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Abstract

In the past decade there has been a resurgence of interest in nonlinear di-

mension reduction. Among new proposals are “Local Linear Embedding” (LLE,

Roweis and Saul 2000), “Isomap” (Tenenbaum et al. 2000) and Kernel PCA

(KPCA, Schölkopf, Smola and Müller 1998), which all construct global low-

dimensional embeddings from local affine or metric information. We introduce

a competing method called “Local Multidimensional Scaling” (LMDS). Like

LLE, Isomap and KPCA, LMDS constructs its global embedding from local

information, but it uses instead a combination of MDS and “force-directed”

graph drawing. We apply the force paradigm to create localized versions of

MDS stress functions with a tuning parameter to adjust the strength of non-

local repulsive forces.

We solve the problem of tuning parameter selection with a meta-criterion

that measures how well the sets of K-nearest neighbors agree between the data
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and the embedding. Tuned LMDS seems to be able to outperform MDS, PCA,

LLE, Isomap and KPCA, as illustrated with two well-known image datasets.

The meta-criterion can also be used in a pointwise version as a diagnostic

tool for measuring the local adequacy of embeddings and thereby detect local

problems in dimension reductions.

Key words and phrases: MDS, Local Linear Embedding, LLE, Isomap, Principal

Components, PCA, Energy Functions, Force-Directed Layout, Cluster Analysis,

Unsupervised Learning

1 INTRODUCTION

Dimension reduction is an essential tool for visualizing high-dimensional data.

High dimensionality is one of two possible aspects of largeness of data, mean-

ing that the data have a large number of variables as opposed to cases. High-

dimensional data have arisen naturally as one has moved from the analysis of

single images or single signals to the analysis of databases of images and signals,

so that images and signals are treated as cases and pixel intensities or ampli-

tudes as the variables. The correlations between nearby pixels or time points

lend plausibility to intrinsic low dimensionality of the collections of images and

signals, and hence to the effectiveness of dimension reduction.

The most common dimension reduction methods are principal component

analysis (PCA) and multidimensional scaling (MDS). PCA finds linear combi-

nations of the variables to capture the most variation in multivariate data, while

multidimensional scaling (MDS) aims to preserve proximity/distance between

pairs of cases. Although widely used, these methods fail to flatten curved, in-

trinsically low-dimensional manifolds. The (artificial) standard example is the
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well-known “Swiss Roll”, a two-dimensional spiraling manifold that can be flat-

tened, but from which a successful method needs to eliminate the dimensions

taken up by curvature. This cannot be achieved with PCA and MDS as both

attempt to preserve global structure.

One of the newer methods capable of flattening manifolds, called “local lin-

ear embedding” or LLE (Roweis and Saul 2000), is a novel idea: it attempts

to preserve local affine structure by representing each data point as an approx-

imate affine mixture of its neighbor points and constructing a point scatter in

low dimensions that preserves as best as possible the affine mixture coefficients

from high-dimensional data space, using an elegant eigenproblem.

A second new method, called “isometric feature mapping” or Isomap (Tenen-

baum et al. 2000), builds on classical MDS but measures large distances in

terms of hops along short distances. That is, Isomap is classical MDS where

large distances have been replaced by estimates of intrinsic geodesic distances.

The use of shortest path lengths as MDS inputs is due to Kruskal and Seery

(1980) in graph drawing (see also Kamada and Kawai 1989, Gansner et al.

2004). Isomap’s novelty is to use the idea for nonlinear dimension reduction.

A third new method and historically the oldest, called “kernel PCA” or

KPCA (Schölkopf, Smola and Müller 1998), is also classical MDS but based

on a localizing transformation of the inner product data from high-dimensional

space. Localization can be achieved with a Gaussian Kernel transformation

such as 〈yi,yj〉 = exp(−‖yi − yj‖
2/(2σ2)); the smaller σ, the more localized is

the inner product compared to the Euclidean metric.

LMDS, proposed here, derives from MDS by restricting the stress function

to pairs of points with small distances. Thus LMDS shares with LLE, Isomap

and KPCA what we may call “localization.” Whereas Isomap completes the
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“local graph” with shortest path lengths, LMDS stabilizes the stress function by

introducing repulsion between points with large distances. The idea is borrowed

from “force-directed energy functions” used in graph drawing, an important

specialty in scientific visualization (Di Battista et al., 1999; Kaufmann and

Wagner, 2001; Brandes 2001; Noack 2003; Michailidis and de Leeuw 2001).

Localization has an unhappy history in MDS. Removing large distances from

the stress function has been tried many times since Kruskal (1964a, 1964b), but

the hope that small dissimilarities add up to globally meaningful optimal con-

figurations was dashed by Graef and Spence (1979): Their simulations showed

that removal of the smallest third of dissimilarities was benign, while removal

of the largest third had calamitous effects by reducing optimal configurations to

mere jumbles. Thus the stability of optimal MDS configurations stems from the

large dissimilarities, and localized MDS did not appear to be a viable approach.

Isomap’s way out of the localization problem — completion of the local

graph with shortest path lengths — has drawbacks: shortest paths tend to

zig-zag and accumulate noise in estimates of intrinsic geodesic distances. In

view of MDS’ reliance on large distances, Isomap may be driven mostly by the

large but noisy shortest-path imputations while the local distances play only

a minor role. LMDS’ solution to the localization problem has drawbacks, too,

in that it may exhibit systematic distortions. This may be a classical trade-

off between variance and bias: Isomap suffers from more variance, LLE and

LMDS from more bias. LMDS, on the other hand, has a tuning parameter for

controlling the balance between attractive and repulsive forces, permitting a

range of embeddings from noisy with little bias to crisp with more bias.

While LMDS’ tuning parameter provides flexibility, it also creates a selection

problem: how does one know in practice which among several configurations is
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most faithful to the underlying high-dimensional structure? This question can

be answered with measures of faithfulness separate from the stress functions.

We have proposed one such family of measures, called “Local Continuity” or

“LC” meta-criteria and defined as the average size of the overlap of K-nearest

neighborhoods in the high-dimensional data and the low-dimensional config-

uration (Chen 2006). These measures turn out to be practically useful for

selecting good configurations. Independently, Akkucuk and Carroll (2006) de-

veloped similar measures for comparing the performance of different methods.

We show how such measures can be employed as part of data analytic method-

ology 1) for choosing tuning parameters such as strength of the repulsive force

and neighborhood size, and 2) as the basis of diagnostic plots that show how

faithfully each point is embedded in a configuration.

To further motivate LC meta-criteria, we draw an analogy between dimen-

sion reduction and classification: In classification, the measures of interest are

misclassification rates, yet classifiers are constructed as minimizers of smooth

surrogate criteria such as logistic loss. Similarly, in dimension reduction, the

measures of interest are the LC meta-criteria, yet configurations are constructed

as minimizers of smooth stress functions. Like misclassfication rates, LC meta-

criteria are not smooth and statistically unstable, yet of primary interest.

We conclude by noting that LMDS inherits the generality of MDS: The

input used from the data is a matrix of distances or dissimilarities Di,j , and for

this reason the method applies wherever distances or dissimilarities arise: In

dimension reduction Di,j = ‖yi−yj‖ for high-dimensional yi; in graph drawing

Di,j are minimum path lengths within a graph; in proximity analysis Di,j are

observed judgments of pairwise dissimilarity. LMDS applies in all cases.

Terminology: Straddling the areas of dimension reduction, graph drawing
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and proximity analysis, we adopt terminology from all three. For {xi} we

use “configuration” from proximity analysis, and also “embedding” and “graph

layout.” For Di,j we use “dissimilarity” from proximity analysis, and also

“target distance,” meaning distances between high-dimensional feature vectors

in dimension reduction and shortest-path-length distances in graph drawing.

Background on MDS: Two types of MDS must be distinguished: 1) “Clas-

sical” Torgerson-Gower inner-product scaling transforms dissimilarity data to

inner-product data and extracts reduced dimensions from an eigendecomposi-

tion. 2) Kruskal-Shepard distance scaling approximates dissimilarity data di-

rectly with distances from configurations in reduced dimensions, in the simplest

case by minimizing a residual sum of squares. Classical scaling applied to high-

dimensional Euclidean distances is equivalent to PCA on the underlying mul-

tivariate data. It is hierarchical in the sense that, for example, a reduction to

3-D consists of the reduction to 2-D plus one more dimension. Distance scaling

is not hierarchical, but it usually approximates dissimilarities better in a given

reduced dimension than classical scaling. Isomap and KPCA are descendants

of classical scaling; LMDS is a descendant of distance scaling. — A further

distinction between metric and nonmetric MDS is irrelevant here as we restrict

ourselves to the metric case. For more background see, for example, Borg and

Groenen (2005), Buja and Swayne (2002) and Buja et al. (2008).

Further literature: An early pioneer in non-linear dimension reduction is

Shepard and Carroll’s (1966) PARAMAP method (Akkacuk and Carroll 2006).

Various forms of model-based proximity analysis were proposed by Ramsay

(1977, 1982), MacKay and Zinnes (1986), and Oh and Raftery (2001). Related

to PCA are Hastie and Stuetzle’s (1989) principal curves and surfaces. In a

similar class are coordinatization approaches such as Zhang and Zha (2005) and
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Brand (2005). A hybrid of classical and distance scaling are the semi-definite

programming (SDP) approaches by Lu, Keles, Wright and Wahba (2005) and

Weinberger, Sha, Zhu and Saul (2006) who fit full-rank Gram matrices K to

local proximities via Di,j
2 ≈ Ki,i + Kj,j − 2Ki,j and extract hierarchical em-

beddings by decomposing K. Related to KPCA with Gaussian kernels are

Laplacian Eigenmaps (Belkin and Niyogi, 2003) and Diffusion Maps (Coifman,

Lafon, Lee, Maggioni, Nadler, Warner and Zucker, 2005). Hessian Eigenmaps

by Donoho and Grimes (2003) make the stronger assumption of local isometry

to parts of a Euclidean parameter space.

We proceed as follows: Section 2 derives LMDS from Kruskal’s distance scal-

ing; Section 3 introduces LC meta-criteria, followed by thoughts on population

modeling (Section 4) and illustrations with two image datasets (Section 5).

2 LOCAL MULTIDIMENSIONAL SCALING

The goal of MDS is to map objects i = 1, ..., N to configuration points x1, ...,xN ∈

IRd such that the data, given as dissimilarities Di,j, are well-approximated by

the configuration distances ‖xi − xj‖. In “metric distance scaling” one uses

measures of lack of fit, called “Stress,” between {Di,j} and {‖xi − xj‖}, which

in the simplest case is a residual sum of squares:

MDSD(x1, ...,xN ) =
∑

i,j=1...N

(Di,j − ‖xi − xj‖)
2 . (1)

For localization, let N be a symmetric set of nearby pairs (i, j), such as a

symmetrized K-nearest neighbor (K-NN) graph: (i, j) ∈ N if j is among the

K nearest neighbors of i, or i is among the K nearest neighbors of j. If N

does not form a connected graph, one may map the connected components

separately, or one connects the components by adding connecting pairs to N .
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Our initial proposal for localized MDS is to replace the dissimilarities for

(i, j) not in N with a very large value D∞ but with small weight w:

LMDSD
N (x1, ...,xN ) =

∑

(i,j)∈N

(Di,j − ‖xi − xj‖)
2 (2)

+
∑

(i,j)/∈N

w · (D∞ − ‖xi − xj‖)
2 . (3)

The pairs (i, j) ∈ N describe the “local fabric” of a high-dimensional manifold

or a graph, whereas the pairs (i, j) /∈ N introduce a bias that should avoid

the typical problem of MDS when the large dissimilarities are eliminated from

the Stress: crumpling up of the configuration to a jumble, meaning that many

distant pairs of points are placed close together. The imputation of a very large

distance introduces a pervasive repulsive force throughout the configuration,

similar to electric static that makes dry hair fly apart. The imputation of

a single large dissimilarity D∞ with little weight is likely to introduce less

noise than the imputation of shortest-path estimates, at the price of some

bias. Thus LMDS derives configurations directly from local distances, whereas

Isomap derives them indirectly from estimated noisy large distances.

A question is how to choose the weight w relative to the imputed value D∞.

The following argument shows that w should be on the order of 1/D∞. We

expand the “repulsion term” (3), discarding functions of the dissimilarities that

do not affect the minimization problem:

LMDSD
N (x1, ...,xN ) ∼

∑

(i,j)∈N

(Di,j − ‖xi − xj‖)
2 (4)

−2wD∞

∑

(i,j)/∈N

‖xi − xj‖ (5)

+w
∑

(i,j)/∈N

‖xi − xj‖
2 (6)

As D∞ → ∞, we let w → 0 at least on the order of 1/D∞ in order to prevent

the term (5) from blowing up. The weight w cannot go to zero faster than
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1/D∞, though, because otherwise both terms (5) and (6) vanish. This leaves

w ∼ 1/D∞ as the only non-trivial choice, in which case (6) disappears. We let

therefore D∞ → ∞ subject to w = t/(2D∞), where t is a fixed constant, and

arrive at the final definition of localized Stress:

LMDSD
N (x1, ...,xN ) =

∑

(i,j)∈N

(Di,j − ||xi − xj||)
2 − t

∑

(i,j)/∈N

||xi − xj || (7)

We call the first term “local stress” and the second term “repulsion.” A benefit

of passing to the limit is the replacement of two parameters, w and D∞, with a

single parameter t. In addition, the two remaining terms in (7) have intuitive

meaning: The first term forces ‖xi − xj‖ to follow Di,j for (i, j) ∈ N and

is responsible for preserving the intended local structure as much as possible.

The second term contributes repulsion outside N and is responsible for pushing

points away from each other if they are not locally linked.

The relative strength of attractive and repulsive forces is balanced by the

parameter t. Selecting it in a data-driven way is the subject of the next section.

As it stands, however, t is unsatisfactory because it suffers from a lack of

invariance under desirable transformations. This problem can be corrected:

• Invariance under change of units: Di,j and t have the same units, hence the

units of t can be eliminated, for example, by t = medianN (Di,j) t′, where the

new parameter t′ is unit free. Instead of medianN (Di,j) any statistic S that

satisfies S({cDi,j}) = c S({Di,j}) will do.

• Approximate invariance under change of graph size: As the graph size |N |

changes, so does the number of summands in (7): |N | for the local stress

and |NC | = N(N − 1)/2 − |N | for the repulsion. As |N | grows, the relative

importance of the repulsion diminishes for fixed t. This can be corrected by
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reparametrizing t with a factor |N |/|NC |)):

t =
|N |

|NC |
· medianN (Di,j) · τ ,

where τ is unit free. — A good strategy for optimization is to start with a large

value such as τ = 1 to obtain a stable configuration, and lower τ successively

as low as 0.01, using previous configurations as initializations for smaller values

of τ . Along the way one collects the quantities proposed in the next section for

selecting a value of τ that may be nearly optimal in specific sense.

Notation: We write LMDSD
N when we allow a general graph N , but we may

write LMDSD
K when the graph N is a symmetrized K-NN graph. Depending

on the context, we may omit or add arguments, such as LMDSK or LMDSK,τ .

3 CRITERIA FOR PARAMETER SELECTION

For automatic selection of tuning parameters and comparison of methods we

need measures of faithfulness of configurations separate from the stress func-

tions used for optimizing configurations. One such family of measures was in-

dependently developed by Carroll and his students (Akkucuk and Carroll 2006,

France and Carroll 2006) and by us (Chen 2006). The idea is to compare for a

given case 1) the K ′-NN with regard to Di,j in data space, and 2) the K ′-NN

with regard to ‖xi −xj‖ in configuration space. [We use K ′ in distinction from

the K used in the stress function LMDSK .] A high degree of overlap between

the two neighbor sets yields a measure of local faithfulness of the embedding of

the given case. By averaging over all cases we obtain a global measure which

we call “local continuity” or “LC meta-criterion”. The neighborhood size K ′ is

a free parameter, and its choice requires further discussion.

Notation: For case i we form the index set ND
K ′(i) = {j1, ..., jK ′} of K ′-

10



NNs with regard to Di,j, and NX
K ′(i) = {k1, ..., kK ′} of K ′-NNs with regard to

‖xi − xk‖ (excluding i). The overlap is measured pointwise and globally by

NK ′(i) = | ND
K ′(i) ∩ NX

K ′(i) | , NK ′ =
1

N

N
∑

i=1

NK ′(i) . (8)

The pointwise criteria NK ′(i) lend themselves for diagnostic plots that pinpoint

local lack of faithfulness of embeddings.

Both the pointwise NK ′(i) and the global NK ′ are bounded by K ′, and

NK ′ = K ′ would imply maximal faithfulness: NK ′(i) = K ′ for all i, meaning

perfect identity of K ′-nearest neighborhoods in terms of the data {Di,j} and

the configuration {xi}.

Normalization: To enable comparison of NK ′ across different values of K ′,

we use the fact that NK ′ has K ′ as an upper bound and normalize overlap to

the [0, 1] interval:

MK ′ =
1

K ′
NK ′ . (9)

An example of a trace K ′ 7→ MK ′ is shown in Figure 3 (top right, upper curve),

which illustrates the fact that the trace ascends to MK ′ = 1 for K ′ = N − 1.

Adjusting for random overlap: If there is complete absence of association

between the data and the configuration, the local overlap NK ′(i) is random

and can be modeled by a hypergeometric distribution with K ′ defectives out

of N − 1 items and K ′ draws, and hence E[NK ′ ] = K ′2/(N − 1). This suggests

defining adjusted LC meta-criteria (Chen 2006):

Madj
K ′ = MK ′ −

K ′

N − 1
. (10)

An example of an adjusted trace K ′ 7→ Madj
K ′ is also shown in Figure 3 (top right

plot, lower curve). — Akkucuk and Carroll (2006) go further by mapping NK ′

to a z-score under random overlap, but in most applications these z-scores are
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extreme because even weak structure results in extreme statistical significance

under the null hypothesis of random overlap.

Comparing two configurations: For comparing two configurations, one may

plot the trace of differences, K ′ 7→ M
(1)
K ′ − M

(2)
K ′ . With differences the issue of

random overlap becomes moot. An example is shown in Figure 8 (right hand

plot) where LMDS and plain MDS configurations are compared. The idea is

that LMDS’ localization should produce benefits over plain MDS in terms of

MK ′ for small K ′.

Selection of τ : Given K for LMDSK,τ and K ′ for MK ′ , we can optimize the

repulsion weight τ with a grid search. This is illustrated in Figure 3 (top left

plot) with a trace τ 7→ MK ′ applied to configurations that are optimized for

LMDSK,τ for K = K ′ = 6. Henceforth, when applied to LMDSK,τ -optimal

configurations, MK ′ denotes the τ -maximized value for a given K.

Selection of K: There is a question of which Madj
K ′ to use to judge the config-

urations that minimize LMDSK . Here are two strategies:

• K ′ = K: For fixed K minimize LMDSK,τ for various values of τ ; pick the

τ whose configuration maximizes Madj
K ; repeat for various values of K = K ′

and plot a trace K ′ 7→ Madj
K ′ as, for example, in Figure 3 (upper right, lower

curve). Finally, pick that K = K ′ which maximizes the trace (K = K ′ ≈ 8 in

the figure).

• K ′, K decoupled: It is desirable that K is not just Madj
K ′ -optimal for K ′ = K,

but for a range of values K ′. To find out, one may plot traces K ′ 7→ Madj
K ′ , one

for each value of K, as in Figure 3 (bottom right). It is comforting that in this

case K = 8 dominates uniformly over a range of K ′ from 4 up to over 20.

Concluding remark: The LC meta-criteria are doubly “non-metric” in the

sense that they only use rank information of both {Di,j} and {‖xi−xj‖}. Equiv-
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alently, they are invariant under strictly monotone increasing transformations.

They therefore add — at the level of parameter tuning — a non-metric element

to LMDS which is otherwise a metric form of MDS.

4 A POPULATION FRAMEWORK

Nonlinear dimension reduction can be approached with statistical modeling if

it is thought of as “manifold learning.” Zhang and Zha (2005), for example,

examine “tangent space alignment” with an theoretical error analysis whereby

an assumed target manifold is reconstructed from noisy point observations.

With practical experience in mind, we introduce an alternative to manifold

learning and its assumption that the data falls near a “warped sheet.” We

propose instead that the data be modeled by a distribution in high dimensions

that describes the data, warts and all, with variation caused by digitization,

rounding, uneven sampling density, and so on. In this view the goal is to de-

velop methodology that shows what can be shown in low dimensions and to

provide diagnostics that pinpoint problems with the reduction. By avoiding

“prejudices” implied by assumed models, the data are allowed to show what-

ever they have to show, be it manifolds, patchworks of manifolds of different

dimensions, clusters, sculpted shapes with protrusions or holes, general uneven

density patterns, and so on. For an example where this unprejudiced EDA

view is successful, see the Frey face image data (Section 5.2) which exhibit

a noisy patchwork of 0-D, 1-D and 2-D submanifolds in the form of clusters,

rods between clusters, and webfoot-like structures between rods. This data

example also makes it clear that no single dimension reduction may be suffi-

cient to show all that is of interest: very localized methods (K = 4) reveal
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the underlying video sequence and transitions between clusters, whereas global

methods (PCA, MDS) show the extent of the major interpretable clusters and

dimensions more realistically. In summary, it is often pragmatic to assume less

(a distribution) rather than more (a manifold) and to assign the statistician

the task of “flattening” the distribution to lower dimensions as faithfully and

usefully as possible.

An immediate benefit of the distribution view is to recognize Isomap as

non-robust due to its use of geodesic distances. For a distribution, a geodesic

distance is a path with shortest length in the support of the distribution. If a

distribution’s support is convex, the notion of geodesic distance in the popula-

tion reduces to chordal distance. For small samples, Isomap may find manifolds

that approximate the high-density areas of the distribution, but for increasing

sample size the geodesic paths will find shortcuts that cross the low-density

areas and asymptotically approximate chordal distances, thus changing the

qualitative message of the dimension reduction as N → ∞.

By comparison, the LMDS criterion has a safer behavior under statistical

sampling as meaningful limits for N → ∞ exist. Here is the population target:

LMDSP
N (x) = E

[

(

‖Y ′ − Y ′′‖ − ‖x(Y ′) − x(Y ′′)‖
)2

· 1[(Y ′,Y ′′)∈N ]

]

(11)

− t E
[

‖x(Y ′) − x(Y ′′)‖ · 1[(Y ′,Y ′′)/∈N ]

]

,

where Y ′, Y ′′ are iid P(dy) on IRp, N is a symmetric neighborhood definition in

IRp, and the “configuration” y 7→ x(y) is interpreted as a map from the support

of P(dy) in IRp to IRd whose quality is being judged by this criterion. When spe-

cialized to empirical measures, LMDSP
N (x) becomes LMDSD

N (x(y1), ..., x(yN )).

A full theory would establish when local minima of (11) exist and when those

of (7) obtained from data converge to those of (11) for N → ∞. Further the-
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ory would describe rates with which N and t can be shrunk to obtain finer

resolution while still achieving consistency.

The LC meta-criteria also have population versions for dimension reduction:

For y in the support of P (dy) (which we assume continuous), let NY
α (y) be

the Euclidean neighborhood of y that contains mass α: P [Y ∈NY
α (y) ] = α;

similarly, in configuration space let NX
α (x(y)) be the mass-α neighborhood of

x(y): P [x(Y )∈NX
α (x(y)) ] = α. Then the population version of the LC meta-

criterion for parameter α is

Mα =
1

α
P [Y ′′∈NY

α (Y ′) and x(Y ′′)∈NX
α (x(Y ′)) ] ,

where again Y ′, Y ′′ are iid P (dy). This specializes to MK ′ (equation (9)) for

K ′/N = α when P (dy) is an empirical measure (modulo exclusion of the center

points, which is asymptotically irrelevant). The quantity Mα is a continuity

measure, unlike for example the criterion of Hessian Eigenmaps (Donoho and

Grimes 2003) which is a smoothness measure.

A population point of view had proven successful once before in work by

Buja, Logan, Reeds and Shepp (1994) which tackled the problem of MDS per-

formance on completely uniformative or “null” data. It was shown that in the

limit (N → ∞) null data {Di,j} produce non-trivial spherical distributions as

configurations and that this effect is also a likely contributor to the “horseshoe

effect,” the artifactual bending of MDS configurations in the presence of noise.

5 EXAMPLES

In this section we apply LMDS to two sets of facial image data for two reasons:

1) such data are often intrinsically piecewise low-dimensional and hence promis-

ing for dimension reduction (see below), and 2) facial image data have been the
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primary examples in the recent literature (Roweis and Saul 2000; Tenenbaum

et al. 2000). This fact enables us to compare the performance of LMDS with

those of competing methods on the same data sets.

Images are two-way arrays of pixels which in the simplest case describe light

intensities on a grey scale. By treating each pixel as a variable, an image of size

64 × 64 pixels becomes a single data point in a 4096-dimensional image space.

These dimensions, however, are highly redundant. Two sources of redundancy

are the following: 1) In most images a majority of nearby pixel pairs have

nearly equal light intensities, which translates to strong correlations between

variables. 2) There are often far fewer degrees of freedom when a collection of

images shows articulations of the same object. The physical degrees of freedom

in the facial image datasets considered below include viewing direction and

lighting direction in one case and facial expression in the other case.

5.1 Example 1: Sculpture Face Data

This dataset includes 698 images of size 64 × 64 of a sculpture face and was

analyzed in the Isomap article (Tenenbaum et al. 2000). The images show

the same sculpture face while varying three conditions: left-right pose, up-

down pose, and lighting direction, amounting to three angular parameters that

characterize an image. One can therefore anticipate that the true intrinsic

dimension of the image data is three, and one hopes that nonlinear dimension

reduction tools will reveal them in a meaningful way. Because the underlying

truth is known, this example serves the same purpose as a simulation.

The Isomap analysis of Tenenbaum et al. (2000) was done with K = 6

nearest neighbors and Euclidean distances between images, and we adopt these

choices in our LMDS analysis. The 3-D configuration generated by LMDS
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is close to a hyperrectangle as Figure 1 shows. We labeled a few points in

both views with the corresponding images. On the widest dimension (drawn

horizontally) the images show transitions in the left-right pose, on the second

widest dimension (vertical axis of the upper view) transitions in the up-down

pose, and on the third dimension (vertical axis of the lower view) transitions

in the lighting direction.

To compare recovery of the three angular parameters, we shaded the con-

figuration points by dividing the range of each parameter in turn into its three

tercile brackets and encoding them in gray scale. If recovery occurs in a config-

uration, we should see coherence in the distribution of gray tones. In Figure 2

we show shaded 2-D views of 3-D configurations for PCA, MDS, Isomap, LLE

and LMDS, with the configurations rotated to best reveal the gray separations.

We note that the three tones of gray overlap in some of the plots; in particular

the up-down transition is not well-captured by PCA, MDS and LLE. Interest-

ing is also a wrap-around structure in the PCA configuration. The meeting of

the extremes (light gray and black) visible in the frame of PCA and ‘Left-right

Pose’ is probably caused by the darkness of images showing the extreme left and

extreme right poses. The LLE configuration shows characteristic spikes which

we observed in most applications: LLE is generally prone to linear artifacts in

its configurations, and LLE may be more difficult to fine-tune for competitive

performance than Isomap and LMDS. The Isomap and LMDS configurations

in Figure 2 look quite similar and show clear color separations. They are most

successful at flattening the nonlinear structure in this data set. Of the two,

LMDS shows crisper boundaries in the configuration, which in our experience

is a general observation. The fuzziness in the Isomap configurations is consis-

tent with the noisiness of shortest-path length imputations discussed earlier.
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We also compared the five methods according to the LC meta-criterion NK ′

for K ′ = 6, shown in Table 1. We see that Isomap and LMDS generate better

configurations by this measure, with LMDS winning out by a small margin.

Method PCA MDS Isomap LLE LMDSK=6

NK ′=6 2.6 3.1 4.5 2.8 5.2

MK ′=6 0.43 0.52 0.75 0.47 0.87

Table 1: Sculpture Face Data: LC meta-criteria for K ′ = 6.

In Figure 3 (top left) we show a trace of MK ′ (K ′ = 6) as a function of

the repulsion weight τ . The shape is typical: a unimodal graph that attains

a maximum, in this case of MK ′ ≈ .87 near τ = 0.005. The decrease of the

meta-criterion to the left of the peak indicates that too weak a repulsion allows

the local stress to take over and causes the configuration to degenerate. Thus,

repulsion is essential for the stability of optimized configurations.

For comparison purposes, we used the same number of nearest neighbors in

LMDS, K = 6, as in Tenenbaum et al. (2000). They did not discuss how they

chose K; presumably they used trial-and-error to find a useful configuration.

We can be more systematic as we can use the LC meta-criteria to choose K.

Using first the simpler selection methodology, we link K ′ = K. We tried

a grid between K ′ = 4 and K ′ = 650, with small increments near 4 and

larger increments near 650. For each K, we optimized the meta-criterion with

K ′ = K with regard to the repulsion weight τ , and we used this optimized

value of M
(adj)
K ′ as the criterion for selecting K. [Note: For different K ′ the

highest M
(adj)
K ′ is achieved at different values of τ .] The resulting traces are

shown in Figure 3 (top right): unexpectedly, there are two local maxima, at
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K ′ = 8 and K ′ = 16, the latter quite minor, though. After these peaks, the

traces dip before MK ′ ascends to its maximum (1) and Madj
K ′ descends to its

minimum (0) at K ′ = N − 1. Adjustment for random overlap has the desired

effect of creating a single absolute maximum for Madj
K ′ at K = K ′ = 8. By this

methodology, the Isomap authors’ choice K = 6 is near optimal.

In the next exercise we unlink K and K ′ and plot traces K ′ 7→ M
(adj)
K ′ for

a selection of values of K, as in Figure 3 (bottom row). The traces reach their

maxima at or near K ′ = K, which, in this data example, lends support to the

simpler methodology based on K ′ = K.

Finally, we use the pointwise LC meta-criterion N6(i) as a diagnostic by gray

scale coding the configurations from PCA, Isomap, LLE and LMDS, as shown in

Figure 4. The overall gray scale impression of a configuration reflects its average

level of N6(i), namely, N6. Correspondingly, the lower quality configurations

from PCA and LLE contain overall more black, those from Isomap and LMDS

more light gray. It appears that Isomap’s configuration is of lesser quality in

the left and right extremes where we find a greater density of black points.

Overall the LMDS configuration has a slight edge.

5.2 Example 2: Frey Face Data

This data set, from the LLE article (Roweis and Saul 2000), includes 1965

images of the face of a single person (by name of Brendan Frey), taken as

sequential frames from a piece of video footage. The time ordering of these

frames and the expected correlation between frames close in time constitutes

a true known structure that one hopes to recover with dimension reduction.

The image size is 20 × 28, hence the image space is 560-dimensional. We

include PCA, MDS, Isomap, LLE, as well as KPCA as competitors of LMDS.
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For the localized methods, nearest neighbor computations were based on plain

Euclidean distances in 560-dimensional image space. With visualization in mind

we choose again a reduction to 3-D and show an informative 2-D projection of

each 3-D configuration. Figure 5 shows four solutions of LMDS for various

values of K, and Figure 6 compares the six methods.

Overall, LMDS configurations with small K show more structure than those

of the other methods. All configurations reveal two major clusters (top and

bottom in each) corresponding to, respectively, smiling faces (top) and serious

faces (bottom). A second feature shared by all is a dimension correponding

roughly to the left-right pose. All plots were rotated to line up the serious-

smiling division vertically and the left-right pose horizontally.

The aspect in which the competing methods differ the most is in the de-

gree to which the major divisions are further subdivided into subclusters and

linked by transitions between them. The PCA and MDS configurations show

essentially only the two base dimensions and give little indication of further

subdivisions. LLE produces a configuration that is quite structured, but it

suffers again from a tendency to spikiness that is most likely artifactual but

difficult to prevent. Isomap comes closest to LMDS in regards to subdivisions

and transitions, but its noisiness obscures transitions between clusters. The

LMDS configurations for small K show transitions between subclusters that

can be shown to be real. Our confidence in this belief is backed up by Figure 7

where the same plots show the time order with connecting lines. The LMDS

configuration makes it clear that there exist essentially four transitions between

smiling faces at the top and serious faces at the bottom. Although LMDS’ spik-

iness could raise suspicions that it suffers from the same problem as the LLE

configuration, the connecting lines show that the spikes describe indeed paths
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taken by the video footage. The main bias of the LMDS configuration for

K = 4 is most likely in the extent to which it attempts to separate the serious

and smiling faces; the “true” separations are most likely better reflected in the

cruder configurations from PCA, MDS and Isomap.

Methods PCA MDS Isomap LLE KPCA LMDSK=12 LMDSK=4

NK ′=12 3.6 4.8 4.2 3.2 3.7 4.6 5.1

MK ′=12 .30 .40 .35 .27 .31 .38 .43

Table 2: Frey Face Data: LC meta-criteria for K ′ = 12.

Table 2 evaluates the six methods according to LC meta-criteria. Even

though we use K ′ = 12, LMDSK=4 is the top performer, whereas LMDSK=12

is slightly dominated by regular MDS. With regard to wealth of structure, MDS

is not a serious competitor of LMDSK=12, though. As globally biased as the

LMDSK=4 configuration appears, it is the most congenial for the video path,

and the meta-criterion MK ′=12 appropriately singles it out.

We next decouple K and K ′ and consider MK ′-traces for LMDSK configu-

rations for various choices of K, as shown in Figure 8. The unadjusted traces

on the left show a very different behavior from those of the sculpture face data

in that all traces are ascending and maximization is not possible. Adjustment

for random overlap is insufficient as it barely affects the traces in the range

of K ′-values shown (4 to 150 out of N − 1 = 1964). We therefore use more

drastic adjustment with MDS as the baseline, shown on the right of Figure 8.

The horizontal line (diamonds) at level zero marks MDS. It turns out that con-

figurations based on LMDSK with K = 4 (circles) performs best in terms of

Madj
K ′ for K ′ up to 8, whereas the configurations generated by K = 8 (trian-
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gles) and K = 12 (plus signs) perform badly, as they are uniformly beaten by

MDS. Apparently the neighborhood structure for K ′ ≥ 10 is best captured by

global MDS, but the locally zero- and one-dimensional structures (clusters and

transitions) best rendered by K = 4, as measured by Madj
K ′ for K ′ < 10.

6 DISCUSSION AND CONCLUSION

This article makes three contributions: (1) It introduces a novel version of

multidimensional scaling, called LMDS, that lends itself to locally faithful non-

linear dimension reduction and as such competes successfully with recent pro-

posals such as “local linear embedding” (LLE, Roweis and Saul 2000) and

“isometric feature mapping” (Isomap, Tenenbaum et al. 2000). (2) This article

proposes a solution to the problem of selecting tuning parameters. (3) It finally

proposes a diagnostics tool for detecting local flaws in embeddings.

LMDS also applies to graph drawing problems and to proximity analysis.

Inspired by energy functions used in graph drawing, LMDS uses graph-internal

attraction forces to faithfully render local proximities and graph-external re-

pulsion forces to stabilize the configurations. Novel is 1) the derivation of this

particular repulsion and 2) the fact that we subject it to tuning.

The tuning problem is solved with “local continuity” or LC meta-criteria

that measure K ′-NN agreement in the data and in the configurations. (A

version of it was independently proposed by Akkucuk and Carroll (2006) for

comparing different dimension reduction methods.) In addition, we are able to

use LC meta-criteria for tuning the degree of localization, that is, the size of

neighborhoods in the LMDS stress function.

Exploratory tools such as LMDS require diagnostics to detect local flaws in
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embeddings. We provide methodology to this end with a pointwise version of

the LC meta-criteria. Further diagnostics for stability and multiplicity of em-

beddings with subsampling and perturbation are described by Buja and Swayne

(2002) and Buja et al. (2008). Diagnostics for establishing local dimensionality

can be based on “prosections” proposed by Furnas and Buja (1994).

The Achilles heal of methods considered here is the complete reliance on

distance data or dissimililarities, which holds both for the LMDS fitting crite-

rion and the LC meta-criteria. As methods cannot be better than their inputs,

future research should address ways to choose distances/dissimilarities in a

problem-specific manner. Such efforts could blend with similar needs in “ker-

nelizing” regression methods such as SVMs which essentially replace predictor

spaces with similarity measures.
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Figure 1: Sculpture Face Data. Three-D LMDS configuration, K = 6, optimized τ .
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Figure 2: Sculpture Face Data. Three-D configurations from five methods. The gray

tones encode terciles of known parameters indicated in the three column labels, rotated

to best separation.
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Figure 3: Sculpture Face Data: Selection of τ and K in the stress function LMDSK,τ .

Top Left: Trace τ 7→ MK ′=6 for configurations that minimize LMDSK=6,τ . A global

maximum is attained near τ = .005. Top Right: Traces K ′ 7→ MK ′, M
adj
K ′ for τ -

minimized configurations, constraining K = K ′ in LMDSK. The adjusted criterion

points to a global maximum at K = K ′ = 8. Bottom: Assessing τ -optimized so-

lutions of LMDSK with traces K ′ 7→ MK ′, M
(adj)
K ′ for various values of K: K = 8

dominates over a range of K ′ from 4 to 20.
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Figure 6: Frey Face Data. 2-D views of 3-D configurations, comparing PCA, MDS,

Isomap, LLE, KPCA and LMDS.
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Figure 7: Frey Face Data. The six configurations (from Figure 6) with connecting

lines that reflect the time order of the video footage.
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adj
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