
BigMatrix-class Class ”BigMatrix”

Description

The “BigMatrix”class is designed for massive matrices, stored in C, of type double, integer,
short, or char. Through various methods, a “BigMatrix” acts much like a traditional R
matrix, but helps protect the user from many inadvertant memory-consuming pitfalls of
traditional R matrices and data frames. That said, we caution the user against casual use
of the big matrices. In Unix, the may also be used in shared memory.

Objects from the Class

Objects can be created by calls of the form new("BigMatrix", ...). The functions Big-
Matrix() and \code{BigSharedMatrix} are intended for the user.

Slots

address: Object of class "externalptr" points to the memory location of the C data
structure.

type: Object of class "character" can be one of "double", "integer", "short", or
"char", using 8, 4, 2, and 1 bytes, respectively, per element.

Methods

[<- signature(x = "BigMatrix", i = "numeric", j = "numeric", value = "ANY"):
...

[<- signature(x = "BigMatrix", i = "numeric", j = "character", value = "ANY"):
...

[<- signature(x = "BigMatrix", i = "numeric", j = "missing", value = "numeric"):
...

[<- signature(x = "BigMatrix", i = "missing", j = "numeric", value = "numeric"):
...

[<- signature(x = "BigMatrix", i = "missing", j = "character", value = "numeric"):
...

[<- signature(x = "BigMatrix", i = "missing", j = "missing", value = "numeric"):
...

[signature(x = "BigMatrix", i = "numeric", j = "numeric", drop = "missing"):
...

[signature(x = "BigMatrix", i = "numeric", j = "character", drop = "missing"):
...

[signature(x = "BigMatrix", i = "numeric", j = "missing", drop = "missing"):
...

1

[signature(x = "BigMatrix", i = "missing", j = "numeric", drop = "missing"):
...

[signature(x = "BigMatrix", i = "missing", j = "character", drop = "missing"):
...

[signature(x = "BigMatrix", i = "missing", j = "missing", drop = "missing"):
...

[signature(x = "BigMatrix", i = "missing", j = "logical", drop = "missing"):
...

[signature(x = "BigMatrix", i = "logical", j = "logical", drop = "missing"):
...

[signature(x = "BigMatrix", i = "logical", j = "missing", drop = "missing"):
...

colmax signature(x = "BigMatrix"): find the maximum of each column (or the speci-
fied columns, optionally).

colmean signature(x = "BigMatrix"): find the mean of each column (or the specified
columns, optionally).

colmin signature(x = "BigMatrix"): find the min of each column (or the specified
columns, optionally).

colrange signature(x = "BigMatrix"): find the range of each column (or the specified
columns, optionally).

colsd signature(x = "BigMatrix"): find the standard deviation of each column (or the
specified columns, optionally).

colvar signature(x = "BigMatrix"): find the variance of each column (or the specified
columns, optionally).

dim signature(x = "BigMatrix"): find the dimension of the BigMatrix.

dimnames<- signature(x = "BigMatrix", value = "list"): set the row and column
names.

dimnames signature(x = "BigMatrix"): get the row and column names.

head signature(x = "BigMatrix"): get the first 6 (or n) rows.

max signature(x = "BigMatrix"): find the maximum of all the values.

mean signature(x = "BigMatrix"): find the mean of all the values.

min signature(x = "BigMatrix"): find the minimum of all the values.

ncol signature(x = "BigMatrix"): get the number of columns.

nrow signature(x = "BigMatrix"): get the number of rows.

print signature(x = "BigMatrix"): print is intentionally disabled, and returns head(x)
unless options()$bm.print.warning==FALSE; in this case, print(x[,]) is the result,
which could be very big!

range signature(x = "BigMatrix"): find the range of all the values.

summary signature(object = "BigMatrix"): produce a summary of each of the columns.

tail signature(x = "BigMatrix"): get the last 6 (of n) rows.

write.bm signature(bigMat = "BigMatrix", fileName = "character"): produce a file
from the BigMatrix.

is.shared signature(x = "BigMatrix"): is this object in shared memory?

2

Author(s)

John W. Emerson and Michael J. Kane

See Also

BigMatrix

Examples

showClass("BigMatrix")

BigMatrix, is.BigMatrix, as.BigMatrix

The basic “BigMatrix” operations.

Description

Create a BigMatrix (or check to see if an object is a BigMatrix, or create a BigMatrix

from a matrix).

Usage

BigMatrix(nrow, ncol, type = "integer", init = 0,

colnames = NULL, rownames = NULL)

as.BigMatrix(x, type = "integer")

is.BigMatrix(x)

Arguments

x an object; if a vector, a one-column BigMatrix is created by as.BigMatrix.

nrow number of rows.

ncol number of columns.

type the type of the atomic element ("integer" by default).

init a scalar value for initializing the matrix, 0 by default.

colnames a vector of column names.

rownames a vector or row names (see details below for a word of caution).

3

Details

A BigMatrix consists of an object in R that does little more than point to the data structure
implemented in C. Through various methods, the object acts much like a traditional R
matrix, but helps protect the user from many inadvertant memory-consuming pitfalls of
traditional R matrices and data frames. That said, we caution the user against casual use
of these big matrices.

Four atomic types are implemented (see argument type, above) to help provide memory
efficiency in different applications: double (equivalent to numeric in R), integer (using 4
bytes), short (using 2 bytes), and char (using a single byte). The value NA only exists for
double and integer matrices, and char behaves like a signed integer.

If x is a BigMatrix, then x[1:5,] is evaluated as an R matrix containing the first five rows
of x; if x is of type double, then the result will be numeric; otherwise, the result will be an
integer R matrix. For “safety,” the expression x alone will display information about the R
object (e.g. the type) rather than printing the matrix itself (the user should try x[,] with
extreme caution to print the entire matrix, recognizing that a huge temporary R version of
the matrix will exist in the process).

If x has a huge number of rows (very likely with large data sets), then the use of rownames
will be extremely memory-intensive and should be avoided.

Finally, we note that when a BigMatrix, x, is passed as an argument to a function, it is
essentially providing call-by-reference rather than call-by-value behavior. If the function
modified any of the values of x within the function, the changes are really made (and not
limited in scope to a local copy within the function). This will be both an advantage and
disadvantage.

Value

A BigMatrix is returned (for BigMatrix and as.BigMatrix), and TRUE or FALSE for
is.BigMatrix.

Author(s)

John W. Emerson and Michael J. Kane

References

See http://www.stat.yale.edu/~jay/bigmemoRy.

See Also

bigmemoRy, and perhaps the class documentation of BigMatrix.

Examples

x <- BigMatrix(10, 2, type=
�

integer
�

, init=-5, colnames=c("alpha", "beta"))

is.BigMatrix(x)

dim(x)

x[1:8,1] <- 11:18

x[,]

4

http://www.stat.yale.edu/~jay/bigmemoRy

y <- as.BigMatrix(matrix(1:20, 10, 2))

y[,]

cbind(x[,2], y[,1])

y[,2] <- x[,1]

head(y)

which rows contain 15 in either columns 1 or 2?

which.bm(y, 1:2, 15,
�

eq
�

)

which rows contain the value 4 or 6 in column 1, or 15 in column 2?

which.bm(y, c(1,1,2), list(4, 6, 15),
�

eq
�

,
�

OR
�

)

which rows contain values between 4 and 6 inclusive in column 1,

and the value in column 2 is not equal to 15?

which.bm(y, 1:2, list(c(4,6), 15), list(c(
�

ge
�

,
�

le
�

),
�

neq
�

),
�

AND
�

)

Testing
�

neq
�

mostly because this was an issue in the latest

redesign.

which.bm(y, 1, 2,
�

neq
�

)

which.bm(y, 2, 12,
�

neq
�

)

which.bm(y, 1:2, list(3, 12), list(
�

neq
�

,
�

neq
�

),
�

OR
�

)

which.bm(y, 1:2, list(3, 12), list(
�

neq
�

,
�

neq
�

),
�

AND
�

)

which.bm(y, 1:2, list(3, 12), list(
�

eq
�

,
�

neq
�

),
�

OR
�

)

which.bm(y, 1:2, list(3, 12), list(
�

neq
�

,
�

eq
�

),
�

AND
�

)

Not run:

This example won
�

t run on the Windows version of the package.

It
�

s also a bit silly, as you wouldn
�

t likely do this on a single

processor. But if zdescription were passed to another R process

via Rmpi, Networkspaces, or even by a simple file read/write,

then the attach on the second R process would give access to the

same object in memory.

z <- BigSharedMatrix(3, 3, type=
�

integer
�

, init=3)

z[,]

dim(z)

z[1,1] <- 2

z[,]

zdescription <- DescribeBigSharedMatrix(z)

zdescription

y <- AttachBigSharedMatrix(zdescription)

y[,]

y

z

y[1,1] <- -100

y[,]

z[,]

End(Not run)

5

BigSharedMatrix, DescribeBigSharedMatrix, AttachBigSharedMatrix

The basic “BigSharedMatrix” operations.

Description

Create a BigMatrix in shared memory (or check to see if an object is in shared memory).

Usage

BigSharedMatrix(nrow, ncol, type = "integer",

init = 0, colnames = NULL, rownames = NULL)

DescribeBigSharedMatrix(x, file = NULL, path)

AttachBigSharedMatrix(obj, path)

Arguments

x a shared BigMatrix.

nrow number of rows.

ncol number of columns.

type the type of the atomic element ("integer" by default).

init a scalar value for initializing the matrix; this cannot be a matrix or a
vector of values.

colnames a vector of column names.

rownames a vector of row names, which we recommend avoiding when nrow(x) is
large.

obj either a file name or an object as returned by DescribeBigSharedMatrix.

file a file name if used to store the description of the BigMatrix.

path a path to be used if obj is a file name, and must terminate in ’/’.

Details

A shared BigMatrix consists of an object in R that does little more than point to the
data structure implemented in shared memory in C. Through various method functions,
the object acts much like a traditional R matrix, but helps protect the user from many
inadvertant memory-consuming pitfalls of traditional R matrices and data frames. That
said, we caution the user against casual use of these big matrices.

Value

A shared memory BigMatrix is returned by each of these functions. BigSharedMatrix

creates a new matrix in shared memory, while AttachSharedBigMatrix creates the R
BigMatrix object referencing an existing matrix in shared memory.

6

Author(s)

John W. Emerson and Michael J. Kane

References

http://www.stat.yale.edu/~jay/bigmemoRy.

See Also

bigmemoRy, BigMatrix, or the class documentation BigMatrix.

Examples

This example won
�

t run on the Windows version of the package,

and if you are reading this message you are most certainly using

a non-Windows version.

The example is also a bit silly, as you wouldn
�

t likely do this on a

single R session. But if zdescription were passed to another R session

via Rmpi, Networkspaces, or even by a simple file read/write,

then the attach on the second R process would give access to the

same object in memory.

z <- BigSharedMatrix(3, 3, type=
�

integer
�

, init=3)

z[,]

dim(z)

z[1,1] <- 2

z[,]

zdescription <- DescribeBigSharedMatrix(z)

zdescription

y <- AttachBigSharedMatrix(zdescription)

y[,]

y

z

y[1,1] <- -100

y[,]

z[,]

UserRWMutex-class Mutual exclusions (mutexes) for shared memory.

Description

Support mutual exclusions for objects in shared memory.

Objects from the Class

Objects can be created by calls of the form new("UserRWMutex", ...).

7

http://www.stat.yale.edu/~jay/bigmemoRy

Slots

address: Object of class "externalptr"

Methods

UserRWMutexInfo signature(x = "UserRWMutex"): ...

Warning

We probably do have warnings.

Note

Additional notes.

Author(s)

Michael Kane and John W. Emerson

References

pthread.h

See Also

BigMatrix

Examples

showClass("UserRWMutex")

UserRWMutex, ConnectUserRWMutex, UserRWMutexInfo

Mutual exclusion functionality for shared memory matrices in
package “bigmemoRy”

Description

These functions provide mutexes (mutual exclusions) for use with matrices in shared mem-
ory (class BigMatrix of bigmemoRy.

Usage

UserRWMutex()

ConnectUserRWMutex(mutexId, countId, countMutexId)

UserRWMutexInfo(x)

8

Arguments

x an UserRWMutex

mutexId the shared memory key for the mutex.

countId the key for the mutex counter.

countMutexId the key for the mutex on the counter itself.

Details

Mutexes are provided with every shared matrix and managed by the various functions
provided for BigMatrix objects (which.bm, for example). However, the user may create an
additional layer of mutexes using these functions. This may be important in certain shared
memory applications.

Value

The only function that returns anything interesting is UserRWMutexInfo. This returns a
vector of three values which correspond to the arguments of ConnectUserRWMutex.

Note

Shared memory is not presently supported by the Windows version of bigmemoRy (but you
wouldn’t be reading this comment if you had the Windows version).

Author(s)

John W. Emerson and Michael Kane

References

C libraries pthread, ipc, and shm are used for shared memory and mutexes.

See Also

BigMatrix, BigSharedMatrix

Examples

None.

9

add.cols.bm, rm.cols.bm

Add and remove columns of a “BigMatrix”.

Description

Add and remove columns of a BigMatrix.

Usage

add.cols.bm(x, numCols = 1, init = 0, names = NULL)

rm.cols.bm(x, rmCols)

Arguments

x a BigMatrix.

numCols the number of columns to add.

rmCols a vector of integer indices or variable names to remove.

init a scalar value for initializing the column; this may not be a vector or a
matrix of values.

names a vector of numCols names (optional).

Details

Adding and removing columns of a BigMatrix is efficient, with no memory overhead because
of the data structure. Note that these operations are not permitted if the matrix is in shared
memory (if is.shared(x) is TRUE).

Value

None; the BigMatrix x is actually modified.

Author(s)

John W. Emerson and Michael J. Kane

See Also

BigMatrix

10

Examples

x <- BigMatrix(5, 2, init=1, colnames=c("alpha", "beta"))

add.cols.bm(x, 1, names="gamma")

x[,]

rm.cols.bm(x, 2)

x[,]

add.cols.bm(x, 2, names=c("jay", "mike"))

rm.cols.bm(x, "alpha")

x[,]

biglm.bm, bigglm.bm Use Lumley’s “biglm” package with a “BigMatrix”

Description

This is a wrapper to Lumley’s biglm package, allowing its use with data stored in BigMatrix

objects.

Usage

biglm.bm(formula, data, fc=NULL, chunksize=NULL, weights=NULL, sandwich=FALSE)

bigglm.bm(formula, data, family=gaussian(), fc=NULL, chunksize=NULL,

weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7, start=NULL)

Arguments

formula a model formula.

data a BigMatrix.

fc either column indices or names of variables that are factors.

chunksize an integer maximum size of chunks of data to process iteratively.

weights a one-sided, single term formula specifying weights (see biglm for more
information).

sandwich TRUE to compute the Huber/White sandwich covariance matrix (see biglm

for more information).

family a glm family object

maxit maximum number of Fisher scoring iterations.

tolerance tolerance for change in coefficient (as multiple of standard error).

start optional starting values for coefficients. If NULL, maxit should be at least
2 as some quantities will not be computed on the first iteration.

Details

See Thomas Lumley’s biglm package for more information; chunksize defaults to
floor(nrow(data)/ncol(data)^2).

11

Value

an object of class biglm.

Author(s)

Michael J. Kane

References

Algorithm AS274 Applied Statistics (1992) Vol. 41, No.2

Thomas Lumley (2005). biglm: bounded memory linear and generalized linear models. R
package version 0.4.

See Also

biglm, BigMatrix

Examples

This example is quite silly, creating an integer data set from the iris

data. But it shows that our wrapper to Lumley
�

s biglm() function produces

the same answer as the plain old lm() function.

x <- matrix(as.integer(unlist(iris)), ncol=5)

colnames(x) <- names(iris)

x <- as.BigMatrix(x)

head(x)

silly.biglm <- biglm.bm(Sepal.Length ~ Sepal.Width + Species, data=x, fc="Species")

summary(silly.biglm)

y <- data.frame(x[,])

y$Species <- as.factor(y$Species)

head(y)

silly.lm <- lm(Sepal.Length ~ Sepal.Width + Species, data=y)

summary(silly.lm)

bigmemoRy-package bigmemoRy: massive matrices in (possibly shared) memory.

Description

bigmemoRy implements massive matricies in C (optionally, in shared memory) and sup-
ports the manipulation and exploration of these objects. It provides a framework for the
development of C code for interactive use with R.

Details

12

Package: bigmemoRy
Type: Package
Version: 1.0
Date: 2008-01-15
License: GPL

Multi-gigabyte data sets challenge and frustrate R users even on well-equipped hardware.
C programming can provide memory efficiency and speed improvements, but is cumber-
some for interactive data analysis and lacks the flexibility and power of R’s rich statistical
programming environment. bigmemoRy bridges this gap, implementing persistent massive
objects in memory (managed in R but implemented in C) and supporting the manipulation
and exploration of these objects. It provides a framework for the development of C code
for interactive use with R. In Unix environments, it supports the use of shared memory,
allowing different R sessions (threads) on the same machine to share access to the same
BigMatrix.

Author(s)

John W. Emerson and Michael J. Kane

Maintainer: Jay Emerson <john.emerson@yale.edu>

See Also

BigMatrix, which.bm, colmean, biglm

Examples

Our examples are all trivial in size, rather than burning huge amounts

of memory simply to demonstrate the package functionality.

x <- BigMatrix(5, 2, type="integer", init=0, colnames=c("alpha", "beta"))

x

x[,]

x[,1] <- 1:5

x[,]

mean(x)

colmean(x)

colmean, colmin, colmax, colrange, colvar, colsd

Basic statistics for “BigMatrix” objects.

Description

These functions are implemented for each column of the BigMatrix.

13

Usage

colmean(x, cols, na.rm)

colmin(x, ..., na.rm)

colmax(x, ..., na.rm)

colrange(x, ..., na.rm)

colvar(x, cols, na.rm)

colsd(x, cols, na.rm)

Arguments

x a BigMatrix.

cols a scalar or vector of column(s) to be summarized.

na.rm if TRUE, remove NA values before summarizing.

... additional arguments.

Details

These functions essentially apply summary functions to each column (or each specified
column) of the BigMatrix in turn.

The cols argument works for each of these, although for some of the functions the argument
works via ... instead of being an explicit argument. This is for consistency with the
associated functions in base.

Value

For colrange, a matrix with two columns and length(cols) rows; column 1 contains the
minimum, and column 2 contains the maximum for that column. The other functions return
vectors of length length(cols).

Author(s)

John W. Emerson and Michael J. Kane

See Also

BigMatrix

Examples

x <- as.BigMatrix(matrix(sample(1:10, 20, replace=TRUE), 5, 4))

x[,]

mean(x)

colmean(x)

colmin(x)

colmax(x)

colsd(x)

colrange(x)

14

deepcopy.bm Produces a physical copy of a “BigMatrix”

Description

This is needed to make a duplicate of a BigMatrix, because traditional R syntax would
only copy the R object (the pointer to the BigMatrix rather than the BigMatrix itself).

Usage

deepcopy.bm(x, shared = FALSE)

Arguments

x a BigMatrix.

shared if TRUE, make the new copy a shared memory object.

Details

This is needed to make a duplicate of a BigMatrix, because traditional R syntax would
only copy the R object (the pointer to the BigMatrix rather than the BigMatrix itself).

Value

a BigMatrix, possibly in shared memory.

Author(s)

John W. Emerson and Michael J. Kane

See Also

BigMatrix

Examples

x <- as.BigMatrix(matrix(1:30, 10, 3))

y <- deepcopy.bm(x)

x

y

head(x)

head(y)

15

hash.mat.bm Create a hash into a “BigMatrix”

Description

Create a hash into a BigMatrix based on the values of the specified column.

Usage

hash.mat.bm(x, col)

Arguments

x a BigMatrix sorted by column col.

col an integer or name of the target column; BigMatrix x must be sorted on
this column.

Details

When a column of a BigMatrix contains many duplicated values, it can be useful (and
efficient) to access subsets of the matrix using a hash table. To do this, the matrix must
first be sorted based on the entries in the desired column, and the code is designed for
integer-valued BigMatrix objects. Ideally, the values in the specified column should range
from 1 to some maximum value that is considerably less than nrow(x).

Value

a two-column matrix, where the values in row i provide the range of indices of x containing
the value i in the specified column, col.

Author(s)

John W. Emerson and Michael J. Kane

See Also

BigMatrix

Examples

x <- as.BigMatrix(matrix(sample(1:10, 100, replace=TRUE), 25, 4))

theorder <- order(x[,1])

for (i in 1:ncol(x)) x[,i] <- x[theorder,i]

thehash <- hash.mat.bm(x, 1)

x[,]

thehash

The following will produce all rows with entries 5 or 9 in the first column:

x[c(thehash[5,1]:thehash[5,2], thehash[9,1]:thehash[9,2]),]

16

is.shared Check the shared memory status of a “BigMatrix”

Description

Check to see if a BigMatrix is in shared memory.

Usage

is.shared(x)

Arguments

x a BigMatrix.

Details

None.

Value

TRUE if a BigMatrix is in shared memory, and FALSE otherwise.

Author(s)

John W. Emerson and Michael J. Kane

See Also

bigmemoRy, BigMatrix

Examples

x <- BigMatrix(10, 2, init=-5, colnames=c("alpha", "beta"))

is.BigMatrix(x)

head(x)

y <- as.BigMatrix(matrix(1:20, 10, 2))

y[,]

cbind(x[,1], y[,2])

y[,1] <- x[,2]

head(y)

New examples:

#z <- BigSharedMatrix(7, 3, type=
�

integer
�

, init=3, filename=
�

test.txt
�

)

#z[,]

#dim(z)

#z[1,1] <- 2

#z[,]

#y <- AttachBigSharedMatrix(
�

test.txt
�

)

#y[,]

17

#y

#z

which.bm Provides “which”-like functionality for a “BigMatrix”

Description

Implements which-like functionality for a BigMatrix, with additional options for efficient
comparisons executed in C rather than R.

Usage

which.bm(x, cols, vals, comps, op =
�

AND
�

)

Arguments

x a BigMatrix.

cols a vector of column indices or names.

vals a list (one component for each of cols) of vectors of length 1 or 2; length
1 is used to test equality (or not equal), while vectors of length 2 are used
for checking values in the range (-Inf and Inf are allowed). If a scalar
or vector of length 2 instead of a list, it will be replicated length(cols)

times.

comps a list of operators, including ’eq’, ’neq’, ’le’, ’lt’, ’ge’ and ’gt’. If
a single operator, it will be replicated length(testCol) times.

op the comparison operator for combining the results of the individual tests,
either ’AND’ or ’OR’.

Details

To avoid the creation of massive vectors in R when doing comparisons, which.bm executes
column-by-column comparisons of values to the specified values or ranges, and then returns
the row indices satisfying the comparison using the op operator. More advanced compar-
isons are then possible (and memory-efficient) in R by doing set operations (union and
intersect, for example) on the results of multiple which.bm calls.

Note that NA is a valid argument in conjunction with ’eq’ or ’neq’, replaceing traditional
is.na() calls. And both -Inf and Inf can be used for one sided inequalities.

Value

a vector of row indices satisfying the criteria.

Author(s)

John W. Emerson and Michael J. Kane

18

See Also

BigMatrix, which

Examples

x <- as.BigMatrix(matrix(1:30, 10, 3))

x[,]

x[which.bm(x, 1:2, list(c(2,3), c(11,17)),

list(c(
�

ge
�

,
�

le
�

), c(
�

gt
�

,
�

lt
�

)),
�

OR
�

),]

x[which.bm(x, 1:2, list(c(2,3), c(11,17)),

list(c(
�

ge
�

,
�

le
�

), c(
�

gt
�

,
�

lt
�

)),
�

AND
�

),]

x[1,1] <- NA

which.bm(x, 1:2, NA,
�

eq
�

,
�

OR
�

)

which.bm(x, 1:2, NA,
�

neq
�

,
�

AND
�

)

Column 1 equal to 4 and/or column 2 less than or equal to 16:

which.bm(x, 1:2, list(4, 16), list(
�

eq
�

,
�

le
�

),
�

OR
�

)

which.bm(x, 1:2, list(4, 16), list(
�

eq
�

,
�

le
�

),
�

AND
�

)

Column 2 less than or equal to 15:

which.bm(x, 2, 15,
�

le
�

)

No NAs in either column, and column 2 strictly less than 15:

which.bm(x, c(1:2,2), list(NA, NA, 15), list(
�

neq
�

,
�

neq
�

,
�

lt
�

),
�

AND
�

)

write.bm, read.bm File interface for a “BigMatrix”

Description

Create a BigMatrix by reading from a suitably-formatted ASCII file, or write the contents
of a BigMatrix object to a file.

Usage

write.bm(bigMat, fileName = NA, row.names = FALSE, col.names = FALSE)

read.bm(fileName, sep =
�

,
�

, header = FALSE, row.names = NULL, col.names = NULL,

type = NA, skip = 0, shared = FALSE)

Arguments

bigMat a BigMatrix object.

fileName the name of an input/output file.

sep a field delimiter.

19

header if TRUE, the first line (after a possible skip) should contain column names.

row.names if TRUE, use the first column of the file for row names; if a vector of names,
use them even if row names appear to exist in the file.

col.names if TRUE, use the first row of the file for column names; if a vector of names,
use them even if column names exist in the file.

type preferably specified, ’integer’ for example.

skip number of lines to skip at the head of the file.

shared if TRUE, load the object into shared memory.

Details

Files contain only one atomic type (all integer, for example). Once we implement Big-
DataFrame, this assumption will be relaxed.

When reading from a file, if type is not specified we try to make a reasonable guess for
you without making any guarantees at this point. The same is true for the field separator.
Warning messages will be printed to alert you of this. Unless you have really large integer
values, we strongly recommend you consider ’short’. If you have something that is essen-
tially categorical, you might even be able use ’char’, with huge memory savings in large
data sets.

Value

a BigMatrix object is returned by read.bm, while write.bm creates an output file in the
present working directory.

Author(s)

John W. Emerson and Michael J. Kane

See Also

BigMatrix

Examples

Without specifying the type, this BigMatrix x will hold integers.

x <- as.BigMatrix(matrix(1:10, 5, 2))

x[2,2] <- NA

x[,]

write.bm(x, "foo.txt")

Just for fun, I
�

ll read it back in as character (1-byte integers):

y <- read.bm("foo.txt", type="char")

y[,]

20

