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Abstract

This paper presents two complementary statistical computing frameworks that address
challenges in parallel processing and the analysis of massive data. First, the foreach
package allows users of the R programming environment to define parallel loops that
may be run sequentially on a single machine, in parallel on a symmetric multiprocessing
(SMP) machine, or in cluster environments without platform-specific code. Second, the
bigmemory package implements memory- and file-mapped data structures that provide
(a) access to arbitrarily large data while retaining a look and feel that is familiar to R users
and (b) data structures that are shared across processor cores in order to support efficient
parallel computing techniques. Although these packages may be used independently,
this paper shows how they can be used in combination to address challenges that have
effectively been beyond the reach of researchers who lack specialized software development
skills or expensive hardware.

Keywords: concurrent programming, memory-mapping, parallel programming, shared mem-
ory, statistical computing.

1. Introduction

The analysis of increasingly large data sets and the use of parallel processing are active ar-
eas of research in statistics and machine learning. Examples of these data sets include the
Nexflix Prize Competition (Bennet and Lanning 2007); next-generation genome sequencing
and analysis; and the American Statistical Association’s 2009 Data Expo involving the Airline
On-time Performance data set (RITA 2009). Many statisticians are left behind when con-
fronted with massive data challenges because their two most widely-used software packages,
SAS (SAS Institute Inc. 2013) and R (R Development Core Team 2012a), are ill-equipped
to handle this class of problem. SAS supports the analysis of large data with an impressive
number of standard methods, but the Netflix Prize Competition required the development
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and implementation of new methodologies. On the other hand, R is very well-suited for the
development of new data analysis and statistical techniques but does not seamlessly handle
massive data sets. These barriers to entry have presented significant obstacles to statisticians
interested in engaging such massive data challenges.

The root of the problem is the current inability of modern high-level programming environ-
ments like R to exploit specialized computing capabilities. Package bigmemory (Kane and
Emerson 2013b) leverages low-level operating system features to provide data structures ca-
pable of supporting massive data, potentially larger than random access memory (RAM).
Unlike database solutions and other alternative approaches, the data structures provided by
bigmemory are compatible with standard basic linear algebra subroutines (BLAS), linear al-
gebra package (LAPACK) subroutines, and any algorithms which rely upon column-major
matrices. The data structures are available in shared memory for use by multiple processes in
parallel programming applications and can be shared across machines using supported clus-
ter filesystems. The design of bigmemory addresses two interrelated challenges in computing
with massive data: data management and statistical analysis. Section 2 describes these chal-
lenges further and presents solutions for managing and exploring massive data. When the
calculations required by an exploration or analysis become overwhelming parallel computing
techniques can be used to decrease execution time. Package foreach (Weston and Revolution
Analytics 2012b) provides a general, technology-agnostic framework for implementing parallel
algorithms and can exploit the shared memory capabilities of bigmemory. Section 4 considers
a broad class of statistical analyses well-suited to foreach parallel computing capababilities.
Thus, bigmemory and foreach can be used together to provide a software framework for com-
puting with massive data (demonstrated in Section 3) that includes shared memory, parallel
computing capabilities (demonstrated in Section 5). Section 6 examines the performance of
bigmemory and foreach compared to standard R data structures and parallel programming
capabilities in a small data setting. Section 7 concludes with a discussion of the future of
massive data and parallel computing in the R programming environment.

2. Big data challenges and bigmemory

High-level programming environments such as R and MATLAB (The MathWorks, Inc. 2013)
allow statisticians to easily import, visualize, manipulate, and model data as well as develop
new techniques. However, this convenience comes at a cost because even simple analyses can
incur significant memory overhead. Lower-level programming languages sacrifice this conve-
nience but often can reduce the overhead by referencing existing data structures instead of
creating unnecessary temporary copies. When the data are small, the overhead of creating
copies in high-level environments is negligible and generally goes unnoticed. However, as
data grow in size the memory overhead can become prohibitively expensive. Programming
environments like R and MATLAB have some referencing capabilities, but their existing func-
tions generally don’t take advantage of them. Uninformed use of these features can lead to
unanticipated results.

According to the R Installation and Administration guide (R Development Core Team 2012b),
R is not well-suited for working with data structures larger than about 10-20% of a computer’s
RAM. Data exceeding 50% of available RAM are essentially unusable because the overhead of
all but the simplest of calculations quickly consumes available RAM. Based on these guidelines,
we consider a data set large if it exceeds 20% of the RAM on a given machine and massive
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if it exceeds 50%. Although the notion of size varies with hardware capability, the challenges
and solutions of computing with massive data scale to the statistician’s problem of interest
and computing resources. We are particular interested in cases where massive data or the
memory overhead of an analysis exceed the limits of available RAM. In such cases, computing
with massive data often requires use of fixed storage (disk space) in combination with RAM.

Historically, size limitations of high-level programming languages have resulted in the use
of a database. A database can provide convenient access to subsets of large and massive
data structures and are particularly efficient for certain types of summaries and tabulations.
However, reliance on a database has several drawbacks. First, it can be relatively slow in
executing many of the numerical calculations upon which statistical algorithms rely. Second,
calculations not supported by the database require copying subsets of the data into objects
of the high-level language stored in RAM. This copying can be slow and the subsequent
analysis may require customized implementations of algorithms for cases where the overhead
of standard implementations (used for smaller data) exceeds the capacity of RAM. Finally,
the use of a database requires the installation and maintenance of a software package separate
from the high-level programming environment and may not be available to all researchers.

Customized extraction of subsets of data from files resident on disk provides an alternative
to databases. However this approach suffers from two drawbacks. First, it has to be done
manually, requiring extra time to develop specialized code and, as a result, proportionally more
time for debugging. Second, custom extractions are often coupled to specific calculations and
cannot be implemented as part of a general solution. For example, the calculation of the
mean of a column of a matrix requires an extraction scheme that loads only elements from
the column of interest. However, a column-wise extraction will not work well for calculating
matrix row means. Furthermore, the modes of extraction are specific to the chosen file format
and data structures. As a result, different extraction schemes may need to be implemented
over the course of a data exploration depending on how the data are stored. This may further
increasing development and debugging time. In the extreme case, some calculations may
require sophisticated extraction schemes that may be prohibitively difficult to implement; in
such cases the statistician is effectively precluded from performing these types of calculations.

Both the database and custom extraction approaches are limited because their data struc-
tures on disk are not numerical objects that can be used directly in the implementation of a
statistical analysis in the high-level language. They require loading small portions of the data
from disk into data structures of the high-level language in RAM, completing some partial
analysis, and then moving on to other subsets of the data. As a result, existing code designed
to work on entire data structures native to the language and within RAM is generally in-
compatible with analyses relying upon database or customized extractions of data from files.
Fundamentally, these approaches are limited by their reliance on technologies that evolved
decades ago and lack the flexibility provided by modern computing systems and languages.
Some algorithms have been designed specifically for use with massive data. For example, the
R package biglm (Lumley 2011) implements an incremental algorithm for linear regression
(Miller 1992) that processes the data in chunks, avoiding the memory overhead of R’s native
lm function for fitting linear models. However, such solutions are not always possible. The
prospect of implementing different algorithms for a certain type of analysis simply to support
different data sizes seems grossly inefficient.
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2.1. Underlying technology

Modern operating systems allow files resident on disk to be memory-mapped, associating a
segment of virtual memory in a one-to-one correspondence with contents of a file. The C
function mmap is available for this memory-mapping on POSIX-compliant operating systems
(including UNIX, Linux, and Mac OS X, in particular); Microsoft Windows offers similar
functionality. The Boost C++ Libraries (Boost 2013) provide an application programming
interface for the use of memory-mapped files which allows portable solutions across Microsoft
Windows and POSIX-compliant systems. Memory-mapped files provide faster access to data
than standard read and write operations for a variety of reasons beyond the scope of this paper.
Most importantly, the task of moving data between disk and RAM (called caching) is handled
at the operating-system level and avoids the inevitable costs associated with an intermediary
such as a database or a customized extraction solution. Interested readers should consult one
of the many web pages describing memory-mapping, such as Kath (1993) for example.

Memory-mapping is the cornerstone of a scalable solution for working with massive data.
Size limitations become associated with available file resources (disk space) rather than RAM.
From the perspective of both the developer and end-user, only one type of data structure is
needed to support data sets of all sizes, from miniscule to massive. The resulting programming
environment is thus both efficient and scalable, allowing single implementations of algorithms
for statistical analyses to be used regardless of the size of the problem. When an algorithm
requires data not yet analyzed, the operating system automatically caches the data in RAM.
This caching happens at a speed faster than any general data management alternative and
only slower than customized solutions designed for very specific purposes. Once in RAM,
calculations proceed at standard in-memory speeds. Once memory is exhausted, the operating
system handles caching of new data and displacing older data (which are written to disk if
modified). The end-user is insulated from the details of this mechanism, which is certainly
not the case with either database or customized extraction approaches.

2.2. The bigmemory family of packages

We offer a family of packages for the R statistical programming environment for comput-
ing with massive data for POSIX-compliant operating systems. Windows is currently not
supported but could be through the POSIX-compatible environments used by the R environ-
ment. This family of packages is intended for data that can be represented as a matrix and
on computers with 64-bit operating systems. The main contribution is a new data structure
providing a dense, numeric matrix called a big.matrix which exploits memory-mapping for
several purposes. First, the use of a memory-mapped file (called a filebacking) allows matri-
ces to exceed available RAM in size, up to the limitations of available file system resources.
Second, the matrices support the use of shared memory for efficiencies in parallel computing.
A big.matrix can be created on any file system that supports mmap, including cluster file
systems. As a result, bigmemory is an option for large-scale statistical computing, both on
single machines or on a cluster of machines with the appropriate configuration. The support
for shared-memory matrices and a new framework for portable parallel programming will be
discussed in Section 4. Third, the data structure provides reference behavior, helping to avoid
the creation of unnecessary temporary copies of massive objects. Finally, the underlying ma-
trix data structure is in standard column-major format and is thus compatible with existing
BLAS and LAPACK libraries as well as other legacy code for statistical analysis (primarily
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implemented in C, C++, and Fortran).

These packages are immediately useful in R, supporting the basic exploration and analysis
of massive data in a manner that is accessible to non-expert R users. Typical uses involve
the extraction of subsets of data into native R objects in RAM rather than the application
of existing functions (such as lm) for analysis of the entire data set. Some of these features
can be used independently of R by expert developers in other environments having a C++ in-
terface. Although existing algorithms could be modified specifically for use with big.matrix

objects, this opens a Pandora’s box of recoding which is not a long-term solution for scalable
statistical analyses. Instead, we support the position taken by Ihaka and Temple Lang (2008)
in planning for the next-generation statistical programming environment (likely a new major
release of R). At the most basic level, a new environment could provide seamless scalability
through filebacked memory-mapping for large data objects within the native memory alloca-
tor. This would help avoid the need for specialized tools for managing massive data, allowing
statisticians and developers to focus on new methodology and algorithms for analyses.

The matrices provided by bigmemory offer several advantages over standard R matrices, but
these advantages come with tradeoffs. Here, we highlight the two most important quali-
fications. First, a big.matrix can rarely be used directly with existing R functions. A
big.matrix has its own class and is nothing more than a reference to a data structure which
can’t be used by functions such as base::summary, for example. However, many analo-
gous big.matrix operations are included in package biganalytics (Emerson and Kane 2013b)
which implements apply, biglm, bigglm, bigkmeans, colmax, colmin, colmean, colprod,
colrange, colvar, summary, etc. Tabulation operations are included in package bigtabulate
(Kane and Emerson 2013c) and includes functions bigsplit, bigtabulate, bigtable, and
bigtsummary. Other analyses will need to be conducted on subsets of the big.matrix (which
must fit into available RAM as R matrices). Similarly, the extraction of a larger-than-RAM
subset of a big.matrix into a new big.matrix must be done manually by the user, a simple
two-step process of creating the new object and then conducting the copy in chunks. The one
exception to this is the sub.big.matrix class, which creates “windows” into contiguous, rect-
angular blocks for a big.matrix and is beyond the scope of this article. Second, bigmemory
supports numeric matrices (including NA values) but not character strings or anything like a
big.data.frame. Package ff (Adler, Gläser, Nenadic, Oehlschlägel, and Zucchini 2012) offers
a wide range of advanced functionality but at the cost of BLAS and LAPACK compatibility;
a full comparison of bigmemory and ff is beyond the scope of this paper.

3. Application: Airline data management

Data analysis usually begins with the importation of data into native data structures of a
statistical computing environment. In R, this is generally accomplished with functions such
as read.table, which is very flexible. It reads a text file into a data.frame and it can
perform this operation without information regarding the column types. To remain robust
and to correctly read these files there are many checks that need to be performed while a file
is being imported and there is associated overhead with this process. This is particularly true
when the colClasses parameter is not specified and the read.table function is required
to derive the column type while scanning through the rows of a data file. In this case,
an intermediate data.frame is created with intermediate column vectors. If the data in a
subsequent scans corresponds to a different type than an intermediate vector, then a new
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> library(bigmemory)

> x <- read.big.matrix("airline.csv", header=TRUE ,

+ backingfile="airline.bin",

+ descriptorfile="airline.desc",

+ type="integer")

> dim(x)

[1] 123534969 29

Figure 1: Importing the airline data into a filebacked big.matrix object.

vector is created, with the updated type, and the intermediate vector is copied to the new
vector. The process continues until all rows of the data file are scanned. As a result, these
importing functions can incur significant memory overhead resulting in long load times for
large data sets. Furthermore, native R data structures are limited to RAM. Together, these
limitations have made it difficult, or even precluded, many statisticians from exploring large
data using R’s native data structures.

The bigmemory package offers a useful alternative for massive numeric data matrices. The
example in Figure 1 creates a filebacking for the Airline On-time Performance data. This
data set contains 29 records on each of approximately 120 million commercial domestic flights
in the United States from October 1987 to April 2008, and consumes approximately 12 GB
of memory. A script to convert the data set into integer values is available at the Bigmemory
Project website (Emerson and Kane 2013a). A compressed version of the preprocessed data
set along with all of the examples that appear in this article can be downloaded from the
author’s website (Kane and Emerson 2013a). The reader should note that the compressed file
is approximately 1.7 GB and requires approximately 12 GB. The creation of the filebacking
avoids significant memory overhead and, as discussed in Section 2, the resulting big.matrix

may be larger than available RAM. Double-precision floating point values are used for in-
dexing, so a big.matrix may contain up to 253 − 1 elements for 64-bit architectures, such
as x86 64 (1 petabyte of 4-byte integer data, for example). These values are type-cast to
64-bit integers. This approach will be used for all numerical, vector-based data structures as
of R version 3.0.0, available beginning in April 2013. The creation of the filebacking for the
Airline On-time Performance data takes about 15 minutes. In contrast, the use of R’s native
read.csv would require about 32 GB of RAM, beyond the resources of common hardware
circa 2013. The creation of an SQLite database SQLite database (2013) takes more than an
hour and requires the availability and use of separate database software.1

At the most basic level, a big.matrix object is used in exactly the same way as a native
R matrix via the bracket operators ("[" and "[<-") for extractions and assignments. One
notable difference is that the filebacking only needs to be created once (as shown in Figure
1), entirely avoiding the need for the further use of read.csv or read.big.matrix. A subse-
quent R session may instantly reference, or attach to, this filebacking (as shown in Figure 2).
Subsets of data may be extracted and used with native R functions. In Figure 3, for exam-

1These benchmarks were performed on a machine running Ubuntu 12.04 (64-bit), 18 GB of RAM, and Intel
Core i7 CPU x 980 @ 3.33 GHz with 6 processor cores.
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> library(bigmemory)

> x <- attach.big.matrix("airline.desc")

> dim(x)

[1] 123534969 29

Figure 2: Attaching to the airline data filebacking in a fresh R session.

ple, x[,"DepDelay"] creates an R vector of integer departure delays of length 123,534,969,
consuming about 600 megabytes (MB). This operation is handled on most modern hardware
without difficulty, leaving the researcher working with familiar commands on such extracted
subsets of data. As an aside, it may be noted in that the minimum departure delay of 1410
minutes shown in Figure 3 deserves careful attention and perhaps data cleaning.

A second example illustrates some important features relating to the performance of the
underlying mmap technology. Consider the task of first calculating the minimum value of a
variable, year, followed by the extraction of that same column from the data set. R can ask
a database to return the minimum value of year from an airline database (called airline):
from_db("select min(year) from airline"). This takes about two minutes. If, immedi-
ately afterwards, the entire year column is extracted into an R vector, the database query a

<- from_db("select year from airline") also takes about two minutes. In contrast,
colmin(x, "year") takes about eight seconds and a subsequent extraction, b <- x[,"year"],
takes a mere two seconds. This example illustrates two important points about the memory
management solution implemented in bigmemory. First, the low-level caching performance of
bigmemory is an order of magnitude better than the database. Second, the caching benefits
from an awareness of the presence of the year data in RAM following the calculation of the
column minimum. The subsequent extraction takes place entirely in RAM without any disk
access.

4. Flexible parallel programming with foreach

When confronted with a fascinating real-data problem, statisticians quickly move beyond basic
summaries to more sophisticated explorations and formal analyses. Many such explorations
involve repeated calculations on subsets of data. This section presents a flexible, easy-to-use
parallel framework for this class of computing challenges. This framework is useful for many
typical applications and also has critical advantages when working with massive data. Section
5 provides examples illustrating the points developed here.

> summary(x[,"DepDelay"])

Min. 1st Qu. Median Mean

-1410.000 -2.000 0.000 8.171

3rd Qu. Max. NA ' s
6.000 2601.0 2302136.0

Figure 3: Exploring airline departure delays.
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We begin by considering the general problem of conducting repeated calculations on subsets
of data, common in statistical explorations and analyses. Many analyses can be accomplished
by grouping data (called the split), performing a single calculation on each group (the apply),
and returning the results in a specified format (the combine). The term “split-apply-combine”
was coined by Wickham (2011) but the approach has been supported on a number of different
computing environments for some time under different names. The approach was originally
implemented in the mid 1980’s with the Gamma (DeWitt, Gerber, Graefe, Heytens, Kumar,
and Muralikrishna 1986) and Bubba (Boral, Alexander, Clay, Copeland, Danforth, Franklin,
Hart, Smith, and Valduriez 1990) databases. SAS implements the approach through its by

statement. Apache’s Hadoop software packages (The Apache Software Foundation 2013)
implement split-apply-combine operations for distributed systems. The design for a split-
apply-combine framework has also been explored for relational databases as described in
Chen, Therber, Hsu, Zeller, Zhang, and Wu (2009). Each of these implementations attempts
to simultaneously support data management and analysis in a framework that lends itself
to parallel computing. However, most other computing environments lack R’s extensive sta-
tistical capabilities, and other environment’s support for concurrent programming is neither
portable nor easy to exploit.

There are several benefits to the split-apply-combine approach that may not be obvious. First,
split-apply-combine is computationally efficient. It only requires two passes through the data:
one to create the groups and one to perform the analysis. Admittedly, storing the groups from
the split step requires extra memory but this overhead is usually manageable. In contrast,
a naive approach makes a costly pass through the data for each group, adding an order of
magnitude to the computational complexity of the analysis. Second, the apply step is an ideal
candidate for parallel computing. When the calculation is intensive, parallelizing the apply
step can dramatically reduce the execution time.

Although the split-apply-combine approach provides an attractive opportunity for parallel
computing, the parallelization of algorithms has historically been cumbersome and suffers
from two serious drawbacks. First, it requires that the statistician re-implement existing
code, repeating the process of development, testing, and debugging. Second, there are a
plethora of different parallel mechanisms, each with its own unique interface. For R, examples
include multicore (Urbanek 2011), snow (Tierney, Rossini, Li, and Sevcikova 2012), parallel
(R Development Core Team 2012a), and Rmpi (Yu 2012). As a result, a different version of
the parallel code is needed for each of the parallel mechanism.

We introduce the foreach package to solve both of these historic difficulties with parallel pro-
gramming. The package is not a new parallel mechanism, but a new framework for parallel
programming that makes use of existing parallel mechanisms. The goal is to allow the statis-
tician to create concurrent loops which can be used independently of the choice of a particular
parallel mechanism. A foreach loop can be run sequentially, in parallel on a single machine,
or in parallel on a cluster of machines without requiring any re-implementation or code modi-
fication of the algorithm itself. Figure 4 illustrates this point. The example loads the foreach
and doSNOW (Weston and Revolution Analytics 2012a) library, allowing the foreach loop to
use the snow parallel mechanism. A “cluster” of two workers on the local machine is created
with the makeCluster function. The foreach function is made aware that snow should be
used for parallel computation with the registerDoSNOW function call. Loading and registering
the parallel mechanism requires no changes to the algorithm, designated as the “real work.”
The algorithm itself assumes that G represents a partition of the row indices of the data X
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into groups. The foreach loop iterates through each of the groups in G. The %dopar% binary
operator specifies that each iteration of the loop should be run in parallel using the registered
mechanism. The body of the loop specifies the code that is run on the parallel processes. In
this case f is some function implementing an analysis, and Y represents (optional) auxiliary
data.

The snow package is not the only mechanism compatible with foreach; foreach provides a
framework for supporting new or alternative parallel mechanisms. There are currently five
open-source packages that provide compatibility between various parallel environments and
foreach: doMC (Weston and Revolution Analytics 2013), doMPI (Weston 2010), doRedis
(Lewis 2012), doParallel (Weston, Calaway, and Revolution Analytics 2012), and doSNOW.
These implementations are freely available for use with the associated parallel environments.

# Optional declaration of a parallel mechanism here , such as

# the following for a 2-worker SNOW parallel environment:

library(foreach)

library(doSNOW)

cl <- makeCluster (2)

registerDoSNOW(cl)

# The real work:

ans <- foreach(g=G) %dopar% {

f(X[g,], Y)

}

Figure 4: The general foreach framework.

Parallelizing the apply step comes with its own challenges because there is often contention
between data size and the number of parallel processes that can be utilized. If the amount
of data required by a parallel process is large, then extra time is usually required to copy the
data to the worker. In addition, data copies received by the worker consume valuable RAM.
This limits the number of parallel workers that can be employed on a machine as data copies
eventually consume available RAM. It should be noted that multicore can often avoid this
copying overhead, a point that will be addressed later in the paper.

We illustrate these challenges with a simple example shown in Figure 5. We consider the
calculation of 50%, 90%, and 99% quantiles of departure delays for each day of the week
for only the 1995 flights in the airline data set. Although this example only requires two of
the 29 variables and is thus somewhat contrived, many big-data problems would make use of
the complete data and the principle illustrated here provides a scalable solution. We use the
split-apply-combine approach and examine the consequences of parallel programming. After
reading in the airline data for the year 1995, the row indices are split by the day of the week of
each flight. The resulting groups variable is a named list with names corresponding to the day
of the week and the vectors denote the rows in the data where a flight occurred for a given day.
The elements of the resulting groups variable are iterated over in the foreach loop. The body
of the loop computes the quantiles for the departure delays for the day of the week specified
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require(foreach)

x <- read.csv("1995. csv", as.is=TRUE)

# Obtain a list of row indices for each day of the week.

groups <- split (1: nrow(x), x[,"DayOfWeek"])

depDelayQuantiles <- foreach(g=groups , .combine=rbind) %dopar% {

quantile(x[g,"DepDelay"], probs=c(0.5, 0.9, 0.99) ,

na.rm = TRUE)

}

rownames(depDelayQuantiles) <- c("Mon", "Tues", "Wed", "Thu",

"Fri", "Sat", "Sun")

Figure 5: The airline delay quantile calculation using the foreach and the split-apply-combine
approach.

by g. The result of the body of the loop is a vector of quantile values that are combined with
the rbind function, resulting in a matrix, that is stored as the depDelayQuantiles variable.
For convenience and ease-of-use, the rows of depDelayQuantiles are named according to
their respective days.

Over two GB of RAM is required when performing this calculation using four parallel pro-
cesses. If this exhausts available RAM, the operating system would try to compensate by
“swapping” inactively-used RAM to disk. However, swapping is inefficient and results in
much longer execution times. Thus, the memory overhead of a parallel worker effectively
dictates the total number of parallel processes that can be employed.

5. Combining bigmemory and foreach

The challenges described in the previous section can be effectively addressed by providing
shared-memory data structures. Memory overhead associated with copying data to worker
processes can be eliminated when shared-memory data structures are referenced by multiple
R sessions. Instead of creating a copy, a parallel worker receives a descriptor of a big.matrix

which allows for immediate access to the data via shared memory. Hence, the framework
implemented by bigmemory and foreach dramatically increases the ease of development and
efficiency of execution (both in terms of speed and memory consumption) for parallel problems
working on massive sets of data.

GetDepQuantiles <- function(rows , data) {

quantile(data[rows , "DepDelay"], probs=c(0.5, 0.9, 0.99),

na.rm=TRUE)

}

Figure 6: The worker function for calculating the departure delay quantiles for a subset of
the data.
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We present a detailed example of the split-apply-combine approach to finding quantiles of
flight delays using all years of the airline data set. Even if the entire data set were available as
a 12 GB native R matrix in RAM (beyond typical capabilities in 2012), the memory overhead
of providing copies of the data to parallel processes would be prohibitively expensive. Instead,
we provide a scalable parallel solution making use of shared memory. The “worker” function
shown in Figure 6 calculates the desired quantiles for a subset of data given by row indices
rows. Figure 7 shows the sequence of steps in this scalable solution. First, the filebacked
airline data is attached (as described in Section 2 and illustrated in Section 3). Second, a
parallel environment is defined (as described in Section 4). This step could be omitted, in
which case the calculations would be executed sequentially on a single processor. Third, the
split step of the split-apply-combine approach divides the row indices into seven groups, one
for each day of the week (as in Section 4). Finally, foreach is used to define the calculations
required of each worker process. The two important characteristics of this solution are (a)
only the descriptor is passed to the parallel worker, not the large data set and (b) neither the
worker function GetDepQuantiles nor the body of the foreach loop requires modification for
sequential computation or use with alternative parallel computing environments. The result
of this toy exploration appears in Table 1, showing that Tuesdays and Saturdays had less
severe departure delays.

Percentile Mon Tues Wed Thu Fri Sat Sun

50% 0 0 0 0 0 0 0
90% 25 23 25 30 33 23 27
99% 127 119 125 136 141 116 130

Table 1: Quantiles of departure delays by day.

6. Benchmarks

When used together, bigmemory and foreach provide a scalable framework that allows for the
exploration of massive sets of data. However, it is important to note that they also provide
benefits when used with smaller data. In this case, their performance is competitive with R’s
built-in data structures, like matrix, and parallel programming capabilities available in the
base package parallel. To better understand these benefits and to benchmark2 performance,
we constructed square matrices with elements sampled from the uniform distribution. We
selected random subsets of half of the columns. For each of these columns we calculated
sample medians of 10 bootstrap samples. In the first benchmark, we considered different
sized matrices, having between 4,000 and 11,000 rows and columns, holding fixed the number
of processor cores at four. Fixing the degree of parallelization in this way allows us to examine
how each approach scales with the data size. In the second benchmark, we fixed the matrix size
to be 6,000 rows and columns, and examined performance using between 2 and 6 processor
cores. Fixing the matrix size in this way allows us to examine how each approach scales
in the number of parallel processes. Figure 8 shows the implementation using mclapply;

2These benchmarks were performed on a machine running Ubuntu 12.04 (64-bit), 18 GB of RAM, and Intel
Core i7 CPU x 980 @ 3.33 GHz with 6 processor cores.
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# Attach the filebacked airline data set:

library(bigmemory)

x <- attach.big.matrix("airline.desc")

# Optional declaration of a parallel mechanism here , such as

# the following for a 4-worker SNOW parallel environment:

library(foreach)

library(doSNOW)

cl <- makeSOCKcluster( rep("localhost", 4) )

registerDoSNOW(cl)

# Obtain a "descriptor" of the shared -memory airline data , x:

xdesc <- describe(x)

# The "split" of row indices into seven groups ,

# one for each day:

G <- split (1: nrow(x), x[,"DayOfWeek"])

# The real work:

qs <- foreach(g=G, .combine=rbind) %dopar% {

# Provide access to shared -memory airline data:

require(bigmemory)

x <- attach.big.matrix(xdesc)

# Obtain the departure quantiles for the day indexed by g:

GetDepQuantiles(g, x)

}

rownames(qs) <- c("Mon", "Tues", "Wed", "Thu",

"Fri", "Sat", "Sun")

Figure 7: Calculating departure delay quantiles for the entire airline data set in parallel with
shared memory.
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a <- matrix(runif (100*100), nrow =100, ncol =100)

sel <- sample(ncol(a), floor(ncol(a)/2))

bootstrapEstimate <- mclapply(X=sel , mc.cores=4,

FUN=function(x) {

bootstrapMedians <- rep(NA, 10)

for (j in 1:10) {

bootstrapMedians[j] <- as.numeric(quantile(sample(a[,x],

ncol(a), replace=TRUE), probs =0.5))

}

c(mean(bootstrapMedians), sd(bootstrapMedians ))

}

)

Figure 8: The benchmark implementation using mclapply, from the multicore or parallel
packages, and native R matrices.

minor modifications are needed for the sequential and parLapply implementations. Figure 9
shows the implementation using foreach and bigmemory. Out of the combinations presented
only bigmemory and foreach can scale past the size of available RAM; of the others, snow
incurs the most overhead since copies of the data must be made for each parallel process.
However, this overhead can be mitigated when matrix data is managed using bigmemory
since parallel workers can receive descriptors, and then attach to a big.matrix object, rather
than transmitting the data for an entire matrix.

Figure 10 shows the benchmark times for a range of simulation sizes using four processor
cores. The sequential timing (labelled“serial”) is included for reference. In all cases the timing
increases linearly with the data size. The slope associated with the parLapply function, which
makes use of the snow package, is approximately two times steeper because of the overhead
of sending copies of the data to workers. This overhead is mitigated in the case of snow and
bigmemory since matrices do not need to be transmitted to parallel processes. The descriptor
is transmitted and the big.matrix is attached, using fewer memory resources. The mclapply
function, which makes use of multicore, gives the greatest speed gains. However, the approach
using foreach with multicore and shared-memory big.matrix objects is only slightly slower
than mclapply with R’s native matrices.

Figure 11 shows the benchmark results for a fixed matrix size, considering performance as the
number of parallel processes ranges from two to six. Again, the sequential timing is included
and labelled “serial” for reference. Gains in performance are seen with parLapply (which uses
snow) only up to four cores. When more than four cores are employed the communication
overhead required by snow overwhelms the performance gains. When five cores are employed
the fixed cost of using foreach is less than the price of transmitting R matrices to parallel
processes and the combination of foreach and bigmemory sees better performance than its
matrix-snow analogue. The packages relying on multicore see initial decreases in timing
but then the improvements decline as the overhead becomes comparable to the gains seen
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require(doMC)

registerDoMC(cores =4)

y <- as.big.matrix(a, backingfile="benchmark.back",

descriptorfile="benchmark.desc")

ydesc <- describe(y)

bootstrapEstimate <- foreach(x=sel) %dopar% {

require(bigmemory)

y <- attach.big.matrix(ydesc)

bootstrapMedians <- rep(NA, 10)

for (j in 1:10) {

bootstrapMedians[j] <- as.numeric(quantile(sample(y[,x],

ncol(y), replace=TRUE), probs =0.5))

}

c(mean(bootstrapMedians), sd(bootstrapMedians ))

}

Figure 9: The benchmark implementation using foreach and bigmemory.
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Figure 10: The benchmark results for varying simulation sizes using four processor cores.
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from the use of additional parallel processes. As in Figure 10 it is clear that the performance
of bigmemory and foreach is comparable to R’s native matrices used in conjunction with
multicore.

It is important to understand that the parallel packages multicore and snow incur very differ-
ent types of overhead resulting in distinct profiles as they are benchmarked on different size
data. The multicore package creates parallel workers by “forking” an R process. This creates
a copy of the entire R process where memory in the new process is only copied before it is
modified. This fork operation and copy-on-write behavior is quite efficient. The snow package
takes a different approach, spawning worker processes separately from the calling R process.
During a parallel computation all data needed are copied to worker processes. Thus, snow
generally incurs greater communication overhead but has the advantage of working on Win-
dows and Unix platforms. However, snow’s use is not limited to a single machine; it can be
used for parallel computing on a cluster of machines for demanding, large-scale calculations.
For either of these packages, and for parallel computing in general, it is important to under-
stand the associated overhead and make sure that individual computations are substantial
enough to justify the use of parallel computing techniques.

7. Discussion

This paper presents a range of contributions in computing with massive data, shared mem-
ory, and parallel programming. It focuses on the R packages bigmemory and foreach. Other
packages provide additional features. Package biganalytics (Emerson and Kane 2013b) offers
k-means cluster analysis as well as linear and generalized linear model support for use with
the massive data structures. Package synchronicity (Kane 2012) supports process synchro-
nization necessary for advanced parallel programming challenges. For example, package NMF
(Gaujoux 2010) relies upon synchronicity for conducting a non-negative matrix factorization
with a parallel algorithm requiring a sophisticated synchronization scheme. Package bigalge-
bra (Kane, Lewis, and Emerson 2012) allows native R matrices and big.matrix objects to
be sent to optimized, 64-bit BLAS and LAPACK libraries and can be used in conjunction
with the partial singular value decomposition as described in Baglama and Reichel (2005)
and implemented in package irlba (Baglama and Reichel 2012).

Initial massive data explorations often lead to formal analyses using well-established methodol-
ogy, but they could also lead to the development of new methodology. Some existing methods
may be easily re-implemented with filebacked memory-mappings for use with massive data.
Other methods may demand substantively new algorithms or modifications. Miller (1992),
for example, offers an incremental algorithm for linear and generalized linear modeling that
is suitable for the analysis of massive data. Similarly, Baglama and Reichel (2005) present a
new algorithm for a truncated singular value decomposition which may provide a sufficient
alternative to a complete principal component analysis in many applications. Our frame-
work provides an effective platform for further development and parallelization of statistical
computing methodology.

Efron (2005) notes, “We have entered an era of massive scientific data collection, with a
demand for answers to large-scale inference problems that lie beyond the scope of classical
statistics.” We believe that “classical statistics” should include “computational statistics.”
Researchers were able to engage the Netflix data challenge on modern hardware and make
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advances in predicting ratings. However, the fact that many statisticians struggle to engage
massive data research opportunities shows that new computational tools are essential. One
contribution of our work is to level the playing field, making it more likely that statisticians
with diverse backgrounds and resources can all participate.

Ihaka and Temple Lang (2008) argue that although R has had a tremendous impact on statis-
tics, we should not assume that significant future development of the language is a given.
Major changes risk disrupting the user community, slowing the evolution of the environment.
At the same time, the nature of applied research in the field of statistics continues to increase
demand for advanced statistical computing capabilities, including the analysis of massive
data and flexible parallel programming. The R packages introduced in this paper offer (a)
short-term solutions to current size limitations of the R environment and (b) a simple, ele-
gant framework for portable parallel computing. However, these solutions also point towards
a general design for scalable statistical computing that could be used in future statistical
computing environments or a future major revision of R itself.
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