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As a special project for Spring and Summer 2007 David Pollard and I have
been studying a graph coloring algorithm proposed by Achlioptas and
Molloy (1997). Relying on heuristic arguments, they claimed to be able to
find the probability of success for their algorithm on Erdös-Ŕenyi graphs.
This paper is a progress report detailing our attempts to rigorously derive
similar success-probabilities in the special case of the 3-color problem.

1. THE ALGORITHM AND ITS REPRESENTATION

For a graph withn vertices, the Achlioptas and Molloy algorithm attempts
to color each vertex such that no vertex has the same color of any of its
neighbors. The algorithm begins by associating each vertex with its own
list of possible colorings{A, B, C}. When a vertex is colored it will be
referred to as having a fixed color. When a vertex has a fixed color its list
size can be regarded as zero. This will allow us to distinguish between a
vertex with 1-possible coloring and a vertex that is assigned a color. Let
Lv,i) be the the color list for vertexv at timei. For thetth time step of the
algorithm

(1) Choose uniformly at randomv from vertices smallest list of size
greater than zero.

(2) Pick a colorζ uniformly at random fromLv,t.
(3) Fix v with color ζ.
(4) For each vertexu not in the set of fixed color vertices:

• If u is a neighbor ofv removeζ from its color list.
Lu = Lu \ {ζ}

If at any time during the execution any vertex’s color list is empty, the
algorithm has failed to find a valid coloring. If at timen all vertices have a
fixed color, then the algorithm has succeeded.

Let S3(t) denote the number of vertices at timet with color list{A, B, C},
Xα(t) denotes the number of vertices at timet with 2-color list
α ∈ {{A, B}, {A, C}, {B, C}}, Yβ(t) denotes the number of vertices at
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FIGURE 1. A Visualization for the List Counts

time t with 1-color listβ ∈ {{A}, {B}, {C}}, F (t) denotes the number of
vertices at timet with empty color lists, andL(t) denotes the number of
vertices at timet which are colored.

The progress of the algorithm is shown in Figure (1). It should be noted
that for all vertices with color list size greater than 0, there is a positive
probability of moving toL(t).

For Erd̈os-Ŕenyi graphs there is an averaging effect such that the occurence
of a specific graph structures (which may be used as counter examples to
the algorithm succeeding) occur with small probability. Thus, by
performing the analysis on Erdös-Ŕenyi graphs, we are, in a sense, looking
at an ”average” class of graphs that the algorithm may be used on.

The evolution of the algorithm on an Erdös-Ŕenyi graph can be describe by
a Markov Chain where the variables are the list counts defined above. Both
F (t) andL(t) are absorbing states and at each iteration of the algorithm a
vertex can be colored, it can lose a color from its color list, or its color list
can remain unchanged.
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2. WHEN c < 1 THE ALGORITHM SUCCEEDS WITHHIGH PROBABILITY

The algorithm starts by fixing the color of a vertex in the 3-stack. Since the
colored vertices neighbors lose a possible fixed color, they move to a
2-stack. In the Erd̈os-Ŕenyi graph there is ac/n probability of a vertex
being a neighbor of another vertex in the graph. Since there are always at
leastn uncolored vertices, at timet the number of 3-color vertices that
become 2-color vertices is stochastically dominated by a random variable
with Bin(n, c/n) distribution. For the case wherec < 1, the the expected
number of vertices which go from the 3-stack to a 2-stack is less than 1 at
each time step. Since the algorithm moves 1 vertex to the fixed color stack
at any time, when a vertex is moved to the 2-color stack it is quickly moved
to the fixed color stack in the next time step. This implies that, with high
probability, whenc < 1 the algorithm will succeed.

3. 1-STACKS STAY SMALL UNTIL ORDER n1/3

Define

S1(t) =
∑

β∈{{A},{B},{C}}

Yβ(t)

that is, the number of vertices with color-lists of size 1. These will be
referred to as 1-stacks. For a vertex to be a member of a 1-stack at timet, it
must have been chosen twice to have a color from its color-list removed.
Each of the othert− 2 times it was not selected to be colored and was not
adjacent to a vertex being colored. This means that the probability of a
given vertex being in a 1-stack at timet is at least

p1(t) =

(
t

2

) ( c

n

)2 (
1− c

n

)t−2

.

This implies that the number of 1-stack vertices up to timem is
stochastically dominated by

m∑
t=1

np1(t) ≤
m∑

t=1

t2

2

c2

n
=

c2

6n
m3 + o(n)

By the Markov Inequality this implies that

P{S1(ε1n
2/3) ≥ ε1n

1/3} ≤ c2

6

ε2
1

n1/3

Therefore, up to a time of ordern1/3 the expected size of the 1-stacks goes
to zero asn gets large;S1(t) = op(n

1/3).
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4. THE PROBABILITY OF FAILURE IS SMALL UNTIL ORDER n2/3

For a vertex to reach the fail state at timet, it must have been chosen three
times to have a color-list removed. This means that the probability of a
vertex reaching the fail state at timet is at least

pf (t) =

(
t

3

) ( c

n

)3

.

Then, the expected number of vertices in the fail state at timet is
stochastically dominated by

n

(
t

3

) ( c

n

)3

≤ t3

6

c3

n2
.

By the Markov Inequality this implies

P{F (εfn
2/3) ≥ εfn

2/3} ≤
ε2

fc
3

6n2/3

This means that up to a time of ordern2/3 the probability that the algorithm
will fail goes to zero asn gets large;F (t) = op(n

2/3).

5. THE EXPECTEDSIZE OF S2(t)

Let bt ∼ Bin(n, c/n). As shown in Section (2),bt stochastically dominates
the number of vertices going from the 3-stack to a 2-stack at timet. Then
the size of the 2-stack at timet is stochasitcally dominated by the sum of
the binomial increments

PS2(t) ≤ P
t∑

i=1

bi = ct.

6. THE FIRST TIME THE 1-STACK IS CLEARED OUT

In Section (3) it is clear that until a time of ordern1/3 the 1-stacks remain
empty. In the previous section it is shown that expected size ofS2(t) at this
time is of ordern1/3. Since a vertex gets to a 1-stack from a 2-stack and the
size of a 2-stack is relatively small it is reasonable to assume that for the
first few times, the number of vertices going from a 2-stack to a 1-stack is
relatively small. Therefore, it seems helpful to analyze the first time a
1-stack becomes empty after it receives a vertex.

Let t0 = ε1n
1/3 be the first time the 1-stack becomes non-empty. Let

τ1 = min{t ≥ t0 : S1(t) = 0}.
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This is the first time a 1-stack becomes empty after it has received a vertex.
Let m > 1 be a number of steps aftert0. Let N be the number of vertices
that drop to a 1-stack between timet0 andt1 = t0 + m. Then

{τ1 > t0 + m} ≤ {N ≥ 1}+ {S1(t0) ≥ m}.
The number of time steps to clear out the 1-stack is less than the size of the
1-stack at timet0 plus the number of vertices that go to the 1-stack between
time t0 andt1.

The probability that a vertex moves to a 1-stack between timet0 andt1 is at
most the size of the 3-stack times times the probability of moving to a
1-stack during this time plus the size of the 2-stack times the probability of
moving to to a 1-stack during this time.

The size of the 3-stack at any time is less thann and, the probability of a
vertex going from a 3-stack to a 1-stack inm time steps isp1(m).
Therefore the expected number of 3-stack vertices moving to 1-stack
vertices is less than(mc)2/(2n).

For a single time stept wheret0 ≤ t ≤ t1

PS2(t) ≤ cm,

and the probability of a vertex going from a 2-stack to a 1-stack is at most
(c/n). Then form time steps the expected number of 2-stack vertices
moving to 1-stack vertices is less than(c2m2)/n2

PN ≤ m2c2

(
1

2n
+

1

n2

)
Using this result and the result from Section (3) it follows

P{τ1 > t0 + m} ≤ m2c2

(
1

2n
+

1

n2

)
+

c2ε3
1

6m

Whenm is small the function is close to zero. This implies that the
1-stacks will become empty shortly aftert0.

7. A SUMMARY AND JUSTIFICATION FORSUBSEQUENTSECTIONS

The previous sections have shown that the Achlioptas and Molloy
algorithm will run with empty 1-stacks up to a time of ordern1/3. At this
time a 1-stack will become non-empty, but it will return to being empty
after a short amount of time. It seems likely that the 1-stack is emptied so
quickly because the number of vertices entering the 1-stack is small. We
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suspect that similar behavior will continue but, as time progresses, the
number of vertices going from 2-stack to 1-stacks will increase. As a result
it will take longer to empty the 1-stacks. At a time of ordern2/3 it is
possible for the algorithm to fail. This will happen because as the number
of vertices in 1-stacks increases it becomes more likely that the algorithm
will fail.

If the algorithm does not fail, it is because the size of the 1-stack does not
get too big. In this case, the size of the 3-stacks will become small and as a
result, the number of vertices going to 2-stacks and 1-stacks will become
small. If the algorithm successfully executes to this time the failure
probability will go to zero.
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