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Shannon Formulation

@ Input bit string: v = (uy, Uo,...... , Uk)
l
@ Encoded string: x = (xy, X2, ..., Xn)
l
@ Channel: p(y|x)
l
@ Received string: y = (y1,¥2,..,¥n)
l
@ Decoded string: & = (0, U, ... . .. , Uk)
@ Rate: R= % input bits per uses of channel

Reliability: Want small probability of error {i # u}

Barron, Joseph, Smalling Communication by Regression



Gaussian Noise Channel

@ Input bit string:
@ Encoded string:
@ Power:
Power constraint:
@ Gaussian noise:
Noise variance:

Signal to noise:

@ Received string:

@ Decoded string:

u=(uj,us,...... , Uk)

X = (X1, %2,..., Xn)

X2 =530 xF

x[? <P

e =(€e1,€2,...,€n)

o2

v=254

y: (Y17}’27---7}’n)
y=x+e¢

U= (ln,0o,...... , Uk)
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Shannon Theory

@ Channel Capacity:
Supremum of rates R such that reliable communication is
possible, with arbitrarily small error probability

@ Information Capacity: C = maxp, /(X;Y)
Where I(X; Y) is the mutual information, aka Kullback
divergence between Py y and Px x Py

@ Shannon Channel Capacity Theorem:
The supremum of achievable communication rates R
equals the information capacity C

@ Books:
Shannon (49), Gallager (68), Cover & Thomas (06)
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Gaussian Channel Capacity

@ Gaussian Channel Capacity:

1 P
C = E‘r)rggépl(X, Y)= 5 log <1 + 02>

Normal(0, P) is the maximizing distribution on X

@ Foundational model for
wireless communication
(radio waves, cell phones, television, satellite, space)
wired communication
(internet, telephone, cable)

@ Relation to sphere packing: Conway and Sloane (88)

@ No fast encoding and decoding algorithm has been
mathematically proven to achieve rates up to capacity
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Binary Channel Capacity

@ Binary Symmetric Channel:
Bits are received in error a fraction « of the time

@ Capacity: 1 — h(a), where
h(a) = alogl + (1 —a)log 1

@ No fast encoding and decoding algorithm has been
mathematically proven to achieve rates up to capacity

@ Bayesian belief propagation: empirically shown to achieve
near capacity performance in a particular Gallager inspired
design by Luby, Mitzenmacher,Shokrollahi,Spielman (01)

@ Reed-Solomon codes: Algebraic code on finite fields
GF(2™) corrects a fraction of e errors with rate 1 — 2e.
Convertable to code for binary strings of same rate, near 1
for small ¢, with guaranteed correction of a fraction
a = €/ log n of errors. MacWilliams & Sloane (77)
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Regression Formulation for the Gaussian Channel

@ Random design matrix Xisnby N (p = N)

@ Input bit string: v of length K
!

@ Coefficient vector: 3 of length N, with constraints on form

!

@ Codeword sent: X[ of length n
l

@ Received string: Y =Xg8+¢
l
@ Leastsquares: 3 = argmin|Y — X2
This decoder maximizes likelihood; maximizes posterior

probability given the data X, Y; minimizes probability of
error with uniform distribution on input strings
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Sparse Superposition Code Formulation

@ Design matrix: X is nby N, each entry indep. N(0, P/L)

@ Constraint on form of g of length N:
Only L nonzero coordinates, of absolute value 1
Count 2K < (%) near (Ne/L)"; more available if use signs

@ Codewords: X of length n; each entry indep. N(O, P)
Codewords are sums of L columns of X

@ (3 decoded by least squares is reliable if correctly
determine most of the L terms sent.

Yields small bit error rate % S5 1 15,0
Also small probability of error {& # u} ?
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Partitioned Superposition Code

@ Split u into L sections, each of length log B bits
Total length K = Llog B.

@ Split g into L sections, each of length B,
with one non-zero value in each section.

Total length N = LB.
@ Input mapping:
In each section, the bit string of length log B specifies

in binary the location of the non-zero coefficient value.
Optional: an extra bit per section used to specify the sign.

@ Split columns of X into L sections, B choices in each.

@ Codeword: a sum of L columns, one from each section
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Communication Rate

@ Codewords formed from L terms, one from each section
@ Number of codewords: 2K = Bt

@ Number of input bits communicated: K = Llog B

@ Section size B = L2 and dictionary size N = L'+2

@ Number of input bits communicated for a rate R code

nR=K=LlogB=allogL

@ Choice of sample size to achieve a rate R code

n=(a/R)LlogL
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Sufficient section size rate

@ Polynomial section size:

B=142

@ An expression a, is determined:
ay is decreasing with signal to noise ratio v
ay is near 1 for large v

@ Significance:

If a > ay, then the error probability of least squares is
shown to be exponentially small for any communication
rate R < C.
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Precursors

@ Forney (66) Concatenated codes

@ Cover (72) Superposition codes for broadcast channels.
Section sizes By = 2"F1 ... B, = 2" exponentially large.
Codeword sent is sum of codewords for respective users.
Similar setting for multiple access channels Rimoldi and
Urbanke (01), Cao and Yeh (07).

@ Wainwright (09) Information theory bounds on size of sets
of sparse coefficients correctly decodeable by least
squares. Correspond to positive rates (associated with
n = const Llog N/L), but not all the way to capacity.
Related work Candes & Tao (06), Candes & Plan (08).

@ Interpretation of our conclusion: Compressed sensing
capacity. Minimal number of measurements of average
power P needed to determine the L out of N terms with
small average prob erroris n = (1/C)Llog(N/L) where C
is Shannon’s channel capacity.
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Error Probability Bound

@ Codeword sent: X5*

@ Least squares or approximate least squares estimate 3
satisfies |Y — X% < |Y — Xp*|?

@ Error event of a fraction of o = ¢/L section mistakes,
contained in the event
E. ={|lY — XB| < |Y — XB*|? for some 3 € Wrong,}
where Wrong,, is the set of 3 differing from 5* in ¢ sections.

@ Error probability: Bound on P[E,] using

<QLL> exp{—nD,}

where the exponent D,, is sufficiently large to cancel the
combinatorial coefficient and produce an exponentially
small error, provided the section size a > a, and R < C.
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Some ingredients of the error exponent

Ingredients in D, = D(Ay, p2)
Ay, =a(C—R)+(C, —aC)
Co = (1/2)log(1 + av)

1—pi =ao(1—a)v/(1 +a2V)

where capacity C = } log(1+v) and v = P/o? is signal/noise.

Here D(A, p?) is the large deviation exponent associated with
the cumulant generating function for (1/2)(22 — Z2) with Z;, Z
bivariate normal, mean zero, unit variance and correlation p.
Near (1/2)A2/(1—p?) for small A.

Complete story includes tradeoff with another term.
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Contributions to Error Exponent
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lterative decoding for approximate least squares

@ Convex hull algorithm
Let A be the convex hull of the allowed g.
Initialize with 8 maximizing inner product Y - (X3).
Relaxed greedy update (as in Jones (92)):

Bk +1) = (1 = w)B(k) + wpHeate

Update chosen to maximize the inner product Resy - (X3)
with the residuals Resx = Y — (1 — wy) X3(k).
Here w in [0, 1] is optimized by least squares.

@ Computation and accuracy tradeoff
_ 2
¥ - Xa(k) < ¥ - Xl 2

@ Vertex move algorithm Similar analysis for randomized
vertex move algorithm in the manuscript.
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Simulations using approximate least squares

@ Estimator /3 found by first doing the convex hull
optimization getting 5(k) and then taking the closest

vertex.

@ Simulations performed by Yale senior David Smalling for
his senior project in Applied Mathematics
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Probability of a proportion of 10% or more mistakes

B =64, Rate = 0.5 Capacity
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32 0.0110 0.0130




Probability of a proportion of 10% or more mistakes
B = 32, Rate = 0.5 Capacity
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@ Sparse superposition coding is reliable at rates up to
channel capacity

@ Analysis blends modern statistical regression and
information theory
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