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Shannon Formulation

Input bit string: u = (u1, u2, . . . . . . , uK )

↓

Encoded string: x = (x1, x2, . . . , xn)

↓

Channel: p(y |x)

↓

Received string: y = (y1, y2, . . . , yn)

↓

Decoded string: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n input bits per uses of channel

Reliability: Want small probability of error {û 6= u}
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Gaussian Noise Channel

Input bit string: u = (u1, u2, . . . . . . , uK )

Encoded string: x = (x1, x2, . . . , xn)

Power: |x |2 = 1
n

∑n
i=1 x2

i

Power constraint: |x |2 ≤ P

Gaussian noise: ε = (ε1, ε2, . . . , εn)

Noise variance: σ2

Signal to noise: v = P
σ2

Received string: y = (y1, y2, . . . , yn)

y = x + ε

Decoded string: û = (û1, û2, . . . . . . , ûK )
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Shannon Theory

Channel Capacity:
Supremum of rates R such that reliable communication is
possible, with arbitrarily small error probability

Information Capacity: C = maxPX I(X ; Y )

Where I(X ; Y ) is the mutual information, aka Kullback
divergence between PX ,Y and PX × PY

Shannon Channel Capacity Theorem:
The supremum of achievable communication rates R
equals the information capacity C

Books:
Shannon (49), Gallager (68), Cover & Thomas (06)
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Gaussian Channel Capacity

Gaussian Channel Capacity:

C = max
E |X |2≤P

I(X ; Y ) =
1
2

log
(

1 +
P
σ2

)
Normal(0, P) is the maximizing distribution on X

Foundational model for
wireless communication
(radio waves, cell phones, television, satellite, space)
wired communication
(internet, telephone, cable)

Relation to sphere packing: Conway and Sloane (88)

No fast encoding and decoding algorithm has been
mathematically proven to achieve rates up to capacity
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Binary Channel Capacity

Binary Symmetric Channel:
Bits are received in error a fraction α of the time

Capacity: 1 − h(α), where
h(α) = α log 1

α + (1 − α) log 1
1−α

No fast encoding and decoding algorithm has been
mathematically proven to achieve rates up to capacity

Bayesian belief propagation: empirically shown to achieve
near capacity performance in a particular Gallager inspired
design by Luby, Mitzenmacher,Shokrollahi,Spielman (01)

Reed-Solomon codes: Algebraic code on finite fields
GF(2m) corrects a fraction of ε errors with rate 1 − 2ε.
Convertable to code for binary strings of same rate, near 1
for small ε, with guaranteed correction of a fraction
α = ε/ log n of errors. MacWilliams & Sloane (77)
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Regression Formulation for the Gaussian Channel

Random design matrix X is n by N (p = N)

Input bit string: u of length K
↓

Coefficient vector: β of length N, with constraints on form
↓

Codeword sent: Xβ of length n
↓

Received string: Y = Xβ + ε
↓

Least squares: β̂ = argmin‖Y − Xβ‖2

This decoder maximizes likelihood; maximizes posterior
probability given the data X , Y ; minimizes probability of
error with uniform distribution on input strings
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Sparse Superposition Code Formulation

Design matrix: X is n by N, each entry indep. N(0, P/L)

Constraint on form of β of length N:
Only L nonzero coordinates, of absolute value 1
Count 2K ≤

(N
L

)
near (Ne/L)L; more available if use signs

Codewords: Xβ of length n; each entry indep. N(0, P)
Codewords are sums of L columns of X

β̂ decoded by least squares is reliable if correctly
determine most of the L terms sent.
Yields small bit error rate 1

K
∑K

i=1 1{ûi 6=ui}

Also small probability of error {û 6= u} ?
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Partitioned Superposition Code

Split u into L sections, each of length log B bits
Total length K = L log B.

Split β into L sections, each of length B,
with one non-zero value in each section.
Total length N = LB.

Input mapping:
In each section, the bit string of length log B specifies
in binary the location of the non-zero coefficient value.
Optional: an extra bit per section used to specify the sign.

Split columns of X into L sections, B choices in each.

Codeword: a sum of L columns, one from each section
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Communication Rate

Codewords formed from L terms, one from each section

Number of codewords: 2K = BL

Number of input bits communicated: K = L log B

Section size B = La and dictionary size N = L1+a

Number of input bits communicated for a rate R code

n R = K = L log B = a L log L

Choice of sample size to achieve a rate R code

n = (a/R) L log L
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Sufficient section size rate

Polynomial section size:

B = La

An expression av is determined:
av is decreasing with signal to noise ratio v
av is near 1 for large v

Significance:
If a > av , then the error probability of least squares is
shown to be exponentially small for any communication
rate R < C.
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Precursors

Forney (66) Concatenated codes
Cover (72) Superposition codes for broadcast channels.
Section sizes B1 = 2nR1 , . . . , BL = 2nRL exponentially large.
Codeword sent is sum of codewords for respective users.
Similar setting for multiple access channels Rimoldi and
Urbanke (01), Cao and Yeh (07).
Wainwright (09) Information theory bounds on size of sets
of sparse coefficients correctly decodeable by least
squares. Correspond to positive rates (associated with
n = const L log N/L), but not all the way to capacity.
Related work Candes & Tao (06), Candes & Plan (08).
Interpretation of our conclusion: Compressed sensing
capacity. Minimal number of measurements of average
power P needed to determine the L out of N terms with
small average prob error is n = (1/C)L log(N/L) where C
is Shannon’s channel capacity.
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Error Probability Bound

Codeword sent: Xβ∗

Least squares or approximate least squares estimate β̂
satisfies |Y − X β̂|2 ≤ |Y − Xβ∗|2

Error event of a fraction of α = `/L section mistakes,
contained in the event
Eα = {|Y − Xβ| ≤ |Y − Xβ∗|2 for some β ∈ Wrongα}
where Wrongα is the set of β differing from β∗ in ` sections.

Error probability: Bound on P[Eα] using(
L
αL

)
exp{−nDα}

where the exponent Dα is sufficiently large to cancel the
combinatorial coefficient and produce an exponentially
small error, provided the section size a > av and R < C.
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Some ingredients of the error exponent

Ingredients in Dα = D(∆α, ρ2
α)

∆α = α(C − R) + (Cα − αC)

Cα = (1/2) log(1 + αv)

1−ρ2
α = α(1−α)v/(1 + α2v)

where capacity C = 1
2 log(1+v) and v = P/σ2 is signal/noise.

Here D(∆, ρ2) is the large deviation exponent associated with
the cumulant generating function for (1/2)(Z 2

1 − Z 2
2 ) with Z1, Z2

bivariate normal, mean zero, unit variance and correlation ρ.
Near (1/2)∆2/(1−ρ2) for small ∆.

Complete story includes tradeoff with another term.
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Contributions to Error Exponent
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Iterative decoding for approximate least squares

Convex hull algorithm
Let A be the convex hull of the allowed β.
Initialize with β maximizing inner product Y · (Xβ).
Relaxed greedy update (as in Jones (92)):

β(k + 1) = (1 − w)β(k) + wβupdate

Update chosen to maximize the inner product Resk · (Xβ)
with the residuals Resk = Y − (1 − wk )Xβ(k).
Here w in [0, 1] is optimized by least squares.
Computation and accuracy tradeoff

|Y − Xβ(k)| ≤ |Y − Xβproj |2 +
4|X |2

k

Vertex move algorithm Similar analysis for randomized
vertex move algorithm in the manuscript.
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Simulations using approximate least squares

Estimator β̂ found by first doing the convex hull
optimization getting β(k) and then taking the closest
vertex.

Simulations performed by Yale senior David Smalling for
his senior project in Applied Mathematics
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L SNR = 7 SNR = 15
4 0.1500 0.3565
8 0.1500 0.2955
12 0.0540 0.1665
16 0.0520 0.1590
20 0.0130 0.1010
24 0.0240 0.0750
28 0.0180 0.0295
32 0.0110 0.0130
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L SNR = 15 SNR = 31
4 0.3450 0.5380
8 0.2505 0.4540
12 0.1405 0.3680
16 0.1305 0.3375
20 0.0840 0.3230
24 0.0450 0.2990
28 0.0150 0.2355
32 0.0000 0.0000
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L SNR = 7 SNR = 15
4 0.051500 0.115625
8 0.027750 0.081875
12 0.022167 0.060167
16 0.016875 0.044875
20 0.015300 0.032083
24 0.015158 0.028297
28 0.012821 0.019950
32 0.012250 0.012935
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Summary

Sparse superposition coding is reliable at rates up to
channel capacity

Analysis blends modern statistical regression and
information theory
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