ANALYSIS OF THE GREEDY LIST COLORING ALGORITHM
ON A RANDOM GRAPH: PART 2
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1. AN UPPERBOUND ON THE MAXIMUM Sy(t)

Defineb; as before. Using the fact that the number of vertices going from
the 3-stack to a 2-stack is stochastically dominateé, by

ne
<
IISI%}TEE Sa(t) < ; b,

and therefore to get an upper bound on the biggeg it is sufficient to
get a bound on the size of the sumbaf This can be done by centering
each of thé, values and then applying the Bennett Inequality (Pollard
2001, Chapter 11)

P{th > V} :]P’{th—necz V—nsc}
t=1

<o (72 (5=59))
where

[ 2((1+2x)log(1 4+ x) —x) /2* forx > —1andz #£=0
() = { 1 for z = 0.

As v gets larger than the expected value of the sumy’'sfthat isv > nec,
there is a sharp decrease in the probability of getting-dt) larger thanv.
Therefore, we expect th&t(¢) will not be much bigger than this value.

2. THE RESTRICTEDMODEL

It is not immediately clear how to analyze all list counts in the algorithm,
and managing all of these variables may become unwieldy. Therefore, as a
first-pass, consider a simplified Markov chain similar to that in Figtre
consisting of onlySs(t), X,(t) for a € {A, B, C'}, andY; for

B e {{A, B}, {A,C},{B,C}}. This means that a given vertex may go

from the 3-color stack to a 2-color stack, the 3-color stack to the fixed color
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stack, or a 2-color stack to the fixed color stack. This will be referred to as
the restricted model. To begin with, the added simplification of no
fixed-color stack will be imposed. In this case a “colored” vertex will

retain its color list and the algorithm will proceed. It will not be added to
the fixed-color stack. After the simplified model is well understood, the
fixed-color stack will be introduced and analyzed.

In the first step of the algorithm,= 1 in the restricted, no fixed-color
stack, model, one of the vertices is chosen uniformly at random and
assigned a color which is chosen uniformly at random from 1 of its 3
colors. This color is removed from the color-lists of each of its adjacent
vertices. Fort > 1, a vertex with color list A, B}, {A,C}, or{B,C} is
picked to be colored proportional to its respective list count. In other
words, for vertices with color lisfA, B} at timet, denoted/s5(t),

(2.1)

P{a vertex inV,5(t) is colored at+1|X 45(t), Xac(t), Xpc(t)} =

Let b, ; be the number of vertices that go from 3-color lists to 2-color lists
at timet + 1. The probability thatX 4 (¢ + 1) is selected to receivg,
vertices fromSs(t) is the probability that a vertex with color li$t4, B} or

{B, C} is picked to be colored times the probability that the color picked is
B. Write P, for the conditional probability conditioned on information
through timet, then we can write

P{Xac(t+1) = Xac(t) + b1} = % (XAB(tL)g;E;(BC(t))

=5 (-5

Let X; be (Xap(t), Xac(t), Xpc(t)) and lets,, indicate which stack get
b;yq items att + 1. Then

(1= X1/ 5a(t))

N | —

T = Prery =

For the restricted, no fixed-color stack, model the transition to a state at
timet¢ + 1 is controlled by two conditionally independent quantities
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ande, . ; Where

m = (maB(t), mac(t), TBc(t))

{ (1/3,1/3,1/3)if t =0
s (1= X,/S:(t)) ift > 1.

If at a given timetf, X 45(¢) is much larger than bot 4 () and X g (1),
then a vertex with color lisfA, B} is more likely to be selected for
coloring. Therefore, for some> 0, X 45(t + ) is unlikely to receive more
items until its size is closer t& 4 (t + i) or X (t + 7). After the
distributions ofS;(t), Sa2(t), andb; are established in the next subsection a
more formal justification of this balancing mechanism is provided in
Section (2.2).

2.1. The Distribution of S;(t), So(t), and b;. To find the distribution of
Ss3(t), the 3-stack size, start by looking at the probability a vertex remains
in the 3-stack through time For this to happen it must survive

independent attempts at removing it. For each of these attempts a 3-stack
vertex has probabilityl — ¢/n) of of remaining in the 3-stack. Therefore
the size of the 3-stack is

Ss(t 4+ 1) ~ Bin(n, (1 — ¢/n)").

In the simplified, no fixed-color state, model
So(t+1) =n—S3(t+1)
and therefore, distribution dfy(¢ + 1) is
So(t+1) ~Bin(n,1 — (1 —¢/n)")

Until now the number of vertices moving from the 3-stack to the 2-stack,
b1 has been approximated as Binc/n) since at each step of the
algorithm, there is @/n chance that a vertex in a 3-stack will move to a
2-stack, and there are at leasB-stack vertices. A more accurate estimate
is reached by realizing that at tim¢here areS;(¢) possible 3-stack
vertices. Therefore, a more accurate estimate gfis given by

bt+1 ~ B|n(53<t>,C/n)

This approximation wil be used for the remainder of this paper.
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2.2. X,(t), X»(t), and X3(¢) Remain Balanced when Colors are Not
Fixed. Define
A X = X1 — Xy = b6
In order to show thak 45 (t) =~ Xac(t) ~ Xpc(t) with high probability,
consider the differences between 2-color stack sizes. The behavior of
Zy = Xap(t) — Xpo(t)
is typical.

Let
Ver1 = ap(t+1) —epe(t+1)
and
A1 Z = Zipr — Z.
The conditional probability of; by A, ;7 is then
P Zi A1 Z = ZiP DNy Z
= ZiPbe 1 Pryqn
cl
= ZtSS(t)ﬁi(l — X1(1)/52(t) — 1+ X5(t)/5:(t))
_ _LeS() o
N 2n Sg (t) ¢
<0
This implies that if, at some time, the differenc€,5(t) — Xpc(t)| gets
large, the stack selection process ensures that it will not remain large for
long since subsequent iterations of the algorithm will tend to reduce this
difference. Also, since the choice of stacks used to defineas arbitrary,
this negative feedback mechanism exists between all two-color each pair of
elements inX;. Now, if it can be shown that the expected conditional

differencesP, Z7, ; cannot grow too quickly, it can be concluded that the
tends to be around zero.

2.3. P,Z7,, is Bounded for by a Constant When Colors are Not Fixed.
We would like to show the expected conditional differenBgs?, ; cannot
grow too quickly int

P2}y =P Z 4+ Ay Z)?
=7} + 2P DN Z + P 2P
< Z}+ Ptbfﬂpt%%rl
< 77+ P}, sinceyt, <1
< 72+ (c+ ) sincePb;q < ¢+ 2.
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From this we can conclude
PZ} ., <PZS +t(c+ ).

2.4. Balance in the Fixed Color Case.The previous 2 sections show that

a balance mechanism exists in the 2-stacks which keeps their sizes
comparable when colored vertices are not removed from the system. We
would like to extend this to the case where colored vertices are moved to a
fixed color state and removed from the 2 and 3-stack counts.

From Equation 2.1 we know that a vertex in a 2-stack is colored is
proportional to its size. A new\, ; X can then be defined as
A1 X = X1 — Xy = bigegr — X3/ So(1)
Defining~,,, as before
P Zi A1 Z = Zy(Pibyy1vesr — Z¢/Sa(t))

2n 52 (t) t SQ (t)
The first term is the same as when the the fixed-color stack was not
included and along with this negative term there is another negative term.

This implies that the feedback is stronger in the model including the
fixed-color stack.

z

Unfortunately, we cannot recursively bound the second momefit,of

when the fixed-color stack is introduced. The problem is that the
conditional second moment & ., is a function ofZ;/S>(t) and since the
2-stack size of zero may occur with positive probability we cannot give an
upper bound for the /S, (t) term.
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