ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM
ON A RANDOM GRAPH

MICHAEL KANE

As a special project for Spring 2007, a graph coloring algorithm proposed
by Achlioptas and Molloy (1997) is analyzed.

1. INTRODUCTION

1.1. The Achlioptas Molloy Paper.

Achlioptas and Molloy (1997) introduce a greedy algorithm for k-coloring
graphs. For a grap@y = (V, F) with V' vertices and~ edges, denoté, as
the list of available colors for vertexin V. The algorithm is given as
follows:
e Initialize: U =V, andL, = {1, ..., k} for everyv € V.
e While U # ():
(1) Attimet select a vertex, uniformly at random from
{v: € U : |L,| is smallest}
(2) Assign touv; a colorw chosen uniformly at random fro,,
andse/ = U \ {v:}
(3) For each: € U that is a neighbor of; setL, = L, \ {w}
(4) If L, = ( for anyv € V then the algorithm fails.

Achlioptas and Molloy analyzed the algorithm on random graphs to find
the probability of its success or failure on BedRenyi Graphs (Section
1.2). They claimed that for the three color problem andsr&enyi Graph
G(n, c/n) with 1.923n edges, the probability of colorability tends to 1ras
increases. Furthermore, for the genéraloloring problem, they claimed
that the analysis implies that fér> 3, if ¢ < klog k — 3/2k, then the
probability the succeeds goes to lrascreases. Finally, they claim that
for anye > 0, andk sufficiently large, ifc > (1 + )k log k, then the
probability the algorithm fails goes to 1 asncreases.

1.2. The Erdds-Réenyi Graph. This report is concerned with the
probabilistic behavior of the given graph coloring algorithm when applied
to anErdds-Renyi GraphG(n, p) asn tends to infinite ang tends to zero

at a rate ofl /n. The graph(n, p) hasn vertices with each of?) possible
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edges being considered independently for inclusion with probalpility
Thus, the total number of edges is random with distribution

Bin(m, p) wherem = <Z)

It should be noted that in the analysis (as with this paper) it is assumed that
the topology of the graph is not given entirely at the beginning of the
algorithm. Instead, we learn about the graph as the algorithm proceeds.
This is the principle ofate binding which has also been called the

principle ofdeferred decisionfe principe d’ajournement desdision$ in
Knuth (1976, Chapter 3) In the analysis of the algorithm, this method is
employed so that at each step, the vertices that are exposed are those
adjacent to colored vertices.

2. MODEL DESCRIPTION

For simplicity, | discuss the algorithm on EystRenyi graphs only for the
casek = 3. Let the colors being considered be denated, C. Let N,
denote the number of vertices with = {A, B, C'} at timet. Let X(¢),
Xo(t), X3(t) Yi(t), Yao(t), andYs(t) denote the number of vertices whose
possible list colorings ard B, AC, BC', A, B, andC respectively at time
t. Thus

Sy = Xu(t) + Xo(t) + Xs(t).

denotes the total number of vertices with 2 possible colorings atttime
Conditioning on all information up through tiniethe expected value
P,S; 1 depends only on its previous valde Therefore the sequence of
random variablesS,, Sy, ...S; is a Markov Chain.

For graph withn, vertices, the algorithm starts with, = n,
X1(0) = X5(0) = X3(0) = Y1(0) = Y5(0) = Y3(0) = 0, andV = U; At
the first iteration:

e Selecta; inV.
e Selectits color. Say it i€'.
e Sayw; hasb; neighbors. For each of thesgneighbors removeé’
from the list of possible colorings, leaving; (1) = b, and
Nl =n — bl — 1.
e Discarduv;, leaving uncolored verticds = V' \ {v; }.
At the second iteration:

e Selectv, at random fromb, vertices withL, = {A, B}.
e Select a color fop, from { A, B}. Say itisB.
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FIGURE 1. A Visualization for the List Counts: At time
the algorithm is described by the coutds(t), X»(t), X5(t),
Yi(t), Ya(t), Ys(t). If a vertex does not have possible color-
ing, the algorithm fails.

e Saywv, hasb, neighbors. For each of theégneighbors removés
from the list of possible colorings.
e Discarduvs.

At this stageX,(2) = b, and N, = n — S, — 2. There is also a small
probability at this stage that a small number of vertices with color list
{A, B} will have neighbom, in which case those vertices have color list
{A} at the end of this stage.

A visualization of the vertex list counts is shown in Figure (1). At stages in
the algorithm where there are 1-color vertices, the algorithm removes a
1-color vertex thereby reducing the 1-color count by 1. At the same time a
number of vertices go from a 3-color to 2-color lists. Depending on the
number of 2-color lists, some of the 2-color lists may become 1-color lists.
The algorithm proceeds until either it fails or all vertices are colored.

For the algorithm to fail, there must be at least 2 vertices with the same
1-color list and these vertices must be adjacent to each other at some time
t < n. Att+ 1 anumber of vertices have empty color lists, and this means
the algorithm has failed to find a valid coloring.
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3. THE SIMPLIFIED MODEL

It is not immediately clear how to analyze all list counts in the algorithm,
and managing all of these variables may become unwieldy. Therefore, as a
first-pass, | consider a simplified model with vertices only having color
lists{A, B,C}, {A, B}, {A,C} and{B, C'}. Also, under the simplified

model, colored vertices will not be removed from the system.

In the first step of the simplified algorithm= 0, X, (), X»(¢), andX5(t)
are chosen with equal probability. For- 1, a vertex with color lists
{A, B}, {A,C}, or{B,C} is picked to be colored proportional to its
respective list count. In other words, for vertices with color{idt B} at
time ¢, denoted/,5(t),

P{a vertex inV,5(t) is colored at + 1|X;(t), Xa(t), X3(t)} = X;(t)_
t

Let b, ; be the number of vertices that go from 3-color lists to 2-color lists.
Then, the probability that the size of the 2-color fst, C'} goes from

Xs(t) to Xo(t) + by is the probability that a vertex with color ligtd, B}

or { B, C'} is picked to be colored times the probability that the color
picked isB. Write IP, for the conditional probability conditioned on
information through time, then we can write

1 1_ Xi(t)

2 S, )
Let X; be (X (t), X2(t), X3(t)) and lets,; indicate which stack gek_
items att + 1. Then

(1= X/S)

N

T = Prery =

For the simplified model, the state of the system at time at tibveang
determined by the counts; and X; = (X;(¢), X2(t), X5(¢)) is a Markov
chain. Again, define; = > . X;(¢), then then transition to a state at time
t + 1 is controlled by two conditionally independent quantities with a
Bin(N;, ¢/n) distribution anck,;; with a multinomial(1, ;) distribution.
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Where

7 = (m1(t), mo(t), m3(t))
_{ (1/3,1/3,1/3)ift =0
T s (1= Xy/S) ift > 1.

It may be noted that this indicates that if at a given tim&, () is much
larger than bothX,(t) and X;(t), then a vertex with color lisfA, B} is
more likely to be selected for coloring. Therefore, far 0, X, (t + i) is
unlikely to receive more items until its size is closerXg(t + ¢) or

X3(t +14). A more formal justification of this balancing mechanism is
provided in Section (3.2).

3.1. The Distribution of NV, and S,. Lettingq = 1 — ¢/n, the distribution
of vertices with color lis{ A, B, C'} is

N; ~ Bin(n, ¢").

For a vertex’s color list to remaif4, B, C'} at timet, it must survivet
independent attempts at removing it. Each of these steps has a has
probability ¢ of failure.

In the simplified model,
St =n — Nt
and therefore, distribution o, is
S; ~ Bin(n,1 — ¢")
3.2. Xi(t), X5(t), and X3(t) Remain Balanced. Define
A1 X = X — Xy = bpigiga.

In order to show thak (¢) ~ X,(t) ~ X3(t) with high probability, it is
enough to consider each differences between 2-color stack sizes. The
behavior of

Zy = Xq(t) — X3(t)
is typical.

Let
Yer1 =€1(t+1) —est + 1
and
AerZ = Zor — Zs.
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The conditional probability ofZ; by A, ;7 is then
]PtZtAt-I—lZ = ZtPtAt+IZ
= ZiPibe 1Py

_ tht%u ~X0(1)/S — 1+ Xa(t)/Sh)

<0

This implies that if, at some time, the difference,z(t) — Xpc(t)| gets

large, the stack selection process ensures that it will not remain large for
long since subsequent iterations of the algorithm will tend to reduce this
difference. Also, since the choice of stacks used to defineas arbitrary,

this negative feedback mechanism exists between all two-color each pair of
elements inX;. Now, if it can be shown that the expected conditional
differencedP, Z7,, cannot grow too quickly, it can be concluded that fhe
tends to be around zero.

3.3. P,Z7,, is Bounded for by a Constant. We would like to show the
expected conditional differenc&Z2_, cann not grow too quickly in

P2}y =P Z + A Z)?
=7} + ZIP DN Z + P 2P
< ZP+ Ptbfﬂpt%%rl
< 77+ P}, sinceyt, <1
< Z2+ (c+ ) sincePb;q < ¢+ 2.
From this we can conclude
PZ} . <PZ5+t(c+ ).
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