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@ Data Xi,..., X, be iid. in RP distributed as

e/ po(z)
pr(a) = —=——
! Cy

where reference po(x) known and we are interested in estimating f(x).

o Consider estimator f(z) = fa(@) =2 hen Buh(x) that minimizes

— Zlog 1/pg,s (X3)) + AZ |Bn-

@ Special case H = {z1,...,zp} U{z122, x123, ..., zp_12p} and may also use
polynomials, trigonometric terms, splines, and wavelets.
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{1 penalty is risk valid for \,, of order 1/4/n

@ Log-density estimator: py, () = efﬁ(w)po(x)/Cfﬁ

The ¢, penalized likelihood estimator f(z) = fa(@) = Xhen Brh(z) achieving

1 1
min{— log ——

An
in{log s+ M)

has the following risk bound

Ed(ps-,pyr,) <inf § D(ppellpss) + AnllBll1 p+2loain)
- B ——

approzimation  complexity

for every sample size provided that \,, > \/ 21%(21\/1), where M = Card(H) (= p).
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Adaptive ¢; Penalized Regression and Risk Bounds

@ Regression model: Y = f*(X) + oN(0,1)

{1 penalized least squares estimator f(x) = f3(2) =2 hen Brh(z) achieving

mﬁin{% Z(Yz — fﬁ(l’z))Q + 20/\n||/@||1}

=1

has the following risk bounds

E|lf* = falln <2 if{|If" = fs

314‘20/\71”/3”1} +802#°5M

<O0+20An||B*[|l1  replacing B = B* if f* = fa~

for every sample size provided that \,, > / %%QM).

o Estimate unknown o = 2,81 + \/[%/\nHﬁHﬂQ + L5 (Y — fa(2))?
and similar result holds (Proc. WITMSE '08, Luo with Barron).
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Relaxed Greedy Pursuit

o Initialize with f(©(z) = 0. Given f*~1)(z), iteratively set

fP () = af "V (z) + vh(x)
with @ = a® | v = ~*) and h = h(¥) chosen by

arg min {L(af(k_l) +h) + Aavh=D |’Y|]}
a,y,h
where L(f) = %Z?:I lOg(l/pf(Xl)), U(k—l) — Zj\i1|6j(k71)| for
fE0 =322 6% Vh;, and M = Card(H).
@ lterate until desired accuracy.
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Computational Accuracy

Suppose ||h(x)]|o < C for all h(z) € H.

Theorem

The k step RGP estimator f*)(z) = Zj\il ﬁj(k)hj(:z:) has the following
computational accuracy bound valid for all X, X > 0

1 n
- Zlog(l/pf(k) (X)) + MIBP
i=1

20218112

1 n
<inf{ = ;
_%f{n i§=1log(1/pr(Xz))+/\||ﬂ||1+ 1

where ||8|ly = 3210, |8;] and f5 = 330, Bjh;.

}

Similar conclusion for unbounded multivariate Gaussians as arise in Gaussian
inverse covariance matrix estimation.
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