
bigmemoRy:

an R package supporting massive data sets

Michael J. Kane
Yale University

John W. Emerson
Yale University

Abstract

Multi-gigabyte data sets challenge and frustrate R users even on well-equipped hard-
ware. C programming can provide memory efficiency and speed improvements, but is
cumbersome for interactive data analysis and lacks the flexibility and power of R’s rich
statistical programming environment. The new package bigmemoRy bridges this gap,
implementing persistent massive objects in memory (managed in R but implemented in
C) and supporting the manipulation and exploration of these objects.

Keywords: R, C, memory, data, statistics, data mining.

1. IntRoduction

A numeric matrix containing 100 million rows and 3 columns consumes approximately 2.4
gigabytes (GB) of memory in the R statistical programming environment (1). Such massive,
multi-gigabyte data sets challenge and frustrate R users even on well-equipped hardware.
The C programming language allows quick, memory-efficient operations on massive objects,
without the memory overhead of many R operations. Unfortunately, the C language is not
well-suited for interactive data exploration, lacking the flexibility, power, and convenience of
R’s rich environment.

The new package bigmemoRy bridges the gap between R and C, implementing persistent
massive objects in memory (managed in R but implemented in C) and supporting their ma-
nipulation and exploration. An API is also provided, allowing savvy C programmers to extend
the functionality of bigmemoRy.

As of 2007, typical high-end personal computers (PCs) have 1-4 GB of random access memory
(RAM) and run 32-bit operating systems. A small number of PCs might have more than 4 GB
of memory and 64-bit operating systems, and such configurations are now common on servers
and high-performance computing clusters. At Google, for example, Daryl Pregibon’s group
uses 64-bit Linux workstations with up to 32 GB of RAM. Massive data sets are increasingly
common; the Netflix Prize1 competition, for example, involves the analysis of approximately
100 million customer ratings of movies, and a basic data structure would be a 100 million by
5 matrix of integers (movie ID, customer ID, rating, year, and month). And Daryl’s group
studies massive subsets of terrabytes (though perhaps not googols) of data.

Fast-forward to year 2015, eight years hence. A naive application of Moore’s Law projects
a sixteen-fold increase (four doublings) in hardware capacity. R will naturally support much

1http://www.netflixprize.com

2 bigmemoRy

larger data analyses, taking advantage of additional hardware capacity. But these increases
only tempt us to push the envelope at the frontiers of applied research.
With bigmemoRy, we can exploit simultaneously the strengths of R and C to the full capacity
of our hardware. Most significantly, R users of bigmemoRy don’t need to be C experts
(and don’t have to use C at all, in most cases). And C programmers can make use of R
as a convenient interface, without needing to become experts in the environment. Thus,
bigmemoRy offers something for everyone.

2. Some backgRound

Data frames and matrices in R were designed for data sets much smaller in size than the
computer’s memory limit. They are flexible and easy to use, with typical manipulations
executed quickly on smaller data sets. They suit the needs of the vast majority of R users.
A second category of data sets are those requiring more memory than a machine’s RAM.
CRAN and Bioconductor packages such as DBI, RJDBC, RMySQL, RODBC, ROracle,
TSMySQL, filehashSQLite, TSSQLite, pgUtils, and Rdbi communicate with previously im-
plemented databases using SQL statements. Other packages, such as filehash and ff, provide
a convenient data.frame-like interface. While they all help manage massive data sets, the
user is often forced to wait for disk accesses.
This paper addresses a third category of data sets. These can be massive data sets (perhaps
requiring several gigabytes of memory on typical computers, as of 2007) but not larger than
the total available RAM. In this case, disk accesses are unnecessary. However, there may not
be enough RAM to handle the overhead of using a data.frame or matrix. The next section
will outline some of R’s limitations for this type of data set. The BigMatrix class has been
created to fill this niche.

3. DangeRs of data.frame and matrix

We love R’s data frames and matrices. The observations made in this section are not com-
plaints, because there are excellent reasons behind choices made in the design and implemen-
tation of the programming environment. Here, we illustrate some dangers of R’s memory
management. We will use a large matrix of integers as an example, motivated by the Netflix
Prize competition.
Many R users are not aware that 4-byte integers are implemented in R. So if memory is at a
premium and only integers are required, the astute and fastidious user would avoid the 2.24
GB memory consumption of

> x <- matrix(0, 1e+08, 3)

> round(object.size(x)/(1024^3), 2)

[1] 2.24

in favor of the 1.12 GB memory consumption of an integer matrix:

> x <- matrix(as.integer(0), 1e+08, 3)

> round(object.size(x)/(1024^3), 2)

2008 ASA Computing/Graphics Student Paper Competition 3

[1] 1.12

Similar attention is needed in subsequent arithmetic, because

> x <- x + 1

coerces x into a matrix of 8-byte real numbers. The memory used is then back up to 2.24 GB,
and the peak memory usage of this operation is approximately 3.35 GB (1.12 GB from the
original x, and a new 2.24 GB vector). In contrast,

> x <- matrix(as.integer(0), 1e+08, 3)

> x <- x + as.integer(1)

has the desired consequence, adding 1 to every element of x while maintaining the integer type.
The memory usage then remains at 1.12 GB, and the operation requires temporary memory
overhead of an additional 1.12 GB. It’s tempting to be critical of any memory overhead for
such a simple operation, but this is often necessary in a high-level, interactive programming
environment. In fact, R is being efficient in the previous example; the peak memory consump-
tion of

> x <- matrix(as.integer(0), 1e+08, 3)

> x <- x + matrix(as.integer(1), 1e+08, 3)

is approximately 3.35 GB. Some overhead is necessary in order to provide flexibility in the
programming environment, freeing the user from the explicit structures of programming lan-
guages like C. However, this overhead becomes cumbersome with massive data sets.

Similar challenges arise in function calls, where R uses the call-by-value convention instead
of call-by-reference. Fortunately, R creates physical copies of objects only when apparently
necessary (called copy-on-demand). So there is no extra memory overhead for

> x <- matrix(as.integer(0), 1e+08, 3)

> myfunc1 <- function(z) return(c(z[1, 1], nrow(z), ncol(z)))

> myfunc1(x)

[1] 0 100000000 3

which uses only 1.12 GB for the matrix x, while

> x <- matrix(as.integer(0), 1e+08, 3)

> myfunc2 <- function(z) {

+ z[1, 1] <- as.integer(5)

+ return(c(z[1, 1], nrow(z), ncol(z)))

+ }

> myfunc2(x)

[1] 5 100000000 3

4 bigmemoRy

temporarily creates a second 1.12 GB matrix, for a total peak memory usage of 2.24 GB.

These examples demonstrate the simultaneous strengths and weaknesses of R. As a program-
ming environment, it frees the user from the rigidity of a programming language like C. The
resulting power and flexibility has a cost: data structures can be inefficient, and even the
simplest manipulations can create unexpected memory overhead. For most day-to-day use,
the strengths far outweigh the weaknesses. But when working with massive data sets, the
weaknesses can cause even the best efforts to grind to a halt.

4. bigmemoRy: the method behind the madness

We define an S4 class BigMatrix, containing an external pointer (R type externalptr) and
a type (a character string describing the type of the atomic element). The pointer gives the
memory location of a C structure such as BigIntMatrix (the only structure yet implemented).
The BigIntMatrix structure contains the number of rows and columns of the matrix, a vector
of strings corresponding to matrix column names, and a pointer to an array of pointers to
integers (of length equal to the number of columns of the matrix). The structure, including
the massive vectors of data (one for each column of the matrix), are dynamically allocated
using malloc(). We recognize that this is not the typical representation of a matrix as a
massive vector, but it has some natural advantages for data exploration and analysis.

We provide a collection of functions for the class BigMatrix, designed to mimic traditional
matrix functionality. For example, the R function ncol() automatically associates a BigMa-
trix with a new method function, returning the number of columns of the matrix via the C
function CGetIntNcol(). Other examples are more subtle. For example, if x is a BigMatrix
and a and b are traditional R vectors of row and column indices, then x[a,b] can be used
to retrieve the appropriate submatrix of x (and is a traditional R matrix, not a BigMatrix).
The same notation can be used to assign values to the submatrix, if the dimensionality of the
assignment conforms to R’s set of permissible matrix assignments.

An object of class BigMatrix contains a reference to a data structure. This has some notewor-
thy consequences. First, if a BigMatrix is passed to a function which changes its values, those
changes will be reflected outside the function scope. Thus, side-effects have been introduced
for BigMatrix objects. When an object of class BigMatrix is passed to a function, it should
be thought of as being called-by-reference.

The second consequence is that copies are not made by simple assignment. For example:

> library(bigmemoRy)

> x <- BigMatrix(nrow = 2, ncol = 2, init = 0)

> x[,]

[,1] [,2]
[1,] 0 0
[2,] 0 0

> y <- x

> y[1, 1] <- 1

> x[,]

2008 ASA Computing/Graphics Student Paper Competition 5

[,1] [,2]
[1,] 1 0
[2,] 0 0

The assignment y <- x does not copy the contents of the BigMatrix object; it only copies
the type information and memory location of the data. As a result, the variables x and y
refer to the same data in memory. If an actual copy is required, the programmer must first
create a new object of class BigMatrix, and then copy the contents.

Along with bracket operator, the core functions supporting BigMatrix objects are:

BigMatrix() is.BigMatrix() as.BigMatrix() nrow()
ncol() dim() head() tail()
print() which.bm() read.bm() write.bm()
rm.cols.bm() add.cols.bm() hash.mat.bm() dimnames()

Other basic functions are included, serving as templates for the development of new functions.
These include:

colmin() min() max() colmax()
colrange() range() colmean() mean()
colvar() colsd() summary() biglm.bm()
bigglm.bm()

5. Package bigmemoRy in use

One of the most important new functions is which.bm(). For a BigMatrix, x, the logical
expression x[,2]==0 would extract the second column of the matrix as a massive numeric
vector in R, do the logical comparison in R, and produce a massive R vector of TRUE and
FALSE values. Thus, the command x[x[,2]==0,] would generate considerable memory over-
head. The command x[which.bm(x, 2, 0),] gives the identical result with only a vector
of indices of length sum(x[,2]==0) existing temporarily in R. More complex comparisons are
supported by which.bm(), including the specification of minimum and maximum test values
and comparisons on multiple columns in conjunction with AND and OR operations. Even more
complex comparisons could involve set operations in R on collections of indices returned by
which.bm() from C.

We use the Netflix Prize data as an example. This data set includes 103,297,638 ratings
and five integer variables: movie ID, customer ID, rating, year and month. As a regular R
matrix, this would require approximately 4 GB of RAM, whereas only 2 GB is needed for the
BigMatrix.

> x <- read.bm("ALL.txt", sep = "\t")

> colnames(x) = c("movie", "customer", "rating", "year", "month")

> cust.indices <- which.bm(x, "customer", 50)

> length(cust.indices)

[1] 625

6 bigmemoRy

Customer 50 provided 625 ratings. We can extract other subsets of the data. For example
we really might want both customers 50 and 55 (an OR command):

> cust.indices <- which.bm(x, rep("customer", 2), c(50, 55), op = "OR")

> length(cust.indices)

[1] 1004

Support for Thomas Lumley’s biglm package (2) is provided via the biglm.bm and bigglm.bm
functions. In this example, the movie release year is used (as a factor) to try to predict
customer ratings:

> lm.0 = biglm.bm(rating ~ year, data = x, fc = "year")

> print(summary(lm.0)$mat)

Coef (95% CI) SE p
(Intercept) 3.64455545 3.64426881 3.64484210 0.0001433232 0.000000e+00
year2004 -0.05304919 -0.05353212 -0.05256626 0.0002414644 0.000000e+00
year2003 -0.23921791 -0.23995324 -0.23848257 0.0003676688 0.000000e+00
year2001 -0.25430020 -0.25593524 -0.25266517 0.0008175193 0.000000e+00
year2002 -0.26335461 -0.26442104 -0.26228819 0.0005332123 0.000000e+00
year2000 -0.27979480 -0.28203994 -0.27754967 0.0011225672 0.000000e+00
year1999 -0.30754903 -0.35345442 -0.26164363 0.0229526996 6.107488e-41

This particular regression will not win the $1,000,000 Netflix prize. However, it does provide
an interesting use of a BigMatrix object to manage and study several gigabytes of data.

6. Conclusion

bigmemoRy currently supports integer types and will soon be extended for double, short,
and char data. The implementation of short and char types will provide the most significant
memory efficiencies. The first version, including these data types, will be available from
CRAN in January 2008.
The next version of bigmemoRy will implement the data structures in shared memory. At the
moment, parallel use of R requires redundant copies of data for each R process. The shared
memory version of a BigMatrix object will allow separate R processes on the same computer
to share access to a single copy of the massive data set in memory. This will open the door
for more powerful parallel analyses and data mining of massive data sets.

References

[1] R Development Core Team (2007). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
URL http://www.R-project.org.

[2] Thomas Lumley (2005). biglm: bounded memory linear and generalized linear models. R
package version 0.4.

	IntRoduction
	Some backgRound
	DangeRs of data.frame and matrix
	bigmemoRy: the method behind the madness
	Package bigmemoRy in use
	Conclusion

