
1. INTRODUCTION

Notes: Need to start with practical motivation, and perhaps even put in some

figures illustrating implications for real data.

Then, later in the introduction, we might include discussion like the following; but

I think it needs a lot of revision:

Let Θ1, . . . ,Θp denote independent and identically distributed random variables,

and write

Θ(1) ≤ . . . ≤ Θ(p) (1.1)

for their ordered values. There exists a permutation R = (R1, . . . , Rp) of (1, . . . , p)

such that Θ(j) = ΘRj . If the common distribution of the Θjs is continuous then

the inequalities in (1.1) are all strict and the permutation is unique.

In practice we typically do not observe the Θjs directly, only in terms of noisy

approximations which can be modelled as follows. Let Qi = (Qi1, . . . , Qip) denote

independent and identically distributed random p-vectors with finite variance and

zero mean, independent also of Θ = (Θ1, . . . ,Θp). We observe

Xi = (Xi1, . . . , Xip) = Qi + Θ (1.2)

for 1 ≤ i ≤ n. The mean vector,

X̄ = (X̄1, . . . , X̄p) =
1
n

n∑
i=1

Xi = Q̄+ Θ , (1.3)

is an empirical approximation to Θ. (Here Q̄ = n−1
∑
i Qi equals the mean of the

p-vectors Qi.) The components of X̄ can also be ranked, as

X̄(1) ≤ . . . ≤ X̄(p) , (1.4)

and there is a permutation R̂1, . . . , R̂p of 1, . . . , p such that X̄(j) = X
R̂j

for each j. If

the common distribution of the Θjs is continuous then, regardless of the distribution

of the components of Qi, the inequalities in (1.4) are strict with probability 1.

The permutation R̂ = (R̂1, . . . , R̂p) serves as an approximation to R, and we

wish to determine the accuracy of that approximation. In particular, for what

values of j0 = j0(n, p), and for what relationships between n and p, is it true that

P
(
R̂j = Rj for 1 ≤ j ≤ j0

)
→ 1 (1.5)
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as n and p diverge? That is, how deeply into the ranking can we go before the

connection between the true ranking and its empirical form is seriously degraded

by noise?

The answer to this question depends to some extent on the extent of dependence

among the components of each Qi. To elucidate this point, let us consider the case

where all the components of Qi are identical; this is an extreme case of strong

dependence. Then the components of Q̄ are also also identical. Clearly, in this case

R̂j = Rj for each j, and so (1.5) holds in a trivial and degenerate fashion. Other

strongly dependent cases, although not as clear-cut as this one, can also be shown

to be ones where R̂j = Rj with high probability for many values of j.

The case which is most difficult, i.e. where the strongest conditions are needed

to ensure that (1.5) holds, occurs when the components of Qi are independent. To

emphasise this point we give sufficient conditions for (1.5), and show that when the

components of each Qi are independent, those conditions are also necessary. Our

arguments can be modified to show that the conditions continue to be necessary

under sufficiently weak dependence, for example if the components are m-dependent

where m = m(n) diverges sufficiently slowly as n increases.

The assumptions under which (1.5) holds are determined mainly by the lower

tail of the common distribution of the Θjs. If that distribution has an exponentially

light left-hand tail, for example if the tail is like that of a normal distribution, then

a sufficient condition for (1.5) is that j0 should increase at a strictly slower rate

than n1/4 (log n)c, where the constant c, which can be either positive or negative,

depends on the rate of decay of the exponential lower tail of the distribution of Θ.

For example, c = 0 if the distribution is double exponential, and c = − 1
4 if it is

normal. As indicated in the previous paragraph, the condition j0 = o{n1/4 (log n)c}
is also necessary for (1.5) if the components of the Qis are independent.

These results have several interesting aspects, including: (a) The exponent 1
4

in the condition j0 = o{n1/4 (log n)c} does not change among different types of

distribution with exponential tails; (b) the exponent is quite small, implying that

the empirical rankings R̂j quite quickly become unreliable as predictors of the true

rankings Rj ; and (c) the critical condition j0 = o{n1/4 (log n)c} does not depend

on the value of p. (We assume that p diverges at no faster than a polynomial rate

in n, but we impose no upper bound on the degree of that polynomial.)
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The condition j0 = o{n1/4 (log n)c} changes in important ways if the lower tail

of the distribution of the Θjs decays relatively slowly, for example at the polynomial

rate x−α as x → ∞. Examples of this type include Pareto distributions. Here a

sufficient condition for (1.5) to hold is j0 = o(nα/2 p1/(2α+1)), and this assumption

is necessary if the components of the Qis are independent. In this setting, unlike

the exponential case, the value of dimension, p, plays a major role in addition to

the sample size, n.

The exponential case can be regarded as the limit, as α→∞, of the polynomial

case. More generally, note that as the left-hand tail of the common distribution of

the Θjs becomes heavier, the value of j0 can be larger before (1.5) fails. That is, if

the distribution of the Θjs has a heavier left-hand tail then the empirical rankings

R̂j approximate the true rankings Rj for a greater number of values of j, before

they degenerate into noise.

This analysis has focused on cases where the ranks of the Qjs are estimated by

ranking empirical means of noisy observations of those quantities; see (1.4). How-

ever, essentially similar results are obtained if we rank other measures of location,

for example Lq location estimators for general q ≥ 1. In particular, if we take the

variables Qij to have zero median, rather than zero mean, and continue to define

Xi by (1.2) but replace the ranking in (1.4) by a ranking of medians, then the

results above and those in section 2 continue to hold, modulo minor changes to the

regularity conditions.

The model suggested by (1.2), where data on Θ arise in the form of p-vectors

X1, . . . , Xn, is attractive in a number of high-dimensional settings, for example

genomics. There, the jth component Xij of Xi would typically represent the ex-

pression level of the jth gene of the ith individual in a sample. However, in other

cases the means X̄1, . . . , X̄p at (1.3), or medians or other location estimators, might

be computed from quite different datasets, one for each component index j. More-

over, those datasets might be of different sizes, n1, . . . , np say, and then the argument

that they arise naturally in the form of vectors would be inappropriate. This setting

can arise when data are used to rank institutions, for example schools or universi-

ties. The conclusions discussed earlier in this section, and the theoretical properties

developed in section 2 below, continue to apply in this case provided there is an

“average” value, n say, of the njs which represents all of them, in the sense that
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n = O(minj nj) and maxj nj = O(n) as n diverges. Additionally, in such cases it

is often realistic to make the assumption that the corresponding centred means (or

medians, etc) Q̄j = n−1
∑
i Qij are stochastically independent of one another, and

so the particular results that are valid in this case are immediately available.

2. THEORETICAL PROPERTIES

We shall assume one of two types of lower tail for the common distribution

function, F , of the random variables Θj : either it decreases exponentially fast, in

which case we suppose that F (−x) � xβ exp(−C0 x
α) as x→∞, where α > 0 and

−∞ < β < ∞; or it decreases polynomially fast, in which case F (−x) � x−α as

x → ∞, where C0, α > 0. (The notation f(x) � g(x), for positive functions f and

g, will be taken to mean that f(x)/g(x) is bounded away from zero and infinity as

x→∞.) The former case covers distributions such as the normal, exponential and

Subbotin; the latter, distributions such as the Pareto, Student’s t and non-normal

stable laws (e.g. the Cauchy).

It is convenient to impose the shape constraints on the densities, which we

assume to exist in the lower tail, rather than on the distribution functions. Therefore

we assume that one of the following two conditions holds as x→∞:

(d/dx)F (−x) � (d/dx)xβ exp
(
− C0 x

α
)
, (2.1)

(d/dx)F (−x) � (d/dx)x−α . (2.2)

In both (2.1) and (2.2), α must be strictly positive, but β in (2.1) can be any real

number. The constant C0 in (2.1) must be positive. We assume too that:

for fixed constants C1, . . . , C5 > 0, where C2 > 2 (C1 + 1) and C4 < C5,
p = O(nC1) as n→∞, and, for each j ≥ 1, E|Qj |C2 ≤ C3, and E(Q2

j ) ∈
[C4, C5].

(2.3)

Recall from section 1 that we wish to examine the probability that the true

ranks Rj , and their estimators R̂j , are identical over the range 1 ≤ j ≤ j0. We

consider both j0 and p to be functions of n, so that the main dependent variable

can be considered to be n. With this interpretation, define

νexp = νexp(n) = n1/4 (log n){(1/α)−1}/2 , νpol = νpol(n) = nα/2 p1/(2α+1) , (2.4)

where the subscripts denote “exponential” and “polynomial,” respectively, and refer

to the respective cases represented by (2.1) and (2.2). In the theorem below we
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impose the additional condition that, for some ε > 0, n = O(p4+ε) when (2.1)

holds, or n = O(p{4/(2α+1)}+ε) in the context of (2.2), thereby ensuring that in

these respective instances, νexp = O(p1−δ) and νpol = O(p1−δ) for some δ > 0. This

is to be expected, since we anticipate that we shall not be able to estimate correctly

as many as O(p) rankings.

Theorem 1. Assume (2.3), and that either (a) (2.1) holds and n = O(p4+ε) for

some ε > 0, or (b) (2.2) holds and n = O(p{4/(2α+1)}+ε) for some ε > 0. In case

(a), if

j0 = o(νexp) (2.5)

as n→∞ then (1.5) holds. Conversely, when the components of the vectors Qi are

independent, (2.5) is necessary for (1.5). In case (b), if

j0 = o(νpol) , (2.6)

then (1.5) obtains. Conversely, when the components of the vectors Qi are inde-

pendent, (2.6) is necessary for (1.5).

It is of interest to consider cases where the common distribution, F , of the Θjs

is bounded to the left, for example where F (x) � xα as x ↓ 0. However, it can be

shown that in this context, unless p is constrained to be a sufficiently low degree

polynomial function of n, very few of the estimated ranks R̂j will agree with the

correct values Rj .

To indicate why, we first recall the model introduced in section 1, where the

estimated ranks R̂j are derived by ordering the values of Q̄j + Θj . Here Q̄j =

n−1
∑

1≤i≤n Qij is the average value of n independent and identically distributed

random variables with zero mean. Therefore the means, Q̄j , are of order n−1/2. By

way of contrast, if we take α = 1 in the formula F (x) � xα as x ↓ 0, for example

if F is the uniform distribution on [0, 1], then the spacings of the order statistics

Θ(1) ≤ . . . ≤ Θ(p) are approximately of size p−1. (More concisely, they are of size

Z/p where Z has an exponential distribution.) Therefore, if p is of larger order

than n1/2 then the errors of the “estimators” Q̄j + Θj of Θj , for 1 ≤ j ≤ p, are

an order of magnitude larger than the spacings among the Θjs. This can make it

very difficult to estimate the ranks of the Θjs from the ranks of values of Q̄j + Θj .

Indeed, it can be shown that, in the difficult case where the components of the Qis
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are independent, and even for fixed j0, if α = 1 and p is of larger order than n2

then

P
(
R̂j = Rj for 1 ≤ j ≤ j0

)
→ 0 . (2.7)

Compare (1.5).

This explains why, when F (x) � xα, it can be quite rare for the estimated

ranks R̂j to match their true values. Indeed, no matter what the value of α and no

matter what the value of j0, property (1.5) will typically fail to hold unless p is no

greater than a sufficiently small power of n, in particular unless p = o(nα/2), as the

next result indicates.

Theorem 2. Assume that (d/dx)F (x) � xα−1 as x ↓ 0, where α > 0, and that

(2.3) holds. Part (a): Instances where (1.5) holds and p2/nα → 0. Under the latter

condition, (i) if α < 1
2 then (1.5) holds even for j0 = n; (ii) if α = 1

2 then (1.5)

holds provided that

(log j0)2α (p2/nα)→ 0 ; (2.8)

and (iii) if α > 1
2 then (1.5) holds provided that

j0 = o
{

(nα/2/p)1/(2α−1)
}
. (2.9)

Part (b): Converses to (a)(ii) and (a)(iii). If p2/nα → 0 and the components of the

vectors Qi are independent then, if (1.5) holds, so too does (2.8) (if α = 1
2 ) or (2.9)

(if α > 1
2 ). Part (c): Instances where (2.7) holds. If α > 0 and p2/nα →∞, and if

the components of the vectors Qi are independent, then (2.7) holds even for j0 = 1.

The proof of Theorem 2 is similar to that of Theorem 1, and so is omitted.

Theorem 1 is derived in section P.

P. PROOF OF THEOREM 1

Step 1: Bounds for probability of rank agreements. Given an integer j0 ∈ [1, p− 1],

let E(j0) denote the event that Q̄Rj + ΘRj > Q̄Rj0 + ΘRj0
for j0 + 1 ≤ j ≤ p. Note

that

{
R̂j = Rj for 1 ≤ j ≤ j0

}
⊇
{∣∣Q̄Rj ∣∣ ≤ 1

2 min
(
Θ(j) −Θ(j−1),Θ(j+1) −Θ(j)

)
for 1 ≤ j ≤ j0

}
∩ E(j0) ,
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where we define Θ(j−1) = −∞ if j = 1. Therefore, writing Ẽ(j0) for the complement

of E(j0), and defining π(j0) = P (R̂j = Rj for 1 ≤ j ≤ j0), we deduce that

π(j0) ≥ P
{∣∣Q̄Rj ∣∣ ≤ 1

2 min
(
Θ(j) −Θ(j−1),Θ(j+1) −Θ(j)

)
for 1 ≤ j ≤ j0 ; E(j0)

}
≥ 1−

j0∑
j=1

P
{∣∣Q̄Rj ∣∣ > 1

2 min
(
Θ(j) −Θ(j−1),Θ(j+1) −Θ(j)

)}
− P{Ẽ(j0)} . (P.1)

Also, {
R̂j = Rj for 1 ≤ j ≤ j0

}
=
{
X̄R1 ≤ . . . ≤ X̄Rj0

and X̄j > X̄Rj0
for j /∈ {R1, . . . , Rj0}

}
=
{

Θ(j+1) −Θ(j) ≥ −
(
Q̄Rj+1 − Q̄Rj

)
for 1 ≤ j ≤ j0

and Θj −Θ(j0) ≥ −
(
Q̄j − Q̄Rj0

)
for j /∈ {R1, . . . , Rj0}

}
,

and so

π(j0) ≤ P
{

Θ(j+1) −Θ(j) ≥ −
(
Q̄Rj+1 − Q̄Rj

)
for 1 ≤ j ≤ j0

}
. (P.2)

Write J = J (j0) for the set of even integers j satisfying 1 ≤ j ≤ j0. Let

Ej be the event that Θ(j+1) − Θ(j) ≥ −(Q̄Rj+1 − Q̄Rj ), and let π1(j0) denote the

probability that Ej holds for all j ∈ J . Then by (P.2),

π(j0) ≤ π1(j0) . (P.3)

Write Ẽj for the complement of Ej , let O denote the sigma-field generated by

Θ1,Θ2, . . ., and note that, if the components of each Qi are independent, then the

events Ej , for j ∈ J , are independent conditional on O. Therefore,

π1(j0) = E

{
P

( ⋂
j∈J
Ej
∣∣∣∣ O)} = E

[ ∏
j∈J

{
1− P

(
Ej
∣∣O)}]

≤ E
[

exp
{
−
∑
j∈J

P
(
Ẽj
∣∣O)}] . (P.4)

Step 2: Moderate deviation arguments. Using the arguments of Rubin and Sethu-

raman (1965) and Amosova (1972) it can be shown that, if the constant C2 in (2.3)

satisfies C2 > B2 + 2 where B > 0, then as n (and hence also p) diverges,

P
{
|Q̄j | > x (var Q̄j)1/2

}
= {1 + o(1)} 2 {1− Φ(x)} , (P.5)

P
[
−
(
Q̄j1 − Q̄j2

)
≥ x

{
var
(
Q̄j1− Q̄j2

)}1/2
]

= {1 + o(1)} {1− Φ(x)} , (P.6)
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uniformly in 0 < x < B (log p)1/2 and j, j1, j2 ≥ 1 such that j1 6= j2. (To derive

(P.6), and also (P.8) and (P.10) below, we also need the assumption that the com-

ponents of each Qi are independent; this is not required for (P.5), (P.7) or (P.9). In

(P.5) and (P.6), Φ denotes the standard normal distribution function.) Therefore,

since C2 > 2 (C1 + 1) in (2.3), we can take B = (2 + ε)1/2 for some ε > 0, and then

(P.5) and (P.6) hold uniformly in 0 < x < {(2 + ε) log p}1/2. It follows that (P.5)

and (P.6) imply that

P
{
|Q̄j | > x (var Q̄j)1/2

}
= {1 + o(1)} 2 {1− Φ(x)}+ o

(
p−1
)
, (P.7)

P
[
−
(
Q̄j1 − Q̄j2

)
≥ x

{
var
(
Q̄j1− Q̄j2

)}1/2
]

= {1 + o(1)} {1− Φ(x)}+ o
(
p−1
)

(P.8)

as n→∞, uniformly in all x > 0 and all j, j1, j2 ≥ 1 such that j1 6= j2.

Results (P.7) and (P.8) enable us to write down approximations to the series

on the right-hand sides of (P.1) and (P.4):

j0∑
j=1

P
{∣∣Q̄Rj ∣∣ > 1

2 min
(
Θ(j) −Θ(j−1),Θ(j+1) −Θ(j)

)}
= 2 {1 + o(1)}

j0∑
j=1

P (|N | > T1j) + o(1) , (P.9)

∑
j∈J

P
(
Ẽj
)

= {1 + o(1)}
∑
j∈J

P (N > T2j) + o(1) , (P.10)

E

[
exp

{
−
∑
j∈J

P
(
Ẽj
∣∣O)}]

≤ {1 + o(1)}E
[

exp
{
− (1 + ∆)

∑
j∈J

P (N > T2j | O)
}]

, (P.11)

where N denotes a standard normal random variable independent of O,

T1j =
min(Θ(j) −Θ(j−1),Θ(j+1) −Θ(j))

2 (var Q̄Rj )1/2
, T2j =

Θ(j+1) −Θ(j)

{var (Q̄Rj+1 − Q̄Rj )}1/2
,

and, for a sequence of positive constants δn converging to zero, the random variable

∆ satisfies P (|∆| ≤ δn) = 1. Not too that

P (|N | > T4j) ≤ P (|N | > T1j) ≤ P (|N | > T3j) + P (|N | > T4j) , (P.12)

where, defining Θ(j−1) = −∞ if j = 1, we write

T3j =
Θ(j) −Θ(j−1)

2 (var Q̄Rj )1/2
, T4j =

Θ(j+1) −Θ(j)

2 (var Q̄Rj )1/2
.
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Step 3: Rényi’s representation. If U(1) ≤ . . . ≤ U(p) denote the order statistics of a

sample of size p drawn from the uniform distribution on [0, 1] then, for each p, we

can construct independent random variables Z1, . . . , Zp with the standard negative

exponential distribution on [0, 1], such that, for 1 ≤ j ≤ p, U(j) = 1 − exp(−Vj)
where

Vj =
j∑

k=1

Zk
p− k + 1

= wj +Wj

and, uniformly in 1 ≤ j ≤ 1
2 p and 2 ≤ p <∞,

wj =
p∑

k=p−j+1

1
k

=
j

p
+O

(
j2
/
p2
)

= O(j/p) , (P.13)

Wj =
p∑

k=p−j+1

k−1 (Zp−k+1 − 1) , sup
1≤j≤p/2

j−1/2 |Wj | ≤ p−1W (p) , (P.14)

sup
1≤j≤p/2

j−3/2

∣∣∣∣Wj −
1
p

p∑
k=p−j+1

(Zp−k+1 − 1)
∣∣∣∣ ≤ p−2W (p) , (P.15)

where the nonnegative random variable W (p), which without loss of generality we

take to be common to (P.14) and (P.15), satisfies P{W (p) > pε} = O(p−C) for each

C, ε > 0.

Step 4: Approximations to U(j+1) − U(j). Using the second identity in (P.13), and

(P.14), we deduce that

U(j+1) − U(j) = (Vj+1 − Vj)
{

1− 1
2 (Vj+1 + Vj)

+ 1
6

(
V 2
j+1 + Vj Vj+1 + V 2

j )− . . .
}

=
Zj+1

p− j

{
1 + Ψj1

(
j

p
+
Sj1
p1/2

)}
, (P.16)

uniformly in 1 ≤ j ≤ 1
2 p, where the random variable Ψj1 satisfies, for k = 1,

P

(
max

1≤j≤p/2
|Ψjk| ≤ A

)
= 1 , (P.17)

A > 0 is an absolute constant, and for each C, ε > 0 the nonnegative random

variable Sj1 satisfies, with k = 1,

P

(
sup

1≤j≤p/2
Sjk > pε

)
= O

(
p−C

)
. (P.18)
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Using the third identity in (P.13), and (P.15), we deduce that

0 ≤ U(j) = wj +Wj − 1
2 (wj +Wj)2 + . . . =

j

p
+ Ψj2

(
j2

p2
+
j1/2 Sj2

p

)
, (P.19)

where Ψj2 and Sj2 ≥ 0 satisfy (P.17) and (P.18), respectively.

Define Dj = U(j+1) − U(j). If the common distribution function of the Θjs is

F then, by Taylor expansion,

Θ(j+1) −Θ(j) = F−1(U(j) +Dj)− F−1(U(j)) = Dj

(
F−1

)′ (U(j) + ωj Dj) , (P.20)

where 0 ≤ ωj ≤ 1. In the case of exponential tails we take, without loss of generality,

C0 = 1 in (2.1), and then:

(
F−1

)′(1− u) � −(d/du)
(

log u−1
)1/α = α−1 u−1

(
log u−1

)(1/α)−1 (P.21)

as u ↓ 0. By (P.20) and (P.21),

Θ(j+1) −Θ(j) = Ψj
Dj

U(j) + ωj Dj

{
log(U(j) + ωj Dj)

}(1/α)−1
, (P.22)

where Ψj denotes a random variable satisfying, for constants B1, B2 and B3 satis-

fying 0 < B1 < B2 <∞ and 0 < B3 < 1,

P
(
B1 ≤ Ψj ≤ B2 for all j such that U(j+1) < B3

)
= 1 . (P.23)

In the case of polynomial tails, (2.2) implies that

(
F−1

)′(u) � −(d/du)u−1/α = α−1 u−(1/α)−1

in place of (P.21), and therefore, instead of (P.22),

Θ(j+1) −Θ(j) = Ψj
Dj

(U(j) + ωj Dj)(1/α)+1
, (P.24)

where Ψj again satisfies (P.23).

Step 5: Bounds to probabilities of events based on Θ(j+1)−Θ(j). By assumption in

Theorem 1, imposed separately in the exponential and polynomial cases, n = O(pC),

and by (2.3), p = O(nC1), where C,C1 > 0. In view of (P.16), (P.19) and (P.22),
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in the case of exponential tails there exist B4, B5 > 0 such that, for any choice of

constants c1, c2 satisfying 0 < c1 < c2 < C−1, and for all B6 > 0,

inf
j∈[1,nc1 ]

P
{

(Θ(j+1) −Θ(j))Z−1
j+1 (log n)1−(1/α) ≥ B4 n

−c1
}

= 1−O
(
n−B6

)
, (P.25)

inf
j∈[nc1 ,nc2 ]

P
{
B4 ≤ j (Θ(j+1) −Θ(j))Z−1

j+1 (log n)1−(1/α) ≤ B5

}
= 1−O

(
n−B6

)
. (P.26)

(Noting the definitions C = 4 + ε and C = {4/(2α+ 1)}+ ε (where ε > 0), in cases

where the lower tail of Θj is exponential or polynomial, respectively, we see that

the constraint c2 < C−1 permits nc2 to be of size νexp n
ε1 or νpol n

ε1 (where ε1 > 0),

in these respective instances.) Likewise, in the case of polynomial tails, and using

(P.16), (P.19) and (P.24), there exist B4, B5 > 0 such that, for 0 < c1 < c2 < C−1

and for all B6 > 0,

inf
j∈[1,nc1 ]

P
{

(Θ(j+1) −Θ(j))Z−1
j+1 p

−1/α ≥ B4 n
−c1 {(1/α)+1}

}
= 1−O

(
n−B6

)
, (P.27)

inf
j∈[nc1 ,nc2 ]

P
{
B4 ≤ j(1/α)+1 (Θ(j+1) −Θ(j))Z−1

j+1 p
−1/α ≤ B5

}
= 1−O

(
n−B6

)
. (P.28)

Step 6: Bounds to the series in (P.9)–(P.11), and completion of proof, in the expo-

nential case. Define ` = (log n)(1/α)−1, let N be a standard normal random variable

independent of O, and let Z be independent of N and have the standard negative ex-

ponential distribution. Let K1 be a positive constant. If an is a sequence of positive

numbers and fn is a sequence of nonnegative functions, write an
.= fn(K) to mean

that, for constants L1, L2 > 1, either (a) an ≤ L1 fn(K) whenever K ≥ L2 and n

is sufficiently large, and an ≥ L−1
1 fn(K) whenever K ≤ L−1

2 and n is sufficiently

large, or (b) an ≥ L−1
1 fn(K) whenever K ≥ L2 and n is sufficiently large, and

an ≤ L1 fn(K) whenever K ≤ L−1
2 and n is sufficiently large. Let 0 < c1 < c2 <

1
2

and c1 < 1
4 , and let j0 and j1 denote constants satisfying |j1−nc1 | ≤ 1, j1 ≤ j0 ≤ nc2

and j1/j0 → 0.

When (2.1) holds with C0 = 1, properties (P.25) and (P.26) imply that, for

each B6 > 0,

s(n) ≡
j0∑
j=1

P{|N | > n1/2K1 (Θ(j+1) −Θ(j))} (P.29)
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.= O
{
j1 P

(
|N | > K2 n

1/2 j−1
1 Z `

)
+ n−B6

}
+

∑
j1<j≤j0

P
(
|N | > K n1/2 j−1 Z `

)
.= O

{
j1

(
P
(
Z ≤ n−1/2 j1 `

−1
)

+ E
[(
n1/2 j−1

1 Z `
)−1 exp

{
− 1

2 (K n1/2 j−1
1 Z `)2

}
I
(
Z > n−1/2 j1 `

−1
)])}

+
∑

j1<j≤j0

(
P
(
Z ≤ n−1/2 j `−1

)
+ E

[(
n1/2 j−1 Z `

)−1 exp
{
− 1

2 (K n1/2 j−1 Z `)2
}
I
(
Z > n−1/2 j `−1

)])
.= O

{
j1

(
n−1/2 j1 `

−1

+ E
[(
n1/2 j−1

1 Z `
)−1 exp

{
− 1

2 (K n1/2 j−1
1 Z `)2

}
I
(
Z > n−1/2 j1 `

−1
)])}

+
∑

j1<j≤j0

(
n−1/2 j `−1

+ E
[(
n1/2 j−1 Z `

)−1 exp
{
− 1

2 (K n1/2 j−1 Z `)2
}
I
(
Z > n−1/2 j `−1

)])
.

Now,

E
[(
n1/2 j−1 Z `

)−1 exp
{
− 1

2 (K n1/2 j−1 Z `)2
}
I
(
Z > n−1/2 j `−1

)]
=
∫ ∞
n−1/2 j `−1

(
n1/2 j−1 z `

)−1 exp
{
− 1

2 (K n1/2 j−1 z `)2 − z
}
dz

= n−1/2 j `

∫ ∞
1

u−1 exp
{
− 1

2 (K u)2 − n−1/2 j ` u
}
du � n−1/2 j ` .

(Here we have used the fact that j ≤ j0 ≤ nc2 where c2 < 1
2 .) Therefore,

s(n) � j1 · n−1/2 j1 `
−1 +

∑
j1<j≤j0

n−1/2 j `−1 � n−1/2 j21 `
−1 + n−1/2 j20 `

−1

� n−1/2 j20 `
−1 . (P.30)

(Here we have used the fact that j1/j0 → 0.)

The right-hand side of (P.30) converges to zero if and only if j0 = o(n1/4 `1/2),

or equivalently, if and only if (2.5) holds. Moreover, in view of (P.12) and depending

on the choice of K1 in the definition of s(n) at (P.29), s(n) can be either an upper

bound or a lower bound to the series
∑
j∈J P (N > T2j) on the right-hand side

of (P.10). Hence, the series on the left-hand side of (P.10) equals o(1) as n → ∞,
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if and only if (2.5) holds. It therefore follows from (P.1) that (2.5) is sufficient

for (1.5).

Conversely, if (1.5) holds then, in view of (P.3), (P.4) and (P.11),∑
j∈J

P (N > T2j | O)→ 0

in probability. Therefore, by (P.25) and (P.26), with j0 and j1 as in the previous

paragraph, there exists K1 > 0 such that∑
j1<j≤j0

P{|N | > n1/2K1 (Θ(j+1) −Θ(j)) | O} → 0

in probability. (We can take the sum over all j ∈ [j1 + 1, j0], rather than just over

even j, since (P.11) holds for sums over odd j as well as over even j.) Hence, arguing

as in the lines below (P.29), we deduce that for sufficiently large K2 > 0,

T (n) ≡
∑

j1<j≤j0

f(Zj/δj)→ 0 (P.31)

in probability, where the random variables Zj are independent and have a common

exponential distribution, δj = n−1/2 j `−1 and f(z) = z−1 exp(−K2 z
2) I(z > 1).

We claim that this implies that the expected value of the left-hand side of (P.31)

also converges to 0: ∑
j1<j≤j0

E{f(Zj/δj)} → 0 , (P.32)

or equivalently that
∑
j1<j≤j0 δj → 0, and thence (using the argument leading to

(P.30)) that s(n) � n−1/2 j20 `
−1 → 0, which is equivalent to (2.5). Therefore, if we

establish (P.32) then we shall have proved that (1.5) implies (2.5).

It remains to show that (P.31) implies (P.32). This we do by contradiction. If

(P.32) fails then, along a subsequence of values of n, the left-hand side of (P.32) con-

verges to a nonzero number. For notational simplicity we shall make the inessential

assumptions that the number is finite and that the subsequence involves all n, and

we shall take K2 = 1 in the definition of f . In particular,

t(n) ≡
∑

j1<j≤j0

E{f(Zj/δj)} → t(∞) , (P.33)

where 0 < t(∞) <∞. Now, t(n) = {1 + o(1)}µ(1) δ(n), where δ(n) =
∑
j1<j≤j0 δj

and, for general λ ≥ 1, µ(λ) =
∫
z>λ

z−1 exp(−z2) dz. Therefore,

δ(n)→ δ(∞) ≡ t(∞)/µ(1) . (P.34)
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For each λ > 1 the left-hand side of (P.31) equals ∆1 +∆2, where, in view of (P.33),

E(∆2) =
∑

j1<j≤j0

E{f(Zj/δj) I(Zj > λδj)} = {1 + o(1)}µ(λ) δ(n) (P.35)

and

∆1 =
∑

j1<j≤j0

f(Zj/δj) I(Zj ≤ λ δj) =
∑

j1<j≤j0

f(Wj) Ij ,

with Wj = Zj/δj and Ij = I(δj ≤ Zj ≤ λ δj). However,∑
j1<j≤j0

P (Ij = 1) = µ1(λ) δ(n) + o(1) = δ(∞)µ1(λ) + o(1) ,

where µ1(λ) =
∫
1<z<λ

z−1 exp(−z2) dz. Therefore, in the limit as n → ∞, ∆1

equals a sum, Sλ say, of N independent random variables each having the distri-

bution of f(W ), where W is uniformly distributed on [1, λ], N has a Poisson dis-

tribution with mean δ(∞)µ1(λ), and N and the summands are independent. The

distribution of Sλ is stochastically monotone increasing, in the sense that P (Sλ > s)

increases with λ. On the other hand, since µ(λ) → 0 as λ → ∞ then, by (P.34)

and (P.35),

lim
λ→∞

lim sup
n→∞

E(∆2) = 0 .

Combining these results we deduce that ∆1 + ∆2, i.e. T (n) at (P.31), does not

converge to zero in probability. This contradicts (P.31) and so establishes that

t(∞) must equal zero; that is, (P.32) holds.

Step 7: Completion of proof in the polynomial case. Here we alter the constraints

0 < c1 < c2 <
1
2 and c1 <

1
4 , imposed in the first paragraph of step 6, to 0 < c1 <

c2 < C−1 and c1 <
1
2 α, where C = {4/(2α + 1)}+ ε is as given below (P.26), and

0 < ε < 2/{2(2α + 1)}. We continue to take 1 ≤ j1 ≤ j0 ≤ nc2 and |j1 − nc1 | ≤ 1.

If we use (P.27) and (P.28) instead of (P.25) and (P.26), respectively, then, arguing

as in the lines from (P.29) down, we obtain:

s(n) .= O
[
j1 P

{
N > K2 n

1/2 j−1
1 Z (p/j1)1/α

}
+ n−B6

]
+

∑
j1<j≤j0

P
{
N > K n1/2 j−1 Z (p/j)1/α

}
.

Moreover, since n−1/2 j
1+(1/α)
0 p−1/α → 0 then, uniformly in j ≤ j0, we have:

P
{
N > K2 n

1/2 j−1 Z (p/j)1/α
}
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.=
{
n1/2 j−1 (p/j)1/α

}−1

+ E

({
n1/2 j−1 Z (p/j)1/α

}−1 exp
[
− 1

2

{
K n1/2 j−1 Z (p/j)1/α

}2
]

× I
(
Z > n−1/2 j (p/j)−1/α

))
=
{
n1/2 j−1 (p/j)1/α

}−1 +
∫ ∞
n−1/2 j (p/j)−1/α

{
n1/2 j−1 z (p/j)1/α

}−1

× exp
[
− 1

2

{
K n1/2 j−1 z (p/j)1/α

}2 − z
]
dz

= n−1/2 j (p/j)−1/α

∫ ∞
1

u−1 exp
{
− 1

2 (K u)2
}
du � n−1/2 j (p/j)−1/α .

Therefore,

s(n) �
j0∑
j=1

n−1/2 j (p/j)−1/α � n−1/2 j
2+(1/α)
0 p−1/α ,

and the right-hand side converges to zero if and only if j0 = o(νpol), where νpol is

as at (2.4). The argument in the paragraph below the one containing (P.30) can

therefore be used to prove, from (P.1), that (2.6) is sufficient for (1.5). The converse,

when the Qis have independent components, can also be derived as in step 6.

NOT-FOR-PUBLICATION NOTES about the case F (x) = xα for 0 < x < 1,

with α > 0: Here (F−1)′(u) = α−1 u(1/α)−1, whence

Θ(j+1) −Θ(j) ≈ Dj U
(1/α)−1
(j) ≈ (Z/p) (j/p)(1/α)−1 = Z j(1/α)−1 p−1/α ,

and so

s(n) �
j0∑
j=1

P
(
N > n1/2K Z j(1/α)−1 p−1/α

)

�
j0∑
j=1

n−1/2 j1−(1/α) p1/α � n−1/2 p1/α


1 if α < 1

2
log j0 if α = 1

2

j2−(1/α) if α > 1
2

≥ n−1/2 p1/α .

Therefore, if p ≥ nα/2 then it is not possible for s(n) to converge to zero.


