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Some LDA Background

I n training samples (Xi ,Yi)

I Xi ∼ N(Yi · µ, Σ): feature vectors in Rp

I Yi = ±1: class labels

I Goal. given test feature (X ), predict class label Y

Fisher’s linear classifier

L(X ) =

p∑
j=1

w(j) · X (j)

I w(j): feature weights determined by (Xi ,Yi )

I Classify Y =

{
1, L(X ) > 0
−1, L(X ) < 0

I Optimal weights: w ∝ Σ−1µ, approachable when n� p
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Modern Challenges

Iconic examples: gene microarray
Data Name Source n, # samples p,# features
Colon cancer Alon et al. (99) 62(22, 40) 2000
Leukemia Golub et al. (99) 73(38,35) 7129
Prostate cancer Singh et al. (02) 102(50,52) 12600

Problem: Too few observations to estimate Σ−1 (p � n).
Response: use separable classifiers diag(Σ)−1µ.

Problem: Many features, most useless, a few useful/weak
Response: feature selection

Outcome: Feature Selection + DLDA

e.g. Bickel and Levina (04), Fan &Fan (08), Tibshirani et al. (02)
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Feature Selection + DLDA
Step 1. Calculate training Z -vector

I Z = Group Mean Difference/
√

( 1
n1

+ 1
n2

)pooled variance

I Standardized by Z = [Z −mean(Z )]/SD(Z )
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Step 2. Feature Selection by thresholding Z

Feature weights: w t
?(j) =


sgn(Zj) · 1{|Zj |>t}, ? = clip
Zj · 1{|Zj |>t}, ? = hard
sgn(Zj)(|Zj | − t) · 1{|Zj |>t}, ? = soft

Step 3. Classification using LDA:

L?(X ; t) =

p∑
j=1

w t
?(j) ·

(X (j)

σ̂j

)
< > 0

Problem: What is the best threshold t?
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Threshold Choice

Commonly seen intuition:

I low feature FDR (e.g. keep strongest 3 or 5)

I Sure Indep. Screening (SIS) (Fan & Lv 08 )

I cross validation (CV)

I threshold monotone with feature strength

For today:

I Threshold choice by Higher Criticism (HC)

I Re-investigate the above ideas
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Outline

I Higher Criticism Thresholding (HCT)

I Insight, and Rare Weak Model (RW)

I Phase diagram/Optimality (Asymptotic RW)

I Comparison with FDRT/SIS/CVT
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Higher Criticism Threshold (HCT)

Zj : z-score for testing whether j-th feature is useful

1. Convert to P-values: πj = P{|N(0, 1)| > |Zj |}

2. Sort: π(1) < π(2) . . . < π(p)

3. HC objective function HC∗n,p = max1≤i≤α0·p
{√

p
( i

p−π(i)√
i/p(1−i/p)

)}
4. HC-threshold (HCT): (new ingredient)

tHC = |Z |(̂i) corresponding to maximizing i

Note: (1). slight difference of HC from Donoho & Jin 04. (2). Hall et al 08 uses HC

for classification without features selection; see Donoho & Jin 08 for comparison
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Comparison with Popular Classifiers

Data: Leukemia/Colon/Prostate

I (2/3, 1/3) random split (Train,Test).

I average test errors across 50 replications

I regret = Cell value − Column min
Column max − Column min

All except that of HC is from Dettling’s paper.

Method Colon regret Leukemia regret Prostate regret Max. Regret Rank
Bagboost 16.10 .58 4.08 .59 7.53 0 .59 4
Boosting 19.14 1 5.67 1 8.71 .13 1.00 7.5
RanFor 14.86 .41 1.92 .02 9.00 .41 .41 2
SVM 15.05 .44 1.83 0 7.88 .04 .44 3
PAM ∗ 11.90 0 3.75 .50 16.54 1 1.00 7.5
DLDA 12.86 .13 2.92 .28 14.18 .74 .74 6
KNN 16.38 .62 3.83 .52 10.59 .34 .62 5

HCT-hard 13.77 .26 3.02 .31 9.47 .22 .31 1

∗ Tibshirani et al. posted very different figures.

See Donoho and Jin (2008) for comparison with simulated results
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Rare/Weak Features Model (RW)

I n training samples (Xi ,Yi):
Xi ∼ N(Yi · µ, Σ), Yi = ±1: class lables

I Z -vector: Z ∼ N(
√

n · µ, Σ)
I test feature: X ∼ N(±µ, Σ)

RW model:
I Σ = Ip

I
√

n · µj =

{
τ, j-th feature is useful
0, j-th feature is useless

I ε = 1
p ·#{j : µj 6= 0}

Four key parameters:

p � n, ε ≈ 0, τ small or moderately large
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Idea

Definition

I Optimal threshold: minimizes P{misclassified |t }

I Ideal threshold: minimizes a proxy of P{misclassified|t}

I HCT: maximizes HC objective function

I Ideal HCT: maximizes Ideal HC objective function

Key: in a broad situation (including RW Model)

Optima threshold ≈ Ideal threshold ≈ Ideal HCT ≈ HCT
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Insight I, Fisher’s Separation

Linear Classifier score L(X ) = w ′X .

SEP(L;µ) =
(Diff. of mean scores | µ)√

(Variance of scores | µ)
=

w ′µ

‖w‖2

I Clip: Lt(X ) =
∑

sgn(Zj) · 1{|Zj |≥t} · X (j) < > 0

I P{misclassified |t} = Eε,τEZ [Φ̄(SEP(Lt | µ))]

I IF order of “E” and “Φ̄” can be interchanged:

Eε,τEZ [Φ̄(SEP(Lt ;µ))] ≈ Φ̄(S̃EP(t))

where S̃EP(t) = (ELt(µ))/||EVar(Lt(X )|µ)||2

THEN Optimal threshold ≈ Ideal threshold
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Signal Detection Background

Positives: call a training z-score Zi a positive if

|Zi | ≥ t

Positive Rate (PR):

PR(t) ≡ 2(1− ε)Φ̄(t) + εΦ̄(t − τ) + εΦ̄(t + τ)

True Positive Rate (TPR)

TPR(t) = ε · [Φ̄(t − τ) + εΦ̄(t + τ)]

note: both are expected values
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Insight II, Intimacy of SEP and HC

I Neglect stochastic fluctuations, HC reduces to Ideal HC:

H̃C (t; ε, τ) =
ε · [Φ̄(t − τ) + Φ̄(t + τ)− 2Φ̄(t)]√

PR(t)(1− PR(t))

I Ideal Thresholding: maximize

S̃ep(t; ε, τ) =
ε · [Φ̄(t − τ)− Φ̄(t + τ)]√

PR(t)
≈ ε · TPR(t)√

PR(t)

I In RW Model, parameters ε ≈ 0, τ moderate to large, so

H̃C (t; ε, τ) ≈ S̃ep(t; ε, τ) ≈ ε · TPR(t)√
PR(t)

I Optimal threshold ≈ Ideal threshold ≈ Ideal HCT ≈ HCT
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Green: Average HCT over 100 simulations; Red: Optimal threshold

p = 10, 000, ε = 0.01, τ = 3.5, n ranges from 50 to 10, 000
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Asymptotic Rare/Weak Model (ARW)

Number of features p grows to ∞
I Linking rarity/weakness to p:

εp = p−β, 0 < β < 1

τp =
√

2r log p, 0 < r < 1

I Linking sample size n to p (3 types of growth):
I (No growth): n is fixed
I (Slow growth): 1� n� pθ, for any θ > 0
I (Regular growth): n = pθ for some θ ∈ (0, 1)
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Impossibility and Possibility

Introduce

ρ(β) =

 0, 0 < β < 1/2
(β − 1/2), 1/2 ≤ β < 3/4
(1−

√
1− β)2, 3/4 ≤ β < 1

and

ρ?(β) =


n

n+1 · ρ(β), ? = no growth
ρ(β), ? = slow growth

(1− θ) · ρ( β
1−θ ), ? = regular growth

r = ρ?(β) partitions β-r plane into two regions:

Region of Possibility, Region of Impossibility
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Phase Diagram (Slow Growth)
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Comparison: HCT vs. FDRT and SIS
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Comparison to Shrunken Centroid (CVT)
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p = 104, n = 40;
100 useful features generated from N(τ/

√
n, 1), τ ∈ [1, 3];

9900 useless features generated from N(0, 1)
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Take-home messages

I New threshold for feature selection when useful features are rare
and weak (RW) in the large-p, small-n setting

I Optimal classification performance

I Very different from fashionable FDRT

I Can replaced CVT with lower cost and better performance

I Competitive on standard real datasets

Acknowledgement: We thank Issac Newton Institute for hospitality
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Website

www.stat.cmu.edu/̃ jiashun/Research/

Available: DLD & JJ (2008): definition, heuristics, practical results
JJ (2009): region of possibility/impossibility
DLD & JJ (2009): phase diagram, first order asymptotics

In preparation: full achievability, extensions, second order asymptotics
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