086 
0.057 
0.147 
0.097 
0.063 
0.057 
0.057 
0.051 
0.052 
0.050 
0.058 
0.052 
0.065 
0.060 
0.064 
0.052 
0.052 
0.047 

0.050 
0.044 
0.047 
0.044 
0.067 
0.058 

0.125 
0.072 
0.073 
0.040 
0.081 
0.044 
0.107 
0.064 
0.073 
0.025 
0.167 
0.113 
0.113 
0.064 
0.095 
0.052 
0.092 
0.053 
0.097 
0.035 
0.071 
0.058 
0.058 
0.051 
0.060 
0.053 
0.072 
0.061 
0.054 
0.045 
0.082 
0.076 
0.074 
0.071 

0.074 
0.068 
0.064 
0.057 
0.064 
0.058 

0.198 
0.106 
0.120 
0.057 
0.117 
0.047 
0.167 
0.093 
0.113 
0.039 
0.261 
0.150 
0.176 
0.096 
0.143 
0.058 
0.165 
0.086 
0.150 
0.079 
0.077 
0.066 
0.066 
0.054 
0.065 
0.053 
0.071 
0.062 
0.066 
0.057 
0.097 
0.078 
0.080 
0.065 

0.074 
0.058 
0.067 
0.053 
0.070 
0.057 

0.123 
0.092 
0.083 
0.048 
0.070 
0.037 
0.105 
0.067 
0.098 
0.050 
0.144 
0.096 
0.098 
0.057 
0.070 
0.036 
0.130 
0.088 
0.129 
0.080 
0.073 
0.067 
0.065 
0.059 
0.061 
0.050 
0.063 
0.050 
0.070 
0.064 
0.060 
0.048 
0.046 
0.042 

0.043 
0.039 
0.042 
0.037 
0.065 
0.060 

0.116 
0.068 
0.069 
0.034 
0.078 
0.040 
0.110 
0.060 
0.065 
0.029 
0.204 
0.129 
0.134 
0.068 
0.118 
0.061 
0.164 
0.109 
0.124 
0.079 
0.061 
0.053 
0.052 
0.043 
0.055 
0.047 
0.058 
0.049 
0.051 
0.045 
0.101 
0.091 
0.090 
0.082 

0.075 
0.069 
0.064 
0.057 
0.098 
0.084 

0.219 
0.099 
0.122 
0.046 
0.117 
0.047 
0.187 
0.099 
0.090 
0.027 
0.272 
0.141 
0.167 
0.073 
0.128 
0.057 
0.243 
0.154 
0.175 
0.076 
0.075 
0.058 
0.058 
0.049 
0.061 
0.050 
0.072 
0.056 
0.056 
0.044 
0.106 
0.090 
0.091 
0.076 

0.078 
0.058 
0.066 
0.055 
0.102 
0.084 

with data generated using the odds ratio to parameterize the 
dependence between responses and to describe the working 
correlation matrix gave similar results to those shown in Ta- 
bles 2 and 3. 

A logistic regression model was used for the marginal mean 
of yij, logit(E[yij I xi, wij]) = po + p l s i  + /32wij, where zi 

was a binary subject-level covariate (2% = 0 or 1 with equal 
probability) and wi j  was a binary site-level covariate (uqj = 0 
or l), i = 1,2, . . . , K ,  j = 1 ,2 , .  . . , ni. The site-level covariate 
distribution was generated to mimic the unequal distribution 
of the site-level covariate among the subjects in the data ex- 
ample of Section 5. For clusters sizes of 32 and 64, C j  wij  = 
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4, 12, 20, or 28 with equal probabilities, and for cluster size 
of 16, C j  wij  = 4 or 12 with 0.25 probabilities and C j  wij  = 
16 with 0.50 probability. The values of the regression param- 
eters specified in the simulations (Po,&, P2 = -1.6, 0.38, and 
0.35) were also chosen to correspond with the data example 
in Section 5. For each data configuration, 1000 simulations 
were generated, and for each simulation, the estimates were 
obtained using independence and dental working correlations. 
Simulations were performed on a DECstation 5000/200 using 
programs written in Fortran. 

6.1 Size of Individual and Joint Hypothesis Tests 
The performance of the covariance estimators was evaluated 
by computing the observed fraction of Wald-type test 
statistics rejecting the individual null hypotheses Ho: ,Dl = 

1 = 1 or 2, and the joint null hypothesis Ho: P I ,  p 2  = 
,B2(true). The observed fractions for the individual 

hypotheses are shown in Table 2 for a 0.05 nominal level. At a 
true nominal 0.05 level and 1000 simulations, we would expect 
the estimated test size to be between 0.036 and 0.064 (95% 
confidence interval). As others have observed, the estimated 
test sizes tended to be inflated when using the GEE robust 
estimator (2). The estimated test sizes were substantially 
greater than 0.05, i.e., 0.10-0.20, for cases involving 10 
subjects or for cases involving 20 subjects with unequal cluster 
sizes. In general, the estimated test sizes were more inflated 
for unequal cluster sizes than for equal cluster sizes, and the 
estimated test sizes became more inflated as the number of 
subjects decreased. In contrast, the average correlation value 
and working correlation structure had little effect on the 
estimated test sizes. Also, the estimated test size was not 
greatly affected by the number of observations per subject 
(results not shown). 

For cases involving equal cluster sizes, the estimated test 
sizes with the degrees-of-freedom adjustment (degrees-of- 
freedom-adjusted estimator) were usually between 0.036 and 
0.064 with 20 or more subjects and only a little inflated 
(0.069 to 0.098) with 10 subjects (Table 2). However, when 
the cluster sizes were unequal, the estimated test sizes were 
frequently greater than 0.10 with 10 or 20 subjects. With 
the bias-corrected estimator, the estimated test sizes were 
smaller and almost always closer to 0.05 compared with 
the degrees-of-freedom-adjusted and robust estimators. Also, 
the estimated size was usually less than 0.10 even when 
the number of subjects was 10 both for equal and unequal 
cluster sizes. The estimated test sizes with the jackknife 
estimator were similar to the bias-corrected estimator when 
the number of subjects was 20 or greater. When the number 
of subjects was 10, the sizes were often greater than 0.10. 
The jackknife estimator did not perform well when there were 
convergence problems with the delete-one estimates due to 
zero or near-zero cell counts. Test sizes were also estimated 
using the one-step jackknife estimator of Lipsitz et al. (1990). 
The estimated sizes for the one-step jackknife estimator were 
between the test sizes for the degrees-of-freedom-adjusted and 
bias-corrected estimators (results not shown). The estimated 
test sizes with the model-based estimator using the dental 
working correlation were usually closer to 0.05 compared with 
the robust estimator, but still the estimated test sizes were 
frequently greater than 0.064. The inflation of the test size 
with the model-based estimator using the true correlation 

structure is partially due to the underestimation of the 
correlation when the number of independent clusters is small. 

Although the bias-corrected covariance estimator gave test 
sizes closer to 0.05 than the GEE robust, degrees-of-freedom- 
adjusted, and jackknife estimators, the estimated test sizes 
were frequently greater than 0.05 and greater than 0.064 
for cases with 10 subjects. The observed fractions of Wald- 
type test statistics rejecting individual and joint hypotheses 
based on chi-square and F-distributions are shown in Table 
3 for a 0.05 nominal level. The estimated sizes with the F-  
distribution were in most cases closer to 0.05 than with the 
asymptotic chi-square distribution and were further from 0.05 
than with the chi-square distribution only when the estimated 
size with the F-distribution was less than 0.05. Using the F- 
distribution in conjunction with the bias-corrected covariance 
estimator gave test sizes nearly always between 0.036 and 
0.064 for both equal and unequal cluster sizes. These results 
indicate that the bias-corrected estimator used in conjunction 
with the F-distribution will produce tests with the proper 
size. Also, computing the critical value based on an F -  
distribution rather than a chi-square distribution resulted 
in only a minimal loss of power, usually 0.05 or less and 
always less than 0.10 (results not shown). The degrees-of- 
freedom-adjusted estimator used in conjunction with the F -  
distribution also gave test sizes nearly always within 0.036 
to 0.064 when the cluster sizes were equal, but test sizes 
were frequently greater than 0.064 when the cluster sizes were 
unequal. The estimated test sizes for the jackknife estimator 
used in conjunction with the F-distribution were similar to 
the bias-corrected estimator when the number of subjects was 
20 or more, but the estimated test sizes were often inflated 
for cases with 10 subjects. 

7. Discussion 
We evaluated the properties of GEE and several alternative 
covariance estimators for use in situations involving a small 
number of subjects. The GEE robust estimator tended to 
underestimate the variance, and the size of Wald-type tests 
could be substantially greater than the nominal level. The 
degree of inflation in the test size was usually small if the 
number of subjects was 20 or more and cluster sizes were 
equal. However, the degree of inflation in the test size could 
be substantial if cluster sizes were not equal, even with 40 
subjects. These results indicate that, even for sample sizes 
involving a moderate number of subjects, using the GEE 
robust estimator can produce tests that are too liberal if the 
cluster sizes are unequal. The estimated tests sizes with the 
model-based estimator using the true correlation structure 
were usually closer to the nominal level compared with the 
robust estimator, but still the estimated test sizes were often 
inflated. These results indicate that even careful modeling 
of the correlation structure is not sufficient to maintain the 
nominal test size when the number of independent clusters is 
small. 

The bias-corrected, jackknife, and degrees-of-freedom- 
adjusted covariance estimators generally performed better 
than the GEE robust estimator with respect to maintaining 
the nominal test size. However, the test sizes still tended to 
be inflated for all covariance estimators for cases involving 20 
or fewer subjects and using the asymptotic chi-square distri- 
bution to compute the critical values. Using an F-distribution 
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to compute the critical values produced tests with sizes 
substantially closer to the nominal level. The jackknife 
covariance estimator produced test sizes similar to the bias- 
corrected covariance estimator except for cases with 10 
subjects. For cases involving 10 subjects, the test sizes with 
the jackknife estimator were substantially larger than the test 
sizes of the bias-corrected and degrees-of-freedom-adjusted 
covariance estimators. The poor performance of the jackknife 
estimator was likely due to the convergence problems with 
estimation of the delete-one estimates caused by zero or 
near-zero cell counts. This problem has been observed with 
other resampling methods in small sample sizes for binary 
responses (Sherman and le Cessie, 1997). The degrees-of- 
freedom-adjusted estimator used in conjunction with the F- 
distribution gave tests of proper size when the cluster sizes 
were equal, but test sizes were frequently inflated when the 
cluster sizes were unequal. These results indicate that the 
degrees-of-freedom correction used in conjunction with the 
F-distribution may provide adequate protection against the 
bias of the GEE robust estimator in small samples only 
when the cluster sizes are approximately equal. The bias- 
corrected covariance estimator, which reduces the bias of 
the residual estimator of the unknown response covariance 
matrix, generally gave test sizes closest to the nominal level, 
and when used in conjunction with the F-distribution, the 
estimated test sizes were nearly always close to the nominal 
level (0.036-0.064), even when the number of subjects was 10 
and for tests of joint hypotheses. These results indicate that 
the bias-corrected estimator used in conjunction with the F -  
distribution will produce tests with the proper size for all the 
conditions evaluated. Also, computing the critical value based 
on an F-distribution resulted in only a minimal loss of power. 

A limitation of the current simulation study is that we 
did not study the effects of varying the magnitude of the 
parameter estimates or response probabilities. However, we 
can infer from the simulation results of Gunsolley et al. 
(1995), who considered response probabilities from 0.025 to 
0.30, that the underestimation of the GEE robust estimator 
would increase as the response probability approaches zero 
or one. A topic of further interest would be the effect of 
the covariate distribution on the GEE robust estimator, 
particularly for a covariate with a skewed distribution. The 
hat-matrix expression for the bias of the residual estimator (5) 
indicates that the bias of the GEE robust estimator may also 
be large when the covariate distribution is skewed (Sherman 
and le Cessie, 1997). We considered only the case of a binary 
response, but the alternative covariance estimators can easily 
be applied to other response types. We can expect the relative 
performance of the alternative covariance estimators for other 
response types to be similar to what we observed for a binary 
response except that the jackknife estimator would not have 
the same convergence problems due to zero or near-zero cell 
counts a for continuous response. 

A GEE SAS macro implementing the bias-corrected 
covariance estimator can be obtained by contacting the author 
at 1manQbiostat.washington.edu. 
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RESUME 
Nous proposons dans cet article une alternative B l’estimateur 
sandwich des covariances des kquations d’estimation g6n6rali- 
s6es. Quand le nombre d’unit6s indhpendantes est faible, 
la taille des tests qui utilisent l’estimateur sandwich peut 
etre augmentbe. Dans ce cas, le recours pour estimer 
les covariances aux mkthodes de r66chantillonnage, comnie 
le bootstrap ou le jackknife, a 6t6 sugg6r6; niais des 
difficult& surviennent quand la r6ponse est binaire et que 
le r66chantillonnage conduit h des totaux nuls ou quasi-nuls. 
Nous proposons une estimation des covariances corrig6e du 
biais qui 6vite ce problkme. Nous avons compare l’estimateur 
corrig6 du biais B l’estimateur sandwich et B celui du jackknife 
pour 16 B 64 rkponses binaires par unit6 et des 6chantillons 
de 10 B 40 unit&. L’estimateur corrig6 du biais conduisait 
B des tests de taille proche de la valeur nominale, meme 
avec 10 unites et des nombres in6gaux de rkponses par 
unite l’estimateur sandwich et celui du jackknife conduisaient 
en revanche des tests dont la taille pouvait atteindre le 
double ou le triple de la valeur nominale. Les m6thodes sont 
appliqukes aux donn6es d’un essai thkrapeutique concernant 
le traitement de la perte osseuse p6riodontique. 
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