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e Directed graphs (DAGs) vs undirected graphs
e Network structure

e Small n, large p asymptotics
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e Directed Graphs often represent causal relationship: Causality vs
Correlation!

e Zeros of the precision matrix do not correspond to conditional
independence

e NP-hard, few "efficient" algorithms available



Penalized Likelihood Estimation of DAGs

e When data has (known) natural ordering, (i.e. direction known)

estimation of DAGs reduces to estimation of network structure

e Write the likelihood as a function of adjacency matrix of the graph

e Develop efficient algorithms to estimate the structure of the network



Lasso vs. Adaptive Lasso

e whenp>n

o Lasso not consistent for variable selection unless incoherence
(neighborhood stability) exists

e Adaptive Lasso with initial weights derived from lasso, consistent for
variable selection, even without incoherence
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Thank Youl!



