
The bigmemoRy package:

handling large data sets in R

using RAM and shared memory

John W. Emerson1, Michael J. Kane

Yale University

Abstract

Multi-gigabyte data sets challenge and frustrate R users even on well-equipped
hardware. C programming can be helpful, but is cumbersome for interactive data
analysis and lacks the flexibility and power of R’s rich statistical programming envi-
ronment. The new package bigmemoRy bridges this gap, implementing massive ma-
trices in memory (managed in R but implemented in C) and supporting their basic
manipulation and exploration. It is ideal for problems involving the analysis in R of
manageable subsets of the data, or when an analysis is conducted mostly in C. In a
Unix environment, the data structure may be allocated to shared memory, allowing
separate R processes on the same computer to share access to a single copy of the
data set. This opens the door for more powerful parallel analyses and data mining of
massive data sets.

1Corresponding author: John W. Emerson, email: john.emerson@yale.edu
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1 Introduction

A numeric matrix containing 100 million rows and 5 columns consumes approximately 4
gigabytes (GB) of memory in the R statistical programming environment (9). Such massive,
multi-gigabyte data sets challenge and frustrate R users even on well-equipped hardware.
Even moderately large data sets can be problematic; guidelines on R’s native capabilities
are discussed in the installation manual (10). The C programming language allows quick,
memory-efficient operations on massive data sets, without the memory overhead of many R
operations. Unfortunately, the C language is not well-suited for interactive data exploration,
lacking the flexibility, power, and convenience of R’s rich environment.

The new package bigmemoRy bridges the gap between R and C, implementing massive
matrices in memory and supporting their basic manipulation and exploration. Version 1.0
supports matrices of double, integer, short, and char data types. In *nix environments, the
package supports the use of shared memory for matrices. An API is also provided, allowing
savvy C programmers to extend the functionality of bigmemoRy .

As of 2008, typical high-end personal computers (PCs) have 1-4 GB of random access
memory (RAM) and run 32-bit operating systems. A small number of PCs might have
more than 4 GB of memory and 64-bit operating systems, and such configurations are now
common on workstations, servers and high-performance computing clusters. At Google, for
example, Daryl Pregibon’s group uses 64-bit Linux workstations with up to 32 GB of RAM.
His group studies massive subsets of terabytes (though perhaps not googols) of data. Massive
data sets are increasingly common; the Netflix Prize2 competition involves the analysis of
approximately 100 million movie ratings, and the basic data structure would be a 100 million
by 5 matrix of integers (movie ID, customer ID, rating, rental year and month).

Data frames and matrices in R were designed for data sets much smaller in size than
the computer’s memory limit. They are flexible and easy to use, with typical manipulations
executing quickly on smaller data sets. They suit the needs of the vast majority of R users
and work seamlessly with existing R functions and packages. Problems arise, however, with
larger data sets; we provide a brief discussion in the appendix.

A second category of data sets are those requiring more memory than a machine’s RAM.
CRAN and Bioconductor packages such as DBI , RJDBC , RMySQL , RODBC , ROracle , TSMySQL ,
filehashSQLite , TSSQLite , pgUtils , and Rdbi allow users to extract subsets of tradi-
tional databases using SQL statements. Other packages, such as filehash and ff , provide
a convenient data.frame-like interface. As noted by Adler et. al., authors of the ff package
(1), “the idea is that one can read from and write to” flat files or databases, “and operate on

2http://www.netflixprize.com
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the parts that have been loaded into R.” While they all help manage massive data sets, the
user is often forced to wait for disk accesses, and none of these are well-suited to handling
the synchronization challenges posed by concurrent programming.

We designed bigmemoRy to address a third category of data sets. These can be massive
data sets (perhaps requiring several GB of memory on typical computers, as of 2008) but
not larger than the total available RAM. In this case, disk accesses are unnecessary.3 In
some cases, a traditional data frame or matrix might suffice to store the data, but there
may not be enough RAM to handle the overhead of working with a data frame or matrix.
The appendix outlines some of R’s limitations for this type of data set. The BigMatrix

class has been created to fill this niche, creating efficiencies with respect to data types and
opportunities for parallel computing and analyses of massive data sets in RAM using R.

Fast-forward to year 2016, eight years hence. A naive application of Moore’s Law projects
a sixteen-fold increase (four doublings) in hardware capacity, although experts caution that
“the free lunch is over” (12). They predict that further boosts in CPU performance will be
limited, and note that manufacturers are turning to hyper-threading and multicore architec-
tures, reviving interest in parallel computing. We designed bigmemoRy for the purpose of
fully exploiting available RAM for large data analysis problems, and to facilitate concurrent
programming using R and C.

With bigmemoRy , we can exploit simultaneously the strengths of R and C. Multiple
processors on the same machine can share access to the same copy of the massive data set,
and subsets of rows and columns may be extracted quickly and easily for standard analyses
in R. Most significantly, R users of bigmemoRy don’t need to be C experts (and don’t have
to use C at all, in most cases). And C programmers can make use of R as a convenient
interface, without needing to become experts in the environment. Thus, bigmemoRy offers
something for the demanding users and developers, extending and augmenting the R statis-
tical programming environment for users with massive data sets and developers interested
in concurrent programming with shared memory.

2 Using the bigmemoRy package

We use the Netflix Prize data as an example. The training set includes 99,072,112 ratings and
five integer variables: movie ID, customer ID, rating, rental year and month. As a regular
R numeric matrix, this would require approximately 4 GB of RAM, whereas only 2 GB is
needed for the BigMatrix of integers. An integer matrix in R would be equally efficient, but

3We note that swap space could be used for matrices exceeding the available RAM. The performance will
be degraded, however, and users may prefer to use one of available database solutions.
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working with such a massive matrix in R would risk creating substantial memory overhead
(see the appendix for a more complete discussion of the risks).

Our first example demonstrates only one new function, read.bm(); most R users are
familiar with the three subsequent commands, dim(), head(), and summary(), implemented
with new methods. We place the object in shared memory for convenience in subsequent
examples.

> library(bigmemoRy)

> x <- read.bm("ALLtraining.txt", sep = "\t", type = "integer",

+ shared = TRUE, col.names = c("movie", "customer", "rating",

+ "year", "month"))

> dim(x)

[1] 99072112 5

> head(x)

movie customer rating year month

[1,] 1 1 3 2005 9

[2,] 1 2 5 2005 5

[3,] 1 3 4 2005 10

[4,] 1 5 3 2004 5

[5,] 1 6 3 2005 11

[6,] 1 7 4 2004 8

> summary(x)

min max mean NAs

movie 1 17770 9.100050e+03 0

customer 1 480189 1.297173e+05 0

rating 1 5 3.603304e+00 0

year 1999 2005 2.004245e+03 0

month 1 12 6.692275e+00 0

There are, in fact, 17770 movies in the Netflix data and 480,189 customers. Ratings range
from 1 to 5 for rentals in 1999 through 2005. Standard R matrix notation is supported
through the bracket operator.
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> x[480185:480189, c("movie", "customer", "rating")]

movie customer rating

[1,] 143 37314 5

[2,] 143 75110 3

[3,] 143 75075 4

[4,] 143 165558 4

[5,] 143 214342 5

One of the most important new functions is which.bm(). Based loosely on R’s which(),
it provides high-performance comparisons with no memory overhead. Suppose we are inter-
ested in the ratings provided by customer number 50. For the BigMatrix created above, the
logical expression x[,2]==50 would extract the second column of the matrix as a massive
numeric vector in R, do the logical comparison in R, and produce a massive R boolean
vector. The command which.bm(x, 2, 50, ’eq’) (or equivalently, which.bm(x, ’cus-

tomer’, 50, ’eq’)) produces no memory overhead in C and returns only a vector of indices
of length sum(x[,2]==50).

> cust.indices.inefficient <- which(x[, "customer"] == 50)

> cust.indices <- which.bm(x, "customer", 50, "eq")

> length(cust.indices.inefficient)

[1] 616

> length(cust.indices)

[1] 616

> head(x[cust.indices, ])

movie customer rating year month

[1,] 1 50 3 2004 5

[2,] 30 50 3 2004 5

[3,] 58 50 4 2004 9

[4,] 68 50 4 2004 12

[5,] 84 50 4 2004 8

[6,] 169 50 3 2004 8
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More complex comparisons are supported by which.bm(), including the specification of
minimum and maximum test values and comparisons on multiple columns in conjunction
with AND and OR operations. For example, we might be interested in customer 50’s movies
which were rated 2 or worse during February through October of 2004:

> these <- which.bm(x, c(2, 4, 5, 3), list(50, 2004, c(2, 10),

+ 2), list("eq", "eq", c("ge", "le"), "le"), "AND")

> x[these, ]

movie customer rating year month

[1,] 1560 50 2 2004 10

[2,] 1865 50 2 2004 9

[3,] 4525 50 1 2004 3

[4,] 10583 50 2 2004 5

[5,] 10867 50 1 2004 9

[6,] 13558 50 2 2004 2

> mnames <- read.csv("movie_titles.txt", header = FALSE)

> names(mnames) <- c("movie", "year", "Name of Movie")

> mnames[mnames[, 1] %in% unique(x[these, 1]), c(1, 3)]

movie Name of Movie

1587 1560 Disney Princess Stories: Vol. 1: A Gift From the Heart

1899 1865 Eternal Sunshine of the Spotless Mind

4611 4525 Nick Jr. Celebrates Spring

10770 10583 The School of Rock

11061 10867 Disney Princess Party: Vol. 1: Birthday Celebration

13810 13558 An American Tail: The Mystery of the Night Monster

One of the authors thinks “The School of Rock”deserved better than a wimpy rating of 2; we
haven’t seen any of the others. Even more complex comparisons could involve set operations
in R involving collections of indices returned by which.bm() from C.

The core functions supporting BigMatrix objects are:

BigMatrix() is.BigMatrix() as.BigMatrix() nrow() deepcopy.bm()

ncol() dim() head() tail() colnames()

print() which.bm() read.bm() write.bm() rownames()

rm.cols.bm() add.cols.bm() hash.mat.bm() dimnames() "[" and "[<-]"
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Other basic functions are included, useful by themselves and also serving as templates for
the development of new functions. These include:

colmin() min() max() colmax()

colrange() range() colmean() mean()

colvar() colsd() summary() biglm.bm()

bigglm.bm() kmeans.bm()

2.1 Using Lumley’s biglm package with bigmemoRy

Support for Thomas Lumley’s biglm package (5) is provided via the biglm.bm() and big-

glm.bm() functions; “biglm”stands for“bounded memory linear regression.” In this example,
the movie release year is used (as a factor) to try to predict customer ratings:

> lm.0 = biglm.bm(rating ~ year, data = x, fc = "year")

> print(summary(lm.0)$mat)

Coef (95% CI) SE p

(Intercept) 3.67616085 3.67586120 3.67646050 0.0001498258 0.000000e+00

year2004 -0.08152799 -0.08202262 -0.08103335 0.0002473167 0.000000e+00

year2003 -0.26993103 -0.27067766 -0.26918440 0.0003733163 0.000000e+00

year2002 -0.29444706 -0.29552627 -0.29336784 0.0005396078 0.000000e+00

year2001 -0.28545089 -0.28710257 -0.28379921 0.0008258412 0.000000e+00

year2000 -0.31096880 -0.31323569 -0.30870192 0.0011334430 0.000000e+00

year1999 -0.33915442 -0.38543277 -0.29287607 0.0231391736 1.212505e-48

It would appear that movie ratings provided in 2004 and 2005 movies were rated higher (on
average) than rentals in earlier years. This particular regression will not win the $1,000,000
Netflix prize. However, it does illustrate the use of a BigMatrix to manage and study several
gigabytes of data.

2.2 Shared memory

Here, we show how NetWorkSpaces (NWS, package nws (8)) and SNOW (package snow ,
for “small network of workstations” (11)) can be used for parallel computing using a shared
BigMatrix. As noted earlier, future performance gains in statistical computing may depend
more on software design and algorithms than on further advances in hardware. Adler et. al.
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(1) encouraged R programmers to watch for opportunities for chunk-based processing, and
opportunities for concurrent programming deserve similar attention.

First, we prepare a description of the shared object, containing necessary information
about the matrix and the mutual exclusions (mutexes) that prevent read/write conflicts.
The contents of the description are presented and discussed in section 3.

> xdescr <- DescribeBigSharedMatrix(x)

Next, we specify a “worker” function. In this simple example, its job is to attach the shared
matrix and return the range of values in the specified column.

> worker <- function(i, descr.bm) {

+ require(bigmemoRy)

+ big <- AttachBigSharedMatrix(descr.bm)

+ return(colrange(big, cols = i))

+ }

Both the description (xdesrc) and the worker function (worker()) are used by nws and
snow , below. We conclude the section by illustrating a low-tech interactive use of shared
memory, where the matrix description is passed between R sessions using a file.

2.2.1 Shared memory via Networkspaces

The following sleigh() command prepares the two“workers”on the local workstation, while
nwsHost identifies the server which manages the Networkspaces communications (and this
may or may not be the localhost, depending on the configuration). The result is a list with
five ranges, one for each column of the matrix, and the results match those produced by
summary() on page 4.

> library(nws)

> s <- sleigh(nwsHost = "HOSTNAME.stat.yale.edu", workerCount = 2)

> eachElem(s, worker, elementArgs = 1:5, fixedArgs = list(xdescr))

[[1]]

[1] 1 17770

[[2]]
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[1] 1 480189

[[3]]

[1] 1 5

[[4]]

[1] 1999 2005

[[5]]

[1] 1 12

2.2.2 Shared memory via SNOW

In preparing snow , we used SSH keys to avoid having to enter a password for each of the
workers. We chose to use sockets rather than MPI or PVM in this example (SNOW offers
several choices for the underlying technology). The stopCluster() command may or may
not be required, but is recommended by the authors of SNOW.

> library(snow)

> cl <- makeSOCKcluster(c("localhost", "localhost"))

> parSapply(cl, 1:5, worker, xdescr)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 1 1999 1

[2,] 17770 480189 5 2005 12

> stopCluster(cl)

2.2.3 Interactive shared memory

Figure 1 shows two R sessions sharing the same copy of the Netflix data; this might be called
“poor man’s shared memory.” The so-called “master” node (the left session) loads the data
into shared memory and dumps the description to the file netflixDescribe.txt. It also
calculates the mean ratings of two movies, “Against All Odds”(3.256693)and“Casino Royale”
(2.897985). The worker session on the right attaches the matrix using the description in the
file, and uses head() to show the success of the attachment. Next, the worker changes all
the ratings of “Against All Odds” (movie 4943) to 100. Then both the worker and the master

10



Figure 1: Sharing data across two R sessions using shared memory. The master session
appears on the left, and the worker is on the right. The worker changes the ratings of movie
4943 (“Against All Odds”), and the change is reflected on the master via the shared matrix.

calculate the new mean (100) and standard deviation (0). The astute *nix programmer could
easily do concurrent programming using shell scripts, R CMD BATCH, and system(), although
this seems pointless given the ease of use of NetWorkSpaces and SNOW.

2.3 Parallel k-means with shared memory

Parallel k-means cluster analysis is not new, and others have proposed the use of shared
memory (see (3), for example). The function kmeans.bm() supports the use of either Net-
WorkSpaces or SNOW for a parallel version of Lloyds’s k-means algorithm (4) using shared
memory. For sufficiently large and difficult problems, the speed improvement will be pro-
portional to the number of processors. However, the most significant gains are in memory
efficiency, where kmeans.bm() avoids the memory overhead of kmeans().

The following example compares the parallel, shared-memory kmeans.bm() (using both
NetWorkSpaces and SNOW) to R’s kmeans(); kmeans.bm() uses 4 workers, and the same
data and the same starting points are used throughout.

> x <- BigSharedMatrix(3e+07, 5, init = 0, type = "double")

> x[seq(1, 3e+07, by = 3), ] <- rnorm(5e+07)

> x[seq(2, 3e+07, by = 3), ] <- rnorm(5e+07, 1, 1)
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> x[seq(3, 3e+07, by = 3), ] <- rnorm(5e+07, -1, 1)

> centers <- x[1:3, ]

> start.bm.nws <- proc.time()[3]

> ans.nws <- kmeans.bm(x, centers, clients = 4)

> end.bm.nws <- proc.time()[3]

> ans.snow <- kmeans.bm(x, centers, clients = 4, parallel = "snow")

> end.bm.snow <- proc.time()[3]

> y <- x[, ]

> rm(x)

> gc(reset = TRUE)

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 251326 13.5 467875 25.0 251326 13.5

Vcells 210317607 1604.6 551844356 4210.3 210317607 1604.6

> start.km <- proc.time()[3]

> ans.old <- kmeans(y, centers, algorithm = "Lloyd")

> end.km <- proc.time()[3]

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 252204 13.5 467875 25 259698 13.9

Vcells 225317814 1719.1 725078888 5532 720321568 5495.7

kmeans() requires 3 extra copies of the data, burning up about an extra 3.6 GB beyond
the initial 1.2 GB data matrix. In contrast, kmeans.bm needs only two 240 MB vectors to
manage the cluster memberships. In terms of speed of execution, the parallel versions are
faster at completing the maximum of 10 iterations used here.

> end.bm.nws - start.bm.nws

elapsed

28.345

> end.bm.snow - end.bm.nws

elapsed

25.443
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> end.km - start.km

elapsed

38.61

> round(cbind(ans.nws$size, ans.nws$centers), 6)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 9364087 -1.095498 -1.094226 -1.095403 -1.094580 -1.095341

[2,] 9869906 1.067050 1.066440 1.066267 1.066472 1.065635

[3,] 10766007 -0.025690 -0.025948 -0.024521 -0.026652 -0.023873

> round(cbind(ans.snow$size, ans.snow$centers), 6)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 9364087 -1.095498 -1.094226 -1.095403 -1.094580 -1.095341

[2,] 9869906 1.067050 1.066440 1.066267 1.066472 1.065635

[3,] 10766007 -0.025690 -0.025948 -0.024521 -0.026652 -0.023873

> round(cbind(ans.old$size, ans.old$centers), 6)

[,1] [,2] [,3] [,4] [,5] [,6]

1 9364087 -1.095498 -1.094226 -1.095403 -1.094580 -1.095341

2 9869906 1.067050 1.066440 1.066267 1.066472 1.065635

3 10766007 -0.025690 -0.025948 -0.024521 -0.026652 -0.023873

Because none of the runs had converged at 10 interations, all were doing the same amount of
work: the parallel version has a speed advantage in problems of this size. All the algorithms
made the same progress, although slightly less progress than would have been made by
MacQueen or Hartigan-Wong (2). The MacQueen algorithm updates the centers after every
change in cluster membership, while the parallel algorithm (like the Lloyd algorithm) only
updates the centers at the end of every pass through the data. We will improve kmeans.bm()
in a future version of bigmemoRy : the copies of centers local to each process could be updated
with local changes in cluster membership. For large problems, this would produce results
closer to the pure algorithm of MacQueen. And when the algorithm is close to convergence,
the shared memory global centers could be updated with minimal synchronization conflicts.
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3 Architecture

We start by describing the features of bigmemoRy common to all platforms. We then discuss
the use of shared memory which, as of Version 1.0, is only available for Unix-alikes (including
Mac OS X). As with ff , we use long integers to index rows of the matrices in C; the size of a
matrix is limited only by the memory limits of the operating system. There is one exception:
on 32-bit systems, the address space may be exceeded if the user requests a vector (single-
column matrix) of length greater than 2,147,483,647; this uses just over 2 GB of RAM (which
may be available) but is not easily addressable.

3.1 Basic bigmemoRy design

We define an S4 class BigMatrix, containing an external pointer (R type externalptr) and
a type (a character string describing the type of the atomic element). The pointer gives the
memory location of a C structure such as BigIntMatrix for an integer matrix (other types
include double, short, and char).

> y <- BigMatrix(2, 2, type = "integer", init = 0)

> y

An object of class âĂIJBigMatrixâĂI

Slot "address":

<pointer: 0x15f508a0>

Slot "type":

[1] "integer"

> y[, ]

[,1] [,2]

[1,] 0 0

[2,] 0 0

In C, the BigIntMatrix structure contains the number of rows and columns of the ma-
trix, optional vectors of strings corresponding to row and column names, and a pointer to
an array of pointers to integers (of length equal to the number of columns of the matrix).
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The structure, including the massive vectors of data (one for each column of the matrix), is
dynamically allocated using malloc(). We recognize that this is not the typical representa-
tion of a matrix as a massive vector, but it has some natural advantages for data exploration
and analysis. Thus, the number of rows should greatly exceed the number of columns (and
the user is advised to handle the transpose if this isn’t the case, because of the overhead of
pointer for each column).

Here, we show the structure of the BigIntMatrix, but we note that version 2.0 of big-
memoRy will change to C++ classes and employ templates, creating somewhat more elegant
code.

typedef struct

{

long ncol;

long nrow;

int **matrix;

ColumnNames *pColNames;

RowNames *pRowNames;

bool shared;

#ifndef WIN

int *shcounter;

int shcounterId;

BMMutex shcounter_Mutex;

ColumnMutexes *column_Mutexes;

Ids *pColumnIds;

#endif

} BigIntMatrix;

We provide a collection of functions for the class BigMatrix, designed to mimic tradi-
tional matrix functionality. For example, the R function ncol() automatically associates a
BigMatrix with a new method function, returning the number of columns of the matrix via
the C function CGetIntNcol(). Again, we note that the organization of the C functions
will change somewhat once we begin using templates. If x is a BigMatrix and a and b are
traditional R vectors of row and column indices, then x[a,b] can be used to retrieve the
appropriate submatrix of x (and is a traditional R matrix, not a BigMatrix). The same no-
tation can be used to assign values to the submatrix, if the dimensionality of the assignment
conforms to R’s set of permissible matrix assignments.

As discussed earlier, an object of class BigMatrix contains a reference to a data structure.
This has some noteworthy consequences. First, if a BigMatrix is passed to a function which
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changes its values, those changes will be reflected outside the function scope. Thus, side-
effects have been introduced for BigMatrix objects. When an object of class BigMatrix is
passed to a function, it should be thought of as being called-by-reference.

The second consequence is that copies are not made by simple assignment. For example:

> y[, ]

[,1] [,2]

[1,] 0 0

[2,] 0 0

> z <- y

> z[1, 1] <- 1

> y[, ]

[,1] [,2]

[1,] 1 0

[2,] 0 0

The assignment z <- y does not copy the contents of the BigMatrix object; it only copies
the type information and address of the C structure. As a result, the R objects z and y

refer to the same data in memory. If an actual copy is required, the function deepcopy.bm()

should be used.

3.2 Shared memory design

We use the C system libraries shm, ipc, and pthread for shared memory management
and mutual exclusions. The function DescribeBigSharedMatrix creates a description of
the shared matrix that allows other processes to successfully attach the matrix. From the
Netflix example, we have:

> xdescr

$type

[1] "integer"
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$nrow

[1] 99072112

$rowNames

NULL

$ncol

[1] 5

$colNames

[1] "movie" "customer" "rating" "year" "month"

$colKeys

[1] 234127365 234160134 234192903 234225672 234258441

$colMutexKeys

[1] 233963520 233996289 234029058 234061827 234094596

$shCountKey

[1] 234291210

$shCountMutexKey

[1] 234323979

We note the dimension and column names, discussed earlier. The last four components are
keys which are used to identify locations in shared memory (for the matrix, a counter of
the number of “attachments,” and the mutual exclusions for read/write locks). The counter
deserves special comment. The destructor is only allowed to destroy a shared matrix when
there are no remaining processes attaching the matrix. So we keep the count of the number
of attachments in shared memory (where it is updated by any attachment or detachment),
and the actual destruction of the shared matrix occurs only when the last process (usually,
but not necessarily, the master) is no longer attached to the matrix.

4 Conclusion

bigmemoRy supports double, integer, short, and char data types; in Unix environments, the
package optionally implements the data structures in shared memory. Previously, parallel
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use of R required redundant copies of data for each R process, and the shared memory
version of a BigMatrix object now allows separate R processes on the same computer to
share access to a single copy of the massive data set. bigmemoRy extends and augments
the R statistical programming environment, opening the door for more powerful parallel
analyses and data mining of massive data sets.

5 Extensions

Future work on bigmemoRy will hopefully include the addition of shared memory for Win-
dows. We are also planning a redesign of the code using C++ templates, and expanding
the toolkit of file I/O functions.
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Appendix: Dangers of R’s data frames and matrices

We love R’s data frames and matrices. The observations made here are not complaints,
because there are excellent reasons behind choices made in the design and implementation
of the programming environment. Here, we illustrate some dangers of R’s memory manage-
ment. We will use a large matrix of integers as an example, motivated by the Netflix Prize
competition.

Many R users are not aware that 4-byte integers are implemented in R. So if memory is
at a premium and only integers are required, the astute and fastidious user would avoid the
2.24 GB memory consumption of

> x <- matrix(0, 1e+08, 3)

> round(object.size(x)/(1024^3), 2)

[1] 2.24

in favor of the 1.12 GB memory consumption of an integer matrix:

> x <- matrix(as.integer(0), 1e+08, 3)

> round(object.size(x)/(1024^3), 2)

[1] 1.12

Similar attention is needed in subsequent arithmetic, because

> x <- x + 1

coerces x into a matrix of 8-byte real numbers. The memory used is then back up to 2.24 GB,
and the peak memory usage of this operation is approximately 3.91 GB (1.12 GB from the
original x, and a new 2.24 GB vector). In contrast,

> x <- matrix(as.integer(0), 1e+08, 3)

> x <- x + as.integer(1)

has the desired consequence, adding 1 to every element of x while maintaining the integer
type. The memory usage then remains at 1.12 GB, and the operation requires temporary
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memory overhead of an additional 1.12 GB. It’s tempting to be critical of any memory
overhead for such a simple operation, but this is often necessary in a high-level, interactive
programming environment. In fact, R is being efficient in the previous example, with peak
memory consumption of 2.24 GB; the peak memory consumption of

> x <- matrix(as.integer(0), 1e+08, 3)

> x <- x + matrix(as.integer(1), 1e+08, 3)

is 3.91 GB. Some overhead is necessary in order to provide flexibility in the programming
environment, freeing the user from the explicit structures of programming languages like C.
However, this overhead becomes cumbersome with massive data sets.

Similar challenges arise in function calls, where R uses the call-by-value convention instead
of call-by-reference. Fortunately, R creates physical copies of objects only when apparently
necessary (called copy-on-demand). So there is no extra memory overhead for

> x <- matrix(as.integer(0), 1e+08, 3)

> myfunc1 <- function(z) return(c(z[1, 1], nrow(z), ncol(z)))

> myfunc1(x)

[1] 0 100000000 3

which uses only 1.12 GB for the matrix x, while

> x <- matrix(as.integer(0), 1e+08, 3)

> myfunc2 <- function(z) {

+ z[1, 1] <- as.integer(5)

+ return(c(z[1, 1], nrow(z), ncol(z)))

+ }

> myfunc2(x)

[1] 5 100000000 3

temporarily creates a second 1.12 GB matrix, for a total peak memory usage of 2.24 GB.

These examples demonstrate the simultaneous strengths and weaknesses of R. As a
programming environment, it frees the user from the rigidity of a programming language like
C. The resulting power and flexibility has a cost: data structures can be inefficient, and even
the simplest manipulations can create unexpected memory overhead. For most day-to-day
use, the strengths far outweigh the weaknesses. But when working with massive data sets,
the even the best efforts can grind to a halt.
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