Linear Models Homework 2 Solution to Problem 2

Michael Kane

October 7, 2007

Let P_W denote the projection matrix for the subspace spanned by W. Then

$$\widehat{Y} = P_W Y = W \alpha \in \operatorname{sp}(W)$$

and

$$Y = \hat{Y} + (I - P_W)Y = W\alpha + \tilde{Y}.$$
(1)

Where $\widetilde{Y} \in \operatorname{sp}(W)^{\perp}$.

For each i,

$$\widehat{x}_i = P_W x_i \in \operatorname{sp}(W)$$

and $x_i - \hat{x_i} \in \operatorname{sp}(W)^{\perp}$. That is, each $\hat{x_i}$ is a linear combination of columns of W. Thus,

 $\widehat{X} = WB$ for some $s \times p$ matrix B and $X = WB + \widetilde{X}$.

Similarly

$$P_{\widetilde{X}}\widetilde{Y} = \widetilde{X}\gamma$$

and

$$\widetilde{Y} = \widetilde{X}\gamma$$
 where $R = (I - P_{\widetilde{X}})\widetilde{Y}$ (2)

(i) By Equation (2), R must be orthogonal to $\operatorname{sp}(\widetilde{X})$. We can also rewrite this equation as

$$R = \tilde{Y} - \tilde{X}\gamma,\tag{3}$$

a linear combination of vectors orthogonal to $\operatorname{sp}(W)$. Thus $R \perp \operatorname{sp}(W)$.

We still need to show $R \perp \operatorname{sp}(X)$. Every vector z in $\operatorname{sp}(M)$ can be written as a linear combination,

$$z = Wc + Xd = W(c + Bd) + \widetilde{X}d$$

for some $c \in \mathbb{R}^s$ and $d \in \mathbb{R}^p$. From Equation (1 and 2) we know that R'W = 0and $R'\widetilde{X} = 0$. It follows that $R \perp \operatorname{sp}(M)$.

(ii) Using Equation (1) and the results from above we can write

$$Y - R = W\alpha + \widetilde{Y} - (\widetilde{Y} - \widetilde{X}\gamma)$$
$$= W\alpha - \widetilde{X}\gamma$$
$$= W(\alpha + B\gamma) - X\gamma \in \operatorname{sp}(M).$$

Y is a linear combination of elements from W and X which is in sp(M).

(iii) - (iv) By uniqueness of the orthogonal decomposition of Y, it follows that

$$Y - R = P_M Y$$
 and $R = (I - P_M) Y$.

That is,

$$Y - R = W(\alpha + B\gamma) - X\gamma = M \begin{bmatrix} \alpha + B\gamma \\ -\gamma \end{bmatrix}$$

is the projection of Y onto sp(M).