
ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM
ON A RANDOM GRAPH

MICHAEL KANE

As a special project for Spring and Summer 2007 David Pollard and I have
been studying a graph coloring algorithm proposed by Achlioptas and
Molloy (1997). By relying on heuristic arguments, they claimed to be able
to find the probability of success for a proposed graph coloring algorithm
on Erdös-Rényi graphs. This paper is a progress report detailing our
attempts to rigorously derive similar success-probabilities in the special
case of the 3-color problem.

1. THE ALGORITHM AND ITS REPRESENTATION

For a graph with n vertices, the Achlioptas and Molloy algorithm attempts
to color each vertex such that no vertex has the same color of any as any of
its neighbors. The algorithm begins by associating each vertex with its own
list of possible colorings {A,B,C}. Let Lv be the the color list for vertex
v. When a vertex is colored it will be referred to as having a fixed color.
When a vertex has a fixed color its list size can be regarded as zero. This
will allow us to distinguish between a vertex with 1 possible coloring and a
vertex that is assigned a color. For a graph with n vertices, the algorithm is
defined as:

Date: October 15, 2008.
1

ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH 2

for n iterations do
Choose uniformly at random a vertex v from vertices with smallest

list size greater than zero;
Pick a color ζ uniformly at random from Lv;
Fix v with color ζ;
foreach vertex u not in the set of fixed-color vertices do

if u is a neighbor of v then
Remove ζ from u’s color list, that is,

change Lu to Lu \ {ζ};
if Lu is empty then

The algorithm fails;
end

end
end

end
Algorithm 1: The Greedy Graph Coloring Algorithm

If the algorithm executes for all n iterations and does not reach the fail
state, the algorithm succeeds. It should be noted that for 1 ≤ t ≤ n,
SL(t) = t.

Let Lα denote the set of α-color combinations. For example,
L2 = {{A,B}, {A,C}, {B,C}}. Define L1 and L3 similarly. Then, let
Sβ(t), with β ∈ L2, denote the number of vertices at time t with 2-color
list β. Denote the size of individual 1-color lists similarly. Employing a
slight abuse of notation, let S3(t), S2(t), and S1(t) denote the number of
vertices with, 3-color, 2-color, and 1-color lists respectively. SF (t) denotes
the number of vertices with empty color list and SL(t) denotes the number
of vertices with fixed color.

It is difficult to determine the probablity that the algorithm will succeed for
any particular graph. However, Achlioptas and Molloy were able to make
probability assertions when the algorithm is run on a particular type of
random graph, the Erdös-Rényi graph.

For the ER graph on n vertices, each
(

n
2

)
possible edges is included with

probability c/n. We can delay the selection of edges connected to a vertex
v until the neighbors of v are found in the algorithm. In this way the
algorithm becomes a Markov chain with state space given by the set of
vertex counts. The rest of this report assumes an ER graph in the analysis.

ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH 3

FIGURE 1. A Representation of the Progress of the Algorithm

2. WHEN c < 1 THE ALGORITHM SUCCEEDS WITH HIGH PROBABILITY

The algorithm starts by selecting a vertex in the set of vertices with
color-list of size 3. This set will be referred to as the 3-stack. Since the
fixed-color vertex’s neighbors lose a possible fixed color, they move to a
2-stack. There is a c/n probability of a vertex being a neighbor of another
vertex in the graph. Since there are always at most n uncolored vertices, at
time t the number of 3-color vertices that become 2-color vertices is
stochastically dominated by a random variable with Bin(n, c/n)
distribution. For the case where c < 1, the the expected number of vertices
which go from the 3-stack to a 2-stack is less than 1 at each time step.
Since the algorithm moves 1 vertex to the fixed color stack at any time,
when a vertex is moved to the 2-color stack it is quickly moved to the fixed
color stack in the next time step. This implies that, with high probability,
when c < 1 the algorithm will succeed.

3. 1-STACKS STAY SMALL UNTIL ORDER n1/3

For a vertex to be a member of a 1-stack at time t, it must have been chosen
twice to have a color from its color-list removed. Each of the other t− 2
times it was not selected to be colored and was not adjacent to a vertex
being colored. This means that the probability of a given vertex being in a

ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH 4

1-stack at time t is at least

(3.1) p1(t) =

(
t

2

)(c
n

)2

This implies that the expected number of 1-stack vertices up to time m1 is
less than

(3.2)
m1∑
t=1

np1(t) ≤
m1∑
t=1

t2

2

c2

n
=
c2

6n
m3

1

For a given ε1 > 0, if an m1 is chosen as a suitably small multiple of n1/3,
we can ensure that P{S1(m1) > 0} < ε1.

4. THE PROBABILITY OF FAILURE IS SMALL UNTIL ORDER n2/3

For a vertex to reach the fail state at time t, it must have been chosen three
times to have a color-list removed. This means that the probability of a
vertex reaching the fail state at time t is at least

pf (t) =

(
t

3

)(c
n

)3

.

Then, the expected number of vertices in the fail state at time t is
dominated by

(4.1) PSF (t) ≤ n

(
t

3

)(c
n

)3

≤ t3

6

c3

n2
.

For a given εF > 0, if an mF is chosen as a suitably small multiple of n2/3,
we can ensure that P{SF (mf) > 0} < εF

5. AN UPPER BOUND ON THE MAXIMUM S2(t)

Using the fact that the number of vertices going from the 3-stack to a
2-stack is stochastically dominated by bt ∼ Bin(n, c/n),

(5.1) max
1≤t≤t̃

S2(t) ≤
t̃∑

t=1

bt

and therefore to get an upper bound on the biggest S2(t) it is sufficient to
get a bound on the size of the sum of bt. This can be done by centering
each of the bt values and then applying the Bennett Inequality.

Following the justification for the Bennet inequality given in (Pollard 2001,
Chapter 11), if X ∼ Bin(n, p), then

(5.2) P{X ≥ ε} ≤ exp

(
− (ε− np)2

2np(1− p)
ψ

(
n(ε− np)

np(1− p)

))

ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH 5

where

ψ(x) :=

{
2 ((1 + x) log(1 + x)− x) /x2 for x ≥ −1 and x 6= 0
1 for x = 0.

If x ≤ 17 then ψ(x) > 1/4. For the binomial case this implies that when
ε+ np ≤ 17, Equation (5.2) becomes

P{X ≥ ε+ np} ≤ exp

(
− (ε− np)2

4np(1− p)

)
between ε = np and ε− np ≤ 17 there is a sharp decrease in the
probability that X will be larger than ε. In otherwords, the probablity that
X will is larger than its expected becomes small quickly in ε.

Getting back to the case of S2(t), it can be seen that the sum of binomial
term in Equation (5.1) is distributed as Bin(nt̃, c/n). This implies that at
time t̃ there is, at most, only a small probability that S2(t) will be greater
than t̃c.

6. CLEARING OUT 1-STACKS

From the last two sections we see that at early stages of the algorithm, all
vertices have color list sizes of either 2 or 3. Equation (3.2) indicates that at
some time of order n1/3, some vertices begin to have color list sizes of 1.
Since a vertex gets to a 1-stack from a 2-stack and the size of a 2-stack is
relatively small at this time, it seems reasonable that for the first few times
the 1-stack becomes non-empty, the number of vertices going from a
2-stack to a 1-stack is relatively small. By a time of order n2/3 there is a
danger that a vertex’s color list will become empty and the algorithm will
fail. This section examines the behavior of the 1-stacks at times of order
n2/3.

Let t0 = εcn
2/3 be a random time. Let

τ1 = min{t ≥ t0 : S1(t) = 0}.

This is the first time a 1-stack becomes empty after a random time of order
n2/3. Let s > 1 be a number of steps after t0. Let N be the number of
vertices that drop to a 1-stack between time t0 and t1 = t0 + s. Then

{τ1 > t0 + s} ≤ {N ≥ 1}+ {S1(t0) ≥ s}.

The number of time steps to clear out the 1-stack is less than the size of the
1-stack at time t0 plus the number of vertices that go to the 1-stack between
time t0 and t1.

ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH 6

By Equation (3.1), the probability a vertex ends up in a 1-stack at time t0 is
less than p1(t0). Since, at time t0 there are less than n nodes that have not
been colored, the distribution of S1(t0) is stochastically dominated by a
Bin(n, (ct0)

2/2n) distribution. Using the results Bennet bound results form
the previous section, P{S1(t0) ≥ s} will be close to 1 in s until

s = (ct0)
2/2

at which point the probability will decrease quickly.

From time t0 to t1, vertices can get to the 1-stack from either the 3-stack or
the 2-stack. Let ∆t0Bv,t1 be the number of times vertex v is chosen to lose
a color from its color from t to t1. Let V , V3(t) and V2(t) be the set of all
vertices, and the set of vertices with color list sizes 3 and 2 respectively.
Then,

N =

t1∑
t=t0

(∑
v∈V

{v ∈ V3(t)}{∆t0Bv,t1 = 2}+ {v ∈ V2(t)}{∆t0Bv,t1 = 1}

)

≤
t1∑

t=t0

c

n
S3(t) +

(c
n

)2

S2(t)

≤ sc

n
(c+ S2(t2)) .

This means that

(6.1) P{N ≥ 1} ≤ P
{
S2(t2) ≥

n

sc
− c
}
.

Again, from the Bennet bound found in the last section, when the expected
value of

∑
bt gets more than its mean, this probability goes to zero

quickly. This means Equation (6.1) decreases sharply at

ct20
2

=
n

sc
− c

or

(6.2) s =
n

c2

(
t20
2

+ 1

)
.

It may be noted that in general the bound found in Equation (6) is smaller
than Equation (6.2). This means that there is a sharp decrease in the the
probility of hitting τ after t0 + s when s = (ct0)/2.

7. A SUMMARY AND JUSTIFICATION FOR SUBSEQUENT SECTIONS

The previous sections it has been shown that the Achlioptas and Molloy
algorithm will have empty 1-stacks up to a time of order n1/3. At this time

References 7

a 1-stack will become non-empty, but it will return to being empty after a
short amount of time. It seems likely that the 1-stack is emptied because
the number of vertices entering from the 2-stacks is small. We suspect that
similar behavior will continue but, as time progresses, the number of
vertices going from 2-stack to 1-stacks will increase. As a result it will take
longer to empty the 1-stacks. At a time of order n2/3 it is possible for the
algorithm to fail. Failure will occur because as the number of vertices in
1-stacks increases it becomes more likely that a vertex will be chosen to
move to the fail state.

If the algorithm does not fail, it is because the size of the 1-stack does not
get too big. In the success case, the size of the 3-stacks will eventually
become small and as a result, the number of vertices going to 2-stacks and
1-stacks will become negligible. If the algorithm successfully executes to
this time the failure probability will go to zero.

The analysis performed in subsequent sections is motivated by the idea that
to understand the probability of the algorithm failing we need to
understand how the 1-stacks behave during the time interval where the
algorithm is in danger of failing.

REFERENCES

Achlioptas, D. and M. Molloy (1997). The analysis of a list-coloring
algorithm on a random graph (extended abstract). Proceedings of the
38th IEEE Symposium on Foundations of Computer Science,
204–212.

Pollard, D. (2001). A User’s Guide to Measure Theoretic Probability.
Cambridge University Press.

