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As a final project for STAT 637 (Deterministic and Stochastic
Optimization) the simple urn model is studied, with special attention being
payed to its relationship with stochastic approximation. This write-up is
based on portions of Pemantle (2007) which provides a survey of random
process but, it also draws from other sources.

This paper begins by describing the simple urn model. Next, distributions
of ball counts and ball proportions are derived. These derivations should
help give the reader an understanding of how urn processes behave. After
this intuition is developed, a stochastic approximation of its behavior is
derived. This way, the relationship between the stochastic results and the
previously derived results is clear. Finally, a case where the stochastic
approximation may not hold is introduced and an alternative solution is
described.

1. THE POLYA URN

The Polya urn process is defined as:

Placer red balls andg green balls in the urn.
repeat

Pick a balll from the urn uniformly at random.
if l is a green ballthen

Replacel and put another green ball into the urn.
end
else

Replacel and put another red ball into the urn.
end

end ;

Algorithm 1 : The Polya Urn Process Algorithm

Clearly, the urn starts withr + g balls. For the entire paper it will be
assumed thatr andg are greater than zero. At any timet ≥ 0, the number
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of balls in the urn ist + r + g. The next step is to understand the
distribution of these balls att.

2. COUNTING BALLS

At the first step of the algorithm, there arer + g balls in the urn and one is
selected at random. This means that there is anr/(r + g) chance of picking
a red ball at the first step. Likewise, there is ag/(r + g) chance of picking
a green ball. Following Pollard (1997), letRt be the event that a red ball is
chosen at timet. Likewise, letGt be the even that a green ball is chosen at
time t. The probability of picking a red ball at time 2 can then be solved as:

PR2 = PR1R2 + PG1R2 = PR1P(R2|R1) + PG1P(R2|G1)

=
r

(r + g)

r + 1

(r + g + 1)
+

g

(r + g)

r

(r + g + 1)

=
r

r + g
.

This showsPR1 = PR2 = r/(r + g). These calculations work similarly
for anyt ≥ 1, giving the result

PRt =
r

(r + g)
.

Now, let’s examine the probabilities of a sequence of balls. For example,
the probability of getting a green ball at time 1 and a red ball at time 2 is

PG1R2 = PG1P(R2|G1) =
g

(r + g)

r

(r + g + 1)
.

The probability of getting a red ball at time 1 and a green ball at time 2 is

PR1G2 = PR1P(G2|R1) =
r

(r + g)

g

(r + g + 1)
.

The probability of getting two green balls is

PG1G2 = PG1P(G2|G1) =
g

(r + g)

g + 1

(r + g + 1)
.

Finally, the probability of getting two red balls is

PR1R2 = PR1P(R2|R1) =
r

(r + g)

r + 1

(r + g + 1)
.

It may be noted thatPR1G2 = PG1R2. In fact, the probability of any
sequence of balls is only a function of the number of red balls and the
number of green balls which appear in the sequence.

P{R1 = red, G2 = green, R3 = red} = P{R1 + R2 + R3 = 2}
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In Panchenko (2007) it is shown that, by de Finetti Theorem, for an
exchangeable sequence of Bernoulli random variables, there exists a
distributionF on [0, 1] such that

P(R1 + ... + Rn = k) =

∫ 1

0

(
n

k

)
xk(1− x)n−kdF (x).

To find the distribution ofF , let’s look at the moments.

We have already found that the first moment forRk is r/(r + g). The
second moment was also found as

r(r + 1)

(r + g)(r + g + 1)
.

Solving for the variance we get

r(r + 1)

(r + g)(r + g + 1)
− r2

(r + g)2
=

(r2 + r)(r + g)− r2(r + g + 1)

(r + g)2(r + g + 1)

=
rg

(r + g)2(r + g + 1)

Which is the variance of theβ(r, g) distribution. The fact theF is a beta
distribution can be confirmed by realizing that moment generating function
of the beta distribution and the the higher moments of this process are
equal.

These result imply that the following equation tells us how many reds we
can expect aftern steps

P{k reds aftern steps} =

∫ 1

0

(
n

k

)
xk+r−1(1− x)n−k+g−1 Γ(r + g))

Γ(r)Γ(g)
dx

=

(
n

k

)
Γ(r + g)

Γ(g)Γ(r)

Γ(k + r)Γ(n− k + g)

Γ(n + g + r)

3. THE DISTRIBUTION OF THEPROPORTION OFRED BALLS

In this section, we would like to find the distribution of the proportion of
the number of red balls in the urn at any time. LetXt+1 andYt+1 be the
number of red balls and green balls respectively at timet + 1 and letWt+1

be the proportion of red balls at timet + 1.

Wt+1 =
r + Xt+1

Xt+1 + Yt+1

=
r + Xt+1

r + g + t + 1

Wt+1 may be written as a function of the random variableXt+1 and
constantsr, g, andt.
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Wt+1 is a martingale. SinceWt+1 is a proportion we are guaranteed
P|Wt+1| < ∞. Also, if we letPtWt+1 denote the probability ofWt+1

conditioned on all information up to and includingt then,

PtWt+1 =
(Xt + 1)

(Xt + Yt + 1)

Xt

Xt + Yt

+
Xt

(Xt + Yt)

Yt

(Xt + Yt + 1)

=
Xt(Xt + Yt + 1)

(Xt + Yt)(Xt + Yt + 1)

=
Xt

Xt + Yt

= Wt

From Pollard (2001, page 151) we know that a submartingale
{Sn : n ∈ N0} with supn PS+

n < ∞ converges almost surely to an
integrable limit. Since a martingale is also a submartingale, and
0 ≤ Wt+1 ≤ 1 for all t ≥ 0, Wt+1 must converge to an integrable limit.
To find this limit, first realize

Wn =
r + Xn

r + g + n
→ Xn

n
asn →∞.

From the last section, we know that the by de Finetti’s theorem

P{Xn = k} =

(
n

k

) ∫ 1

0

xk(1− x)n−kdβ(r, g)(x).

Again, using results from Panchenko (2007), for any functionf with range
[0, 1],

Pf

(
Xn

n

)
=

n∑
k=0

f

(
k

n

) (
n

k

) ∫ 1

0

xk(1− x)n−kdβ(r, g)(x)

=

∫ 1

0

Bu(x)dβ(r, g)(x).

Bu(x) is aBernstein Polynomialwhich, in Wikipedia (2007), is shown to
have the property

lim
n→∞

Bn(f)(x) = f(x).

Therefore,

Pf

(
Xn

n

)
→

∫ 1

0

f(x)dβ(r, g)(x) asn →∞.

Any moment ofXt/t approaches the same moment of aβ(r, g) distribution
for large enought. The distribution of the proportion of red balls
approaches aβ(r, g) almost surely asn approaches infinity.
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4. EXTENSIONS TOOTHER URN MODELS

The previous sections study thesimple urnmodel in which, at time 0 there
arer red balls andg green balls. At each time step, a ball is chosen at
random from the urn and that ball along with another ball of the same color
are put back. An extension to this process would be, for each iteration, to
replace the picked ball along withc more of the same color (c = 1 in the
simple urn case).

In this case, the the for the probability of the number of red balls is almost
the exact same.

P{k red balls at timen} =

(
n

k

)
Γ

(
r+b
c

)
Γ

(
g
c

)
Γ

(
g
c

) Γ
(
k + r

c

)
Γ

(
n− k + g

c

)
Γ

(
n + g

c
+ r

c

)
The corresponding distribution of the proportion of red balls to the number
of balls in the urn isβ(r/c, g/c).

When the algorithm is run withc = −1, this corresponds to the OK Corral
process. The story used to motivate this process is that there is a shootout
between two gangs. Before the shootout starts there arer live members of
the first gang andg live members of the second. At any timet, the
probability that a member of first gang will be shot is equal to the
proportion of size of the second gang to the total number of gunfighters,
Yt/(Xt + Yt). It is assumed that each shot is immediately fatal. The
process is run until all the members of one of the two gangs is killed. The
distributions of interest are the time when one gang kills all members of the
other gang and, for the victorious side, the number of surviving gang
members.

The OK Corral process falls under a more general set of process which are
described assacrificial in Flajolet, Dumas, and Puyhaubert (2006). For
these urn processesc < 1. These models generally add the requirement that
c divides bothr andg so that on population is guaranteed to reach zero.

5. THE STOCHASTIC APPROXIMATION

Let’s once again consider the simple urn model,c = 1. Now, we would like
to get an approximation for the number of red balls in the urn at any time.
The number of red balls at timet + 1 can be written recursively as

(5.1) Xt+1 = Xt + Rt+1.
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Let ∆t+1 = Xt+1 −Xt, then we can rewrite Equation (5.1) as

∆t+1X = Rt+1 − PtRt+1 + PtRt+1

= Mt+1 + PtRt+1

Mt+1 is a martingale with zero expectation. Furthermore,

Mt+1 = Rt+1 − PtRt+1

= Rt+1 −
r + Xt

r + g + t

= Rt+1 −Wt.

If we look at the total variation distance betweenRt+1 andWt

sup{|PRt+1 − PWt|} = sup {|PPtRt+1 − PWt|}

= sup

{∣∣∣∣P (
r + Xt+1

r + g + 1

)
− PWt

∣∣∣∣}
= sup {|PWt+1 − PWt|}
→ 0 ast →∞.

The last step comes from Section (3), where it was shown that the
distribution of the proportion of red balls is converging to a constant
distribution.

This result tells us that, fort big enough, the change in the number of red
balls at timet + 1 behaves like the expectation of the number of balls
added.

∆t+1X ≈ PtRt+1 =
r + Xt

r + g + t
=

Xt

r + g + t
+

r

r + g + t
.

The termr/(r + g + t) approaches zero ast increases. Therefore, it will be
ignored. The difference equation can then be approximated by the
differential equation

dX

dt
=

X

r + g + t

which can be rewritten as

dX

X
=

dt

r + g + t
.

Taking the indefinite integral and then the log of both sides yields the
equation

(5.2) X(t) = (r + g + t)em
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for some constantm. Remembering that initially there arer red balls we
can solve forem

em =
r

(r + g)
.

Substituting back into Equation (5.2)

X(t) = (r + g + t)
r

(r + g)
=

r

(r + g)
t + r.

The number of red balls increases linearly with time. This result is
somewhat unsurprising. We already know that the distribution of the
probability of getting a red ball at some timet is approximatelyβ(r, b) and
so we can expect that the number of red balls will increase linearly in time.
The derivation serves to confirm this suspicion.

This particular example of creating a dynamic system from the expected
behavior of a process falls under the general category ofstochastic
approximation. These processes can be put into the form

Zt+1 − Zt =
1

ηn

(F (Zt) + ξt+1 + Dt)

and satisfy the following requirements:

• F is a vector field onRn.
• ξt+1 is a martingale which converges and satisfies satisfies

Ptξt+1 = 0.
• The remainder termDt goes to zero ast increases
•

∑∞
t=1 Dt/ηt < ∞.

When these requirements are satisfied, for big enought, the differential
equation

dZ

dt
= F (Z).

approximates the behavior of the process{Zt}.

6. PATH COUNTING

Stochastic approximations rely on the convergence of a martingale in its
description. The question then arises: what happens if the process does not
continue for an arbitrarily long time so that the martingale term does not
have enough time to converge? This is potentially the case for the
previously described OK Corral process. To understand these processes
Flajolet, Dumas, and Puyhaubert (2006) find urn configuration
probabilities based onhistory countingwhich model the number of ways
an urn can have a configuration given the initial condition ofr red balls and
g green balls. This section will provide a sketch for the justification and
then describe some results reached in the paper.
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As a motivating example, consider the simple urn process withr = g = 1
going from time 0 and 1. During this iteration there is 1 red ball which may
be picked. If it is picked then the ball count at time 2 is 2 red balls and 1
green balls. Similarly, at this iteration, there is 1 green ball to pick. If it is
picked, then the ball count at time 2 is 1 red ball and 2 green balls.
Compare this to the polynomial

xy(1 + x)(1 + y) = xy + x2y + xy2 + x2y2

If we take the exponent of thex term as the red ball count and the exponent
of they term as the green ball count, then the termsx2y andxy2

correspond to these cases. The coefficient of the terms correspond to the
number of different ways to reach a count of 3 balls. To consider the
possible ball counts at time 2, consider the polynomial

x2y(1 + x)(1 + y)+xy2(1 + x)(1 + y)

= x2y + x3y + 2x2y2 + xy3 + x3y2 + xy2 + x2y3

At time 2 there are 4 balls in the urn corresponding to termx3y, 2x2y2, and
xy3. The only way to have 3 red balls and 1 green ball in the urn at this
time is if a red ball is picked twice. Likewise, the only way to have 3 green
balls and 1 red ball in the urn at time 2 is if a green ball is picked twice.
There can be 2 red balls and 2 green balls if a red ball is picked at the first
iteration and a green is picked on the second iteration or a green ball is
picked at the first iteration and a red is picked at the second. This
corresponds to a coefficient of2 for the term2x2y2

Now that we can count the total number ofpathsto a given urn
configuration for the simple urn model, let’s find the total number of
configurations of the urn at a given time. Again, consider the urn model
where the balls along with the sample ball is returned to the urn at any time
t. At t = 1 there arer + g balls to choose from. At timet = 2 there are
r + g + 1 balls to choose from. Lets = r + g, then the total number of
different ways to choose balls through timet is

s(s + 1)...(s + t− 1) = t!ct

(
n + s− 1

t

)
.

This is referred to as the number ofhistoriesof the process.

From the difference equations describing an urn model, Flajolet, Dumas,
and Puyhaubert (2006) give probabilities of urn configurations at given
times based on path counts. These difference equations must have a linear
recurrence representation, the sum of the rows of the state transition matrix
must be equal, and if balls are being taken from the urn, the number being
taken must divide the number of balls.
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After finding a set of difference equations which describe an urn process, a
polynomial generating function is derived. To get a configuration
probability at timet, a derived differential operator is applied to the
polynomialt times and then the generating function variable is set to zero.
The calculated number can then be divided by the the total number of paths
to get a probability of a path.

As a final example, we will once again consider the simple urn model. The
linear recurrence representation is[

Xt+1

Yt+1

]
=

[
1 0
0 1

] [
Rt+1

Gt+1

]
+

[
Xt

Yt

]
.

Using the technique described in the paper, the differential system is{
dx
dt

= x2

dy
dt

= y2 .

Solving this pair, and remembering that initially there arer red balls andg
green balls we get {

Xt = r
1−tr

Yt = g
1−tg

.

Which corresponds to a generating functionH(x, y, t) of

H(x, y, z) =
xryg

(1− tx)r(1− ty)g
.

To get the probability that this urn will havea red balls andg green balls at
timen, the differential operator is appliedn times andx, y, andt is set to
zero. Then, this number is divided by the total number of histories to get

P{k reds aftern steps} =

(
n

k

)
Γ(r + g)

Γ(g)Γ(r)

Γ(k + r)Γ(n− k + g)

Γ(n + g + r)

which agrees with the results of Section (2).

7. CONCLUSION AND FUTURE WORK

This paper gives several different approaches to solving the simple urn
problem. Although it was only mentioned, each of these techniques lend
themselves analyses of more complicated processes (some of which were
described). And, in many cases, extending the analysis to these processes
is straight forward.

It may have been noted that the description of the history counting
technique left some holes its justification as well as the example. This was
mostly due to time constraints. Since they were more relevant to the class,
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analyses from Sections 2, 3, and 5 were deemed more important and less
time was spent understanding the history counting technique.

Along with gaining a better understanding of the path counting technique,
future work may consist of applying stochastic approximation to the graph
coloring problem described in Achlioptas and Molloy (1997). This paper
describes a greedy graph coloring algorithm which is applied to
Erdös-R’enyi graphs (G(n, m/n)). Consider the case wheren is large.
When the algorithm is run, trying to color the graph withk colors, there is
a threshold valueγ such that ifm < γ, the algorithm will succeed with
high probability. Ifm > γ, then the algorithm will fail with high
probability. The algorithm works by keeping track of possible colorings for
each vertex. When a vertex is colored, adjacent vertices update their list of
possible colorings. A stochastic approximation could be used to model
these color list sizes.
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