1. INTRODUCTION

Notes: Need to start with practical motivation, and perhaps even put in some

figures illustrating implications for real data.

Then, later in the introduction, we might include discussion like the following; but

I think it needs a lot of revision:

Let ©1,...,0, denote independent and identically distributed random variables,

and write

@(1) <...< ®(p) (1.1)

for their ordered values. There exists a permutation R = (Ry,...,R,) of (1,...,p)
such that ©(;) = Og;. If the common distribution of the ©;s is continuous then

the inequalities in (1.1) are all strict and the permutation is unique.

In practice we typically do not observe the ©;s directly, only in terms of noisy
approximations which can be modelled as follows. Let Q; = (Qi1, ..., Qip) denote
independent and identically distributed random p-vectors with finite variance and

zero mean, independent also of © = (04,...,0,). We observe
Xi=(Xi,...,Xip) =Q; + 0 (1.2)

for 1 <¢ < n. The mean vector,
_ _ 1 _
X:(Xl,...,Xp):ﬁZXi:Q+®, (1.3)

is an empirical approximation to ©. (Here Q = n~! >; Qi equals the mean of the

p-vectors Q;.) The components of X can also be ranked, as

X(l) <...<Z X(p), (14)

and there is a permutation ﬁl, e ,ﬁp of 1,...,psuch that X'(j) = Xﬁ_ for each j. If
J
the common distribution of the © ;s is continuous then, regardless of the distribution

of the components of @);, the inequalities in (1.4) are strict with probability 1.

The permutation R = (]?31, e ,ﬁp) serves as an approximation to R, and we
wish to determine the accuracy of that approximation. In particular, for what

values of jo = jo(n,p), and for what relationships between n and p, is it true that

P(Rj=R; for 1<j<jo) —1 (1.5)



as n and p diverge? That is, how deeply into the ranking can we go before the
connection between the true ranking and its empirical form is seriously degraded

by noise?

The answer to this question depends to some extent on the extent of dependence
among the components of each @);. To elucidate this point, let us consider the case
where all the components of (); are identical; this is an extreme case of strong
dependence. Then the components of @ are also also identical. Clearly, in this case
ﬁj = R; for each j, and so (1.5) holds in a trivial and degenerate fashion. Other
strongly dependent cases, although not as clear-cut as this one, can also be shown

to be ones where ﬁj = R; with high probability for many values of j.

The case which is most difficult, i.e. where the strongest conditions are needed
to ensure that (1.5) holds, occurs when the components of @; are independent. To
emphasise this point we give sufficient conditions for (1.5), and show that when the
components of each (); are independent, those conditions are also necessary. Our
arguments can be modified to show that the conditions continue to be necessary
under sufficiently weak dependence, for example if the components are m-dependent

where m = m(n) diverges sufficiently slowly as n increases.

The assumptions under which (1.5) holds are determined mainly by the lower
tail of the common distribution of the ©;s. If that distribution has an exponentially
light left-hand tail, for example if the tail is like that of a normal distribution, then
a sufficient condition for (1.5) is that jo should increase at a strictly slower rate
than n'/4 (logn)¢, where the constant ¢, which can be either positive or negative,
depends on the rate of decay of the exponential lower tail of the distribution of ©.
For example, ¢ = 0 if the distribution is double exponential, and ¢ = —i if it is
normal. As indicated in the previous paragraph, the condition jo = o{n'/* (logn)°}

is also necessary for (1.5) if the components of the @;s are independent.

These results have several interesting aspects, including: (a) The exponent i
in the condition jo = o{n'/* (logn)°} does not change among different types of
distribution with exponential tails; (b) the exponent is quite small, implying that
the empirical rankings Z/%\j quite quickly become unreliable as predictors of the true
rankings R;; and (c) the critical condition jo = o{n'/* (logn)°} does not depend
on the value of p. (We assume that p diverges at no faster than a polynomial rate

in n, but we impose no upper bound on the degree of that polynomial.)
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The condition jo = o{n'/* (logn)°} changes in important ways if the lower tail
of the distribution of the ©;s decays relatively slowly, for example at the polynomial

* as r — oo. Examples of this type include Pareto distributions. Here a

rate x~
sufficient condition for (1.5) to hold is jo = o(n®/2 p!/(22+1) and this assumption
is necessary if the components of the ();s are independent. In this setting, unlike
the exponential case, the value of dimension, p, plays a major role in addition to

the sample size, n.

The exponential case can be regarded as the limit, as &« — oo, of the polynomial
case. More generally, note that as the left-hand tail of the common distribution of
the O ;s becomes heavier, the value of jy can be larger before (1.5) fails. That is, if
the distribution of the ©;s has a heavier left-hand tail then the empirical rankings

R; approximate the true rankings R; for a greater number of values of j, before

they degenerate into noise.

This analysis has focused on cases where the ranks of the Q);s are estimated by
ranking empirical means of noisy observations of those quantities; see (1.4). How-
ever, essentially similar results are obtained if we rank other measures of location,
for example L, location estimators for general ¢ > 1. In particular, if we take the
variables Q;; to have zero median, rather than zero mean, and continue to define
X; by (1.2) but replace the ranking in (1.4) by a ranking of medians, then the
results above and those in section 2 continue to hold, modulo minor changes to the

regularity conditions.

The model suggested by (1.2), where data on O arise in the form of p-vectors
X1,...,X,, is attractive in a number of high-dimensional settings, for example
genomics. There, the jth component X;; of X; would typically represent the ex-
pression level of the jth gene of the ith individual in a sample. However, in other
cases the means X1, ... ,Xp at (1.3), or medians or other location estimators, might
be computed from quite different datasets, one for each component index j. More-
over, those datasets might be of different sizes, n1,...,n, say, and then the argument
that they arise naturally in the form of vectors would be inappropriate. This setting
can arise when data are used to rank institutions, for example schools or universi-
ties. The conclusions discussed earlier in this section, and the theoretical properties
developed in section 2 below, continue to apply in this case provided there is an

“average” value, m say, of the nj;s which represents all of them, in the sense that
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n = O(min; n;) and max; n; = O(n) as n diverges. Additionally, in such cases it
is often realistic to make the assumption that the corresponding centred means (or
medians, etc) Qj =n! >, Qij are stochastically independent of one another, and

so the particular results that are valid in this case are immediately available.

2. THEORETICAL PROPERTIES

We shall assume one of two types of lower tail for the common distribution
function, F', of the random variables ©;: either it decreases exponentially fast, in
which case we suppose that F(—z) =< 2% exp(—Cy z%) as x — oo, where a > 0 and

“ as

—00 < B < o005 or it decreases polynomially fast, in which case F(—z) < z~
x — 00, where Cy, > 0. (The notation f(x) =< g(z), for positive functions f and
g, will be taken to mean that f(z)/g(x) is bounded away from zero and infinity as
x — 00.) The former case covers distributions such as the normal, exponential and
Subbotin; the latter, distributions such as the Pareto, Student’s ¢ and non-normal

stable laws (e.g. the Cauchy).

It is convenient to impose the shape constraints on the densities, which we
assume to exist in the lower tail, rather than on the distribution functions. Therefore

we assume that one of the following two conditions holds as x — oo:

(d/dx) F(—z) = (d/dz) 2 exp (= Coz®), (2.1)
(d/dx) F(—x) < (d/dz) x~%. (2.2)

X

In both (2.1) and (2.2), @ must be strictly positive, but 3 in (2.1) can be any real

number. The constant Cj in (2.1) must be positive. We assume too that:

for fixed constants C1,...,C5 > 0, where Cy > 2(Cy + 1) and Cy < Cs,
p=0(n) as n — oo, and, for each j > 1, E|Q;|? < C3, and E(Q}) € (2.3)
[C4, C5).

Recall from section 1 that we wish to examine the probability that the true
ranks R;, and their estimators ﬁj, are identical over the range 1 < j < j9. We
consider both jp and p to be functions of n, so that the main dependent variable

can be considered to be n. With this interpretation, define
Vexp = Vexp(n) — n1/4 (log n){(l/a)—l}/Q . Vpol = Vpol(n) _ na/Q pl/(2a+1) 7 (24)

where the subscripts denote “exponential” and “polynomial,” respectively, and refer

to the respective cases represented by (2.1) and (2.2). In the theorem below we
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impose the additional condition that, for some ¢ > 0, n = O(p**€) when (2.1)
holds, or n = O(pt*/(2a+1}+€) in the context of (2.2), thereby ensuring that in
these respective instances, vexp = O(p*~%) and vpe1 = O(p'~?) for some § > 0. This
is to be expected, since we anticipate that we shall not be able to estimate correctly

as many as O(p) rankings.

Theorem 1. Assume (2.3), and that either (a) (2.1) holds and n = O(p**+€) for
some € > 0, or (b) (2.2) holds and n = O(p{*/(2e+1}+€) for some € > 0. In case
(a), if

o = olvess) (2.5

as n — oo then (1.5) holds. Conversely, when the components of the vectors Q); are

independent, (2.5) is necessary for (1.5). In case (b), if
.jO - O(Vpol) ) (26)

then (1.5) obtains. Conversely, when the components of the vectors (); are inde-

pendent, (2.6) is necessary for (1.5).

It is of interest to consider cases where the common distribution, F', of the ©;s
is bounded to the left, for example where F(z) < x® as x | 0. However, it can be
shown that in this context, unless p is constrained to be a sufficiently low degree
polynomial function of n, very few of the estimated ranks }A%j will agree with the

correct values R;.

To indicate why, we first recall the model introduced in section 1, where the
estimated ranks Ej are derived by ordering the values of Qj + ©;. Here C_)j =
nt Y, <i<n Qi; is the average value of n independent and identically distributed
random variables with zero mean. Therefore the means, Qj, are of order n~1/2. By
way of contrast, if we take & = 1 in the formula F(x) < x® as = | 0, for example
if F' is the uniform distribution on [0, 1], then the spacings of the order statistics

O(1) < ... < O, are approximately of size p~ L.

(More concisely, they are of size
Z/p where Z has an exponential distribution.) Therefore, if p is of larger order
than n'/2 then the errors of the “estimators” Qj + 0, of ©;, for 1 < j < p, are
an order of magnitude larger than the spacings among the ©;s. This can make it
very difficult to estimate the ranks of the ©;s from the ranks of values of Q; + ©;.

Indeed, it can be shown that, in the difficult case where the components of the @);s
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are independent, and even for fixed jo, if & = 1 and p is of larger order than n?

then
P(R; =R, for 1<j<jo) —0. (2.7)

Compare (1.5).

This explains why, when F(x) =< z%, it can be quite rare for the estimated
ranks Ej to match their true values. Indeed, no matter what the value of o and no
matter what the value of jg, property (1.5) will typically fail to hold unless p is no
greater than a sufficiently small power of n, in particular unless p = o(n®/?), as the

next result indicates.

Theorem 2. Assume that (d/dx) F(z) < 2! as z | 0, where a > 0, and that
(2.3) holds. Part (a): Instances where (1.5) holds and p? /n® — 0. Under the latter
condition, (i) if & < L then (1.5) holds even for jo = n; (i) if & = % then (1.5)
holds provided that

(log jo)** (p*/n*) — 0; (2.8)

and (iii) if o > 5 then (1.5) holds provided that

jo = o (n®/?p)t/Ge=V}. (2.9)

Part (b): Converses to (a)(ii) and (a)(iii). If p?/n® — 0 and the components of the
vectors Q; are independent then, if (1.5) holds, so too does (2.8) (if « = 1) or (2.9)
(if > 3). Part (c): Instances where (2.7) holds. If « > 0 and p®/n® — oo, and if

the components of the vectors Q; are independent, then (2.7) holds even for j, = 1.

The proof of Theorem 2 is similar to that of Theorem 1, and so is omitted.

Theorem 1 is derived in section P.

P. PROOF OF THEOREM 1

Step 1: Bounds for probability of rank agreements. Given an integer jo € [1,p — 1],
let £(jo) denote the event that QRj +Or, > QRjo + Og,, for jo+1<j <p. Note
that

{Rj =Ry for 1<j<jo}
2 {\QRj\ < 3 min (O() = O(j—1),Oj11) — O(y) for 1 <5< Jo} N€(jo),
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where we define ©;_) = —oo if j = 1. Therefore, writing £(jo) for the complement

of £(jo), and defining 7(jo) = P(ﬁj =R; for 1<j <jp), we deduce that

7(jo) > P{‘QRJ-‘ < 2 min (O — O¢j—1), O(j+1) — Oy) for 1 <5 <jo; 5@0)}
Jo

>1— Z P{|QRj| > % min (@(j) —03-1),93+1) — @(j))}

j=1

— P{€(jo)}- (P.1)
Also,
{R; =Ry for 1<j<jo}
:{XRl <...<Xg, and X; > Xg, for jgé{Rl,...,RjO}}
= {e(j—l-l) — 0y > —(Qr,,, —Qr,) for 1 <5 < jo
and ©; — Oj,) > —(Q; — Qr,,) for j ¢ {Rlﬁ---ijo}},
and so

7(jo) < P{@(j+1) ~ 03, > —(Qn,., — Qr,) for 1<j< jo}. (P.2)

Write J = J(jo) for the set of even integers j satisfying 1 < j < jo. Let
&; be the event that ©¢41) — O(j) > —(Qr,,, — Qr,), and let 71(jo) denote the
probability that £; holds for all j € J. Then by (P.2),

7(jo) < m1(Jo) - (P.3)

Write E’j for the complement of &;, let O denote the sigma-field generated by
©1,0,,..., and note that, if the components of each ); are independent, then the
events &;, for j € J, are independent conditional on O. Therefore,

m(jo):E{p( M & o)}:E[H {1—P(5j}o)}}

JjeET JjeET

< E[exp{ —- > P(&] O)H . (P4)

JjeET

Step 2: Moderate deviation arguments. Using the arguments of Rubin and Sethu-
raman (1965) and Amosova (1972) it can be shown that, if the constant Cs in (2.3)
satisfies Cy > B? + 2 where B > 0, then as n (and hence also p) diverges,

P{IQ;| >z (var @;)'?} = {1+ o(1)} 2{1 — ¥(x)}, (P.5)
P[ - (le - sz) > T {Val“ (le_ Q]é)}l/z] = {1 + 0(1)} {1 - (I)(x)}, (P'6)
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uniformly in 0 < z < B (logp)'/?

(P.6), and also (P.8) and (P.10) below, we also need the assumption that the com-

and j,7j1,72 > 1 such that j; # jo. (To derive

ponents of each @; are independent; this is not required for (P.5), (P.7) or (P.9). In
(P.5) and (P.6), ® denotes the standard normal distribution function.) Therefore,
since Cy > 2(C} + 1) in (2.3), we can take B = (2 + ¢)'/2 for some € > 0, and then
(P.5) and (P.6) hold uniformly in 0 < z < {(2 + ¢) logp}!/2. It follows that (P.5)
and (P.6) imply that

P{IQ;] >z (var Q;)*} = {1+ o(1)} 2{1 = D(2)} +o(p™'), (P.7)
P = (Qn = Qn) 2« {var (@, Q) }"”|
={1+o)}{l-®(@)} +o(p™) (P8
as n — oo, uniformly in all z > 0 and all 7, j1, jo > 1 such that j; # jo.

Results (P.7) and (P.8) enable us to write down approximations to the series

on the right-hand sides of (P.1) and (P.4):

Jo
> P{|@xr,| > § min (O — O;1), 041 — O)) |

j=1

=2{1+0(1)} > P(N|>Ty)+o(1), (P9)
j=1

Y P(&) ={l+o(1)} > P(N>Ty)+o(l), (P.10)

JjeT JjeET
E[exp{ _; P& | o)}]
<{1 —I—O(l)}E[eXp{ —(1+A) > P(N > Ty O)H , (P.11)
JjeJ

where N denotes a standard normal random variable independent of O,

- min (O ;) — @(j—})a Oy+1y — O())
J 2 (var Qr,)1/? ,

_ Ou+n — Oy
{Val' (QRj+1 - QRj)}1/2 ’
and, for a sequence of positive constants 9,, converging to zero, the random variable

A satisfies P(|A| < ,) = 1. Not too that

T2 5

P(IN| > Ty;) < P(IN| > T1;) < P(IN| > T35) + P(|N| > Tyy), (P.12)
where, defining ©(;_1) = —oo if j = 1, we write
T, = 20 = Ou- _ 9G4+ — O

2(VarQRj)1/2 ) 45 — 2(VaI’QRj)1/2 .
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Step 3: Rényi’s representation. If Uy < ... < Uy, denote the order statistics of a
sample of size p drawn from the uniform distribution on [0, 1] then, for each p, we
can construct independent random variables Z1, ..., Z, with the standard negative
exponential distribution on [0, 1], such that, for 1 < j < p, Uy = 1 — exp(—V})

where .
J i
‘/] = E p—_k+1 :wj+[/1/j

k=1

and, uniformly in 1 < j < %p and 2 < p < o0,

w= Y =100 =0/, (P13

k=p—j+1
P

Wi= Y k' (Zprp—1), sup VW <p'W(p), (P14)

Moy 1<j<p/2

=p—j+1
1 < _
sup J —3/2 W; —— Z (Zp—k+1 — 1)‘ <p?W(p), (P.15)
1<i<p/2 p k=p—j+1

where the nonnegative random variable W (p), which without loss of generality we
take to be common to (P.14) and (P.15), satisfies P{W (p) > p°} = O(p~¢) for each
C,e>0.

Step 4: Approximations to Uj;1) — U(jy. Using the second identity in (P.13), and
(P.14), we deduce that

UG+ = Uy = Vi1 = V) {1 = 3 (Va + 1))

+ (VR ViV + VA -

_Zit J . Si
T p—j {1+\1;]1 <p+1_/2 (£.16)

uniformly in 1 < j < % p, where the random variable W, satisfies, for k& = 1,

P( max |\Ifjk|§A>:1, (P.17)

1<j<p/2

A > 0 is an absolute constant, and for each C,e > 0 the nonnegative random

variable S;; satisfies, with k =1,

P( sup  Sjr > pf) =0(p°). (P.18)

1<j<p/2
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Using the third identity in (P.13), and (P.15), we deduce that

j2 j1/2 Sj

OSU(J'):wj+Wj—%(wj—l—Wj)Q—f—...:Z—)—}-\I’jg<F+ » ), (Plg)

where ¥;5 and Sj; > 0 satisfy (P.17) and (P.18), respectively.

Define D; = Uj41) — Ugj). If the common distribution function of the ©;s is
F' then, by Taylor expansion,

_ _ _ /
O(+1) — Oy =F Uy + Dj) = FH(Uy)) = D; (F1) (U +w; D), (P-20)

where 0 < w; < 1. In the case of exponential tails we take, without loss of generality,

Co=11in (2.1), and then:

(F_l)/(l —u) < —(d/du) (logu_l)l/a R T (logu_l)(l/a)*1 (P.21)
as u | 0. By (P.20) and (P.21),
Oyt — Oy =Y D {log(U(jy +w; Dy) } V7, (P.22)
’ ’ Uiy +wi Dj ’

where ¥; denotes a random variable satisfying, for constants By, By and B3 satis-

fying 0 < By < By < o0 and 0 < B3 < 1,
P<31 < W, <B, foralljsuchthat Uiy < Bg> ~1. (P.23)
In the case of polynomial tails, (2.2) implies that
(F_l)/(u) = —(d/du)u=Y* = Ly~ (/01

in place of (P.21), and therefore, instead of (P.22),

D;

Our1) — O =,
G+ = P60 =Y G T, Dy

(P.24)

where ¥; again satisfies (P.23).

Step 5: Bounds to probabilities of events based on © ;1) — ©(;). By assumption in
Theorem 1, imposed separately in the exponential and polynomial cases, n = O(p®)

and by (2.3), p = O(n®), where C,C; > 0. In view of (P.16), (P.19) and (P.22),

b



11

in the case of exponential tails there exist By, Bs > 0 such that, for any choice of

constants ¢y, ¢y satisfying 0 < ¢; < ¢ < C~1, and for all Bg > 0,

inf | P{(@(j—H) — @(j)) Zj_Jrl1 (log n)l—(l/a) > By n‘m}

je[lvncl

=1-0(n"P), (P25)
inf | P{B4 <7 (O¢G+1) —9)) Zj_+11 (logn)l—(l/a) < 35}

jEmer ne2

=1-0(n""). (P26)
(Noting the definitions C' =4+ € and C = {4/(2a+ 1)} + € (where € > 0), in cases
where the lower tail of ©; is exponential or polynomial, respectively, we see that
the constraint co < C~! permits n° to be of size Vexp N OF Vpo1 Nt (where €; > 0),
in these respective instances.) Likewise, in the case of polynomial tails, and using
(P.16), (P.19) and (P.24), there exist By, Bs > 0 such that, for 0 < ¢; < ¢a < C7}
and for all Bg > 0,

inf | P{(@(j+1) - 0(j) Zj—+11 p~Ve> B g {(1/a)+1}}

j€[1l,nc1

=1-0(n"P), (P27)
inf P{By < jM/7 @11y - O) Zi p O < Bs )

JE€[nc1,ne2

=1-0(n"P). (P28)

Step 6: Bounds to the series in (P.9)—(P.11), and completion of proof, in the expo-
nential case. Define £ = (logn)(1/®)~1 let N be a standard normal random variable
independent of O, and let Z be independent of N and have the standard negative ex-
ponential distribution. Let K7 be a positive constant. If a,, is a sequence of positive
numbers and f,, is a sequence of nonnegative functions, write a,, = f,,(K) to mean
that, for constants L1, Ly > 1, either (a) a,, < Ly f,(K) whenever K > Lo and n
is sufficiently large, and a,, > Ly' f,(K) whenever K < L;" and n is sufficiently
large, or (b) a, > L' f,(K) whenever K > L, and n is sufficiently large, and
an < Ly frn(K) whenever K < L;l and n is sufficiently large. Let 0 < ¢; < ¢3 < %
and ¢; < %, and let jo and j; denote constants satisfying [j; —n®| < 1, ji < jo < n®

and j1/jo — 0.

When (2.1) holds with Cy = 1, properties (P.25) and (P.26) imply that, for
each Bg > 0,
Jo
s(n) = Z P{|N| > n'? K, (O3G+1) — 9} (P.29)

Jj=1
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= O0{j1 P(IN| > Kyn'/?jit Z) +n~ P} + 3~ P(IN|> Kn'/?j7' Z1)
J1<j<jo
iO{jl (P(Zénl%el)
+E|:( 1/2 126) 1eXp{ Kn1/2 _1Z€ }[(Z>n 1/2j1£_1):|)}
+ 2 (P(ZSn”Wl)
J1<5<jo

+E[(n1/2j_1Z€)71 exp { — Kn1/2 i~1Z0) }I(Z>n_1/236 )])

= O{Ja (n”% e
+E[( V2 Z20) T exp { = L (K257 202V 1(Z > 07 2j1€_1)D}
+ > <n1/2j€1
J1<3<jo

+E[(n1/2j_1Z€)71 exp{ Kn1/2 _1Z€ }I(Z>n 12 50~ )])
Now,

E[(nl/ijlZE)_l exp{ Kn1/2 i1 Z0)? }I(Z>n 1/2j£ )}

:/ (n1/2j_lz€)_ exp{ — 2 (Kn'?j7 20— 2} dz

—1/2 j g1

:n_l/zjﬁ/ u! exp{ — % (K u)? —n_1/2j€u}duxn_l/2j€.
1
(Here we have used the fact that j < jo < n° where ¢y < %) Therefore,

S(,n)le_nfl/leEfl_f_ Z n*l/?jgfl 1/2 QE 1_|_n 1/2 QE 1
J1<j<jo

=n 122071 (P.30)

(Here we have used the fact that j; /jo — 0.)

The right-hand side of (P.30) converges to zero if and only if jo = o(n'/* ¢1/2),
or equivalently, if and only if (2.5) holds. Moreover, in view of (P.12) and depending
on the choice of K in the definition of s(n) at (P.29), s(n) can be either an upper
bound or a lower bound to the series » ., P(N > Tb;) on the right-hand side
of (P.10). Hence, the series on the left-hand side of (P.10) equals o(1) as n — oo,
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if and only if (2.5) holds. It therefore follows from (P.1) that (2.5) is sufficient
for (1.5).

Conversely, if (1.5) holds then, in view of (P.3), (P.4) and (P.11),
> P(N>T5]0)—0
jeT
in probability. Therefore, by (P.25) and (P.26), with j, and j; as in the previous
paragraph, there exists K7 > 0 such that
> P{IN|>n'? Ky (OG41) — O;) |0} = 0
J1<3<Jo
in probability. (We can take the sum over all j € [j; + 1, jo, rather than just over
even j, since (P.11) holds for sums over odd j as well as over even j.) Hence, arguing
as in the lines below (P.29), we deduce that for sufficiently large K5 > 0,
T(n)= > f(Z/8;)—0 (P.31)
J1<j<jo
in probability, where the random variables Z; are independent and have a common
exponential distribution, §; = n™1/25¢7! and f(z) = 27! exp(—K322) I(z > 1).
We claim that this implies that the expected value of the left-hand side of (P.31)

also converges to 0:

D Blf(Z/6)) =0, (P.32)

or equivalently that d; — 0, and thence (using the argument leading to

J1<j<jo
(P.30)) that s(n) < n=%/242¢~' — 0, which is equivalent to (2.5). Therefore, if we

establish (P.32) then we shall have proved that (1.5) implies (2.5).

It remains to show that (P.31) implies (P.32). This we do by contradiction. If
(P.32) fails then, along a subsequence of values of n, the left-hand side of (P.32) con-
verges to a nonzero number. For notational simplicity we shall make the inessential
assumptions that the number is finite and that the subsequence involves all n, and
we shall take K5 = 1 in the definition of f. In particular,

tin)= > E{f(Z;/8;)} — t(c0), (P.33)
J1<3<Jo
where 0 < t(c0) < 00. Now, t(n) = {1+ 0(1)} u(1) 6(n), where 6(n) = >

and, for general A > 1, u(\) = [ _, 2

1<i<io 03
! exp(—2?) dz. Therefore,

d(n) — d(c0) = t(c0)/pu(1). (P.34)
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For each A > 1 the left-hand side of (P.31) equals A; + Ay, where, in view of (P.33),

E(A) = S E{f(Z,/6)1(Z; > A6)} = {1+ oD} (N dn)  (P35)

J1<i<Jjo

and

S fZi)6)1(Z; < A6 = > f(W

J1<ji<Jjo J1<i<jo

with W; = Z;/6; and I; = I1(0; < Z; < X\§;). However,

Y. P =1)=m(N)8(n) +o(1) = §(c0) pa(A) + o(1),
71<3<jo
where uq(A) = f1<z</\ 27! exp(—22)dz. Therefore, in the limit as n — oo, A;
equals a sum, Sy say, of N independent random variables each having the distri-
bution of f(W), where W is uniformly distributed on [1,\], N has a Poisson dis-
tribution with mean §(00) 1 (M), and N and the summands are independent. The
distribution of S} is stochastically monotone increasing, in the sense that P(Sy > s)
increases with A. On the other hand, since u(A) — 0 as A — oo then, by (P.34)
and (P.35),
llm limsup F(Aq) =

Combining these results we deduce that A; + Ag, ie. T(n) at (P.31), does not
converge to zero in probability. This contradicts (P.31) and so establishes that
t(c0) must equal zero; that is, (P.32) holds.

Step 7: C'ompletion of proof in the polynomial case. Here we alter the constraints
O0<cr <ea <3 Land ¢; < 1 1, imposed in the first paragraph of step 6, to 0 < ¢; <
c2 <C7tand ¢1 < 5, where C = {4/(2a + 1)} + € is as given below (P.26), and
0 <e<2/{2(2a+ 1)}. We continue to take 1 < j; < jo < n and |j; — n?| < 1.
If we use (P.27) and (P.28) instead of (P.25) and (P.26), respectively, then, arguing

as in the lines from (P.29) down, we obtain:

s(n) = [jl P{N > Kon'? 7 Z (p/j1)"*} +n~ 6]

+ > P{N>Kn'?j Z(p/j)}.

J1<5<jo

—1/2 j(1)+(1/a) p—l/a

Moreover, since n — 0 then, uniformly in j < jo, we have:

P{N > Kyn'/?2 571 Z (p/j)/*}
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= 0! (p/i) M}
- E({n1/2j—1 Z(p/i)""} " exp |~ {E 05 2 (p)3) Y]
<I(2> 0725 6/5) 7))
= {02 (VY /Oo (V257 2 (p/f)V ey

n=1/2j(p/j)~ 1/«
Xexp[—%{Kn1/2j lz(p/j)l/ } _Z] dZ
=0V (p/g) M / wtexp { — § (K )’} du= ™' (p/5)V/".
1
Therefore,

Z nY2 j (p/4) —1/a n’1/2j§+(1/a) p—l/a,

and the right-hand side converges to zero if and only if jo = o(vpo1), Where vpe is
as at (2.4). The argument in the paragraph below the one containing (P.30) can
therefore be used to prove, from (P.1), that (2.6) is sufficient for (1.5). The converse,

when the ();s have independent components, can also be derived as in step 6.

NOT-FOR-PUBLICATION NOTES about the case F(z) = x® for 0 < z < 1,
with a > 0: Here (F~!)(u) = o=t u(/*)~1 whence

Oy11) — O ~ Dy UL = (Z/p) (j/p) /)7t =z j0/) =1 pt/e,

and so

= JZO P(N > n!? K 7 j1/e)=1 p=1/e)

1 if o < %
vzn 1/2 1 (1/a) 1/ —1/2 1/04 log 7o ifoz:%
2-(1/a) if o> 1

> n*1/2 pl/a '

Therefore, if p > n®/2 then it is not possible for s(n) to converge to zero.



