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The Normal Mean Estimation Problem

X ∼ Np(θ, η−2I ) W ∼ η−2χ2
m

I θ and η unknown;

I W independent of X ;

I η = 1/σ is called precision;

I Squared Error Loss: L(θ, η2; δ(x ,w)) = ||δ(x ,w)− θ||2η2;

I Risk function: R(θ, η2; δ(X ,W )) = Eθ,η2L(θ, η2; δ(X ,W )).

Use procedure δ(x ,w) to estimate θ.

Bayes Estimator:

δG (x ,w) = E(θη2|x,w)
E(η2|x,w) with prior G on θ, η.

I G proper, proper Bayes (Strawderman (1973));

I G improper, generalized Bayes (Maruyama & Strawderman (2005)).



Benchmark for Evaluation of Estimators: Admissibility and
Minimaxity

δ1 dominates δ2 if R(δ1; θ, η2) ≤ R(δ2; θ, η2) for all θ, η2, and with strict

< for some θ, η2.

Benchmark:

I Admissible estimator:
no other estimators can
dominate it;

I Minimax estimator:
if it dominates MLE x .

I This talk will focus on
admissible estimators.
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Unknown Variance Case

Admissibility:

I Strawderman (1973):
proper Bayes admissible
and minimax estimators
for p ≥ 5.

Minimaxity:

I Maruyama & Strawderman
(2005), Wells & Zhou (2007):
minimax generalized Bayes
estimators for p ≥ 3.

I Admissibility of generalized Bayes estimators is an important and
open problem.

I Goal: Provide sufficient conditions for prior density functions such
that δG is admissible.
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Admissibility Theorem

Hierarchical Bayes Model:

θ|η2 ∼ g(θ|η2) η2 ∼ π(η2)

Admissibility Theorem:

Let X ∼ Np(θ, η−2Ip),W ∼ η−2χ2
m, where X and W are independent. If

g(θ|η2) and π(η2) satisfy Condition 1, 2 and 3, then δG is admissible.

Application in Maruyama-Strawderman (2005) Hierarchical Bayes Model:

θ|ν, η ∼ Np(0, νη−2I )

h(ν) ∝ νb(1 + ν)−a−b−2 ν ≥ 0

π(η) ∝ η−2k η ≥ 0

Corollary:

When −a + 1/2 < k < 1/2, and b ≥ 0, δG is admissible.



Performance of Generalized Bayes Estimators
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Possible Improvement

Conjecture: When −a− 3/2 < k < 1/2, b ≥ 0, δG (x ,w) is
admissible. This is the best sufficient condition for admissibility.

I a = −2, b = 0, k = 1/2 are on the boundary of sufficient
conditions for admissibility in conjecture.
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Summary

I Admissible estimation of normal mean with unknown
variances is important problem;

I Admissibility and minimaxity provide benchmark for shrinkage
estimators;

I Admissibility is powerful tool to select hierarchical priors;

I Admissibility Theorem gives sufficient conditions for
admissibility;

I Corollary describes a subset of M-S hierarchical Bayes
estimators that are minimax and admissible.



Thank You!


