
ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM
ON A RANDOM GRAPH

MICHAEL KANE

As a special project for Spring and Summer 2007 David Pollard and I have
been studying a graph coloring algorithm proposed by Achlioptas and
Molloy (1997). By relying on heuristic arguments, they claimed to be able
to find the probability of success for a proposed graph coloring algorithm
on Erd̈os-Ŕenyi graphs. This paper is a progress report detailing our
attempts to rigorously derive similar success-probabilities in the special
case of the 3-color problem.

1. THE ALGORITHM AND ITS REPRESENTATION

For a graph withn vertices, the Achlioptas and Molloy algorithm attempts
to color each vertex such that no vertex has the same color of any as any of
its neighbors. The algorithm begins by associating each vertex with its own
list of possible colorings{A,B,C}. LetLv,i be the the color list for vertex
v at timei. When a vertex is colored it will be referred to as having a fixed
color. When a vertex has a fixed color its list size can be regarded as zero.
This will allow us to distinguish between a vertex with 1-possible coloring
and a vertex that is assigned a color. For thetth time step of the algorithm

(1) Choose uniformly at randomv from vertices smallest list of size
greater than zero.

(2) Pick a colorζ uniformly at random fromLv,t.
(3) Fix v with color ζ.
(4) For each vertexu not in the set of fixed color vertices:

• If u is a neighbor ofv removeζ from its color list.
Lu = Lu \ {ζ}

If at any time during the execution any vertex’s color list is empty, the
algorithm has failed to find a valid coloring. If at timen all vertices have a
fixed color, then the algorithm has succeeded.

Let S3(t) denote the number of vertices at timet with color list{A,B,C},
Xα(t) denotes the number of vertices at timet with 2-color list
α ∈ {{A,B}, {A,C}, {B,C}}, Yβ(t) denotes the number of vertices at
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FIGURE 1. A Visualization for the List Counts

time t with 1-color listβ ∈ {{A}, {B}, {C}}, F (t) denotes the number of
vertices at timet with empty color lists, andL(t) denotes the number of
vertices at timet which are colored.

The progress of the algorithm is shown in Figure (1). It should be noted
that for all vertices with color list size greater than 0, there is a positive
probability of moving toL(t).

The decision to analyze Erdös-Ŕenyi graphs is motivated by the fact that
the occurrence of a specific graph structures (which may be used as counter
examples to the algorithm succeeding) occur with small probability. Thus,
by performing the analysis on Erdös-Ŕenyi graphs, we are, in a sense,
looking at an ”average” class of graphs that the algorithm may be used on.

The evolution of the algorithm on an Erdös-Ŕenyi graph can be describe by
a Markov Chain where the variables are the list counts defined above. Both
F (t) andL(t) are absorbing states. At each iteration of the algorithm a
vertex can be given a fixed color, it can lose a color from its color list, or its
color list can remain unchanged.
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2. WHEN c < 1 THE ALGORITHM SUCCEEDS WITHHIGH PROBABILITY

The algorithm starts by selecting a vertex in the set of vertices with
color-list of size 3. This set will be referred to as the 3-stack. Since the
fixed-color vertex’s neighbors lose a possible fixed color, they move to a
2-stack. In the Erd̈os-Ŕenyi graph there is ac/n probability of a vertex
being a neighbor of another vertex in the graph. Since there are always at
mostn uncolored vertices, at timet the number of 3-color vertices that
become 2-color vertices is stochastically dominated by a random variable
with Bin(n, c/n) distribution. For the case wherec < 1, the the expected
number of vertices which go from the 3-stack to a 2-stack is less than 1 at
each time step. Since the algorithm moves 1 vertex to the fixed color stack
at any time, when a vertex is moved to the 2-color stack it is quickly moved
to the fixed color stack in the next time step. This implies that, with high
probability, whenc < 1 the algorithm will succeed.

3. 1-STACKS STAY SMALL UNTIL ORDERn1/3

Define

S1(t) =
∑

β∈{{A},{B},{C}}

Yβ(t)

that is, the number of vertices in the 1-stacks. For a vertex to be a member
of a 1-stack at timet, it must have been chosen twice to have a color from
its color-list removed. Each of the othert− 2 times it was not selected to
be colored and was not adjacent to a vertex being colored. This means that
the probability of a given vertex being in a 1-stack at timet is at least

(3.1) p1(t) =

(
t

2

) ( c
n

)2 (
1− c

n

)t−2

.

This implies that the number of 1-stack vertices up to timem is
stochastically dominated by

m∑
t=1

np1(t) ≤
m∑

t=1

t2

2

c2

n
=
c2

6n
m3 + o(n)

By the Markov Inequality this implies that

(3.2) P{S1(ε1n
2/3) ≥ ε1n

1/3} ≤ c2

6

ε2
1

n1/3

Therefore, up to a time of ordern1/3 the expected size of the 1-stacks goes
to zero asn gets large;S1(t) = op(n

1/3).
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4. THE EXPECTEDSIZE OF S2(t)

Let bt ∼ Bin(n, c/n). As shown in Section (2),bt stochastically dominates
the number of vertices going from the 3-stack to a 2-stack at timet. Then
the size of the 2-stack at timet is stochastically dominated by the sum of
the binomial increments

(4.1) PS2(t) ≤ P
t∑

i=1

bi = ct.

5. THE FIRST TIME THE 1-STACK IS CLEARED OUT

In Section (3) it is shown that until a time of ordern1/3 the 1-stacks remain
empty. Lett0 = ε1n

1/3 be the first time the 1-stack becomes non-empty.
Equation (4.1) implies that expected size ofS2(t) at this time is of order
n1/3. Since a vertex gets to a 1-stack from a 2-stack and the size of a
2-stack is relatively small at this time, it seems reasonable that for the first
few times the 1-stack becomes non-empty, the number of vertices going
from a 2-stack to a 1-stack is relatively small. This section provides some
justification for this intuition.

Let

τ1 = min{t ≥ t0 : S1(t) = 0}.
This is the first time a 1-stack becomes empty after it has received a vertex.
Letm > 1 be a number of steps aftert0. LetN be the number of vertices
that drop to a 1-stack between timet0 andt1 = t0 +m. Then

{τ1 > t0 +m} ≤ {N ≥ 1}+ {S1(t0) ≥ m}.

The number of time steps to clear out the 1-stack is less than the size of the
1-stack at timet0 plus the number of vertices that go to the 1-stack between
time t0 andt1.

The expected number of vertices moving to a 1-stack between timet0 and
t1 is at most the size of the 3-stack times the probability of moving to a
1-stack during this time plus the size of the 2-stack times the probability of
moving to to a 1-stack during this time.

The size of the 3-stack at any time is less thann and, by Equation (3.1) the
probability of a vertex going from a 3-stack to a 1-stack inm time steps is
given byp1(m). Therefore the expected number of 3-stack vertices moving
to 1-stack vertices is less than(mc)2/(2n).
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For a single time stept wheret0 ≤ t ≤ t1

PS2(t) ≤ cm,

and the probability of a vertex going from a 2-stack to a 1-stack is at most
(c/n). Then form time steps the expected number of 2-stack vertices
moving to 1-stack vertices is less than(c2m2)/n2

PN ≤ m2c2
(

1

2n
+

1

n2

)
Using this result and the result from Equation (3.2) it follows

P{τ1 > t0 +m} ≤ m2c2
(

1

2n
+

1

n2

)
+
c2ε3

1

6m

Whenm is small the function is close to zero. This implies that the 1-stacks
will become empty shortly after the first time it becomes non-empty.

6. THE PROBABILITY OF FAILURE IS SMALL UNTIL ORDERn2/3

For a vertex to reach the fail state at timet, it must have been chosen three
times to have a color-list removed. This means that the probability of a
vertex reaching the fail state at timet is at least

pf (t) =

(
t

3

) ( c
n

)3

.

Then, the expected number of vertices in the fail state at timet is
stochastically dominated by

n

(
t

3

) ( c
n

)3

≤ t3

6

c3

n2
.

By the Markov Inequality this implies

P{F (εfn
2/3) ≥ εfn

2/3} ≤
ε2

fc
3

6n2/3

This means that up to a time of ordern2/3 the probability that the algorithm
will fail goes to zero asn gets large;F (t) = op(n

2/3).

7. A SUMMARY AND JUSTIFICATION FORSUBSEQUENTSECTIONS

The previous sections it has been shown that the Achlioptas and Molloy
algorithm will have empty 1-stacks up to a time of ordern1/3. At this time
a 1-stack will become non-empty, but it will return to being empty after a
short amount of time. It seems likely that the 1-stack is emptied because
the number of vertices entering from the 2-stacks is small. We suspect that
similar behavior will continue but, as time progresses, the number of
vertices going from 2-stack to 1-stacks will increase. As a result it will take
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longer to empty the 1-stacks. At a time of ordern2/3 it is possible for the
algorithm to fail. Failure will occur because as the number of vertices in
1-stacks increases it becomes more likely that a vertex will be chosen to
move to the fail state.

If the algorithm does not fail, it is because the size of the 1-stack does not
get too big. In the success case, the size of the 3-stacks will eventually
become small and as a result, the number of vertices going to 2-stacks and
1-stacks will become negligible. If the algorithm successfully executes to
this time the failure probability will go to zero.

The analysis performed in subsequent sections is motivated by the idea that
to understand the probability of the algorithm failing we need to
understand how the 1-stacks behave during the time interval where the
algorithm is in danger of failing.

8. AN UPPERBOUND ON THE MAXIMUM S2(t)

Definebt as before. Using the fact that the number of vertices going from
the 3-stack to a 2-stack is stochastically dominated bybt,

max
1≤t≤nε

S2(t) ≤
nε∑
t=1

bt

and therefore to get an upper bound on the biggestS2(t) it is sufficient to
get a bound on the size of the sum ofbt. This can be done by centering
each of thebt values and then applying the Bennett Inequality (Pollard
2001, Chapter 11)

P

{
nε∑
t=1

bt ≥ ν

}
= P

{
nε∑
t=1

bt − nεc ≥ ν − nεc

}

≤ exp

(
− (ν − nεc)2

2c(1− c/n)
ψ

(
n(ν − nεc)

c(1− c/n)

))
where

ψ(x) :=

{
2 ((1 + x) log(1 + x)− x) /x2 for x ≥ −1 andx 6== 0
1 for x = 0.

As ν gets larger than the expected value of the sum ofbt’s, that isν > nεc,
there is a sharp decrease in the probability of getting anS2(t) larger thanν.
Therefore, we expect thatS2(t) will not be much bigger than the sum of
the expected values of the binomial increments,bt.
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9. THE RESTRICTEDMODEL

Until now, only 3-stack, 2-stack, 1-stack and fail stack counts have been
analyzed. In this an subsequent sections, the behavior of specific color-list
counts will be studied. It is not immediately clear how to analyze all list
counts in the algorithm, and managing all of these variables may become
unwieldy. Therefore, as a first-pass, consider a simplified Markov chain
similar to that in Figure 1 consisting of onlyS3(t),Xα(t) for
α ∈ {A,B,C}, andYβ for β ∈ {{A,B}, {A,C}, {B,C}}. This means
that a given vertex may go from the 3-color stack to a 2-color stack, the
3-color stack to the fixed color stack, or a 2-color stack to the fixed color
stack. This will be referred to as the restricted model. To begin with, the
added simplification of no fixed-color stack will be imposed. In this case a
“colored” vertex will retain its color list and the algorithm will proceed. It
will not be added to the fixed-color stack. After the simplified model is
well understood, the fixed-color stack will be analyzed.

In the first step of the algorithm,t = 1 in the restricted model with no
fixed-color stack, one of then vertices is chosen uniformly at random and
assigned a color which is chosen uniformly at random from 1 of its 3
colors. This color is removed from the color-lists of each of its adjacent
vertices. Fort > 1, a vertex with color lists{A,B}, {A,C}, or {B,C} is
picked to be colored proportional to its respective list count. In other
words, for vertices with color list{A,B} at timet, denotedVAB(t),
(9.1)

P{a vertex inVAB(t) is colored att+1|XAB(t), XAC(t), XBC(t)} =
XAB(t)

S2(t)
.

As before, letbt+1 be the number of vertices that go from 3-color lists to
2-color lists at timet+ 1. The probability thatXAC(t+ 1) is selected to
receivebt+1 vertices fromS3(t) is the probability that a vertex with color
list {A,B} or {B,C} is picked to be colored times the probability that the
color picked isB. Write Pt for the conditional probability conditioned on
information through timet. Then

Pt{XAC(t+ 1) = XAC(t) + bt+1} =
1

2

(
XAB(t) +XBC(t)

S2(t)

)
=

1

2

(
1− XAB(t)

S2(t)

)
.
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LetXt be(XAB(t), XAC(t), XBC(t)) and letδt+1 indicate which stack get
bt+1 items att+ 1. Then

πt = Ptδt+1 =
1

2
. (1−Xt/S2(t))

For the restricted model with no fixed-color stack, the transition to a state
at timet+ 1 is controlled by two conditionally independent quantitiesbt+1

andδt+1 Where

πt = (πAB(t), πAC(t), πBC(t))

=

{
(1/3, 1/3, 1/3) if t = 0
1
2
(1−Xt/S2(t)) if t ≥ 1.

If at a given timet,XAB(t) is much larger than bothXAC(t) andXBC(t),
then a vertex with color list{A,B} is more likely to be selected for
coloring. Therefore, for somei > 0,XAB(t+ i) is unlikely to receive more
items until its size is closer toXAC(t+ i) orXBC(t+ i). After the
distributions ofS3(t), S2(t), andbt are established in the next subsection a
more formal justification of this balancing mechanism is provided in
Section (9.2).

9.1. The Distribution of S3(t), S2(t), and bt. To find the distribution of
S3(t), the 3-stack size, start by looking at the probability a vertex remains
in the 3-stack through timet. For this to happen it must survivet
independent attempts at removing it. For each of these attempts a 3-stack
vertex has probability(1− c/n) of of remaining in the 3-stack. Therefore
the size of the 3-stack is

S3(t+ 1) ∼ Bin(n, (1− c/n)t).

In the simplified, no fixed-color state, model

S2(t+ 1) = n− S3(t+ 1)

and therefore, distribution ofS2(t+ 1) is

S2(t+ 1) ∼ Bin(n, 1− (1− c/n)t)

Until now the number of vertices moving from the 3-stack to the 2-stack,
bt+1 has been approximated as Bin(n, c/n) since at each step of the
algorithm, there is ac/n chance that a vertex in a 3-stack will move to a
2-stack, and there are at leastn 3-stack vertices. A more accurate estimate
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is comes from realizing that at timet there areS3(t) possible 3-stack
vertices. Therefore, a more accurate estimate ofbt+1 is given by

bt+1 ∼ Bin(S3(t), c/n).

This approximation will be used for the remainder of this paper.

9.2. X1(t),X2(t), andX3(t) Remain Balanced when Colors are Not
Fixed. Define

∆t+1X = Xt+1 −Xt = bt+1δt+1.

In order to show thatXAB(t) ≈ XAC(t) ≈ XBC(t) with high probability,
consider the differences between 2-color stack sizes. The behavior of

Zt = XAB(t)−XBC(t)

is typical.

Let

γt+1 = δAB(t+ 1)− δBC(t+ 1)

and

∆t+1Z = Zt+1 − Zt.

The conditional probability ofZt by ∆t+1Z is then

PtZt∆t+1Z = ZtPt∆t+1Z

= ZtPtbt+1Ptγt+1

= ZtS3(t)
c

n

1

2
(1−X1(t)/S2(t)− 1 +X3(t)/S2(t))

= −1

2

c

n

S3(t)

S2(t)
Z2

t

≤ 0

This implies that if, at some time, the difference|XAB(t)−XBC(t)| gets
large, the stack selection process ensures that it will not remain large for
long since subsequent iterations of the algorithm will tend to reduce this
difference. Also, since the choice of stacks used to defineZt was arbitrary,
this negative feedback mechanism exists between all two-color each pair of
elements inXt. Now, if it can be shown that the expected conditional
differencesPtZ

2
t+1 cannot grow too quickly, it can be concluded that theZt

tends to be around zero.



ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM ON A RANDOM GRAPH10

9.3. PtZ
2
t+1 is Bounded for by a Constant When Colors are Not Fixed.

We would like to show the expected conditional differencesPtZ
2
t+1 cannot

grow too quickly int

PtZ
2
t+1 = Pt(Zt + ∆t+1Z)2

= Z2
t + ZtPt∆t+1Z + Pt∆t+1Z

2

≤ Z2
t + Ptb

2
t+1Ptγ

2
t+1

≤ Z2
t + Ptb

2
t+1 sinceγ2

t+1 ≤ 1

≤ Z2
t + (c+ c2) sincePtbt+1 ≤ c+ c2.

From this we can conclude

PZ2
t+1 ≤ PZ2

0 + t(c+ c2).

9.4. Balance in the Fixed Color Case.The previous 2 sections show that
a balance mechanism exists in the 2-stacks which keeps their sizes
comparable when colored vertices are not removed from the system. We
would like to extend this to the case where colored vertices are moved to a
fixed color state and removed from the 2 and 3-stack counts.

From Equation 9.1 we know that a vertex in a 2-stack is colored is
proportional to its size. A new∆t+1X can then be defined as

∆t+1X = Xt+1 −Xt = bt+1δt+1 −Xt/S2(t)

Definingγt+1 as before

PtZt∆t+1Z = Zt(Ptbt+1γt+1 − Zt/S2(t))

=
1

2

c

n

S3(t)

S2(t)
Z2

t −
1

S2(t)
Z2

t

The first term is the same as when the the fixed-color stack was not
included and along with this negative term there is another negative term.
This implies that the feedback is stronger in the model including the
fixed-color stack.

Unfortunately, we cannot recursively bound the second moment ofZt+1

when the fixed-color stack is introduced. The problem is that the
conditional second moment ofZt+1 is a function ofZt/S2(t) and since the
2-stack size of zero may occur with positive probability we cannot give an
upper bound for the1/S2(t) term.
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