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As a special project for Spring 2007, a graph coloring algorithm proposed
by Achlioptas and Molloy (1997) is analyzed.

1. INTRODUCTION

1.1. The Achlioptas Molloy Paper.

Achlioptas and Molloy (1997) introduce a greedy algorithm for k-coloring
graphs. For a graphG = (V, E) with V vertices andE edges, denoteLv as
the list of available colors for vertexv in V . The algorithm is given as
follows:

• Initialize: U = V , andLv = {1, ..., k} for everyv ∈ V .
• While U 6= ∅:

(1) At time t select a vertexvt uniformly at random from
{vt ∈ U : |Lv| is smallest}

(2) Assign tovt a colorω chosen uniformly at random fromLv,
and setU = U \ {vt}

(3) For eachu ∈ U that is a neighbor ofvt setLu = Lu \ {ω}
(4) If Lv = ∅ for anyv ∈ V then the algorithm fails.

Achlioptas and Molloy analyzed the algorithm on random graphs to find
the probability of its success or failure on Erdös-Ŕenyi Graphs (Section
1.2). They claimed that for the three color problem an Erdös-Ŕenyi Graph
G(n, c/n) with 1.923n edges, the probability of colorability tends to 1 asn
increases. Furthermore, for the generalk-coloring problem, they claimed
that the analysis implies that fork ≥ 3, if c ≤ k log k − 3/2k, then the
probability the succeeds goes to 1 asn increases. Finally, they claim that
for anyε > 0, andk sufficiently large, ifc ≥ (1 + ε)k log k, then the
probability the algorithm fails goes to 1 asn increases.

1.2. The Erdös-Ŕenyi Graph. This report is concerned with the
probabilistic behavior of the given graph coloring algorithm when applied
to anErdös-Ŕenyi GraphG(n, p) asn tends to infinite andp tends to zero
at a rate of1/n. The graphG(n, p) hasn vertices with each of

(
n
2

)
possible
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edges being considered independently for inclusion with probabilityp.
Thus, the total number of edges is random with distribution

Bin(m, p) wherem =

(
n

2

)
.

It should be noted that in the analysis (as with this paper) it is assumed that
the topology of the graph is not given entirely at the beginning of the
algorithm. Instead, we learn about the graph as the algorithm proceeds.
This is the principle oflate binding, which has also been called the
principle ofdeferred decisions(le principe d’ajournement des décisions) in
Knuth (1976, Chapter 3) In the analysis of the algorithm, this method is
employed so that at each step, the vertices that are exposed are those
adjacent to colored vertices.

2. MODEL DESCRIPTION

For simplicity, I discuss the algorithm on Erdös-Ŕenyi graphs only for the
casek = 3. Let the colors being considered be denotedA, B, C. Let Nt

denote the number of vertices withLv = {A, B, C} at timet. Let X1(t),
X2(t), X3(t) Y1(t), Y2(t), andY3(t) denote the number of vertices whose
possible list colorings areAB, AC, BC, A, B, andC respectively at time
t. Thus

St = X1(t) + X2(t) + X3(t).

denotes the total number of vertices with 2 possible colorings at timet.
Conditioning on all information up through timet, the expected value
PtSt+1 depends only on its previous valueSt. Therefore the sequence of
random variables,S0, S1, ...St is a Markov Chain.

For graph withn vertices, the algorithm starts withN0 = n,
X1(0) = X2(0) = X3(0) = Y1(0) = Y2(0) = Y3(0) = 0, andV = U ; At
the first iteration:

• Select av1 in V .
• Select its color. Say it isC.
• Sayv1 hasb1 neighbors. For each of theseb1 neighbors removeC

from the list of possible colorings, leavingX1(1) = b1 and
N1 = n− b1 − 1.

• Discardv1, leaving uncolored verticesV = V \ {v1}.
At the second iteration:

• Selectv2 at random fromb1 vertices withLv = {A, B}.
• Select a color forv2 from {A, B}. Say it isB.
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FIGURE 1. A Visualization for the List Counts: At timet,
the algorithm is described by the countsX1(t), X2(t), X3(t),
Y1(t), Y2(t), Y3(t). If a vertex does not have possible color-
ing, the algorithm fails.

• Sayv2 hasb2 neighbors. For each of theseb2 neighbors removeB
from the list of possible colorings.

• Discardv2.

At this stageX2(2) = b2 andN2 = n− S2 − 2. There is also a small
probability at this stage that a small number of vertices with color list
{A, B} will have neighborv2 in which case those vertices have color list
{A} at the end of this stage.

A visualization of the vertex list counts is shown in Figure (1). At stages in
the algorithm where there are 1-color vertices, the algorithm removes a
1-color vertex thereby reducing the 1-color count by 1. At the same time a
number of vertices go from a 3-color to 2-color lists. Depending on the
number of 2-color lists, some of the 2-color lists may become 1-color lists.
The algorithm proceeds until either it fails or all vertices are colored.

For the algorithm to fail, there must be at least 2 vertices with the same
1-color list and these vertices must be adjacent to each other at some time
t < n. At t + 1 a number of vertices have empty color lists, and this means
the algorithm has failed to find a valid coloring.
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3. THE SIMPLIFIED MODEL

It is not immediately clear how to analyze all list counts in the algorithm,
and managing all of these variables may become unwieldy. Therefore, as a
first-pass, I consider a simplified model with vertices only having color
lists{A, B, C}, {A, B}, {A, C} and{B, C}. Also, under the simplified
model, colored vertices will not be removed from the system.

In the first step of the simplified algorithm,t = 0, X1(t), X2(t), andX3(t)
are chosen with equal probability. Fort > 1, a vertex with color lists
{A, B}, {A, C}, or {B, C} is picked to be colored proportional to its
respective list count. In other words, for vertices with color list{A, B} at
time t, denotedVAB(t),

P{a vertex inVAB(t) is colored att + 1|X1(t), X2(t), X3(t)} =
X1(t)

St

.

Let bt+1 be the number of vertices that go from 3-color lists to 2-color lists.
Then, the probability that the size of the 2-color list{A, C} goes from
X2(t) to X2(t) + bt+1 is the probability that a vertex with color list{A, B}
or {B, C} is picked to be colored times the probability that the color
picked isB. Write Pt for the conditional probability conditioned on
information through timet, then we can write

Pt{X2(t + 1) = X2(t) + bt+1} =
1

2

(
X1(t) + X3(t)

St

)
=

1

2

(
1− X1(t)

St

)
.

Let Xt be(X1(t), X2(t), X3(t)) and letεt+1 indicate which stack getbt+1

items att + 1. Then

πt = Ptεt+1 =
1

2
. (1−Xt/St)

For the simplified model, the state of the system at time at timet being
determined by the countsNt andXt = (X1(t), X2(t), X3(t)) is a Markov
chain. Again, defineSt =

∑
i Xi(t), then then transition to a state at time

t + 1 is controlled by two conditionally independent quantitiesbt+1 with a
Bin(Nt, c/n) distribution andεt+1 with a multinomial(1, πt) distribution.
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Where

πt = (π1(t), π2(t), π3(t))

=

{
(1/3, 1/3, 1/3) if t = 0
1
2
(1−Xt/St) if t ≥ 1.

It may be noted that this indicates that if at a given timet, X1(t) is much
larger than bothX2(t) andX3(t), then a vertex with color list{A, B} is
more likely to be selected for coloring. Therefore, fori > 0, X1(t + i) is
unlikely to receive more items until its size is closer toX2(t + i) or
X3(t + i). A more formal justification of this balancing mechanism is
provided in Section (3.2).

3.1. The Distribution of Nt and St. Letting q = 1− c/n, the distribution
of vertices with color list{A, B, C} is

Nt ∼ Bin(n, qt).

For a vertex’s color list to remain{A, B, C} at timet, it must survivet
independent attempts at removing it. Each of these steps has a has
probabilityq of failure.

In the simplified model,
St = n−Nt

and therefore, distribution ofSt is

St ∼ Bin(n, 1− qt)

3.2. X1(t), X2(t), and X3(t) Remain Balanced.Define

∆t+1X = Xt+1 −Xt = bt+1εt+1.

In order to show thatX1(t) ≈ X2(t) ≈ X3(t) with high probability, it is
enough to consider each differences between 2-color stack sizes. The
behavior of

Zt = X1(t)−X3(t)

is typical.

Let
γt+1 = ε1(t + 1)− ε3t + 1

and
∆t+1Z = Zt+1 − Zt.
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The conditional probability ofZt by ∆t+1Z is then

PtZt∆t+1Z = ZtPt∆t+1Z

= ZtPtbt+1Ptγt+1

= ZtNt
c

n

1

2
(1−X1(t)/St − 1 + X3(t)/St)

= −1

2

c

n

Nt

St

Z2
t

≤ 0

This implies that if, at some time, the difference|XAB(t)−XBC(t)| gets
large, the stack selection process ensures that it will not remain large for
long since subsequent iterations of the algorithm will tend to reduce this
difference. Also, since the choice of stacks used to defineZt was arbitrary,
this negative feedback mechanism exists between all two-color each pair of
elements inXt. Now, if it can be shown that the expected conditional
differencesPtZ

2
t+1 cannot grow too quickly, it can be concluded that theZt

tends to be around zero.

3.3. PtZ
2
t+1 is Bounded for by a Constant. We would like to show the

expected conditional differencesPtZ
2
t+1 cann not grow too quickly int

PtZ
2
t+1 = Pt(Zt + ∆t+1Z)2

= Z2
t + ZtPt∆t+1Z + Pt∆t+1Z

2

≤ Z2
t + Ptb

2
t+1Ptγ

2
t+1

≤ Z2
t + Ptb

2
t+1 sinceγ2

t+1 ≤ 1

≤ Z2
t + (c + c2) sincePtbt+1 ≤ c + c2.

From this we can conclude

PZ2
t+1 ≤ PZ2

0 + t(c + c2).
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