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A RESIDUAL-BASED TEST OF THE 
NULL OF COINTEGRATION 

AGAINST THE ALTERNATIVE OF 
NO COINTEGRATION 

YONGCHEOL SHIN 
University of Cambridge 

This paper proposes a residual-based test of the null of cointegration using a 
structural single equation model. It is shown that the limiting distribution of 
the test statistic for cointegration can be made free of nuisance parameters when 
the cointegrating relation is efficiently estimated. The limiting distributions are 
given in terms of a mixture of a Brownian bridge and vector Brownian motion. 
It is also shown that this test is consistent. Critical values are given for stan- 
dard, demeaned, and detrended cases. Combining results from our test for co- 
integration with results from the Phillips-Ouliaris test for no cointegration, we 
find that there is evidence of cointegration between real consumption and real 
disposable income over the postwar period. 

1. INTRODUCTION 

There has recently been a surge of interest in the problem of testing for co- 
integration among economic time series. More generally, it is thought to be 
important, for both economic and statistical reasons, to be able to determine 
whether there is a stable long-run relationship between multiple economic se- 
ries, even though each series is considered to be an I(1) process. See Camp- 
bell and Perron [4] for further discussion. 

However, most studies address the question of testing the null hypothe- 
sis of no cointegration rather than cointegration, and there have been very 
few attempts to test the cointegration hypothesis directly [5,10,27,34]. Park, 
Ouliaris, and Choi [18] and Park [16] consider tests of the null of cointegra- 
tion against the alternative of no cointegration, but their tests are rather ad 
hoc. Since our primary interest is the hypothesis of cointegration, it is often 
argued that cointegration would be a more natural choice of the null hypoth- 
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esis. Yet no simple and straightforward residual-based statistical test of co- 
integration proceeds along these lines. 

This paper develops a direct residual-based test for cointegration using a 
structural single equation model. The test is also shown to be an LM test and 
involves procedures that are designed to detect the presence of stationarity 
in the residuals of cointegrating regressions among the levels of economic 
time series. This procedure represents a modification of the methodology 
proposed by Kwiatkowski, Phillips, Schmidt, and Shin (hereafter KPSS) [11] 
who develop a test for stationarity in the univariate case. KPSS use the com- 
ponents model 

Yt = a + 6t + Xt, Xt = t + Vt, yt = 't-1 + ut, 

where vt are stationary and u, are i.i.d. Then they test the null hypothesis 
that X, has no random walk error component (a2 = 0). In this paper, we 
consider the cointegrating regression 

Yt = a + bt + Zt' + Xt, 

where Yt and Zt are scalar and m-vector I(1) variables, and we develop ap- 
propriate procedures for testing the null hypothesis that Xt has no random 
walk error component. The basic difference between KPSS and this paper 
is just that I(1) regressors in the cointegrating regression are added to the 
components model. Therefore, our tests can be viewed as a multivariate ex- 
tension of the KPSS stationarity tests, just as the above-mentioned cointe- 
gration tests are multivariate extensions of unit root tests. Since our null 
hypothesis is cointegration rather than no cointegration, our cointegration 
test does not suffer from the "conceptual pitfalls" indicated by Phillips and 
Ouliaris [27]. 

It is well known that the limiting distribution of the least-squares estima- 
tors of the cointegrating vector is in general nonstandard and biased [22,24]. 
The distribution of cointegration test statistics based on the OLS estimator 
involves various nuisance parameters even asymptotically, and this poses a 
serious obstacle to inference. Most existing cointegration tests do not con- 
sider the issue of efficient estimation of the cointegrating vector. Recently, 
there have been many studies on the efficient estimation of the cointegrat- 
ing vector [17,22,23,25,26,33,35]. Efficient estimation also simplifies the in- 
ference because it removes the nuisance parameters from the limiting 
distribution. 

We will derive the limiting distribution of the test statistics for cointegra- 
tion using an efficient estimator of the cointegrating vector, which will be 
shown not to involve any nuisance parameter dependency. Generally, the ap- 
propriately designed and transformed test statistics for cointegration should 
have the same limiting distribution even if we use different types of efficient 
estimators [17,23,25,26,33,35]. It will be shown that the limiting distribution 
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of the test statistic for cointegration involves a combination of a Brownian 
bridge and a functional of Brownian motion and also depends on the com- 
pound normal distribution (see [22]). Note that this is different from the lim- 
iting distribution of the test statistic for no cointegration, which depends on 
a functional of Brownian motion only and contains spurious regression dis- 
tribution (see [20]). 

Recently, Hansen [7] has proposed LM tests for parameter stability in the 
context of cointegrating regression models using the fully modified estima- 
tor of Phillips and Hansen [25]. His Lc test statistics in particular are simi- 
lar to ours. He allows every coefficient to be a random walk and then tests 
the joint hypothesis that the variance of each random walk coefficient is zero. 
Under this null, the relationship is cointegrated, so his test is a test of the null 
of cointegration. However, his alternative is not the most natural one for a 
cointegration test, because under his alternative X, is not I(1). Our test fits 
his framework if all the coefficients except the intercept in the cointegrating 
relation are assumed to be constant, so only stability of the intercept is tested. 
See also Quintos and Phillips [31] and Tanaka [36]. 

We apply our cointegration test to an aggregate consumption function and 
find that there is evidence of cointegration between real consumption expen- 
diture and real disposable income over the postwar period. 

The plan of the paper is as follows. The preliminary results and the rele- 
vant asymptotic theory are presented in Sections 2 and 3. Comparisons with 
other cointegration tests are given in Section 4. The results of the applica- 
tion are discussed in Section 5. Discussions and concluding remarks are given 
in Section 6. An Appendix contains proofs of the paper's results. 

For notational convenience we use "-," to signify weak convergence and 
"-" to signify equality in distribution. Continuous stochastic processes such 
as the Brownian motion B(r) on [0,1] are simply written as B. We also write 
integrals with respect to Lebesgue measure such as fr B(r) dr simply as f B, 
and denote ET =l simply as Z. 

2. PRELIMINARY RESULTS 

To derive a residual-based test for cointegration, we consider a single equa- 
tion specification. There are three cases: the cointegrating regression with- 
out intercept and trend, with intercept only, and with intercept and trend. 

yt = Zt;' + X,, (1) 

yt = a, + Z ,, + Xt, (2) 

yt = o, + 6,t + Z',3S + X, (3) 

where in each case Xt = ^t + vlt, yt = _t-I + u, and AZt = v2t. Here ut is 
i.i.d. (0, aU), so t, is a random walk. Our null hypothesis of cointegration 
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is a2 = 0. We assume that ut is independent of vlt, which is not restrictive 
under the null but is restrictive under the alternative. The assumption that 
yo = 0 entails no loss of generality so long as the regression includes an in- 
tercept, as in (2) and (3). The scalar vlt and m-vector v2t are stationary so 
that Yt and Zt are scalar and m-vector I(1) processes, respectively. Assume 
that vt = (v1t, v't)' satisfies a multivariate invariance principle; the random 
sequence vt] is assumed to be strictly stationary and ergodic with zero 
mean, finite variance, and spectral density matrix fvv(X). See Park and 
Phillips [19]. Define the long-run covariance matrix of vt as 

f = lim var(T-1'/2Ev ) ) = =2 2rfvv(O). (4) 
T-oo Q221 022 m 

We also define E = E(utv ), E21 E(V2t lt),A =E(vt, v), A21 
Es=l E(2t-sVlt), and A21 = E21 + A21. Note that Q is the long-run covari- 
ance matrix of (vlt, AZ )', which is different from the long-run covariance 
matrix of (AYt, AZ')' as defined in Phillips and Ouliaris [27]. Here cointe- 
gration does not generally lead to the singularity of U. Define the long-run 
variance of vlt conditional on {v2t} as 01.2 = CW - 21-221 We mainly 
deal with the case of "regular" cointegration (as defined in Park [17]), which 
excludes multicointegration as defined by Granger and Lee [6]. Since 01.2 is 
always positive in this case, our test of the null hypothesis of cointegration 
does not have the conceptual pitfalls identified by Phillips and Ouliaris. Q22 
is assumed to be positive definite so that there are no cointegrating relation- 
ships among the regressors, Zt. 

We now construct the stochastic process BT by BT = T-1/2 EjTr1 vj, where 
[Tr] is the integer part of tr. Under the above conditions, BT converges 
weakly to B as T -, oo, where B denotes a vector Brownian motion with 
covariance matrix 2. We partition B as B = (B1,B2)' conformably with 
(v1t, v2)' BI and B2 are not generally independent unless %21 = 0. Under ad- 
ditional regularity conditions (see Lemma 2.1 of Park and Phillips [19], Phil- 
lips [21], and Theorem 4.1 of Hansen [9]), the following preliminaries 
hold1: 

T-3/2 EZt f B2, T-2 EZZt Z B T-5/2EtZt rB2 

T-3/2Etv-lt rdBI and T-1 EZtvlt - B2dB + A21. 

We will derive a residual-based test of the null of cointegration, which is 
a direct extension of the LM test of univariate stationarity in KPSS [11]. Our 
test statistic for cointegration is both the one-sided LM test statistic and the 
locally best invariant test statistic for the hypothesis a2 = 0, under the 
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stronger assumptions that the regressors are strictly exogenous, the error v1t 
is i.i.d. normal, and u, is i.i.d. normal. Nyblom [14] also shows that the sta- 
tistic is an approximate LM statistic even if vl, is nonnormal and u, is a 
martingale difference sequence.2 KPSS use the components model 

yt = ca + t + Xt, Xt = et + Vt, 't = ',t- + u,, (5) 

and then test the null hypothesis that Xt has no random walk error component. 
Now we consider the cointegration test, in which the null is simply a2 = 0 

so that , = 0 and Xt is I(0) under the null. Following KPSS, let Xt, Xtt, 
and XT be the OLS residuals from the cointegrating regressions (1), (2), and 
(3), and define S,, S,,, and ST, as the partial sum processes of these residu- 
als. Let s2(f), s2 (f), and s2(f) be consistent semiparametric estimators of 
the long-run variance of the regression error vlt (that is, of oll) under the 
null (see [1,2,8,13,28] for a discussion of possible estimators). Then the test 
statistics for cointegration in (1), (2), and (3) are derived as 

CI T-2 S2/s2( ) CI T-2 S2 /2() 

and CIT = T -2 S/s( e) (6) 

It is well known that the single-equation OLS estimators generally involve 
second-order bias terms due to the presence of A21, the correlation between 
vlt and v2t.3 Although the cointegrating vector j (m x 1) based on the OLS 
estimation is superconsistent, it is inefficient (see [22]). In addition, inference 
is complicated because of the dependence of the limiting distribution of the 
estimated cointegration vector on nuisance parameters. Therefore, it is clear 
that the limiting distribution of the test statistics for cointegration based on 
the OLS residuals involves a function of the nuisance parameters cil, Q22, 
and A21. To avoid this problem, either we need a strict exogeneity assump- 
tion (in Theorem 1) or we need efficient estimation (in Theorem 2). 

THEOREM 1. Assume that 221 = 0; that is, Zt is strictly exogenous with 

respect to vlt. Then, the test statistics for cointegration, CI, CI,, CIT have 
the following limiting distributions: 

CI - Q2, CI - - Q2, and CI7* Q2, 

where 

Q 
=W- W1- (f W) ( 

f 
W2W2) WdW,) 

Q= - ( 2) (f W2W2 ( W2dW,) 
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and 

Q= ) - (2* 
W;'*W/ M Y,. W 

( f W 2 W2d ) 

W1 and W2 are independent scalar and m-vector standard Brownian mo- 
tion. W2 = W2 - f W2 is an m-vector standard demeaned Brownian motion, 
W* = W2 + (6r - 4)f W2 + (-12r + 6)f rW2 is an m-vector standard de- 
meaned and detrended Brownian motion, V1 = WI - r W (1) is a standard 
Brownian bridge, and V(2 = WI + (2r - 3r2)Wl(1) + (-6r + 6r2)JO W1 is 
a standard second-level Brownian bridge. See KPSS [11] for further discus- 
sion and references. 

Theorem 1 shows that the statistics for cointegration based on the OLS es- 
timation can be made to be free of nuisance parameter with the assumption 
of strict exogeneity, because Q, Q~, and QT depend only on the dimension 
of Zt(m) and different functionals of standard Brownian motion. Note that 
if we include level and/or time trend as the regressors, the limiting distribu- 
tion of the cointegration test statistic is a combination of a standard Brown- 
ian bridge (a standard second-level Brownian bridge), which is constructed 
from the cointegrating regression error, and a functional of an m-vector stan- 
dard demeaned (detrended) Brownian motion, which is constructed from the 
m-vector integrated regressors. 

3. ASYMPTOTIC THEORY: A MODIFIED SINGLE 
EQUATION MODEL 

Generally, the exogeneity assumption given in Theorem 1 is too restrictive 
in time series modeling. The cointegration tests developed in the previous sec- 
tion are not expected to be robust to the problem of endogenous regressors, 
because the limiting distributions of those statistics would then involve nui- 
sance parameters. We now show that the test statistics for cointegration based 
on efficient estimation of the regression coefficients do not involve any nui- 
sance parameter asymptotically. In this section, we use the linear leads and 
lags OLS estimator as defined by Saikkonen [33] to prove that the limiting 
distributions of the cointegration test statistics based on efficient estimation 
are the same as in Theorem 1. In general, when vt is serially correlated, it is 
not sufficient only to consider the contemporaneous correlation between vl, 
and v2t. Therefore, the approach given in the last section is modified by 
using not only present but also past and future values of AZt as additional 
regressors. By the stationarity of vt, we would expect that values of AZt in 
the very remote past and future can only have a negligible impact on Yt. The 
following additional assumptions are now required: 

Condition 1. The spectral density matrix fv,(X) is bounded away from 
zero. 

X E [O,r], a > 0. fvv(X) > aITr, (7) 
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Condition 2. The covariance function of v, is absolutely summable. 

00 

l II r(j)l < , (8) 
j=-oo 

where r (j)) = E( v, v'+) and 1 * II is the standard Euclidean norm. When 
0 Goo Conditions 1 and 2 hold, vlt = j=_ - Vt-jij + et, where EJ=-_ IIj Til < o0 

and et is a stationary process such that E(v21 t+j) = 0 forj = 0, ?1,?2,.... 
Furthermore, f, (\) ) = f, -, () - )f 2 (X )f/22 ( X )f2 , (X), which implies 
that 27rf,,(0) = w1.2. Then, equation (1) can be transformed into Yt = Zt' + 

EK-K AZ'-j , + et, where e* = et + IJI>K Ut-j rj. Since the sequence { rj} 
is absolutely summable, 7rj = 0 for Ij I > K, K large enough. For simplicity, 
we use the same truncation value for both leads and lags of AZt. If 7rj = 0 
for Ij l > K, we have e* = et. Then et is strictly exogenous with respect to v2t 
so that the endogeneity problem in simple least-squares estimation can be 
eliminated. However, we generally cannot assume that irj = 0 for j I > K 
with K fixed; instead, we choose K such that, as T-, oo, and K -, oo, 

0o 

K3/T- 0, and T1/2 Z 11I,jl-O . (9) 
IjI>K 

See Saikkonen [33] for further details. The order of K can also be chosen 
using model selection criterion such as AIC or BIC. For further discussion 
of this matter, see Phillips and Ploberger [29], in which they also suggest a 
new consistent model selection criteria "PIC," which allows for automatic 
order selection of the stochastic regressors (and also the degree of the de- 
terministic trend) and is designed to accommodate nonstationary series. 
However, the assumption given in (9) is sufficient to develop the asymptotic 
distribution of the test statistic for cointegration in this section. The same 
kind of extensions can also be applied to (2) and (3). Therefore, for a cho- 
sen lag truncation (K), we consider the modified least-squares regression 
equations: 

K 

Yt = Z; + Z AZ_, j + et, (10) 
j=-K 

K 

Y = Z + + KZ. + ,t-j + e (11) 
j=-K 

K 

Y, = & + , t + Z/f'r + E AZt_j Tj + E4*. (12) 
j=-K 

We now construct the stochastic process BT by B = T-1/2 Tr wI, where 
Wt = (Et, vU2)' BT converges weakly to B* as T-+ oo, where B* denotes a vec- 
tor Brownian motion with covariance matrix 2*, which is block-diagonal; 
that is, Q * = diag(wco .2, 22). We partition B* as B* (B1.2, B)' conform- 
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ably with (et, v2)', where B1.2 = B1 - Ql2l21B2. Note that BI.2 is inde- 
pendent of the m-vector Brownian motion, B2. See [22,33] for the form 
of B1.2. 

LEMMA 1. Let i and i1j, c,, 01, and r,,j, and i,, 6bT, , and iifT be the 
OLS estimators obtained from (10), (11), and (12). Then, 

T(3- - 3 J) - B2B) B2dB1.2 ) 

T'/2(o _ cx)~ BI 2(1)- ( JO B (Jo 2 2) d1 ) 
( 1 2--K1 r1 

1\'/2ja 
\ / fi - _-ti (i)2(,-' o(,) -2 B ) B B22 OB21.2 , 

o 

Here B = B - B2 1is an -vector demeaned Brownian motion, and 
+ -4 B~ + 6 rB B*B2*' B; dB.2, 

T3/2(= - ) - 6B .2 ( ) + 12 f rdB .2 

( l 
1 

2r1 \--I / r1 \ L' 

Based on the above results, let i~, * and * be the correct OLS residu- 

+ 6 B2 - 12 rB2 BB2* B2 dB 1.2, 

(s K-) (ij - Ir ) = p0,(1), K (ir. - 7r,j) = o (1), 
K/ j=-K K j=-K 

and 

T 1/2 K 

_l/ S ( 'j- j) =O p(). * 
K j=-K 

Here B2 = B2- fo B2 is an m-vector demeaned Brownian motion, and 

B~ = B2 + (6r- 4)Jfo1 B2 + (-12r + 6)Jo1 rB2 is an m-vector demeaned and 
detrended Brownian motion. Following Stock and Watson [35], we may call 
this the dynamic OLS estimator. The estimates of the cointegrating vectors 
in (10), (11), and (12) are not only superconsistent but also efficient. Note 
that these asymptotics fall within the LAMN (locally asymptotically mixed 
normal) family (see Phillips [22]). 

Based on the above results, let tj, V j, and V*j be the correct OLS residu- 
als obtained from (10), (11), and (12), and St = Zt=, tj, S3t = Zj= e:j, 
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and S, = 2E= *. Let 2( ), 52( ), and s2( ) be semiparametric consistent 
estimators of the long-run variance of e, in (10), (11), and (12), based on 

j*, e: , and E* , respectively. Then the modified test statistics for cointegra- 
tion are defined as 

C -T -2 S2/S2( ), C, _ T-2 S2t/ , and 

CT, T -2 Et/S2(). (13) 

THEOREM 2. The limiting distributions of the modified test statistics for 
cointegration, C, C,, and CT are the same as in Theorem 1. 1 

Although the asymptotic results in Theorem 2 are obtained using the dy- 
namic OLS estimators, it is important to note that these results are not af- 
fected, at least asymptotically, if we use instead different types of efficient 
estimators [17,23,25,26], because the limiting distribution of these estimators 
is the same. For example, if we estimate the cointegrating regression by the 
fully modified procedure of Phillips and Hansen [25], then we can use the 
residuals (obtained from the appropriately modified regression) to construct 
the test statistics.4 

Additionally, there are a number of other important points to bear in 
mind. If there is cointegration in the demeaned specification given in (11), 
this may correspond to "deterministic cointegration," which implies that the 
same cointegrating vector eliminates deterministic trends as well as stochas- 
tic trends. But if the linear stationary combinations of 1(1) variables have 
nonzero linear trends as given in (12), this corresponds to "stochastic cointe- 
gration." For definitions of deterministic and stochastic cointegration, see 
Ogaki and Park [15]. 

Critical values for C, C,, and C, are given in Table 1 with m = 1 to 5. 
Critical values are calculated via a Monte Carlo simulation, using a sample 
size of 2000, and the random number generator GASDEV/RAN3 of Press, 
Flannery, Teukolsky, and Vetterling [30]. When m = 1, 2, and 3 we use 
50,000 replications. Otherwise, we use 20,000 replications. 

4. COMPARISON WITH OTHER COINTEGRATION TESTS 

Phillips and Ouliaris [27] provide residual-based tests for the presence of no 
cointegration in multiple time series. Although their tests are similar to our 
tests in the sense that they are based on the residuals of the cointegrating re- 
gression, their tests are residual-based unit root tests. We now show that 
the limiting distribution of our statistic under the null of no cointegration 
(a2 > 0) is based on the same basic functional of Brownian motion as that 
of the Phillips and Ouliaris test statistic, although the final form of the lim- 
iting distributions of the two test statistics is quite different. 
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TABLE 1. Critical values for the cointegration test statistics 

Number of Regressors (m) 

Fractile 1 2 3 4 5 

Standard (C) 
0.010 0.027 0.023 0.021 0.018 0.016 
0.025 0.034 0.029 0.025 0.022 0.020 
0.050 0.043 0.035 0.030 0.026 0.023 
0.100 0.057 0.046 0.038 0.033 0.029 
0.200 0.083 0.065 0.053 0.045 0.039 
0.300 0.113 0.087 0.070 0.058 0.050 
0.400 0.150 0.115 0.090 0.074 0.063 
0.500 0.199 0.150 0.117 0.096 0.081 
0.600 0.267 0.199 0.154 0.125 0.104 
0.700 0.368 0.271 0.209 0.167 0.139 
0.800 0.527 0.391 0.295 0.236 0.198 
0.900 0.841 0.624 0.475 0.374 0.307 
0.950 1.199 0.895 0.682 0.537 0.433 
0.975 1.601 1.190 0.926 0.715 0.580 
0.990 2.126 1.623 1.305 1.003 0.781 

Demeaned (C,) 
0.010 0.020 0.017 0.015 0.014 0.013 
0.025 0.024 0.021 0.018 0.016 0.015 
0.050 0.029 0.024 0.021 0.019 0.017 
0.100 0.035 0.029 0.025 0.022 0.019 
0.200 0.046 0.037 0.031 0.027 0.024 
0.300 0.057 0.045 0.037 0.031 0.027 
0.400 0.069 0.053 0.043 0.036 0.031 
0.500 0.083 0.063 0.050 0.042 0.046 
0.600 0.101 0.074 0.059 0.048 0.041 
0.700 0.125 0.090 0.070 0.057 0.047 
0.800 0.161 0.115 0.088 0.069 0.057 
0.900 0.231 0.163 0.121 0.094 0.075 
0.950 0.314 0.221 0.159 0.121 0.097 
0.975 0.407 0.285 0.203 0.153 0.120 
0.990 0.533 0.380 0.271 0.208 0.158 

Detrended (C,) 
0.010 0.015 0.014 0.012 0.011 0.011 
0.025 0.017 0.016 0.014 0.013 0.012 
0.050 0.020 0.018 0.016 0.015 0.014 
0.100 0.024 0.021 0.019 0.017 0.016 
0.200 0.030 0.026 0.023 0.021 0.019 
0.300 0.035 0.030 0.027 0.024 0.021 
0.400 0.040 0.035 0.030 0.027 0.024 
0.500 0.046 0.040 0.034 0.030 0.027 

continued 



A RESIDUAL-BASED TEST FOR COINTEGRATION 101 

TABLE 1 continued. 

Number of Regressors (m) 

Fractile 1 2 3 4 5 

Detrended (C,) continued 
0.600 0.053 0.045 0.039 0.034 0.030 
0.700 0.062 0.052 0.045 0.039 0.034 
0.800 0.075 0.063 0.054 0.046 0.040 
0.900 0.097 0.081 0.069 0.056 0.050 
0.950 0.121 0.101 0.085 0.073 0.061 
0.975 0.147 0.122 0.102 0.088 0.072 
0.990 0.184 0.150 0.126 0.109 0.087 

THEOREM 3. Under the alternative hypothesis of no cointegration 
(a2 > 0), the modified test statistics C, C,, and CT (normalized by e/T) 
have the following limiting distributions: 

1 /a \2 r1 
(f/T)C - Qpo( da/L Q2o , 

(f/T)C C, Qpo,f da/L Q2, and 

(Q/T)CT - f 
(JI QPO ) 

da/L J f 

Qpo wheredaL 
where 

Qpo= W1 - W2( W2 WW2 ) , 

Qpo = W-I- W2 W2 W2 W1), and 

QPo - W; - 
W(' W; W2 ) ' w w . 

\Jo ' ) J 
. 

Here the constant L is defined by L = f 1 k(s) ds, where k(s) represents 
the weight function used in 52(f) (see the Appendix). Theorem 3 shows that 
our cointegration test statistics C, C,, and CT are consistent; that is, they di- 
verge at a rate of (T/f) under the alternative. However, it should be noted 
that our cointegration test statistics are critically dependent on the choice of 
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the lag truncation parameter f, and that the behavior of f is critical for the 
test to have good power. 

Note that the limiting distributions of the cointegration test statistics un- 
der the alternative are also free of nuisance parameters, because the scale ef- 
fect from the variance a2 > 0 cancels out. This is quite similar to the results 
obtained in KPSS [11]. Generally, Q (which is the basic functional of the lim- 
iting distribution of the test statistic for cointegration) is different from Qpo 
(which is the basic functional of the limiting distribution of the test statistic 
for no cointegration) in two ways. First, QpO involves a spurious regression 
distribution (fJ W2 W)- '( W2W1), while Q has a compound normal distri- 
bution (fJ W2W2)-l(f W2 dW .2). See Phillips [22]. Second, Qpo involves 
the functional of integrated regressors, W2, while Q involves the functional 
of the partial sum process of the integrated regressors, fJ W2. Since the primary 
interest is the hypothesis of cointegration, we may conclude that our test is of- 
ten a more natural choice. The same kind of arguments can also be made 
against most existing cointegration tests based on the null of no cointegration. 

Recently, Hansen [7] derives the limiting distribution of the LM test sta- 
tistic for parameter stability in the context of cointegrating regression mod- 
els. Following Hansen, rewrite (2) as 

Yt = Al + A2Zt + Xt = Al + A2Zt + Yt + vlt, (14) 

which can also be written as 

Yt = Alt + A2Zt + Vt with Alt = Al + yt. (15) 

This shows that the alternative hypothesis of a random walk only in the in- 
tercept is identical to "no cointegration," so that the test statistic in this case 
is a test of the null of cointegration against the alternative of no cointegra- 
tion. In other words, our proposed test fits with Hansen's framework if all 
coefficients except the intercept term are assumed to be constant, so only 
stability of intercept is tested. However, Hansen's Lc statistic is not designed 
as a direct test for cointegration, because it actually tests the stability of all 
coefficients, not just the intercept term. As noted by Hansen, a rejection of 
the null of constant parameters does not imply the particular alternative the 
test is designed to detect. In particular, Xt is not an I(1) process under his 
alternative. 

Quintos and Phillips [31] derive similar LM tests for parameter constancy 
in cointegrating regressions using the single-equation varying coefficient re- 
gression. Although their test statistic is a test of the null of cointegration and 
has the advantage of detecting (specific) cointegration failure caused by sub- 
set of parameters, their alternative is not I(1) either (see also Tanaka [36]). 
Therefore, these tests may not be as powerful as our test against the alter- 
native of no cointegration. 
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5. EMPIRICAL APPLICATIONS: AGGREGATE 
CONSUMPTION FUNCTION 

Three points are worth noting before we apply our cointegration test. First, 
we should pretest to see whether all dependent and independent variables are 
I(0) or I(1). We use both the KPSS stationarity test and the augmented 
Dickey-Fuller unit root test to check this property. Second, efficient estima- 
tion should be used to allow for correlation between the regression errors and 
first-differenced regressors. Here we use the dynamic OLS method, and we 
choose K = 5 (which is approximately equal to T1/3 in our application). This 
choice is also consistent with simulation results of Stock and Watson [35]. 
Finally, we use semiparametric corrections to remove persistent serial cor- 
relation of the residual process and therefore the long-run variance of the co- 
integrating regression residual is estimated using the Bartlett window. We 
choose f = 10 as the appropriate choice for the lag truncation parameter, 
based on the consideration that the residual from the cointegrating regres- 
sion is generally very persistent, and based on the results of the KPSS Monte 
Carlo simulation which suggest that this choice is a compromise between the 
large size distortions that we expect for smaller number of lags and the low 
power that we expect for larger number of lags in the context of the univar- 
iate stationarity tests. 

Since the empirical results of applying cointegration tests are critically de- 
pendent on the choice of f and K, especially on f, applied economists should 
pay attention to the central importance of these choices. General treatments 
of these choices are given in [29] for automatic choice of K using consistent 
model selection criteria, and in [1,2] for a data-dependent choice of f. In our 
example of an aggregate consumption function, however, the empirical re- 
sults of applying our cointegration tests are not very sensitive to the choice 
of K after the value of f is selected. (These results are not reported but are 
available upon request.) We also note that the use of the plug-in bandwidth 
parameter recommended in [1] always gives a very large value of f when there 
is heavy autocorrelation (e.g., f = 41 is chosen for the Bartlett window when 
the estimate of the AR(1) parameter is 0.9 and T = 178, which is very plau- 
sible empirically), in which case the null of cointegration is rarely rejected. 
Unfortunately, it can be easily shown that the test statistic for cointegration 
using a prewhitened kernel estimator of the long-run variance with the plug- 
in bandwidth parameter recommended in [2] is not consistent against the al- 
ternative of no cointegration. Therefore, we may conclude that our choices 
of f and K are relatively reasonable. 

We now test for a stable long-run consumption function using data ob- 
tained from Citibase Data for 1947:1-1991:2. GC is nominal aggregate quar- 
terly U.S. consumption expenditure; GCN is nominal aggregate quarterly 
U.S. nondurable consumption expenditure; GCS is nominal aggregate quar- 
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terly U.S. service consumption expenditure; GYD is nominal total disposal 
income; GYD82 is real total disposable income in 1982 dollars; and GPOP 
is total population. The price deflator (P) is obtained by dividing GYD by 
GYD82, and is used to transform the variables (except for GPOP) into real 
units. 

We consider two types of consumption data sets. First, we consider the 
consumption function using variables measured in total units; therefore, we 
use real total consumption expenditure (GC/P), real NDS consumption ex- 
penditure (GCN/P + GCS/P), and real disposable income (GYD82). Second, 
we consider the consumption function using variables measured in per cap- 
ita (PC) units; we use PC real consumption expenditure (real total consump- 
tion expenditure/GPOP), PC real NDS consumption expenditure (real NDS 
consumption expenditure/GPOP), and PC real disposable income (GYD82/ 
GPOP). All consumption and income variables, after construction as just de- 
scribed, are then measured in logarithms. 

In Table 2, the results of applying the KPSS stationarity test and the aug- 
mented Dickey-Fuller unit root test to the above variables are given. It is 
found that real total consumption expenditure, real NDS consumption, real 
disposable income, PC real NDS consumption expenditure, and PC real dis- 
posable income are I(1) processes, possibly with drift, because for each we 
reject the stationarity hypothesis but not the unit root hypothesis. For PC 
real consumption expenditure, it is not clear whether these series are trend 
stationary or follow an I(1) process with drift, because we do not reject ei- 
ther trend stationarity or the unit root hypothesis; but since the null of trend 

TABLE 2. The KPSS stationarity test and the ADF unit root test 

Stationarity Testa Unit Root Testb 

Country s r7 , TT, 

Real total consumption 1.7187*d 0.2636* -1.1403 -1.4389 
Real total NDS consumption 1.7194* 0.2262* -1.0173 -1.2637 
Real disposable income 1.7173* 0.3356* -1.8501 -0.5050 
Per capita real consumption 1.7142* 0.1420c -0.3270 -2.4982 
Per capita real NDS consumption 1.7171* 0.1646* 0.0349 -2.8482 
Per capita real disposable income 1.7150* 0.1953* -0.8654 -1.3256 

aWe use the KPSS stationarity test with f= 10. Upper tail 5% critical values for level stationarity (s,) and 
trend stationarity (1,) tests are 0.461 and 0.146. 
bWe use the ADF unit root test statistics, T, and 7r with five augmentations. Lower tail 5%7 critical values 
for T7 and T7 are -2.86 and -3.41. 
CWe reject the trend stationarity at the 10% level. 
d*implies the rejection of the null hypothesis at the 5% level. 
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stationarity is rejected at the 10%o level, we may conclude that PC real con- 
sumption expenditure is close to an I(1) process. 

In Table 3 we present the results of applying our cointegration test and the 
Phillips-Ouliaris no-cointegration test to the consumption functions. We use 
demeaned and detrended equations (11) and (12) because it is reasonable to 
include intercept and/or trend in multiple time series regression. Since the 
concept of deterministic cointegration is stronger than the concept of stochas- 
tic cointegration, it is sensible that we first test for the presence of stochas- 
tic cointegration and then test for the presence of deterministic cointegration 
sequentially. There is strong evidence of stochastic cointegration between real 
total consumption (real NDS consumption) expenditure and real disposable 
income, because we do not reject the null hypothesis of cointegration but we 
do reject the null of no cointegration in the detrended specification. How- 
ever, there is no clear evidence of stochastic cointegration between PC real 
consumption expenditure and PC real disposable income, and there is strong 
evidence of no cointegration between PC real NDS consumption expenditure 
and PC real disposal income. 

Next we check for the presence of deterministic cointegration using the 
demeaned specification. There may be weak evidence of deterministic co- 
integration between real total consumption expenditure and real disposable 
income-although we reject both hypotheses, the null of cointegration is not 
rejected at the 2.5% level. On the other hand, it is not clear whether there is 
deterministic cointegration between real NDS consumption expenditure and 
real disposable income, because we fail to reject both hypotheses. Finally, 
when we use the data measured in per capita terms, the results are not clear 
either, so that there is no evidence of deterministic cointegration in this case. 

We may conclude that there is weak evidence of deterministic cointegra- 
tion between real total consumption expenditure and real disposable income 
over the postwar time period. On the other hand, there is strong evidence of 
stochastic cointegration between real NDS consumption expenditure and real 
disposable income. However, we do not find any evidence of cointegration 
for the consumption function using the data measured in per capita units. 
One may note in Table 3 that including a deterministic trend in the consump- 
tion function reduces the marginal propensity to consume by a considerable 
amount. This is probably evidence against the correctness of the specifica- 
tion. More formal testing procedures such as the Wald test for the restric- 
tion on the coefficients on intercept and/or trend could be used to arrive at 
more formal conclusions [33]. 

6. DISCUSSION AND CONCLUDING REMARKS 

We have derived the limiting distribution of a residual-based test for cointe- 
gration using a structural single equation model and tabulated its critical val- 
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TABLE 3. Tests for cointegration and tests for no cointegration 

a 6 3 C, or C ZTet Za Test Z Testb 

Between real total 
consumption and 
real disposable 
income 

Demeaned -0.0728 
(0.0252)d 

Detrended 2.0700 
(0.1417) 

Between real NDS 
consumption and 
real disposable 
income 

Demeaned -0.1971 
(0.0257) 

Detrended 2.3492 
(0.0988) 

Between per capita 
real total 
consumption 
and per capita 
real disposable 
income 

Demeaned -0.0790 
(0.0104) 

Detrended 0.3569 
(0.0566) 

Between per capita 
real NDS 
consumption 
and per capita 
real disposable 
income 

Demeaned -0.2222 
(0.0104) 

Detrended 0.4105 
(0.0425) 

0.9964 
(0.0032) 

0.0028 0.6686 
(0.0002) (0.0216) 

0.9948 
(0.0033) 

0.0033 0.6052 
(0.0001) (0.0151) 

0.3231c 

0.0869 

0.2896 

0.0379 

0.9922 0.3161c 
(0.0048) 

0.0015 0.7096 0.2699* 
(0.0002) (0.0365) 

0.9932 0.2860 
(0.0048) 

0.0022 0.5830 0.2788* 
(0.0001) (0.0274) 

-33.4700* -4.3031* 

-48.8490* -5.3642* 

-17.0490 -2.9648 

-33.1480* -4.7760* 

-27.5650* -4.2766* 

-27.3770* -4.2598* 

-16.8750 -2.9510 

-18.6490 -3.9250* 

aWe use f = 10 and K = 5 when testing for cointegration. Upper 5%1 critical values for demeaned and 
detrended cases are 0.314 and 0.121. 
bWe use the Phillips and Ouliaris test statistics Za and Zt to test for no cointegration, which are based on 
the simple OLS regression with f = 10. Lower tail 5%7 critical values for Z, (demeaned, and detrended) tests 
are -20.4935, and -27.0866. Lower tail 5% critical values for Zt (demeaned, and detrended) tests are 
-3.3654, and -3.8. 
CWe do not reject the null of cointegration at the 2.5% level. 
dNumbers in ( ) indicate the OLS standard error of the coefficient. 
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ues via a Monte Carlo simulation. The limiting distribution does not involve 
any nuisance parameter dependency, because the test is based on efficient es- 
timation of the regression coefficients. 

Existing tests for cointegration are actually tests of the null hypothesis of 
no cointegration. Combining our tests of cointegration with existing tests of 
no cointegration may help to lead to more definite conclusions than either 
set of tests separately. For example, there is strong evidence of cointegration 
if we reject the null of no cointegration and fail to reject the null of cointe- 
gration. Similarly, there is strong evidence of no cointegration if we reject 
the null of cointegration and fail to reject the null of no cointegration. If nei- 
ther hypothesis can be rejected, the data are not sufficiently informative to 
decide between cointegration and no cointegration. Finally, if both hypoth- 
eses are rejected, doubt is cast upon the validity and usefulness of the model, 
and more complicated alternatives (e.g., fractional integration) might need 
to be considered. 

We apply our cointegration test to a bivariate empirical example of an ag- 
gregate consumption function. To get more comprehensive results, we com- 
bine our results with the results obtained using the Phillips-Ouliaris test 
statistics for no cointegration. We find that there is evidence of cointegra- 
tion between real total consumption (real NDS consumption) expenditure and 
real disposable income over the postwar period. 

If there are more than two regressors in any meaningful economic relation- 
ship (e.g., a money demand function), our assumption that there is not a co- 
integrating relationship among the regressors needs to be checked. Thus, 
after we pretest whether the dependent variable and all regressors are I(1), 
we need to check whether or not there is cointegration among the regressors. 
In the case that there is cointegration among the regressors, we conjecture 
that the limiting distribution of the test statistic for cointegration is not fun- 
damentally affected; that is, it depends only on the rank of the covariance 
matrix of the regressors, 222 (see Wooldridge [37]). This is the case in which 
there is more than one cointegrating vector among the dependent variable 
and the regressors. Therefore, possible future research could be in the direc- 
tion of extending our results to find the system-based tests for cointegration. 
This could be a useful addition to the Johansen tests [10], which are basi- 
cally a multivariate extension of unit root tests. 

The results of this paper are mainly asymptotic. It has been shown that 
both parametric and semiparametric corrections or any combination can gen- 
erally be used to deal with serial correlation of the residuals and the endo- 
geneity of the regressors. In this paper, we suggest a conservative choice of 
the number of lags used in semiparametrically estimating the long-run vari- 
ance of the residual of the cointegrating regression and of the number of 
leads and lags of first-differenced regressors to be used in parametrically es- 
timating the cointegrating regression. However, the finite sample perfor- 
mance of our cointegration tests using different efficient estimators of the 
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cointegrating vector, and using different lag windows and different choices 
of f and K (probably selected in a data-dependent way) is still unknown. 
Considering the fact that this choice matters in empirical applications using 
economic data with typical sample sizes (100 to 200), much care should be 
taken. Further research will be needed. 

NO TES 

1. This result is simply assumed in [19]. One of the referees kindly informs me that a proof 
for linear processes is shown in [21] and that a proof for mixing process is shown in [9]. 

2. One of the referees makes this point. For the derivation of an LM test statistic in the form 
given in (6) see [11] and [12]. Our LM test statistic for cointegration is represented as ES2/ 21 

(apart from an appropriate normalization), where ar 2is a consistent estimate of the error vari- 
ance (the sum of squared residuals, divided by T), under the assumptions that the regressors 
are strictly exogenous, the error vl, is i.i.d. N(0,a), and ut is i.i.d. N(0,a2). However, the 
i.i.d. assumption of vl1 as well as the assumption of strictly exogenous regressors are unreal- 
istic. Therefore, we will consider the asymptotic distribution of the statistics under weaker as- 
sumptions in text. 

3. The bias is also due to Q21, since when Q21 0, Jo B2 dB1 is skewed and (fJ B2B2)-I x 

(f B2 dB1 ) is not mean zero, which is also pointed out by the referee. 
4. Following Phillips and Hansen [25], first transform Y, into y, = Yt - l 22 AZt, and 

run the regression: y + = Z' FM + ?+, where fFM is the fully modified estimator. See [25] for 
further details and notations. Then, we obtain the residuals of this regression and the consistent 
estimate of the long-run variance of the residuals to construct the statistics as given in (6). As 
mentioned, the statistic of the null hypothesis of cointegration using the fully modified proce- 
dure should have the same limiting distribution given in Theorem 2. 
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APPENDIX 

We sketch the proofs of lemma and theorems. For more technical details, see 
[11,19,25,26,33,35]. For notational convenience we denote jf1B(r)dr as JB and 
ZT=1 ZI (or Z -K Zt) as EZ,. 

Proof of Theorem 1. We transform (1), (2), and (3) in matrix form: Yt = Ztb + 
Xt, y = Ztb, + Xt, andyt = Ztb, + Xt, where Z,, = (1,Zt)' and Z = (1,t, Z)'. 
Define the scale matrices: D T-1Im, D - diag(T-1/2, T -'I), and D, 
diag(T- 2, T-3/2, T-m). Let b = B, b, = (&a, ,)', and , = (&7,,b,f;)' be the 
OLS estimators, respectively. Using the preliminaries given on page 95 of main text, 
we can show 

D- '(b-b)- (BB2B) 
(lB2dBl+ A)21 

DU 

1( 

b~-b)"-* (fJB2B2) 
fB2dBl + A21 

( BB' ) 4B (1) - 6 r dB, 

+ (-4fB2 
- rBI ) (B dB, + 21) 

D( -b )b (f B *B* ' (JB2*B2' )-6B(1)+ 12 rdB] 

+ f (6B - 12rB) (B dB + A21) 

fB2 dB1 + A21 

Using the above results, we derive the asymptotic results for the partial sum pro- 
cess of the OLS residuals. Note that Xt = vl,, under the null. Then, for equation (1), 

[Tr] [Tr] [Tr] 

T-'/2S[Tr- = T-1/2 E j = T-/2 vlj - T-3/2 , Zj )T(l -r) - QB 
j=1 j=l j=l 

Bl-( ) -r ) (B2B2)1 (B 2dB, + A21). 

To develop a limiting distribution of our cointegration test statistic, we need a con- 
sistent estimator of the long-run variance of vlt. We can use any heteroskedasticity 
and autocorrelated consistent covariance estimator, which is generally estimated by 
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T 

s2(fe) T-r-1 22+ ( Zw (s,,) Z X ,X-s, 
T s=l t=s+ 

where w(s,f) is a real-valued kernel and f is a bandwidth parameter. See [1,2,8,13,28] 
for a discussion of possible estimators. Especially, Hansen [8] has proved (in his Theo- 
rems 2 and 3) that s2(f) -+ 011 under general regularity conditions. 

We prove main results. Since Q21 is assumed to be zero, B1 and B2 are indepen- 
dent. Then, 

1/2 w (S,' Q) 8 1/2 ( -1/2 O - 1/20Q 1/2 1/2 W2 d WI QB = 112W ( Ww ( W2 )22 Q (f1 222 l2W 1 d 

1/2Q 

Therefore, combining the above results, we get 

CI = T-2~S2/s2(f) _1 f Q = fQ2. 
Oil 

Similarly, we can show for (2) and (3) 

T- 1/2 
s[Tr =-1/2 Vl( 

1 
T12( \ A ay) T 3/2 

7ZjT(3 ,-OA-)QBI, 
j=l T j = 

and 

[ [Tr] [Tr] 

T i/2S[Tr] = T-1/2S[T J T1 2(& T 7CT) T T jT32(6T 7 T) 
j=i T y1i 

[Tr] 

-T Z3/2 ZJ T(T - 
3-) ' QBr, 

j=l 

where 

QBc B, -rB, (l)- ( B) ( B2B)( B2 dB+ A21 

and 

QB7 Bl -(2r -3r2)B1 (1) + (-6r + 6r2) fB 

- (fB*r ) (fBrB*2) '( B2* dB + A21) 

Note that the result of consistency is also valid for s2(f) and s2(f). See Theorem 3 
in Hansen [8]. Therefore, combining these results with the assumption of strict exo- 

geneity, we get the results for CI, and CI statistics. B 

Proof of Lemma 1. We transform (10), (11), and (12) into matrix form: y, = 

Zt b* + e, Yt = Z,t b + Et, and Yt = Z* b + et, where Z = (Z,AZ . .. 
Z;+K)', Z, = ( 1,Z;, A Z;t K.. A ) ,', and Zt = (1, t, Z, AZ .. AZ+K)'. 

Let b = (',' )', b, = (,, , ,)' and b, = (&a,6T, i, T )' be the OLS estimators, 
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respectively. Define the scale matrices: D* diag(T-~Im, T-1/2Im ..., T-1/2Im), 

D; 
= diag(T-1/2, T-'Im, T -1/2,. T -1/2IM), and D* - 

diag(T-1/2, T-3/2 
T-Im, T-1/2I . .. ,T-1/21). Note that we now have the data from K+ 1 to T-K. 
Now the number of observations are T - 2K, but we will use T instead of T - 2k 
without loss of generality. Using (8) and (9), it can be shown that EIjl>K V2, t-j = 

op(T-1/2), which is also proved by Lemma A5 of [33]. Then, following the analysis 
of [3,32,33] (especially, see Lemma 5.1 of [32] and Lemma A4 of [33]), we can show 
that 

D*-l(b- b) = (D*EZ*Zt' D*)-l(D*EZt Et) R-l(D*EZtet), 
D -(b, - b,) = (D EZ,Zt D,) -(DZ Z,tEt ) R '(D Z, ZE,t) 

and 

D- - b) = (DE ZZ _D )-l (D* Z E ) -* R -(D EZ* et), 

where 

R = diagT -2 2ZZt,E(Ut U)j with Ut = (AZt-K, . .,AZt;+K)' 

and 

and 

1 

T-2t 
R = 

T-3/2 Zt 

0 

T-3/2 Zt 0 

T -2Z Z; 0 

0 E(Ut,U;) 

T-2 2t T-3/2 E; 0 

T-3 t2 T-5/2 EtZt 

T-5/2EtZt T-2 ZtZ 0 

0 0 E(UtUt)? 

After solving and rearranging, we have the asymptotic results of Lemma 1. (Note that 
we need an additional assumption that v2t has finite fourth moments. See also con- 
ditions given in Theorem 2 in [3].) The order in probability for Ei-K j (ji - rj) is 
given in the appendix of Saikkonen [33]. R 

Proof of Theorem 2. Using Lemma 1 and following the analysis of [3,32,33] again, 
we can show for (10) that 

[Tr] [Tr] [Tr] K 

T-1/2STr = T-1/2 ?j* 
- T-1/2 Z Zj(3 - t) - r-1/2 AZ_j-i(i- 7ri) 

j=1 j=1 j=l i=-K 

[Tr] 
= T-1/2 Z e 

j=1 

[Tr] 
- T-1/2 2 

j=1 

[Tr] [Tr] K 

-3/ T- T(3 - ) - T-1/2 Z Z A Z)- ;( 'i - 7ri) 
j=1 j=1 i=-K 

U2ti 7Ii 
ji\>K 
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The first component converges weakly to B1.2, and the third to (Jo B') (JO B2B~)- x 
(Jf B2 dBi .2) by Lemma 1, so what is needed to be shown is that the final two terms 

converge in probability to zero, uniformly in r. Indeed, 
[Tr] / oo \ [Tr] co 

Esup T -/2 v2 7 Esup T-'/2 v _i v -l Iri 
rI j=l \|i|>K rl j=1 jli>K 

[Tr] o. 

=T- 
1 /2 Elv,,-il Iil1 

j=l lii>K 

<supElv2tlT1/ 2 1 
Iril , -0, 

t |il>K 

by (9), and hence 

[Tri / oo \ 

sup T-1/2 Z vt-i7ri - , 
rl< j=l ij >K 

by Markov's inequality. In addition, 

[Tr] K K [Tr] 

sup T1sup T -1/2 Z (- ) p T-1/2 > S AZj'i(i-- ri) 
rc1 7j= 1 i=-K r i=-K y= 1 

K 
= sup T-1/2 (Z[trl_-i - ZI-i)'(ri- tri) 

r<1 i=-K 

sup K 

<2.y- |,Iz;I Z (T- - ) 
t<T i=-K 

=Op(1)Op(K/2/T 1/2) = op(l). 

Therefore, we can show 

T-1/2St1 --QI2 B1.2- (fo B) (f B 2B2) (j B2 dB.2). 

Next, since B1.2 = wl.2 W, and Bl.2 and B2 are independent, 

r \ I 
-Q1.2 C1.2 W1 -- O 1/2 -21/2 - 1/2 (J 1/2 2C 1/2(W2 dW) Ql2-Oi 1- 2 1.2222 22 ' "21 '22 22 1W-2( W2 dW1) 

1= i/2Q 

Now the long-run variance of the residual is estimated by S2(e) = T-'1E2 + 
(2/T) s=l w(s,f)ZT s+i 

* 
s Using the fact that ZIl>K V2t_ 1 = op(T-1/2) 

andTheorem 3 in [7], we can also show that s2(f) is the consistent estimator of the 
long run variance of e, ol.2. Therefore, 

C -= T-2 2/2( f)-W2 fQ2/C .2 = f Q2. 
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Similarly, we can show for (11) and (12) 

T-1/2St [Tr- Q1.2 = 
B,2 

- 
rB,.2(1) 

- 
2( J fB2 ( dB1 2) 

and 

T- /2ST[Tr Q1 .2 = B1.2 + (2r - 3r2)B1.2(1) + (-6r + 6r2) 

1 (fr \ )-1 \ 0 I 

X B1.2- ( B2 B2B B 2 dB .2 . 

Therefore, combining these results with the consistency of S2(f) and 5s2( ), we can 
show that C, and C. have the same limiting distributions as those of CI, and CI. 

Proof of Theorem 3. To save space we consider the standard case only. The proofs 
are basically the same with more calculus for the demeaned and detrended cases. 
See also Park and Phillips [19] and Phillips and Ouliaris [27]. Under the alternative 
of no cointegration (that is, a2 > 0), Xt = Xj=l uj + et. Then, X, is I(1) so that 

T-1/2X[Tr] = T ~-1/2 T] U + Op(l) -* Bu(r) = a,Wl. Now, let 3 and rij be the OLS 
estimates obtained from (10) under the alternative hypothesis. (Other notations are 
defined similarly.) Then, we can show 

( - P) --( -B2B 2) B2BU, and j (- y - 7rj) = Op(K/2). 
\J / J i=-K 

Let Xt be the residuals obtained from (10) under the alternative hypothesis of no 
cointegration. Then, 

[Ta] [Ta] [Ta] K 

T-3/2STa] 
= T-3/2 Z X - 

T3/2 Z ZJ(I- _ ) - 
T-3/2 AZj-i(-i 

- 7ri). 
j=1 j=l j=l i=-K 

The first component converges weakly to foB,, and the second to (foB) (f B2B2)- x 

f B2Bu, because Bu is independent of B2 by construction. So, we need to show that 
the last term converges in probability to zero, uniformly in r. Indeed, 

[Ta] K K [Ta] 

sup T-3/2 Z Z AZj_j (iT -- 7i) = sup T-3/2 1 I AZj_ i ( i -- 7i) 
a<I j= i=-K a<I i=-K j=1 

K 

=SUp T-3/2 
3 (Z[Ta]-i -Zl-i)'(i 7ri) 

a<I i=-K 

< 2*T-1/2supZt |t-l (, - r,) 
t T i=-K 

(K /2 K 

op(l)o0 T = op(l). 

Therefore, 

T-3/2Ta] -- Bu- ( oB) ( B2B2) fB2Bu 
= u J"Qpo 
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and 

T-4S2 =T- (T-S3/-32)2a ( Q 

From KPSS [11], we obtain the result that (fT)-Is2(f) - La2 f Qj. See also the ap- 
pendix of [23]. Note that w(s,f) = k(s/e). For example, for the Bartlett window, 
k(s) = 1 - I s and L = 1. Therefore, combining the above results we obtain the result 

(f/T)C T-4 S2/(fT)-1g2(f) U-, ( 0 QPo) /La 2 
fQ 

-Jf (f 
JQPO)/L JQPO =f( o"Qo) fQ2 
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