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Introduction

• Response Y ≡ (Y1, · · · , Yn)T .

• Predictors: p-dimensional xi = (xi1, · · · , xip).

• Regression model:

Yi ≡ µ(xi) + εi, i = 1, . . . , n, (1)

where µ(xi) ≡ xT
i β and εi ∼ N(0, σ2).

• Goal: Identify all potential groupings for optimal predication of Y ,

especially when p >> n.

• Grouping pursuit amounts to estimating grouping G0 = (G0
1 , . . . ,G

0
K)T

as well as α0 = (α0
1, . . . , α

0
K)T given G0 when true

β0 = (β0
1 , . . . , β

0
p)

T = or ≈ (α0
11|G0

1 |
, . . . , α0

K1|G0
K
|)

T with 1|G0
1 |

denoting a vector of 1’s with length |G0
1 |.



Grouping pursuit

• Essential to high-dimensional analysis is seeking a certain

low-dimensional structure.

◦ Homogenous subgroups. Variable selection seeks only two

homogenous groups: zero-coefficient group vs non-zero-coefficient

group.

◦ Projection pursuit, · · · .

• Main idea: Group coefficients of roughly the same value or size.

• Benefits: Variance reduction, which goes beyond variable selection.

Simpler model with higher predictive power. Can be thought of as one

kind of supervised clustering.

• Challenges: Complexity for identifying the best grouping is the pth order

Bell number: Bp = 1
e

∑∞
k=0

kp

k!
–order eepa

for some 0 < a < 1.



Relevant literature and motivation

• Literature:

◦ Grouping in series order (F-Lasso, TSRZK, 05):
∑p

j=1 |βj − βj+1|.

◦ Grouping in size (Bondell & Reich, 08):
∑

i<j max(|βi|, |βj |).

◦ Grouping pursuit is one kind of supervised clustering,.....

• Motivating example:

Figure 1: Plot of the PPI gene subnetwork for breast cancer data



Grouping

• Enumeration

◦ Partition {1, · · · , p} into G = (G1, · · · , Gk). Given G, compute

OLS through regression of Y on grouped

ZG1 ≡ XG11, · · · , ZGk
≡ XGk

1.

◦ Choose the best grouping from all possible groupings.

◦ Computation is infeasible, i.e., p = 10 requires 115975 enumerations

(Bell number)—much worst than that in variable selection.

• Our objectives

◦ Accurate grouping.

◦ Computational efficiency.

◦ Reconstruction of true grouping & unbiased OLS based on it

simultaneously.



Grouping pursuit–our approach

• Regularization through designed nonconvex penalty

S(β) =
1

2n

n∑

i=1

(Yi − xT
i β)2 + λ1J(β); J(β) =

∑

j<j′

G(βj − βj′),

(2)

where λ1 > 0 is a regularization parameter, G(z) = λ2 if |z| > λ2 and

G(z) = |z| otherwise, and λ2 > 0 is a thresholding parameter.

• Role of G(z)

◦ Piecewise linear for computational advantage through grouped

subdifferentials and difference convex (DC) programming.

◦ Three non-differentiable points: (a) z = 0 for grouping pursuit; (b)

z = ±λ2 for computation and for theoretical advantages.



Grouped subdifferentials

• Subdifferential of convex S(β) at β is the set of all subgradients at β.

• Subgradient of |βj − βj′| wrt βj at β = β̂(λ) is bjj′(λ).

=





Sign(β̂j(λ) − β̂j′(λ)) if 0 < |β̂j(λ) − β̂j′(λ)|

|bjj′(λ)| ≤ 1 if β̂j(λ) − β̂j′(λ) = 0.

• Due to overcompleteness of the penalty, bjj′(λ) can not be estimated.

• Subgradient of j wrt group Gk(λ): Bj(λ) ≡
∑

j′∈Gk(λ)\{j} bjj′(λ),

with
∑

j∈Gk(λ) Bj(λ) = 0, because bjj′ = −bj′j for j 6= j ′.

• Subgradient of subset A wrt group Gk(λ):

BA(λ) ≡
∑

j∈A

Bj(λ) =
∑

(j,j′)∈A×(Gk(λ)\A)

bjj′(λ), with

|BA(λ)| ≤ |A|
(
|Gk(λ)| − |A|

)
.



Solution surface via DC programming

• Decompose S(β) in (2) into a difference of two convex functions

S1(β) = 1
2n

∑n
i=1(Yi − xT

i β)2 + λ1

∑

j<j′

|βj − βj′| and

S2(β) = λ1

∑
j<j′ G2(βj − βj′), through a DC decomposition of

G(·) = G1(·) − G2(·) with G1(z) = |z| & G2(z) = (|z| − λ2)+.
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Figure 2: DC decomposition of G(z).



Solution surface via DCP, continued

• Linearize S2(β) at iteration m by its affine minorization from iteration
m − 1, leading to an upper convex approximating function at iteration m:

S(m)(β) = S1(β) − S2(β̂
(m−1)(λ)) − (β − β̂(m−1)(λ))T∇S2(β̂

(m−1)(λ)), (3)

◦ ∇ : the subgradient operator; β̂
(m−1)
k (λ) : minimizer of (3) at

iteration m − 1.

• Solve (3) iteratively until it converges.

• No need to seek global solution—DC solution has desired optimality of a

global solution in grouping (Theorem), and can be computed much

efficiently (Theorem).



Homotopy method+DCP

• Key: homotopy via subdifferentials and DCP for solution β̂(m)(λ) of (3).

◦ Optimality through subdifferentials: ∇S(m)(β)|β=β̂(m)(λ) = 0.

• Major challenges: (1) (Discontinuity) β̂(m)(λ) may contain jumps in

(Y , λ2); (2) (Overcompleteness) computing B
(m)
j (λ) via enumerations

over {bjj′} is infeasible, (Bell number).

• Homotopy (1) piecewise linear and continuous in λ1 given (Y , λ2) with

piecewise linear penalty and designed support point. Transition

conditions: (1) Combining groups Gk(λ) with Gk(λ): αk(λ) = αl(λ);

(2) Splitting group Gk(λ): |BA(λ)| ≤ |A|
(
|Gk(λ)| − |A|

)
.

• Overcompleteness: Use piecewise linear property of B
(m)
j (λ) for

searching (order: O(p2 log p)).

• Homotopy Algorithm for computing β̂(λ) as a function of λ

simultaneously.



Homotopy method+DCP, continued

Property: terminate finitely and converge rapidly. Control at one λ0 implies

the entire surface.
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Figure 3: Regularization solution path/surface.



Model selection for prediction

• Model selection:

ĜDF(β̂(λ)) =
1

2n

n∑

i=1

(Yi − µ̂(λ,xi)))
2 +

1

n
σ2d̂f(λ), (4)

◦ For smooth β̂(λ) (m = 0), d̂f(λ) = K(λ) for fast computation, c.f.,

SURE (Stein, 1981).

◦ For piecewise smooth β̂(λ) (m > 0),

d̂f(λ) =
σ2

τ 2

n∑

i=1

Cov∗(Yi, µ̂
∗(λ,xi)) and Cov∗(Yi, µ̂

∗(λ,xi)),

through data perturbation (GSURE, Shen & Ye, 2002).



Theory: Error analysis

• Performance for grouping pursuit:

◦ Error: (Disagreement) P (G(λ) 6= G0) ≤ P (β̂(λ) 6= β̂(ols)).

G(λ),G0: estimated and true grouping (uniquely defined). β̂(λ), β̂(ols):

estimator defined by Algorithm 2 and OLS based on G0.

Theorem: P (β̂(λ) 6= β̂(ols)) is upper bounded by

K(K − 1)

2
Φ

(−n1/2
(
γmin − λ2

)

2σc
−1/2
min

)
+ pΦ

( −nλ1

σ max1≤j≤p ‖xj‖

)
. (5)

• Φ(z): CDF of N(0, 1).

‖xj‖: L2-norm of xj .

γmin: min{|α0
k − α0

l | > 0 : 1 ≤ k < l ≤ K}.

cmin: smallest eigenvalue of ZT
G0ZG0/n.

K : # of estimated groups, which is no larger than min(n, p).



Theory: Error analysis, continued

If max
{ncmin(γmin − λ2)

2

8σ2
,

nλ2
1

2σ2 max
1≤j≤p

‖xj‖
2/n

}
− log p → ∞,

• Grouping Consistency

P (G(λ) 6= G0) ≤ P (β̂(λ) 6= β̂(ols)) → 0, p, n → +∞.

• Remarks:

◦ Roughly: p < exp(O(nλ2
1)), λ1 → 0, n1/2λ1 → ∞,

ncmin(γmin − λ2) → ∞. ( max
j:1≤j≤p

‖xj‖
2/n bounded, satisfied by

standardization).

◦ Note that cmin can be independent of (p, n) or cmin → 0 as

p, n → ∞, depending on if K increases in (p, n), even though the

true model is independent of (p, n).

◦ A less sharp bound can be derived under a moment assumption of ε1.



Theory: Grouping

Let rj(β̂(λ)) = xT
j

(
Y − XT β̂(λ)

)
, which becomes the sample

correlation between xj and the residual, after standardization of

{xj : j = 1, . . . , p}.

Theorem: (Grouping) For any j = 1, . . . , p, j ∈ Gk(λ) if

|rj(β̂(λ)) − nλ1δk(λ)| ≤ nλ1(|Gk(λ)| − 1); k = 1, . . . ,K(λ). Here

δk(λ) = δ(m∗)(λ) and δ(m)(λ) is defined in Theorem 1.

• Predictors with similar values of correlations are grouped together, as

characterized by intervals ∪
K(λ)
k=1

(
nλ1δk(λ) − nλ1(|Gk(λ)| −

1), nλ1δk(λ) + nλ1(|Gk(λ)| − 1)
)

.



Numerical examples

• Ex1: (Sparse grouping). In (2), εi ∼ N(0, σ2) and σ2 according to

SNR; xi ∼ N(0,Σp×p) with n = 50, p = 20 and

diagonal/off-diagonal elements 1/0.5;

β = (0, . . . , 0︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

)T .

• Ex2: (Large p but small n). In(2), εi ∼ N(0, σ2), with SNR = 10;

xi ∼ N(0,Σ) with 0.5|j−k| the jk-th element of Σ. Here

β = (3, . . . , 3︸ ︷︷ ︸
5

,−1.5, . . . ,−1.5︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
180

)T .

• Mean squares error: averaged over 100 replications.

• Tuning: λ is estimated by minimizing GDF over grid points.

• Comparison: Convex (
∑

j<j′ |βj − βj′|), OLS given estimated grouping.



Mean square error: Example 1
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• DCP outperforms its convex counterpart and OLS based on estimated grouping.

• DCP is close to the ideal optimal performance when SNR is high.

• The average number of iterations is about 3-4.



Mean square error: Example 2

50,50 50,100 100,50 100,100

Convex
OLS
DCP
Ideal

p,n

M
S

E

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

• DCP performs similarly as its convex counterpart and outperforms OLS based

on estimated grouping.

• DCP is not too close to the ideal optimal performance.

• The average number of iterations is about 2.



Take Away Messages

• Grouping in regression analysis can reduce estimation variance while

retaining the roughly the same amount of bias, leading to better predictive

accuracy.

• Develop its graph version.

• Study other types of grouping, e.g., grouping coefficients of similar size

not value, which involves the absolute values.


