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As a special project for Spring 2007, a graph coloring algorithm proposed
by Achlioptas and Molloy (1997) is analyzed.

1. INTRODUCTION

1.1. The Erdös-Ŕenyi Graph. This paper is concerned with the behavior
of a graph coloring algorithm on a random graph. A random graph is a
graph generated by some random process. Specifically, the random graphs
that will be utilized in this paper areErdös-Ŕenyi Graphs(ER Graphs). ER
Graphs are generated by creating edges between each pair of vertices with
equal probability independent of other edges. In this paper, the ER Graph
variant being utilized is denoted byG(m, p). For this graph,m is the number
of vertices, and an edge between any two vertices with probabilityp. On
averagemp edges will appear in graph, and the degree of each vertex is
distributed binomial. That is, for a vertexv in the set of verticesV of an ER
GraphG(m, p)

P {deg(v) = k} =

(
M

k

)
pk(1− p)M−k whereM =

(
m

2

)
.

It should be noted that, in this equation,M is is the total number of possible
edges.

1.2. The Threshold Phenomenon and Graph Coloring.In their paper on
random graphs, Erd̈os and Ŕenyi (1960) prove the existence of a threshold
phenomena. For a graph propertyQ, which exhibits the threshold phenom-
ena, the probabilityG(m, p) hasQ increases sharply at a certain critical
value ofp. One of the properties which shows this behavior is the chromatic
number of a graph.

Graph Coloring, or more specificallyVertex Coloring, refers to an
assignment of colors to the vertices of a graph such that no neighbors share
the same coloring. Two vertices in a graph are neighbors if they share an
edge. A coloring that uses at mostk colors is called a (proper)k-coloring.
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The minimum number of colors needed to properly color a graph is called
its chromatic number and is denotedχ(·).

1.3. The Achlioptas Molloy Paper.

In Achlioptas and Molloy (1997) a greedy graph coloring algorithm for
graphs is introduced. For a graphG = (V, E) with V vertices andE edges,
denoteLv as the list of available colors for vertexv in V . The algorithm is
given as follows:

• Initialize: U = V , andLv = {1, ..., k} for everyv ∈ V .
• While U 6= ∅:

(1) At time t select a vertexvt uniformly at random from
{vt ∈ U : |Lv| is smallest}

(2) if |Lv| > 0
– then assign tovt a colorω chosen uniformly at random

from |Lv|, and setU = U \ {vt}
– else exit (fail).

(3) For eachu ∈ U that is a neighbor ofvt setLu = Lu \ {ω}
In addition to proposing this algorithm, the paper also provides an analysis
its effectiveness. It should be noted that in the analysis (as with this paper)
it is assumed that the random graph is not given entirely at the beginning of
the algorithm. Instead, we learn about the graph as the algorithm proceeds.
This constraint, proposed by (D.E. Knuth 1990), is called themethod of
deferred decisions. In the analysis of the algorithm, this method is
employed so that at each step, the vertices that are exposed are those
adjacent to colored vertices.

2. MODEL DESCRIPTION

In this paper we start by considering the algorithm withk = 3. Let the
colors being considered be denotedA, B, C. For each step in the algorithm
a given node is colored and the number of possible colorings for adjacent
nodes is decreased. LetN denote the number of nodes whose colorings
may beA, B, or C. Then,

N =
∑
v∈V

{Lv = {A, B, C}} .

Also, letXAB, XAC , XBC denote the number of nodes whose possible list
colorings areAB, AC, andBC respectively. Finally, let

St = XAB(t) + XAC(t) + XBC .

That is,St denotes the total number of vertices with 2 possible colorings at
time t.
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FIGURE 1. A Visualization for the List Counts

For a given graph the algorithm proceeds as follows. At the first stage,
select av1 in V uniformly at random. Select its color uniformly at random
over the three colors. Say it isC. For each of its neighbors (of which there
areb1 ∼ Bin(n− S0, c/n)) remove theC from its list of possible colorings
and discardv1. This causesXAB(1) to haveb1 items, and this causesN1 to
haven− S1 − 1 items. Next, select one of theXAB(1) vertices uniformly
at random and call itv2. The color forv2 is selected uniformly at random
from A or B; say it isB. All of v2’s neighboring nodes haveB removed
from their possible colorings. This causesXAC(t) to receiveb2 items and
N2 to haven− S2− 2 items. Depending on the connectivity of the graph,
it is also possible at this stage that a small number of items could go from
eitherXAB or XAC to YA, YB, or YC . If this is the case, then the vertex
selected for coloring at the next step is chosen from one of the single-color
vertices. If it is the case, that at somet in the algorithm, a number of items
go from a stack of single colorings to thefail state, then the algorithm
fails to correctly color the graph. The algorithm continues until either all
vertices in the graph are colored or it fails. A visualization of the structure
of this algorithm is shown in Figure (1).

Consider the following simplification of the model. Suppose that the model
in Figure (1) is restricted to have only verticesABC, AB, AC, andBC.
Also, instead of discarding a colored vertex, which reduces the total vertex
count by 1, this item will remain in its respective stack.
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The number of items flowing fromABC to a two-color vertex stack at
time t + 1 given the number of items in each of the two-color stacks will be
modeled as

bt+1 ∼ Bin(n− St, c/n)

where
St = XAB(t) + XAC(t) + XBC(t)

At a given timet one of the stacksXAB, XAC , or XBC is picked to be
colored. The stack is chosen proportional to the number of elements it has.
In other words,

P{XBC will be picked at timet + 1|XAB(t), XAC(t), XBC(t)} =
XBC(t)

St

.

After picking one of the stacks, one of the unpicked stacks is selected to
receive a number of items fromXABC . Let εt be the indicator function
telling which of the stacks will receivebt. In other words

εt =

 {AB receivesbt}
{AC receivesbt}
{BC receivesbt}


If at time t, AB is selected for coloring, then with equal probability it will
be given colorA or B. This means that with equal probability,bt will go
from ABC to BC or AB respectively. LettingPt denote the probability
conditioned on information through timet, it can be seen that

ξt = Ptεt+1 =
1

2


XAC(t)+XBC(t)

St
XAB(t)+XBC(t)

St
XAC(t)+XAB(t)

St

 =
1

2

 1− XAB(t)
St

1− XAC(t)
St

1− XBC(t)
St

 .

If, for example,XAB is much larger than bothXAC andXBC, thenAB is
more likely to be selected for coloring. Therefore,XAB is unlikely to
receive more items until its size is closer toXAC or XBC. A more formal
justification of this balancing mechanism is provided in Section 3.2.

3. CHARACTERISTICS OF THESIMPLIFIED MODEL

In this section the distribution forSt is established. Next, it is shown that
counts for the two color stacks (XAB(t),XAC(t), andXBC(t)) tend to
remain close to each other over time. Finally, a bound is given on the
second moment of the stack differences.



ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH 5

3.1. The Distribution of St. For the model described above, the
distribution of the total stack counts

St = Bin(n, 1− (1− c/n)t).

This can be seen by considering a single urn containingm balls. At each
time t, W balls are taken from the urn where

W1 ∼ Bin(m, c/m)

or, more generally,

Wt+1|Wt ∼ Bin(m−Wt, c/m).

We would like to get the distribution function for

St =
t∑

i=1

Wt

At each time there is ac/m chance that a ball in the urn will be picked to
be removed. The probability that a ball is not chosen at time 1 is1− c/m.
The probability that a ball is not chosen at 2 is the probability of the
intersection of the events that it is not chosen at time 1 and time 2, i.e.
(1− c/m)2. Inductively, the probability that a ball is not chosen at timet is
(1− c/m)t. Then,

t∑
i=1

Wt = Bin(m, 1− (1− c/m)t).

This establishes the distribution ofSt sinceWt in the described urn
problem is the same asSt in the model.

3.2. XAB, XAC , and XBC Remain Balanced.Let bt be the binomial
number coming down fromXABC at timet. Define

∆t+1X = bt+1εt+1.

It should be noted that

(3.1) Pt∆t+1X = Ptbt+1εt+1 = Ptbt+1Ptεt+1 sincebt

sincebt is conditionally independent ofεt for all t.

Now, define
Zt = XAB(t)−XBC(t).

Letting

δ =

 1
0
−1


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PZt∆t+1Z = PZtPt∆t+1Z

= PZtPtδ
T εt+1bt+1

= PZtPtδ
T εt+1Ptbt+1 by Equation (3.1).(3.2)

Examining onlyPtδ
T εt+1

Ptδ
T εt+1 = dT ξt(3.3)

=
1

2

(
1− XAB(t)

St

− 1 +
XAB(t)

St

)
=

1

2

(
−XAB(t)

St

+
XAB(t)

St

)
= −1

2

Zt

St

.

Substituting the results of Equation (3.3) into Equation (3.2), and recalling
thatbt is conditionally distributed as binomial we get

PZt∆t+1Z = −1

2
P

Z2
t

St

c

n
(n− St).

SinceZ2
t , St ≥ 0 for all t andc, n ≥ 0,

(3.4) PZt∆t+1Z ≤ 0 for all t.

Equation (3.4) implies that if, at some time, the difference
|XAB(t)−XBC(t)| gets large, the stack selection process ensures that it
will not remain large for long since subsequent iterations of the algorithm
will tend to reduce this difference. Also, since the choice of stacks used to
defineZt was arbitrary we can assume this negative feedback mechanism
exists between all two-color stacks. Therefore, assumingPtZ

2
t+1 is

bounded, we can conclude that the stack difference between any two stacks
tends to be around zero.

3.3. PtZ
2
t+1 is Bounded for finite t. For the given model we would like to

showPtZ
2
t+1 is bounded for finitet.

PtZ
2
t+1 = Pt(Zt + ∆t+1Z)2

= Pt(Z
2
t + Zt∆t+1Z + ∆t+1Z

2)

= Z2
t + ZtPt∆t+1Z + Pt∆t+1Z

2

Therefore, if we can show thatZ2
t + ZtPt∆t+1Z andPt(∆t+1Z)2 are

boundedPtZ
2
t+1 must also be bounded.
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First we showZ2
t + Zt∆t+1Z is Bounded.

Z2
t + ZtP∆t+1Z = Z2

t + Zt

(
−1

2

Zt

St

c

n
(n− St)

)
= Z2

t

(
1− c

2

(
1

St

− 1

n

))
≤ Z2

t sinceSt ≤ n(3.5)

This should come as no surprise since it has already been established in
Equation 3.4 that there is a negative feedback mechanism betweenZt and
∆t+1Z.
Now we showPt(∆t+1Z)2 is Bounded. To showPt(∆t+1Z)2 is bounded
we first note

VARt∆t+1Z = VARtd
T ∆t+1X = dT (VARt∆t+1X)d.

Next, for any vectorλ of appropriate length,

VARtλ
T ∆t+1X ≤ Ptλ

T ∆t+1X(∆t+1X)T λ

= λT Pt(εt+1bt+1)
2λ

= λT Ptε
2
t+1Ptb

2
t+1λ by Equation (3.1).

Sincebt is distributed as binomial, we can bound its second moment as

Ptb
2
t+1 =

(
1− c

n

) c

n
(n− St) +

( c

n

)2

(n− St)
2

≤
(
1− c

n

) c

n
n +

( c

n

)2

n2

≤ c + c2.(3.6)

Using the results of the two Inequalities (3.5) and (3.6),

PtZ
2
t+1 ≤ Z2

t + c + c2

≤ Z2
0 + t(c + c2).

This shows that, for finitet, the conditional second moment ofZt will
grow, at most, linearly int. Therefore, for any finitet, the conditional
second moment is bounded. This same technique can be used to bound the
unconditional second moment. I.e.

PZ2
t+1 ≤ Z2

0 + t(c + c2).

4. MARTINGALE BOUNDS

In this section, a martingale is constructed from the simplified model to
investigate its tail bounds. The first subsection describes the construction.
The following three subsections provide bounds based on the Hoeffding
Inequality, the Bennett Inequality, and a Poisson approximation.
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4.1. (Martingale and Inequality Construction). For the described
simplified model

Mt+1 = Mt + ∆t+1Z − Pt∆t+1Z

Mt is a martingale.

Proof.

PtMt+1 = Pt(Mt + ∆t+1Z − Pt∆t+1Z)

= Pt∆t+1 − PtPt∆t+1 + Mt sinceMt isFt measurable

= Ptδεt+1bt+1 − PtPtδεt+1bt+1 + Mt

= Mt (sincePtδεt+1bt+1 isFt measurable)

�

Since the choice of the first martingale value is arbitrary, letM0 = 0.

The general strategy for finding a martingale bound is to find an expression
for

P{Mt+1 ≥ η} ≤ inf
θ≥0

eθηPeθMt+1 .

For a martingaleMt we have

P{Mt+1 ≥ η} = P{eθMt+1 ≥ eθη} for θ ≥ 0

≤ Peθ(Mt+1−η) (by the Markov Inequality)

= Peθ(Mt+∆t+1M−η)

= Peθ(Mt−η)Pte
θ∆t+1M(4.1)

Equation (4.1) shows that it may be possible to express the tail-bound of
the martingale recursively. If the conditional Moment Generating Function
Pt exp [θ∆t+1M ] can be expressed asexp[θg(θ)] andg(θ) is deterministic,
then

Peθ(Mt−η)Pte
θ∆t+1M ≤ Peθ(Mt−η+g(θ))

≤ eθ(t·g(θ)−η).(4.2)

The problem of finding a bound can now be accomplished by optimizing
over values ofθ.

4.2. (Hoeffding Bound). For a random variable with zero mean and
bounded ranges, the Hoeffding Bound uses convexity to bound the moment
generating function. Sinceexp[θ∆t+1M ] is convex and∆t+1M ≤ n we
can write

eθ∆t+1M ≤ e−θn

(
n−∆t+1M

2n

)
+ eθn

(
∆t+1M + n

2n

)
.
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Taking the conditional expectation of both sides and realizing that
Pt∆t+1M = 0 we get

(4.3) Pte
θ∆t+1M ≤ 1

2
e−θn +

1

2
eθn

Taking the log of Equation (4.3) and lettingα = 1− β = 1/2 andu = 2θn
we get

log Pte
θ∆t+1M ≤ log

(
1

2
e−u/2 +

1

2
eu/2

)
= −u

2
+ log

(
1

2
+

1

2
eu

)
.

In Pollard (1984, Appendix B) it is shown that this equation can be bound
using a second order Taylor approximation. Performing a similar
approximations we get

log Pte
θ∆t+1M ≤ 1

2
θ2n2.

Following Inequality (4.2)

(4.4) P{Mt ≥ η} ≤ e−ηθ+tn2θ2

.

Minimizing in θ

θ =
η

2tn2
.

Substituting this back into Inequality (4.4)

P{Mt ≥ η} ≤ exp

[
− η

2tn2
+

tn2η2

4t2n4

]
= exp

[
− η2

4tn2

]
.

For the sake of comparing this bound with other bounds, let

φh :=
η

tn
.

Then, the bound is

(4.5) P{Mt ≥ η} ≤ exp

[
−tφ2

h

4

]
.

4.3. Bennett Bound. For a random variable with zero mean, bounded
ranges, and finite variance, the Bennett Bound uses the restricted range of
the second moment to bound the exponential series expansion of the
moment generating function. It should be noted that in Pollard (2001,
Chapter 11) a slight refinement to this approach is employed to get a
slightly sharper bound. This approach will also be used in finding a bound.
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As shown in Pollard (2001, Appendix C), the function

f(x) := 2(ex − 1− x)/x2 with f(0) = 1

is nonnegative and increasing over the real line. We can then write

eθ∆t+1M = 1 + θ∆t+1M +
1

2
θ2∆t+1M

2 + f(θ∆t+1M)

≤ 1 + θ∆t+1M +
1

2
∆t+1M

2f(θn) (sinceMt ≤ n).

Taking the conditional expectation of both sides and using the fact that
ex ≥ 1 + x,

Pte
θ∆t+1M ≤ Pt exp

[
θ2∆t+1M

2

2

2(eθn − 1− θn

θ2n2

]
≤ Pt exp

[
∆t+1M

2

n2

(
eθn − 1− θn

)]
≤ exp

[
eθn − 1− θn

]
(again, since∆t+1M ≤ n)

Following Inequality (4.2),

(4.6) P{Mt ≥ η} ≤ exp
[
−θη + t

(
eθn − 1− θn

)]
and minimizing inθ we get

θ =
1

n
log

( η

tn
+ 1

)
.

Substituting this value into Inequality (4.6) we get

P{Mt ≥ η} ≤ exp
[
−

(η

n
+ t

)
log

[ η

nt
+ 1

]
+

η

n

]
.

Again, for the sake of comparison let,

φb :=
η

tn
+ 1.

Then, the inequality becomes

(4.7) P{Mt ≥ η} ≤ exp [t(−φb log[φb] + φb − 1)]

4.4. Poisson Bound.Both the Hoeffding Bound and the Bennett Bound
have the disadvantage that that∆tM is bound byn. In practice we expect
that the martingale increments will be small (of orderc). Realizing this, a
Poisson approximation will be used in attempt to get a sharper bound.
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We can rewrite the conditional expectation as

Pte
θ∆t+1M = Pt exp [θ(Mt + ∆t+1Z − Pt∆t+1Z)]

exp

[
θ

(
Mt +

Zt

St

1

2

c

n
(n− St)

)]
Pt exp[θ∆t+1Z].(4.8)

Now, only looking at the conditional expectation term and using the fact
that|∆t+1Z| ≤ bt+1 we can write

Pte
θ∆t+1Z ≤ Pte

θbt+1

=
(
1− c

n
+

c

n
eθ

)n−St

≤ exp
[ c

n
(n− St)

(
eθ − 1

)]
.(4.9)

It should be noted that the expression in Inequality (4.9) is the Moment
Generating Function for a Poi(c/n(n− St) variable. Since the MGF of a
Poisson variable bounds the MGF of a Binomial we can replacebt+1 with a
Poisson variable with appropriate parameter and find a bound. Equation
(4.8) then becomes

Pte
θ∆t+1M ≤ exp

[
θ

(
Mt +

Zt

St

1

2

c

n
(n− St)

)
+

c

n
(n− St)(e

θ − 1)

]
≤ exp

[
θMt +

c

n
(n− St)

(
θ

2
+ eθ − 1

)]
(sinceZt/St ≤ 1)

≤ exp

[
θMt + n

(
θ

2
+ eθ − 1

)]
(since

c

n
(n− St) ≤ n).

Following Inequality (4.2),

(4.10) P{Mt ≥ η} ≤ exp

[
−θη + tn

(
θ

2
+ eθ − 1

)]
.

Minimizing in θ we get

θ = log

[
η

tn
− 1

2

]
Substitutingθ into Equation (4.10) we get

P{Mt ≥ η} ≤ exp

[
−

(
η − tn

2

)
log

[
η

tn
− 1

2

]
− 3

2
tn + η

]
.

To compare this with the other bounds, let

φp :=
η

tn
− 1

2
.

Then the bound becomes

(4.11) P{Mt ≥ η} ≤ exp [tn (−φp log[φp] + φp − 1)]
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5. COMPARING THE MARTINGALE BOUNDS

It may have already been noted that the domain of the respectiveφ values
in the inequalities above may not be valid for all values ofη we are
interested in. The first subsection provides valid domains for each of the
three inequalities. With this accomplished, it would then be interesting to
find out for a given domain which bound is best. The second subsection
provides this information based on approximations of the difference
between the exponential terms of the bounds.

5.1. The Domain of the Martingale Bounds. φh, φb, andφp given in the
bounds in the previous section have the common term

φ :=
η

tn
.

Since,Mt ≤ n it follows thatφ ≤ n. Keeping this in mind, the domains
will be found for each of the bounds as a function ofφ. When looking at
each bound, it will be assumed thatt, n ≥ 1.

In the case of the Hoeffding Bound, given in Equation (4.5),

φh = φ.

For this bound, values ofη can range between0 andn without
discontinuities. Also,0 ≤ P{Mt ≥ η} ≤ 1 for η values in this range.

For the Bennett Bound, given in Equation (4.7),

φb = φ + 1.

This means thatφb is in [1, 2]. It can be shown that

−t(φblog[φb] + φb + 1) ≤ 0 for φb in [1, 2].

Therefore, for this bound, value ofη can range between0 andn without
discontinuities. Also0 ≤ P{Mt ≥ η} ≤ 1 for η values in this range.

For the Poisson Bound, given in Equation (4.11),

φp = φ− 1

2
.

This means that at mostφp may go between[−1/2, 1/2]. However,
noticing thelog term in the bound it is clear that, for the bound to be
definedφp must me between(0, 1/2]. It can be shown that

tn(−φp log[φp] + φp − 1) ≤ 0 for φp in (0, 1/2].
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It should be noted that, unlike the the exponential terms of the other
bounds, this is an increasing function over the range ofφp

5.2. Comparing the Sharpness of the Bounds.Now that it is known
where the bounds are valid, we want to know which bound does better in a
given domain. This will be done by comparing the exponential term in the
bounds.

If the Bennett Bound is sharper than the Hoeffding Bound, then

(5.1) t(−(φ + 1) log[φ + 1] + φ) ≤ tφ2

4
or, if the expression is simplified

−φ log[φ + 1]− log[φ + 1]− φ2

4
+ φ ≤ 0.

We can perform a second order Taylor Series approximation of the left side
of the inequality, around0.5 and get approximately

−φ2 − 0.1137984φ− 0.09296515 ≤ 0.

Since this inequality is true for allφ in [0, 1] the approximation indicates
that the Bennett Bound beats the Hoeffding bound overφ, and an R
calculation of Inequality (5.1) confirms this.

If the Poisson Bound is sharper than the Bennett Bound, then

tn(−(φ−1/2) log[φ−1/2]+φ−3/2) ≤ t(−φ log[φ+1]− log[φ+1]+φ).

Performing a R calculations, it can be shown that forn ≥ 3, this inequality
holds forφ in (1/2, 1]. Therefore, in this interval, The Poisson Bound beats
the Bennett Bound.

To summarize, forφ in [0, 1/2], the Bennett Bound performs the best, and
for φ in (0.5, 1] the Poisson Bound performs the best. It should be noted
that sinceφ = η/(tn) the Bennett Bound will be the best for large values
of t, φ will eventually become smaller than1/2.

6. FUTURE WORK

As stated in the introduction, the goal of this paper is to provide an analysis
of a greedy coloring algorithm for random graphs with the hope of refining
the bound on its threshold behavior. This paper explores the asymptotic
behavior of a simplified model. The next step is to incorporate the fact that
a each step of the algorithm, two-color stack counts are not only receiving
items, but also losing items. With this accomplished, the case where
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vertices have1 possible graph coloring can be incorporated. Finally, the
case where the graph algorithm fails can be analyzed

The model analyzed in this paper falls under a more general class of
problems where is stochastic process is modeled as a differential equation
plus a random expression. These problems also provide a future direction
for exploration.
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