
Prospectus: Graph Coloring and Managing
Large Datasets in R

Michael Kane

March 14, 2008

Two unrelated topics are covered in this document. As a result, the
decision was made to divide this prospectus into two chapters. The first
chapter deals with a threshold phenomenon that occurs in the 3-color
problem on Erdös-Rényi graphs. The second chapter deals with the R
package bigmemoRy . This package, created by Jay Emerson and me, can be
used as a building-block for managing and analyzing large data sets in R.

While the first chapter may resemble a traditional thesis prospectus, the
second chapter does not. So, some justification should be given for its
inclusion. The bigmemoRy package grew from an exploration of the the
Netflix Prize data set 1. Consequently, many of the requirements were
determined by us as the need arose. While performing this exploration, we
realized that the software we had written would be useful to the R
community. As a result of this effort, R users are now able to do something
that was previously impossible: work in parallel on large datasets in RAM
and manage large data sets efficiently.

Implementation of this package is almost complete. Future work based on
bigmemoRy will consist of designing parallel algorithms with the package as
a building block, rather than extending the functionality of the package.
Some of these algorithms, such as parallel k-means and linear regression,
have been implemented. Chapter 2 serves as more of progress report and
less as prospectus.

Finally, it should be noted that the second chapter borrows from my
Statistical Computing Student Paper Competition entry 2 as well as the
bigmemoRy package vignette3.

1http://www.netflixprize.com
2http://stat.yale.edu/ mjk56/Research/Prospectus/bigmemoRyStudentPaper.pdf
3http://stat.yale.edu/ mjk56/Research/Prospectus/bigmemoRy-vignette.pdf

1

Chapter 1

The 3-Color Problem on an
Erdös-Rényi graph

In Achlioptas and Friedgut (1999) it was shown that, for a fixed chromatic
number k, a threshold phenomena exists involving the colorability of
Erdös-Rényi (ER) graphs, G(n, c/n), when c is allowed to vary. It was
shown that, for large n, there is a value ck such that when c < ck, the graph
can be colored with k colors with high probability and when c > ck, the
graph is uncolorable with high probability.

In Achlioptas and Molloy (1997) a greedy algorithm for coloring graphs is
proposed. By analyzing the algorithm, a lower-bound on ck is found. The
paper examines the behavior of the algorithm on Erdös-Rényi graphs using
differential equation to approximate list counts (described below), as well as
heuristic arguments, to arrive at the conclusion that ck ≥ 1.923.

Some of my prospective goals in researching this threshold phenomenon are:

� Understand the use of differential equations in the graph coloring
algorithm on Erdös-Rényi graphs.

� Give a more rigorous justification for the stated lower bound.

� Justify a larger lower bound.

For the rest of this chapter, it will be assumed that we are looking at the
3-color problem (k = 3).

2

1.1 The Algorithm and its Representation

For a graph with n vertices, the Achlioptas and Molloy algorithm attempts
to color each vertex such that no vertex has the same color as any of its
neighbors. The algorithm begins by associating each vertex with its own
list of possible colorings {A,B,C}. Let Lv be the the color list for vertex v.
When a vertex is colored it will be referred to as having a fixed color.
When a vertex has a fixed color its list size can be regarded as zero. This
way, vertices with 1 possible coloring are distinguished from vertices with a
fixed color. For a graph with n vertices, the algorithm is defined as:

for n iterations do
Choose uniformly at random a vertex v from vertices with smallest

list size greater than zero;
Pick a color ζ uniformly at random from Lv;
Fix v with color ζ;
foreach vertex u not in the set of fixed-color vertices do

if u is a neighbor of v then
Remove ζ from u’s color list, that is,

change Lu to Lu \ {ζ};
if Lu is empty then

The algorithm fails;
end

end

end

end

Algorithm 1: The Greedy Graph Coloring Algorithm

If the algorithm executes for n iterations and does not reach the fail state,
the algorithm succeeds.

Let Lα (not to be confused with Lv) denote the set of α-color combinations.
For example, L2 = {{A,B}, {A,C}, {B,C}}. Define L1 and L3 similarly.
Then, let Sβ(t), with β ∈ L2, denote the number of vertices at time t with
2-color list β. For example, SAB(t) denotes the number of vertices with
color list {A,B} at time t. Denote the size of individual 1-color lists
similarly. Employing a slight abuse of notation, let S3(t), S2(t), and S1(t)
denote the total number of vertices at time t with, 3-color, 2-color, and
1-color lists respectively. SF (t) denotes the number of vertices with empty

3

Figure 1.1: A Representation of the Progress of the Algorithm

color list and SL(t) denotes the number of vertices with fixed color.

For the ER graph on n vertices, each
(
n
2

)
possible edges are included with

probability c/n. We can delay the selection of edges connected to a vertex v
until the neighbors of v are found in the algorithm. Viewed in this manner,
the process is a Markov chain with state space given by the set of vertex
counts. The rest of this report assumes an ER graph in the analysis.

A visualization of the progression of list counts is given in Figure (1.1). A
vertex may begin an iteration of the algorithm with color-list {A,B,C}. If
an adjacent vertex is selected to be colored with color A, the vertex list will
lose A as a possible color and its new color-list is {B,C}. As a result of this
change S3 is decremented and S2 is incremented.

1.2 Simulation Results

Before proceeding with some of the preliminary theoretical results, it may
be a helpful to provide a more intuitive understanding of how the stack
sizes change over time. The differential equation approximation used in the
Achlioptas and Molloy paper relies on the fact that as the number of graph
vertices increases, the behavior of the stack sizes approaches the
approximation. As a result, one would expect that when simulating this

4

Figure 1.2: The Three-Stack and Two-Stack Counts for a single realization
of the process with c = 1.923 and n = 10000.

process, the stack counts would look similar across different realizations of
the process. Also, for any given realization, stack counts should appear
relatively smooth.

The algorithm was implemented and the counts for S3(t) and S2(t) for a
single realization are shown in Figure (1.2). For this simulation, the number
of vertices is 10,000 and the value for c, 1.923, is the constant found by
Achlioptas and Molloy. When compared to other realizations, this one is
fairly representative and, the intuition given in the previous paragraph
seems reasonable.

Figure (1.3) shows S1(t) from time 2100 to time 2400. In this case, the
process does not appear to approximate a differential equation. The process
is not smooth. Also, this particular realization is not representative and
another realization of the process may look significantly different. It seems
doubtful that a differential equation approximation of S1(t) will yield
precise results.

1.3 Preliminary Results

This section covers some of the early results that have been reached while
attempting to find a lower bound for the threshold of c based on the
algorithm proposed by Achlioptas and Molloy.

5

Figure 1.3: The One-Stack Counts for a single realization of the process with
c = 1.923 and n = 10000.

1.3.1 When c < 1 the Algorithm Succeeds with High
Probability

The algorithm starts by selecting a vertex in the set of vertices with
color-list of size 3. This set will be referred to as the 3-stack. Since the
fixed-color vertex’s neighbors lose a possible coloring, they move to a
2-stack. There is a c/n chance that a vertex is a neighbor of another vertex
in the graph. Since there are at most n uncolored vertices, at time t the
number of 3-color vertices that become 2-color vertices is stochastically
dominated by a random variable with Bin(n, c/n) distribution.

For the case where c < 1, the expected number of vertices which go from
the 3-stack to a 2-stack is less than 1 at each time step. Since the algorithm
moves 1 vertex to the fixed color stack at any time, when a vertex is moved
to the 2-color stack it is quickly moved to the fixed color stack in the next
time step. This implies that, with high probability, when c < 1 the
algorithm will succeed.

6

1.3.2 1-Stacks Stay Small Until Order n1/3

For a vertex to be a member of a 1-stack at time t it must have been chosen
twice to have a color from its color-list removed. Each of the other t− 2
times it was not selected to be colored and was not adjacent to a vertex
being colored. This means that the probability of a given vertex being in a
1-stack at time t is at least

p1(t) =

(
t

2

)(c
n

)2

. (1.3.1)

This implies that the expected number of 1-stack vertices up to time m1 is
less than

m1∑
t=1

np1(t) ≤
m1∑
t=1

t2

2

c2

n
=
c2

6n
m3

1. (1.3.2)

For a given ε1 > 0, if an m1 is chosen as a suitably small multiple of n1/3,
we can ensure that P{S1(m1) > 0} < ε1.

1.3.3 The Probability of Failure is Small Until Order
n2/3

For a vertex to reach the fail state at time t, it must have been chosen three
times to have a color from its color-list removed. This means that the
probability of a vertex reaching the fail state at time t is at least

pf (t) =

(
t

3

)(c
n

)3

.

Then, the expected number of vertices in the fail state at time t can be
bound by

PSf (t) ≤ n

(
t

3

)(c
n

)3

≤ t3

6

c3

n2
. (1.3.3)

For a given εf > 0, if an mf is chosen as a suitably small multiple of n2/3,
we can ensure that P{Sf (mf) > 0} < εf .

7

1.3.4 An Upper Bound on the Expected Maximum of
S2(t)

At each step in the algorithm one of the vertices is removed for coloring.
This means that, if we start with n vertices

n− t = S3(t) + S2(t) + S1(t) + Sf (t). (1.3.4)

Therefore, n− t ≥ S3(t). Using this fact it follows that the number of
vertices going from the 3-stack to a 2-stack is stochastically dominated by
b
(2)
t ∼ Bin(t(t+ 1)/2, c/n). Therefore, it follows that S3(t) is stochastically

dominated by
∑

t b
(2)
t . To get an upper bound on the biggest S2(t) it is

sufficient to get a bound on the size of the sum of b
(2)
t . This can be done by

centering each of the bt values and then applying the Bennett Inequality.

Following the justification for the Bennett inequality given in (Pollard 2001,
Chapter 11), if X ∼ Bin(n, p), then

P{X ≥ ε} ≤ exp

(
− (ε− np)2

2np(1− p)
ψ

(
n(ε− np)
np(1− p)

))
(1.3.5)

where

ψ(x) :=

{
2 ((1 + x) log(1 + x)− x) /x2 for x ≥ −1 and x 6= 0
1 for x = 0.

If x ≤ 17 then ψ(x) > 1/4. For the binomial case this implies that when
ε+ np ≤ 17, Equation (1.3.5) becomes

P{X ≥ ε+ np} ≤ exp

(
− (ε− np)2

4np(1− p)

)
between ε = np and ε− np ≤ 17 there is a sharp decrease in the probability
that X will be larger than ε. In other words, the probability that X will is
larger than its expected becomes small quickly in ε.

Getting back to the case of S2(t), it can be seen that the sum of the
binomial increments bt is distributed as Bin(nt− t(t+ 1)/2, c/n). This
implies that at time t1

PS2(t1) ≤ ct

(
1− (t+ 1)

2n

)
. (1.3.6)

8

Figure 1.4: The bound for the expected value of S2(t) (green), n − t (red),
and the actual S2(t) counts (black).

This bound is crude. The first problem is that it does not take into account
the fact that when S1(t) is zero and S2(t) > 0 one of the members of the
two-stack will be colored and subsequently the size will decrease by 1. As a
result, the bound on the expected size of S2(t) is strictly increasing.
However, by taking the minimum of Equations 1.3.6 and 1.3.4 a better
bound is reached. Figure 1.4 shows this bound vs. a simulated S2(t).

From the figure it looks like the derived bound is a poor upper-bound for
the expected size of S2(t). However, before dismissing this bound
completely, it should be noted that the maximum size of S2(t) increases very
quickly in c while the given bound on the expected value increases linearly.
This bound may prove more useful when looking at larger values of c.

9

1.3.5 Clearing out 1-Stacks

In the last two sections it was shown that at early stages of the algorithm,
all vertices have color list sizes of either 2 or 3. Equation (1.3.2) indicates
that at some time of order n1/3 some vertices begin to have color list sizes of
1. Since a vertex gets to a 1-stack from a 2-stack and the size of a 2-stack is
relatively small at this time, it seems reasonable that for the first few times
the 1-stack becomes non-empty, the number of vertices going from a 2-stack
to a 1-stack is relatively small. By a time of order n2/3 there is a danger
that a vertex’s color list will become empty and the algorithm will fail.
This section examines the behavior of the 1-stacks at times of order n2/3.

Let t0 = εcn
2/3 be a random time. Let

τ1 = min{t ≥ t0 : S1(t) = 0}.

This is the first time a 1-stack becomes empty after a random time of order
n2/3. Let s > 1 be a number of steps after t0. Let N be the number of
vertices that drop to a 1-stack between time t0 and t1 = t0 + s. Then

{τ1 > t0 + s} ≤ {N ≥ 1}+ {S1(t0) ≥ s}.

The number of time steps to clear out the 1-stack is less than the size of the
1-stack at time t0 plus the number of vertices that go to the 1-stack
between time t0 and t1.

By Equation (1.3.1), the probability a vertex ends up in a 1-stack at time t0
is less than p1(t0). Since at time t0 there are less than n vertices which have
not been colored, the distribution of S1(t0) is stochastically dominated by a
Bin(n, (ct0)

2/2n) distribution. Using the Bennett bound results from the
previous section, P{S1(t0) ≥ s} will be close to 1 in s until

s = (ct0)
2/2 (1.3.7)

at which point the probability will decrease quickly.

From time t0 to t1, vertices can get to the 1-stack from either the 3-stack or
the 2-stack. Let ∆t0Bv,t1 be the number of times vertex v is chosen to lose a
color from its color from t0 to t1. Let V , V3(t) and V2(t) be the set of all
vertices and the set of vertices with color list sizes 3 and 2 respectively.

10

Then,

N =

t1∑
t=t0

(∑
v∈V

{v ∈ V3(t)}{∆t0Bv,t1 = 2}+ {v ∈ V2(t)}{∆t0Bv,t1 = 1}

)

≤
t1∑
t=t0

(c
n

)2

S3(t) +
c

n
S2(t)

≤ sc

n
(c+ S2(t1)) .

This means that

P{N ≥ 1} ≤ P
{
S2(t2) ≥

n

sc
− c
}
. (1.3.8)

Using a Bin(n, c/n) distribution to stochastically bound S3(t) and the
Bennett bound results from the last section, when the expected value of
binomial becomes greater than its mean, this probability goes to zero
quickly. This means Equation (1.3.8) decreases sharply at

ct20
2

=
n

sc
− c

or

s =
n

c2

(
t20
2

+ 1

)
. (1.3.9)

It may be noted that in general the bound found in Equation (1.3.7) is
smaller than Equation (1.3.9). This means that there is a sharp decrease in
the probability of hitting τ1 after t0 + s when s = (ct0)/2.

1.3.6 Color-Balance for a Simplified Process

It has already been shown that the algorithm will have empty 1-stacks until
a time of order n1/3. At this time, a 1-stack will become non-empty but it
will quickly return to being empty. During this time, the 1-stack is emptied
because the number of vertices going from a 2-stack to a 1-stack is small.
As the algorithm continues, the number of vertices in the 2-stacks increases.
As a result, the number of vertices going from 2-stacks to 1-stacks increases.
At a time of order n2/3 it is possible for the algorithm to fail. Failure will
occur because, as the number of vertices in the 1-stack increases, it becomes
more likely that a 1-stack vertex will move to the fail stack.

11

Until now, the analysis has been “color-blind”. The proportions of colors
within the 2-stacks have not been considered. When 2-stacks are being
colored, the most prevalent color in the 2-stack color lists is the most likely
to be picked. Therefore, it seems reasonable that there is a feedback
mechanism which balances the color proportions. This section gives some
justification to this idea by considering a simplified model.

Consider a model with a 3-stack and 2-stacks only and colored vertices
remain unchanged. At the beginning of the algorithm all vertices are in the
3-stack. Then, one of the 3-stack vertices is selected and a color from its
color list is chosen. Adjacent vertices lose the selected color and are moved
to the appropriate 2-stack. At the second iteration one of the 2-stack
vertices is selected and a color is chosen at random from its color list. As a
further simplification, only 3-stack vertices may lose a color from its color
list. Then, 3-stack vertices which are adjacent to the selected vertex lose
the selected color. The algorithm continues until the 3-stack is empty.

In this simplified model, let XAB(t) denote the number of vertices with
color list {A,B} at time t. XAC(t) and XBC(t) are defined similarly. Let
X(t) be the vector (XAB(t), XAC(t), XBC(t)). Again, using a slight abuse of
notation, X2(t) will denote the number of 2-stack vertices at time t.

After the first step, the probability a vertex with color list {A,B} is colored
is its proportion to the total 2-stack size. Define

δAB(t) = {v ∈ VAB(t) colored at t+ 1|X(t)}.
Then,

PδAB(t) =
XAB(t)

X(t)
.

Let bt+1 be the number of vertices that go from 3-color lists to 2-color lists
at time t+ 1. The probability that a vertex v ∈ VAB(t) is selected at time
t+ 1 is the probability that a vertex with color list {A,B} or {B,C} is
picked to be colored times the probability that the color picked is B. Then,
letting Pt denote the probability conditioned on information through time t,

Pt{XAC(t+ 1) = XAC(t) + bt+1} =
1

2

(
XAB(t) +XBC(t)

X2(t)

)
=

1

2

(
1− XAB(t)

X2(t)

)
.

12

At each step of the algorithm, there is a c/n chance that a vertex in a 3
stack will move to a 2-stack. Therefore,

bt+1 ∼ Bin(S3(t), c/n).

In order to show that XAB(t) ≈ XAC(t) ≈BC (t), consider the differences
between 2-color stack sizes. The behavior of

Zt = XAB(t)−XBC(t)

is typical. Let
∆t+1Z = Zt+1 − Zt.

Then,

PtZt∆t+1Z = ZtPtbt+1Pt(δAB(t+ 1)− δBC(t+ 1))

= − c

2n

X3(t)

X2(t)
Z2
t

≤ 0.

This implies that if, at some time, the difference |XAB(t)−XBC(t)| gets
large, the stack selection process ensures that subsequent iterations of the
algorithm will reduce this difference. Also, this negative feedback
mechanism exists between all two-color pairs of elements in Xt.
Furthermore,

PtZ2
t+1 ≤ Z2

t + Ptb2t+1Pt(δAB(t+ 1)− δBC(t+ 1)2

≤ Z2
t + Ptbt+1

≤ Z2
t + c+ c2.

From this we can conclude

PZ2
t+1 ≤ PZ0 + t(c+ c2)

and the second moment increases, at most, linearly in time.

If we change the simplified process so that colored vertices are sent to a
colored-stack the feedback phenomena still occurs. In fact, feedback
becomes more pronounced. However, bounding the second moment of the
increments becomes difficult. The problem is that the conditional second
moment of Zt+1 is a function of Zt/X2(t) and, since a 2-stack size of zero
may occur with positive probability, we cannot use the same method used
previously to bound 1/X2(t).

13

1.4 Issues and Conjectures

In analyzing the greedy graph-coloring algorithm, one of the challenges is
understanding of how coloring affects stack sizes. I expect that for the first
couple steps of the algorithm, all vertices are members of the 3-stack.
During this time a few vertices are colored. Next, vertices begin to move to
2-stacks. During this time most of the vertices which are colored come from
the 2-stacks. Then, a small number of vertices move to 1-stacks.

At this time, if the rate at which vertices are colored in the 1-stack becomes
greater than the rate of vertices from the 2-stacks move to the 1-stacks then
the 1-stacks will continue to be cleared out. Eventually, the two-stacks will
become smaller and no more vertices will move to 1-stacks. In this case, the
algorithm will succeed.

On the other hand, if the rate at which vertices are colored in the 1-stack is
less than the rate of vertices moving from 2-stacks to 1-stacks, the 1-stack
size will increase. Eventually, 2 of the 1-stack vertices will be adjacent in
the graph and have the same color. In this case the algorithm will fail.

A better understanding of the effect of coloring on stack sizes will translate
to a better understanding of the size of S3(t) and S2(t). From this, I should
be able to get better bound on the failure probability.

Based a heuristic argument for the effect of coloring on stack sizes, I would
conjecture that the lower bound on c (the ER graph parameter), is at least
2.885. Simulation results indicate that the threshold may be as high as 3.5.

14

Chapter 2

bigmemoRy

The package bigmemoRy originally grew from the need to deal with large
data sets in RAM interactively in R. While working on the Netflix Prize
competition, it was quickly realized that although R excels at examining
and analyzing small data sets, as soon as the data set size is of the order of
the amount of RAM on a machine, computations become unwieldy. The
reason for this inefficiency, which is discussed below, is that in some cases R
makes unnecessary copies of a data set and R does not always represent
data as efficiently as possible. bigmemoRy provides a more efficient
representation, both in terms of disk usage and manipulation, thereby
allowing users to deal with larger data sets in RAM than what was
previously possible.

In addition, bigmemoRy has been implemented to use shared memory on
*nix machines which allows users to share data across R sessions. This
means that multiple users can access the same data set at the same time.
Even more exciting is the fact that this also allows a user to implement
algorithms which work in parallel on the same data set. Until bigmemoRy
this was not possible in R.

2.1 The Problem with Large Data Sets in R

Many R users are not aware that 4-byte integers are implemented in R. So
if memory is at a premium and only integers are required, a user would
avoid the 229 MB memory consumption of

15

> x <- matrix(0, 1e+07, 3)

> round(object.size(x)/(1024^2))

[1] 229

in favor of the 114 MB memory consumption of an integer matrix:

> x <- matrix(as.integer(0), 1e+07, 3)

> round(object.size(x)/(1024^2))

[1] 114

Similar attention is needed in subsequent arithmetic, because

> x <- x + 1

coerces x into a matrix of 8-byte real numbers. The memory used is then
back up to 229 MB, and the peak memory usage of this operation is
approximately 344 MB (114 MB from the original x and a new 229 MB
vector). In contrast,

> x <- matrix(as.integer(0), 1e+07, 3)

> x <- x + as.integer(1)

has the desired consequence, adding 1 to every element of x while
maintaining the integer type. The memory usage remains at 114 MB, and
the operation requires temporary memory overhead of an additional
114 MB. It’s tempting to be critical of any memory overhead for such a
simple operation, but this is often necessary in a high-level, interactive
programming environment. In fact, R is being efficient in the previous
example, with peak memory consumption of 2.24 MB; the peak memory
consumption of

> x <- matrix(as.integer(0), 1e+07, 3)

> x <- x + matrix(as.integer(1), 1e+07, 3)

is 344 MB. Some overhead is necessary in order to provide flexibility in the
programming environment, freeing the user from the explicit structures of
programming languages like C. However, this overhead becomes
cumbersome with massive data sets.

16

Similar challenges arise in function calls, where R uses the call-by-value
convention instead of call-by-reference. Fortunately, R creates physical
copies of objects only when apparently necessary (called copy-on-demand).
So there is no extra memory overhead for

> x <- matrix(as.integer(0), 1e+07, 3)

> myfunc1 <- function(z) return(c(z[1, 1], nrow(z), ncol(z)))

> myfunc1(x)

[1] 0 10000000 3

which uses only 114 MB for the matrix x, while

> x <- matrix(as.integer(0), 1e+07, 3)

> myfunc2 <- function(z) {

+ z[1, 1] <- as.integer(5)

+ return(c(z[1, 1], nrow(z), ncol(z)))

+ }

> myfunc2(x)

[1] 5 10000000 3

temporarily creates a second 114 MB matrix, for a total peak memory
usage of 229 MB.

These examples demonstrate the simultaneous strengths and weaknesses of
R. As a programming environment, it frees the user from the rigidity of a
programming language like C. The resulting power and flexibility has a
cost: data structures can be inefficient, and even the simplest
manipulations can create unexpected memory overhead. For most
day-to-day use, the strengths far outweigh the weaknesses. But when
working with massive data sets, even the best efforts can grind to a halt.

2.2 Design and Consequences

BigMatrix is defined using an S4 class containing an external pointer (R
type externalptr) and a type (a character string describing the type of the
atomic element). The pointer gives the memory location of a C structure
such as BigIntMatrix (the only structure yet implemented). The

17

BigIntMatrix structure contains the number of rows and columns of the
matrix, a vector of strings corresponding to matrix column names, and a
pointer to an array of pointers to integers (of length equal to the number of
columns of the matrix). The structure, including the vectors of data (one
for each column of the matrix), is dynamically allocated using malloc().
This is not the typical representation of a matrix as a vector but it has
some natural advantages for data exploration and analysis.

A collection of functions are provided for the class BigMatrix. They are
designed to mimic traditional matrix functionality. For example, the R
function ncol() automatically associates a BigMatrix with a new method
function, returning the number of columns of the matrix via the C function
CGetIntNcol(). Other examples are more subtle. For example, if x is a
BigMatrix and a and b are traditional R vectors of row and column
indices, then x[a,b] can be used to retrieve the appropriate submatrix of x
(and is a traditional R matrix, not a BigMatrix). The same notation can
be used to assign values to the submatrix, if the dimensionality of the
assignment conforms to R’s set of permissible matrix assignments.

An object of class BigMatrix contains a reference to a data structure. This
has some noteworthy consequences. First, if a BigMatrix is passed to a
function which changes its values, those changes will be reflected outside
the function scope. Thus, side-effects have been introduced for BigMatrix
objects. When an object of class BigMatrix is passed to a function, it
should be thought of as being called-by-reference.

The second consequence is that copies are not made by simple assignment.
For example:

> library(bigmemoRy)

> x <- BigMatrix(nrow = 2, ncol = 2, init = 0)

> x[,]

[,1] [,2]

[1,] 0 0

[2,] 0 0

> y <- x

> y[1, 1] <- 1

> x[,]

18

[,1] [,2]

[1,] 1 0

[2,] 0 0

The assignment y <- x does not copy the contents of the BigMatrix

object; it only copies the type information and memory location of the
data. As a result, the variables x and y refer to the same data in memory.
If an actual copy is required, the programmer must first create a new object
of class BigMatrix and then copy the contents.

The core functions supporting BigMatrix objects are:

BigMatrix() is.BigMatrix() as.BigMatrix() nrow() deepcopy.bm()

ncol() dim() head() tail() colnames()

print() which.bm() read.bm() write.bm() rownames()

rm.cols.bm() add.cols.bm() hash.mat.bm() dimnames() "[" and "[<-]"

Other basic functions are included, serving as templates for the
development of new functions. These include:

colmin() min() max() colmax()

colrange() range() colmean() mean()

colvar() colsd() summary() biglm.bm()

bigglm.bm() kmeans.bm()

2.3 Development Based on bigmemoRy

Since the completion of the basic functionality of bigmemoRy , the emphasis
has switched to designing and implementing algorithms that take advantage
of the packages specific strengths.

A wrapper has been written for Thomas Lumley’s biglm package. This
package allows a user to create a linear or generalized linear model based on
chunks, or subsets of the rows of a data set. An initial model is created
based on an initial chunk or subset of the rows of a data set. The model is
then updated with other chunks from the data set. This iterative updating
allows the user to perform regressions on data sets that are too large for the
lm and glm functions. The bigmemoRy wrapper allows a user to perform a
regression on a BigMatrix object using a calling convention similar to that

19

of lm. The wrapper function calculates the appropriate chunk size and calls
the appropriate regression functions.

Jay Emerson has implemented a parallel k-means cluster analysis based on
Lloyd’s scheme. Like the linear regression wrapper, it uses bigmemoRy for
its space efficiency. However, parallel k-means also takes advantage of
shared memory. Parallel k-means spawns multiple R sessions which
perform analyses on the data concurrently. Gains are seen not only in the
amount of memory needed to perform the analysis, but also in how long the
analysis takes to run.

2.4 Conclusion

bigmemoRy supports double, integer, short, and char data types; in Unix
environments, the package optionally implements the data structures in
shared memory. Previously, parallel use of R required redundant copies of
data for each R session. The shared memory version of a BigMatrix object
now allows separate R sessions on the same computer to share access to a
single copy of the data set. bigmemoRy extends and augments the R
statistical programming environment, opening the door for more powerful
parallel analyses and data mining of large data sets.

20

Bibliography

Achlioptas, D. and E. Friedgut (1999). A sharp threshold for
k-colorability. Random Structures and Algorithms 14, 63–70.

Achlioptas, D. and M. Molloy (1997). The analysis of a list-coloring
algorithm on a random graph (extended abstract). Proceedings of the
38th IEEE Symposium on Foundations of Computer Science, 204–212.

Pollard, D. (2001). A User’s Guide to Measure Theoretic Probability.
Cambridge University Press.

21

