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As a final project for STAT 637 (Deterministic and Stochastic
Optimization) the Polya urn process was studied with special attention
being payed to its relationship with stochastic approximation. This
write-up is based on portions of Pemantle (2007), which provides a survey
of random process but it also draws from other sources.

This paper begins by describing the Polya urn process. Next, distributions
of ball counts and ball proportions are derived. These derivations should
provide the reader with an understanding of how urn processes behave.
After this intuition is developed, a stochastic approximation of the process
is derived. This way, the relationship between the stochastic results and the
previously derived results is clear. Finally, a case where the assumptions of
stochastic approximation may not hold is introduced and an alternative
solution is described.

1. THE POLYA URN

The Polya urn process is defined as:

Placer red balls andg green balls in the urn.
repeat

Pick a balll from the urn uniformly at random.
if l is a green ballthen

Replacel and put another green ball into the urn.
end
else

Replacel and put another red ball into the urn.
end

end ;

Algorithm 1 : The Polya Urn Process

Clearly, the urn starts withr + g balls. For the entire paper it will be
assumed thatr andg are greater than zero. At any timet ≥ 0, the number
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of balls in the urn ist + r + g. The next step is to understand the
distribution of these balls att.

2. COUNTING BALLS

At the first step of the process, there arer + g balls in the urn and one ball is
selected at random. This means that there is anr/(r + g) chance of picking
a red ball at the first step. Likewise, there is ag/(r + g) chance of picking
a green ball. Following Pollard (1997), letRt be the event that a red ball is
chosen at timet. Likewise, letGt be the event that a green ball is chosen at
time t. The probability of picking a red ball at time 2 can then be solved as:

PR2 = PR1R2 + PG1R2 = PR1P(R2|R1) + PG1P(R2|G1)

=
r

(r + g)

r + 1

(r + g + 1)
+

g

(r + g)

r

(r + g + 1)

=
r

r + g
.

This showsPR1 = PR2 = r/(r + g). These calculations work similarly
for anyt ≥ 1, giving the result

PRt =
r

(r + g)
.

Now, let’s examine the probabilities of a sequence of balls. For example,
the probability of getting a green ball at time 1 and a red ball at time 2 is

PG1R2 = PG1P(R2|G1) =
g

(r + g)

r

(r + g + 1)
.

The probability of getting a red ball at time 1 and a green ball at time 2 is

PR1G2 = PR1P(G2|R1) =
r

(r + g)

g

(r + g + 1)
.

The probability of getting two green balls is

PG1G2 = PG1P(G2|G1) =
g

(r + g)

g + 1

(r + g + 1)
.

Finally, the probability of getting two red balls is

PR1R2 = PR1P(R2|R1) =
r

(r + g)

r + 1

(r + g + 1)
.

It may be noted thatPR1G2 = PG1R2. In fact, the probability of any
sequence of balls is only a function of the number of red balls and the
number of green balls which appear in the sequence.

P{R1 = red, G2 = green, R3 = red} = P{R1 + R2 + R3 = 2}
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In Panchenko (2007) it is shown that, by de Finetti Theorem, for an
exchangeable sequence of Bernoulli random variables, there exists a
distributionF on [0, 1] such that

P(R1 + ... + Rn = k) =

∫ 1

0

(
n

k

)
xk(1− x)n−kdF (x).

To find the distribution ofF , let’s look at the moments.

We have already found that the first moment forRk is r/(r + g). The
second moment was also found as

r(r + 1)

(r + g)(r + g + 1)
.

Solving for the variance we get

r(r + 1)

(r + g)(r + g + 1)
− r2

(r + g)2
=

(r2 + r)(r + g)− r2(r + g + 1)

(r + g)2(r + g + 1)

=
rg

(r + g)2(r + g + 1)

Which is the variance of theβ(r, g) distribution. The fact theF is a beta
distribution can be confirmed by realizing that the moment generating
function of the beta distribution are equal to the higher moments of this
process.

Havingk red balls aftert steps can be expressed as

P{k red balls at timet} =

∫ 1

0

(
t

k

)
xk+r−1(1− x)t−k+g−1 Γ(r + g)

Γ(r)Γ(g)
dx

=

(
t

k

)
Γ(r + g)

Γ(g)Γ(r)

Γ(k + r)Γ(t− k + g)

Γ(t + g + r)
(2.1)

3. THE DISTRIBUTION OF THEPROPORTION OFRED BALLS

Let Xt+1 andYt+1 be the number of red balls and green balls respectively
at timet + 1 and letWt+1 be the proportion of red balls at timet + 1.

Wt+1 =
r + Xt+1

Xt+1 + Yt+1

=
r + Xt+1

r + g + t + 1

Wt+1 may be written as a function of the random variableXt+1 and
constantsr, g, andt.

Wt+1 is a martingale. SinceWt+1 is a proportion we are guaranteed
P|Wt+1| < ∞. Also, if we letPtWt+1 denote the probability ofWt+1
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conditioned on all information up to and includingt then,

PtWt+1 =
(Xt + 1)

(Xt + Yt + 1)

Xt

Xt + Yt

+
Xt

(Xt + Yt)

Yt

(Xt + Yt + 1)

=
Xt(Xt + Yt + 1)

(Xt + Yt)(Xt + Yt + 1)

=
Xt

Xt + Yt

= Wt.

From Pollard (2001, page 151) we know that a submartingale
{St : t ∈ N0} with supt PS+

t < ∞ converges almost surely to an integrable
limit. Since a martingale is also a submartingale, and0 ≤ Wt+1 ≤ 1 for all
t ≥ 0, Wt+1 must converge to an integrable limit.
To find this limit, first realize

Wt =
r + Xt

r + g + t
→ Xt

t
ast →∞.

From the last section, we know that the by de Finetti’s theorem

P{Xt = k} =

(
t

k

) ∫ 1

0

xk(1− x)t−kdβ(r, g)(x).

Again, using results from Panchenko (2007), for any functionf with range
[0, 1],

Pf

(
Xt

t

)
=

t∑
k=0

f

(
k

t

) (
t

k

) ∫ 1

0

xk(1− x)t−kdβ(r, g)(x)

=

∫ 1

0

Bt(x)dβ(r, g)(x).

Bt(x) is aBernstein Polynomialwhich, in Wikipedia (2007), is shown to
have the property

lim
t→∞

Bt(f)(x) = f(x).

Therefore,

Pf

(
Xt

t

)
→

∫ 1

0

f(x)dβ(r, g)(x) ast →∞.

Any moment ofXt/t approaches the same moment of aβ(r, g) distribution
for large enought. The distribution of the proportion of red balls
approaches aβ(r, g) almost surely ast approaches infinity.
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4. EXTENSIONS TOOTHER URN MODELS

The previous sections study thePoly urnprocess in which, at time 0, there
arer red balls andg green balls. At each time step, a ball is chosen at
random from the urn and that ball, along with another ball of the same
color, are put back. An extension to this process would be, for each
iteration, to replace the picked ball along withc more of the same color
(c = 1 in the Polya urn case).

In this case, the the probability of the number of red balls similar to
Equation (2.1)

P{k red balls at timet} =

(
t

k

)
Γ

(
r+b
c

)
Γ

(
g
c

)
Γ

(
g
c

) Γ
(
k + r

c

)
Γ

(
t− k + g

c

)
Γ

(
t + g

c
+ r

c

)
The corresponding distribution of the proportion of red balls to the number
of balls in the urn isβ(r/c, g/c).

The OK Corral process corresponds to the case wherec = −1. The story
motivating this process is a shootout between two gangs. Before the
shootout starts there arer live members of the first gang andg live
members of the second. At any timet, the probability that a member of
first gang will be shot is equal to the proportion of size of the second gang
to the total number of gunfighters,Yt/(Xt + Yt). It is assumed that each
shot is immediately fatal. The process is run until all members of one of
the gangs is killed. The distributions of interest are the time when one gang
kills all members of the other gang and, for the victorious side, the number
of surviving gang members.

The OK Corral process falls under a more general set of process which are
described assacrificial in Flajolet, Dumas, and Puyhaubert (2006). For
these urn processesc < 1. These models generally add the requirement that
c divides bothr andg so that on population is guaranteed to reach zero.

5. THE STOCHASTIC APPROXIMATION

Let’s once again consider the Polya urn process,c = 1. The number of red
balls at timet + 1 can be written recursively as

(5.1) Xt+1 = Xt + Rt+1.

Let ∆t+1 = Xt+1 −Xt, then we can rewrite Equation (5.1) as

∆t+1X = Rt+1 − PtRt+1 + PtRt+1

= Mt+1 + PtRt+1
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Mt+1 is a martingale with zero expectation. Furthermore,

Mt+1 = Rt+1 − PtRt+1

= Rt+1 −
r + Xt

r + g + t

= Rt+1 −Wt.

If we look at the total variation distance betweenRt+1 andWt

sup{|PRt+1 − PWt|} = sup {|PPtRt+1 − PWt|}

= sup

{∣∣∣∣P (
r + Xt+1

r + g + 1

)
− PWt

∣∣∣∣}
= sup {|PWt+1 − PWt|}
→ 0 ast →∞.

The last step comes from Section (3), where it was shown that the
distribution of the proportion of red balls is converging to a constant
distribution.

This result tells us that, fort big enough, the change in the number of red
balls at timet + 1 behaves like the expectation of the number of balls
added.

∆t+1X ≈ PtRt+1 =
r + Xt

r + g + t
=

Xt

r + g + t
+

r

r + g + t
.

The termr/(r + g + t) approaches zero ast increases. Therefore, it will be
ignored. The difference equation can be approximated by the differential
equation

dX

dt
=

X

r + g + t

which can be rewritten as
dX

X
=

dt

r + g + t
.

Taking the indefinite integral and the log of both sides yields the equation

(5.2) X(t) = (r + g + t)em

for some constantm. Remembering that initially there arer red balls we
can solve forem

em =
r

(r + g)
.

Substituting back into Equation (5.2)

X(t) = (r + g + t)
r

(r + g)
=

r

(r + g)
t + r.
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The number of red balls increases linearly with time. This result is
somewhat unsurprising. We already know that the distribution of the
probability of getting a red ball at some timet is approximatelyβ(r, b) and
so we can expect that the number of red balls will increase linearly in time.
The derivation serves to confirm this suspicion.

This particular example, of creating a dynamic system from the expected
behavior of a process, falls under the general category ofstochastic
approximation. These processes can be put into the form

Zt+1 − Zt =
1

ηn

(F (Zt) + ξt+1 + Dt)

and satisfy the following requirements:
• F is a vector field onRn.
• ξt+1 is a martingale which converges and satisfiesPtξt+1 = 0.
• The remainder termDt goes to zero ast increases
•

∑∞
t=1 Dt/ηt < ∞.

When these requirements are satisfied, for a big enought, the differential
equation

dZ

dt
= F (Z)

approximates the behavior of the process{Zt}.

6. PATH COUNTING

Stochastic approximations rely on the convergence of a martingale. The
question then arises: what happens if the process does not continue for an
arbitrarily long time so that the martingale term does not have enough time
to converge? This is potentially the case for the previously described OK
Corral process. To understand these processes, Flajolet, Dumas, and
Puyhaubert (2006) find urn configuration probabilities based onpath
countingwhich model the number of ways an urn can have a configuration,
given the initial condition ofr red balls andg green balls. This section will
provide a sketch for the justification and describe some results reached in
the paper.

As a motivating example, consider the Polya urn process withr = g = 1
going from time 0 and 1. During this iteration there is 1 red ball which may
be picked. If it is picked, the ball count at time 2 is 2 red balls and 1 green
balls. Similarly, at this iteration, there is 1 green ball to pick. If it is picked,
then the ball count at time 2 is 1 red ball and 2 green balls. Compare this to
the polynomial

xy(1 + x)(1 + y) = xy + x2y + xy2 + x2y2.
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If we take the exponent of thex term as the red ball count and the exponent
of they term as the green ball count, then the termsx2y andxy2

correspond to these cases. The coefficient of the terms correspond to the
number of different ways to reach a count of 3 balls. To consider the
possible ball counts at time 2, consider the polynomial

x2y(1 + x)(1 + y)+xy2(1 + x)(1 + y)

= x2y + x3y + 2x2y2 + xy3 + x3y2 + xy2 + x2y3.

At time 2, there are 4 balls in the urn corresponding to termx3y, 2x2y2,
andxy3. The only way to have 3 red balls and 1 green ball in the urn at this
time is if a red ball is picked twice. Likewise, the only way to have 3 green
balls and 1 red ball in the urn at this time is if a green ball is picked twice.
There can be 2 red balls and 2 green balls if a red ball is picked at the first
iteration and a green is picked on the second iteration or a green ball is
picked at the first iteration and a red is picked at the second. This
corresponds to a coefficient of2 for the term2x2y2.

Now that we can count the total number ofpathsto a given urn
configuration for the Polya urn model, let’s find the total number of
configurations of the urn at a given time. Again, consider the urn model
where the balls, along with the sampled ball, is returned to the urn at any
time t. At t = 1, there arer + g balls to choose from. At timet = 2, there
arer + g + 1 balls to choose from. Lets = r + g, then the total number of
different ways to choose balls through timet is

s(s + 1)...(s + t− 1) = t!ct

(
n + s− 1

t

)
.

This is referred to as the number ofhistoriesof the process.

From the difference equations describing an urn model, Flajolet, Dumas,
and Puyhaubert (2006) give probabilities of urn configurations at given
times based on path counts. These difference equations must have a linear
recurrence representation, the sum of the rows of the state transition matrix
must be equal, and if balls are being taken from the urn, the number being
taken must divide the number of balls.

After finding a set of difference equations which describe an urn process, a
polynomial generating function is derived. To get a configuration
probability at timet, a derived differential operator is applied to the
polynomialt times and the generating function variable is set to zero. The
calculated number can then be divided by the the total number of paths to
get a probability of a path.
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As a final example, once again, consider the Polya urn process. The linear
recurrence representation is[

Xt+1

Yt+1

]
=

[
1 0
0 1

] [
Rt+1

Gt+1

]
+

[
Xt

Yt

]
.

Using the technique described in the paper, the differential system is{
dx
dt

= x2

dy
dt

= y2 .

Solving this pair and remembering that initially there arer red balls andg
green balls {

Xt = r
1−tr

Yt = g
1−tg

which corresponds to a generating functionH(x, y, t) of

H(x, y, z) =
xryg

(1− tx)r(1− ty)g
.

To get the probability that this urn will havea red balls andg green balls at
timen, the differential operator is appliedn times andx, y, andt is set to
zero. Then, this number is divided by the total number of histories to get

P{k red ball at timen} =

(
n

k

)
Γ(r + g)

Γ(g)Γ(r)

Γ(k + r)Γ(n− k + g)

Γ(n + g + r)

which agrees with the results of Section (2).

7. CONCLUSION AND FUTURE WORK

This paper describes several different approaches to solving the Polya urn
process. Although it was only mentioned, each of these techniques lend
themselves analyses of more complicated processes (some of which were
described). Also, in many cases, extending the analysis to these processes
is straight forward.

It may have been noted that the description of the history counting
technique left some holes in its justification as well as the example. This
was mostly due to time constraints. Since they were more relevant to the
class, analyses from Sections 2, 3, and 5 were deemed more important.

Along with gaining a better understanding of the path counting technique,
future work may consist of applying stochastic approximation to the graph
coloring problem described in Achlioptas and Molloy (1997). This paper
describes a greedy graph coloring algorithm which is applied to
Erdös-R’enyi graphs (G(n, m/n)). Consider the case wheren is large.
When the algorithm is run, trying to color the graph withk colors, there is
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a threshold valueγ such that ifm < γ, the algorithm will succeed with
high probability. Ifm > γ, then the algorithm will fail with high
probability. The algorithm works by keeping track of possible colorings for
each vertex. When a vertex is colored, adjacent vertices update their list of
possible colorings. A stochastic approximation could be used to model
these color list sizes.
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