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As part of the research being done on modeling stochastic process, specif-
ically with respect to (Achlioptas and Molloy 1997), this paper investigates
the ratio of the sum of binomial random variables with a time dependentp
parameter to time.

1. INTRODUCTION

Consider an urn which starts out withn balls. At the first time step,W1

balls are taken where
W1 ∼ Bin(n, c/n).

That is, a binomial number of balls is taken. More generally, this can be
written as

Wt+1|Wt ∼ Bin(n−Wt, c/n)

We would like to get the distribution function for

St =
t∑

i=1

Wt

At each time there is ac/m change that a ball in the urn will be picked to
be removed. The probability that a ball is not chosen at time 1 is1 − c/m.
The probability that a ball is not chosen at time 2 is the probability of the
intersection of the events that it is not chosen at time 1 and time 2, i.e.
(1− c/m)2. Inductively it can be seen that the probability that a ball is not
chosen at timet is (1− c/m)t. Then,

t∑
i=1

bt = Bin(n, 1− (1− c/m)t).

Now, consider the case where it is guaranteed that at least 1 ball is take
at each time. This can similarly be modeled as a sum of binomials plus 1 at
each time step. In other words, for

bt = Bin(n− 1, 1− (1− c/(n− 1)t)
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we get

St = t +
t∑

i=1

bt.

2. THE EXPECTEDBEHAVIOR OF St/t

Let η = Ptbt+1. Using the approximationbt ∼ Bin(n, 1− (1− c/n)t) we
can write

St

t
=

S0 + b1 + 1 + b2 + 1 + ... + bt + 1

t

=
b1 − η1 + b2 − η2 + ... + bt − ηt

t
+

η1 + 1 + η2 + 1 + ... + ηt + 1

t
.

NeglectingS0, and taking the expectation we see that to understand the
behavior ofSt/t we need to understand the expression

P
[
η1 + 1 + η2 + 1 + ... + ηt + 1

t

]
=

n

t

t∑
i=1

(
1−

(
1− c

n

)i
)

+ 1

=
n

t

(
t−

t∑
i=1

(
1− c

n

)i
)

+ 1(2.1)

Remembering
∞∑
i=0

ai =
1

1 + a−1
for |a| < 1,

Equation (2.1) can be rewritten as

n

t

(
t− n

c
+ 1 +

∞∑
i=t+1

(
1− c

n

)i
)

=
n

t

(
t− n

c
+ 1
)

+ 1 + o

(
n
(
1− c

n

)t
)

≈ n

t

(
t− n

c
+ 1
)

+ 1.(2.2)

When looking at this approximation it should be noted thato(n(1− c/n)t)
is asymptotic int. Sincet ≤ n, this means that for this approximation to be
close,n must be sufficiently large andt must be of a significant proportion
to n. It should also be noted that this term is strictly positive forc ≤ n.
This means that the approximation also provides an upper bound.

Using the results from Approximation (2.2),

(2.3) P
St

t
≈ S0

t
+

n

t

(
t− n

c
+ 1
)

+ 1.
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Again, neglectingS0 (or settingS0 = 0), ast approachesn

P
St

t
≈ n(1− 1/c) + 2.

Recalling that1 ≤ c ≤ n it can be seen that whenc is small, as is the case
of (Achlioptas and Molloy 1997), the slope goes to 2. This implies that we
would expectSt to reachn in aboutn/2 steps. In the more exotic case
wherec goes ton the slope goes ton + 1. However, in practice we know
that the slope can not be more thann which implies that theS1 = n. In
summary, we can say that for large enoughn andt,

(2.4) 2 ≤ P
St

t
≤ n.

Now, we would like to get some idea of how much variation we can expect
around the slope.

3. THE TAIL BOUND FORSt/t

Based on the expected behavior ofSt it is clear thatSt can reachn in 1 to
n/2 time steps. It would be useful to get the tail probability ofSt/t. This
will be done in a manner similar to Pollard (2001, Chapter 4), where the
maximal inequality is found for the first time a sum of independent passes
a threshold.

We would like to findβ, a positive constant, such that

P{Sn − Si ≤ ε} ≥ 1/β.

SinceSn = n andSi ≥ i,

Sn − Si ≤ n− i

Let ε be a positive constant such thatε < n, then

P{Sn − Si ≤ ε} ≥ εP[(Sn − Si)
−1] ≥ ε

n− i
= 1/β.

Now, define

τ := {first i for whichSi = n}.
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P{τ = i andSi ≥ n for somei}

=
n∑

i=1

P{τ = i, Si ≥ n}

≤
n∑

i=1

P{τ = i, Si ≥ n}βP{Sn − Si ≤ ε}

≤ β
n∑

i=1

P{τ = i, Si ≥ n, Sn − Si ≤ ε}

≤ β
n∑

i=1

P{τ = i, Sn ≥ n− ε}.

Substituting forβ and using the Markov Inequality,

P{τ = i andSi ≥ n for somei}
= βP{Sn ≥ n− ε}

≤ (n− i)

ε(n− ε)
n (1− (1− c/n)n)

≤ n(n− i)

ε(n− ε)
.

The denominator of the last inequality is maximized forε = n/2 and we
get

(3.1) P{τ = i andSi ≥ n for somei} ≤ 4(1− i/n).

It should be noted that for this inequality to be useful, we needi/n ≥ 3/4.
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