ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM
ON A RANDOM GRAPH

MICHAEL KANE

As a special project for Spring 2007, a graph coloring algorithm proposed
by Achlioptas and Molloy (1997) is analyzed.

1. INTRODUCTION

1.1. The Erd6s-Renyi Graph. This paper is concerned with the behavior

of a graph coloring algorithm on a random graph. A random graph is a
graph generated by some random process. Specifically, the random graphs
that will be utilized in this paper arérdos-Renyi GraphgER Graphs). ER
Graphs are generated by creating edges between each pair of vertices with
equal probability independent of other edges. In this paper, the ER Graph
variant being utilized is denoted l6y(m, p). For this graphyn is the number

of vertices, and an edge between any two vertices with probabilitpn
averagemp edges will appear in graph, and the degree of each vertex is
distributed binomial. That is, for a vertexin the set of vertice¥ of an ER
GraphG(m, p)

P {deg(v) = k} = (]I\f)pk(l — p)M=* whereM = (?)

It should be noted that, in this equatiavi, is is the total number of possible
edges.

1.2. The Threshold Phenomenon and Graph Coloring.In their paper on
random graphs, Ei and Rnyi (1960) prove the existence of a threshold
phenomena. For a graph propely which exhibits the threshold phenom-
ena, the probabilityG(m, p) has@ increases sharply at a certain critical
value ofp. One of the properties which shows this behavior is the chromatic
number of a graph.

Graph Coloring or more specificallertex Coloring refers to an

assignment of colors to the vertices of a graph such that no neighbors share
the same coloring. Two vertices in a graph are neighbors if they share an
edge. A coloring that uses at mastolors is called a (propek)-coloring.
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The minimum number of colors needed to properly color a graph is called
its chromatic number and is denotgd).

1.3. The Achlioptas Molloy Paper.

In Achlioptas and Molloy (1997) a greedy graph coloring algorithm for
graphs is introduced. For a graph= (V, E) with V' vertices and® edges,
denoteL, as the list of available colors for vertexin V. The algorithm is
given as follows:
e Initialize: U =V, andL, = {1, ..., k} for everyv € V.
e While U # 0:
(1) Attimet select a vertex; uniformly at random from
{v: € U : |L,| is smallest}
(2) if |L,| >0
— then assign te; a colorw chosen uniformly at random
from|L,|, and setU = U \ {v;}
— else exit (fail).

(3) For each: € U that is a neighbor of; setL, = L, \ {w}
In addition to proposing this algorithm, the paper also provides an analysis
its effectiveness. It should be noted that in the analysis (as with this paper)
it is assumed that the random graph is not given entirely at the beginning of
the algorithm. Instead, we learn about the graph as the algorithm proceeds.
This constraint, proposed by (D.E. Knuth 1990), is calledniethod of
deferred decisiondn the analysis of the algorithm, this method is
employed so that at each step, the vertices that are exposed are those
adjacent to colored vertices.

2. MODEL DESCRIPTION

In this paper we start by considering the algorithm with: 3. Let the

colors being considered be denotédB, C'. For each step in the algorithm
a given node is colored and the number of possible colorings for adjacent
nodes is decreased. L&tdenote the number of nodes whose colorings
may beA, B, or C. Then,

N=> {L,={A,B,C}}.
veV
Also, let X 45, X ¢, Xpc denote the number of nodes whose possible list
colorings areA B, AC, and BC respectively. Finally, let
S, = XAB<t) + XAc(t) + Xpc.

That is,S; denotes the total number of vertices with 2 possible colorings at
timet.
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FIGURE 1. A Visualization for the List Counts

For a given graph the algorithm proceeds as follows. At the first stage,
select as; in V' uniformly at random. Select its color uniformly at random
over the three colors. Say it{s. For each of its neighbors (of which there
areb; ~ Bin(n — Sy, ¢/n)) remove the” from its list of possible colorings
and discard;,. This causes(45(1) to haveb, items, and this cause¥, to
haven — S; — 1 items. Next, select one of th€,,5(1) vertices uniformly

at random and call it,. The color forv, is selected uniformly at random
from A or B; say itisB. All of vy’s neighboring nodes havé removed

from their possible colorings. This caus¥s(t) to receiveb, items and

N, to haven — S2 — 2 items. Depending on the connectivity of the graph,
it is also possible at this stage that a small number of items could go from
eitherX 45 or X o to Yy, Yg, or Ye. If this is the case, then the vertex
selected for coloring at the next step is chosen from one of the single-color
vertices. If it is the case, that at somm the algorithm, a number of items
go from a stack of single colorings to tifeil state, then the algorithm

fails to correctly color the graph. The algorithm continues until either all
vertices in the graph are colored or it fails. A visualization of the structure
of this algorithm is shown in Figure (1).

Consider the following simplification of the model. Suppose that the model
in Figure (1) is restricted to have only vertica®C', AB, AC, andBC.

Also, instead of discarding a colored vertex, which reduces the total vertex
count by 1, this item will remain in its respective stack.
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The number of items flowing from BC' to a two-color vertex stack at
timet + 1 given the number of items in each of the two-color stacks will be
modeled as
biy1 ~ Bin(n — S, ¢/n)
where
Sy = XAB(t> + XAc(t) + XBc(t)

At a given timet one of the stackX 4z, X a¢, Or X is picked to be
colored. The stack is chosen proportional to the number of elements it has.
In other words,

_ Xpe(t)

P{Xc will be picked at timet + 11X (t), Xac(t), Xpo(t)} = =~
t

After picking one of the stacks, one of the unpicked stacks is selected to
receive a number of items froid 4. Lete; be the indicator function
telling which of the stacks will receivig. In other words

{AB received,}
er = | {AC received,}
{BC received,}

If at timet, AB is selected for coloring, then with equal probability it will
be given colorA or B. This means that with equal probability,will go
from ABC to BC or AB respectively. Lettindg®; denote the probability
conditioned on information through tinigit can be seen that

Xac®)+Xpc(t) 1— Xap(t)
Ll Xm0 X mo () 1 Xohw
& = Piep = 5 | =S S, G ) 1- —Agct
Xact)+Xap(t) 1— Xpc(t)
St St

If, for example,X 4 B is much larger than both ,C and XzC, thenAB is
more likely to be selected for coloring. Therefofé, z is unlikely to
receive more items until its size is closerXoC or XgC'. A more formal
justification of this balancing mechanism is provided in Section 3.2.

3. CHARACTERISTICS OF THESIMPLIFIED MODEL

In this section the distribution fof, is established. Next, it is shown that
counts for the two color stack(y5(¢),Xac(t), and X pc(t)) tend to
remain close to each other over time. Finally, a bound is given on the
second moment of the stack differences.
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3.1. The Distribution of S,. For the model described above, the
distribution of the total stack counts

S; = Bin(n,1 — (1 —¢/n)").

This can be seen by considering a single urn containirigalls. At each
timet, W balls are taken from the urn where

Wy ~ Bin(m,c/m)
or, more generally,
Wi1|Wy ~ Bin(m — Wy, ¢/m).
We would like to get the distribution function for

t
St = Z Wt
i=1

At each time there is &/m chance that a ball in the urn will be picked to
be removed. The probability that a ball is not chosen at timel1-s:/m.
The probability that a ball is not chosen at 2 is the probability of the
intersection of the events that it is not chosen at time 1 and time 2, i.e.
(1 — ¢/m)?. Inductively, the probability that a ball is not chosen at tihig
(1 —¢/m)t. Then,

zt:Wt = Bin(m,1 — (1 —¢/m)").

This establishes the distribution 68f sincell; in the described urn
problem is the same &8 in the model.

3.2. X4, Xac, and X Remain Balanced. Let b, be the binomial
number coming down fronX 4z at timet. Define

A1 X = by1€i41.
It should be noted that
(3.1) P A1 X =Pbiiiei1 = Piby 1Py SINCED,
sinceb, is conditionally independent ef for all ¢.

Now, define
Zy = Xap(t) — Xpo(t).
Letting

)= 0
-1
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]PZtAtHZ = PZtPtAt+1Z

= PZtPt6T5t+1bt+1
(32) = PZtPt6T€t+1Ptbt+1 by Equat'on (31)
Examining onlyP,6% ¢,
(3.3) [Pt(sTgtH = dTﬁt
L, Xas() | Xas()
2 St St
L Xap(t) | Xas()
2 S Sy
__1z
25,

Substituting the results of Equation (3.3) into Equation (3.2), and recalling
thatb, is conditionally distributed as binomial we get

1_7Z%¢
PZ A1 Z = —=PZLZ(n — 8,).
ITAVES] 2" S, n(” St)
SinceZ?, S; > 0 for all t ande, n > 0,
(3.4) PZ,Ay 1 Z < 0forallt.

Equation (3.4) implies that if, at some time, the difference

| Xag(t) — Xpc(t)| gets large, the stack selection process ensures that it

will not remain large for long since subsequent iterations of the algorithm
will tend to reduce this difference. Also, since the choice of stacks used to
defineZ; was arbitrary we can assume this negative feedback mechanism
exists between all two-color stacks. Therefore, assuiijig, , is

bounded, we can conclude that the stack difference between any two stacks
tends to be around zero.

3.3. .z}, is Bounded for finite ¢. For the given model we would like to
showP, Z?, , is bounded for finite.

PiZi = Pu(Z + ANen Z)°
=Py(Z} + ZiD1 Z + D1 Z°)
=7} + ZP D1 Z + PA 0 27

Therefore, if we can show that? + Z,P;A,,1Z andP; (A, Z)?* are
boundedP; Z?2, , must also be bounded.
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First we showz? + Z;A,,, Z is Bounded.
1 Zt C

72+ ZPA L Z = 7} + 7, (—555(71 - St))

1 1
N P
(-3(5-3))

(3.5) < Z?sinceS; <n
This should come as no surprise since it has already been established in
Equation 3.4 that there is a negative feedback mechanism betyeam
A1 Z.
Now we showP; (A, ; Z)? is Bounded. To show; (A, ;Z)? is bounded
we first note

VAR, A1 Z = VAR d" A1 X = d¥ (VAR A1 X )d.
Next, for any vecton\ of appropriate length,
VAR A A X <PATA X (A1 X))
= ATPt(€t+lbt+1>2)\
= \"Pe7, | Pb7, A by Equation (3.1)

Sinceb, is distributed as binomial, we can bound its second moment as
C

Pibiyy = (1 - _> % (n— 5 + (%)2 (n—S)°

n
2
< (1—£> Sny <£) n?
n’n n
(3.6) <c+c
Using the results of the two Inequalities (3.5) and (3.6),
PZi < Zi+c+
< Z2+tle+ ).
This shows that, for finite, the conditional second moment &f will
grow, at most, linearly ini. Therefore, for any finiteé, the conditional

second moment is bounded. This same technique can be used to bound the
unconditional second moment. l.e.

PZ}, < Z5+t(c+ ).
4. MARTINGALE BOUNDS

In this section, a martingale is constructed from the simplified model to
investigate its tail bounds. The first subsection describes the construction.
The following three subsections provide bounds based on the Hoeffding
Inequality, the Bennett Inequality, and a Poisson approximation.
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4.1. (Martingale and Inequality Construction). For the described
simplified model

Mipr = My + A Z — PLA 1 Z
M, is a martingale.
Proof.
PiMyy =Pr(My + Ay Z — P A7)
=P Ay — PP A + M, sincelM, is F; measurable
= Pdei 1041 — PilPrdeiibeyr + My
= M, (sincePde; 10,41 IS F; measurable)

Since the choice of the first martingale value is arbitraryMgt= 0.

The general strategy for finding a martingale bound is to find an expression
for
P{M;1 >n} < ggg It Mert,

For a martingale\/; we have
P{M, 1 > n} = P{e" 1 > 1} forg > 0

< Pe?@Mi+1=m) (hy the Markov Inequality)
— ]P)ee(Mt—‘rAt+1]V[—’r])

(4.1) — Pea(Mrn)pte@AtﬂM

Equation (4.1) shows that it may be possible to express the tail-bound of
the martingale recursively. If the conditional Moment Generating Function
P, exp [0A;1M] can be expressed asp[fg(6)] andg(f) is deterministic,
then

IP>69(Mt—77)IP>t69At+1M < Pl (Mi—n+9(9))

4.2) < Htg®)-m)

The problem of finding a bound can now be accomplished by optimizing
over values of).

4.2. (Hoeffding Bound). For a random variable with zero mean and
bounded ranges, the Hoeffding Bound uses convexity to bound the moment
generating function. Sincep[fA,; M] is convex and\,,; M < n we

can write

A M o —On n— Ay M L eon Ay M +n '
o 2n on
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Taking the conditional expectation of both sides and realizing that
]P)tAt+1M = 0 we get

(43) PteeAH—lM < %€9n + %GQn
Taking the log of Equation (4.3) and letting= 1 — 3 = 1/2 andu = 20n
we get

1 1 U 1 1
log P,ef2t1M <] Zomu/2  —ou/2) & 1 P
og P.e < log 26 —|—2e 2+ og 2—|—2e

In Pollard (1984, Appendix B) it is shown that this equation can be bound
using a second order Taylor approximation. Performing a similar
approximations we get

log Pyl < Loz

Following Inequality (4.2)
(4.4) P{M, > n} < eH"

Minimizing in 0

292

_
2tn?2’
Substituting this back into Inequality (4.4)
n_ oty
PAM, 2 n} < exp [_ 2tn? + 4t2n4}

=exp |— "
Atn? |-

For the sake of comparing this bound with other bounds, let

"
bp, = o
Then, the bound is
tor
(4.5) P{M; > n} <exp BEE

4.3. Bennett Bound. For a random variable with zero mean, bounded
ranges, and finite variance, the Bennett Bound uses the restricted range of
the second moment to bound the exponential series expansion of the
moment generating function. It should be noted that in Pollard (2001,
Chapter 11) a slight refinement to this approach is employed to get a
slightly sharper bound. This approach will also be used in finding a bound.
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As shown in Pollard (2001, Appendix C), the function
f(z) :=2(e* — 1 —x2)/z* with f(0) =1
is nonnegative and increasing over the real line. We can then write
P M — 1 L ON, M + %OzAtHMQ + f(OA 1 M)
<1+0A M + %AHlMQf(@n) (sinceM, < n).

Taking the conditional expectation of both sides and using the fact that
e > 1+ z,

2 2 on
P2 M < Py exp [0 A M= 2(e™ — 1 — QTL}

2 02n2
2
AtHQM (69” —-1- Gn)}

< exp [e” —1—06n] (again, since\, ;M < n)

< P,exp {
n

Following Inequality (4.2),
(4.6) P{M,; > n} <exp [—977 +1 (69” —1- Hn)}

and minimizing ind we get

6:%10g<n —i—l).

tn

Substituting this value into Inequality (4.6) we get

n n n
>pl < — (= L i
]P{Mt _77} - exp[ (n +t) log [nt +1} * n} ’
Again, for the sake of comparison let,
gbb = E + 1.
tn

Then, the inequality becomes
(4.7) P{M; > n} < exp [t(—¢plog[dp] + ¢» — 1)]

4.4. Poisson Bound.Both the Hoeffding Bound and the Bennett Bound
have the disadvantage that t@st)\/ is bound byn. In practice we expect
that the martingale increments will be small (of orderRealizing this, a
Poisson approximation will be used in attempt to get a sharper bound.
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We can rewrite the conditional expectation as
PteeAt+1M = Pt exp [G(Mt —+ At+1Z — PtAt_‘_lZ)}

Zi 1
(4.8) exp {9 <Mt + —t—E(n — Sﬁ)} P, expl0A;117].
St 2n

Now, only looking at the conditional expectation term and using the fact
that|A, 17| < b,11 We can write

PteeAt+1Z S Pteebt+1

(4.9) < exp [%(n —5) (60 — 1)} :

It should be noted that the expression in Inequality (4.9) is the Moment
Generating Function for a Rei/n(n — S;) variable. Since the MGF of a
Poisson variable bounds the MGF of a Binomial we can replagewith a
Poisson variable with appropriate parameter and find a bound. Equation
(4.8) then becomes

Zilec

i c
Pl M < exp _6’ (Mt + Eéﬁ(ﬂ - St)) + E(n - St)(€0 - 1)}

<exp |0M; + %(n —5) (g +ef — 1)] (sinceZ,/S; < 1)

<exp [OM; +n (g +ef — 1)} (Sinceg(n — S < n).

-]

Following Inequality (4.2),

N D

(4.10) P{M, > n} < exp l—QT} +tn (
n 1

0=log|— — =

o8 [tn 2}
Substituting? into Equation (4.10) we get

P{M, >} < exp {— (n—t—") log [i—l} —§tn+n]

Minimizing in 6 we get

2 tn 2 2
To compare this with the other bounds, let
—n_ 1
Op 1= tn 2

Then the bound becomes
(4.11) P{Mt > 77} < exp [t” (_¢p 10g[¢p] + ¢p - 1)]
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5. COMPARING THE MARTINGALE BOUNDS

It may have already been noted that the domain of the respectiafies

in the inequalities above may not be valid for all valueg @fe are
interested in. The first subsection provides valid domains for each of the
three inequalities. With this accomplished, it would then be interesting to
find out for a given domain which bound is best. The second subsection
provides this information based on approximations of the difference
between the exponential terms of the bounds.

5.1. The Domain of the Martingale Bounds. ¢, ¢,, and¢, given in the
bounds in the previous section have the common term

_
¢ =
Since,M; < n it follows that¢y < n. Keeping this in mind, the domains

will be found for each of the bounds as a functionpofWhen looking at
each bound, it will be assumed that, > 1.

In the case of the Hoeffding Bound, given in Equation (4.5),

on = 0.
For this bound, values of can range betwedhandn without
discontinuities. Also) < P{M, > n} < 1 for n values in this range.

For the Bennett Bound, given in Equation (4.7),
oy =+ 1.

This means thap, is in [1, 2]. It can be shown that

—t(gplog[gs] + ¢p + 1) < 0 for ¢y in [1,2].

Therefore, for this bound, value gfcan range betweahandn without
discontinuities. Alsd < P{M,; > n} < 1 for n values in this range.

For the Poisson Bound, given in Equation (4.11),
1
¢p = ¢ - 5

This means that at most, may go betweei-1/2,1/2]. However,
noticing thelog term in the bound it is clear that, for the bound to be
definedp, must me betwee(D, 1/2]. It can be shown that

tn(—g, 10g[¢p] + ¢, — 1) < 0for ¢, in (0, 1/2].
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It should be noted that, unlike the the exponential terms of the other
bounds, this is an increasing function over the rangg,of

5.2. Comparing the Sharpness of the BoundsNow that it is known

where the bounds are valid, we want to know which bound does better in a
given domain. This will be done by comparing the exponential term in the
bounds.

If the Bennett Bound is sharper than the Hoeffding Bound, then

t 2
5.1) (0 + )loglo + 1] +6) < 2
or, if the expression is simplified
2
—¢log[ep + 1] — log[o + 1] — % +¢ <0.
We can perform a second order Taylor Series approximation of the left side
of the inequality, around.5 and get approximately

—¢® — 0.1137984¢ — 0.09296515 < 0.

Since this inequality is true for adl in [0, 1] the approximation indicates
that the Bennett Bound beats the Hoeffding bound gyend an R
calculation of Inequality (5.1) confirms this.

If the Poisson Bound is sharper than the Bennett Bound, then

tn(—(¢—1/2)log[p—1/2]+¢—3/2) < i(=¢loglp+1] —loglp+1]+¢).
Performing a R calculations, it can be shown thatfor 3, this inequality
holds for¢ in (1/2,1]. Therefore, in this interval, The Poisson Bound beats
the Bennett Bound.

To summarize, fop in [0, 1/2], the Bennett Bound performs the best, and
for ¢ in (0.5, 1] the Poisson Bound performs the best. It should be noted
that sincep = n/(tn) the Bennett Bound will be the best for large values
of ¢, ¢ will eventually become smaller than'2.

6. FUTURE WORK

As stated in the introduction, the goal of this paper is to provide an analysis
of a greedy coloring algorithm for random graphs with the hope of refining
the bound on its threshold behavior. This paper explores the asymptotic
behavior of a simplified model. The next step is to incorporate the fact that
a each step of the algorithm, two-color stack counts are not only receiving
items, but also losing items. With this accomplished, the case where
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vertices havé possible graph coloring can be incorporated. Finally, the
case where the graph algorithm fails can be analyzed

The model analyzed in this paper falls under a more general class of
problems where is stochastic process is modeled as a differential equation
plus a random expression. These problems also provide a future direction
for exploration.
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