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Motivation: ”Omics” Data in Population-Based Studies

• The rapid advance of biotechnology yields massive
high-throughput ”omics” data.

• Examples include genomics, epigenomics, proteomics,
metabolomics,· · · , X-omics.

• Such ”omics” technology has been applied rapidly to
population-based studies to study interplay of gene and
environment in causing human diseases.
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Motivation: ”Omics” Data in Population-Based Studies

• In genome-wide assocation studies, a million SNP markers are
genotyped across the genome to study the association of
commongenetic variants and disease phenotypes (case/control
status).

• The massive whole genome-wide sequencing data are rapidly
available, e.g., the 1000 genome project, to study the effects of
rare variants.
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Motivation

• Variable selection is of significant interests in current
biomedical ”omics” studies.

• Common variable selection approaches are penalized likelihood
based, e.g., LASSO, adaptive LASSO and SCAD.

• The Dantzig selector (DS; Candes and Tao, 2007) can be
viewed as anestimating equationbased variable selection
procedure and is particularly appealing for longitudinal data.

• Little is known about the asymptotic properties of the DS.

• Focus of this talk (Independent data):
(1) Large sample properties of the DS. (2) Propose Adaptive
DS. (3) Connection with Adaptive Lasso.
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Example: GWAS on Childhood Neuro-development in Mexico

• n = 1000 newborns
• 620,000 SNP markers (0,1,2) across the genome

• Outcome: Baylor score of neurodevelopment at 12 months .

• Interested in studying which genes are associated with early
childhood neuro-development and gene-metal exposure
interactions.
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Model Setup

Model:

yi = XT
i β + ǫi,

whereXi=covariates (p × 1) andβ=regression coefficients (p × 1)

andE(ǫi) = 0 andE(ǫ2
i ) = σ2.

Problem:

• Suppose the true set of non-zeroβs: T ∗ = {j : βj 6= 0}.

• Goal: Identify T ∗ and estimateβT = {βj}j∈T ∗.
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Penalized Likelihoods and Lasso

• Penalized likelihood: Simultaneous model selection and

estimation.

– Maximize

−log(likelihood) + sparseness penalty,

• Lasso

min
β

1

2
||y − Xβ||22 + λ||β||1. (lasso)
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Dantzig Selector

• Idea:Rather than controlling the size of residuals, the Dantzig
selector is based on the normal score equations and controls the
correlation of residuals withX:

minimize ||β||1
subject to ||X ′(y − Xβ)||∞ ≤ λ.

(DS)

• Candes and Tao (2007) and Bickel al (2008) studied finite
sample properties.

• The Dantzig selector and Lasso are closely related (Efronet al.,
2007; James,et al., 2008).

• Little is known about the large sample properties of the DS.
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Questions

• Question(s) 1:
Is the Dantzig selector consistent for estimation? What is its
asymptotic distribution?

• Question 2:
Is the Dantzig selector consistent for model selection?i.e., is

lim
n→∞

P (T̂ = T ∗) = 1?

• Answers to Questions 1 and 2 depend heavily on choice ofλ.

• When does the Dantzig selector have a unique solution?
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Uniqueness and the Dantzig Selector

β̂

D

|| β̂ ||1 B1

• The DS feasible set:D = {β; ||X ′(y − Xβ)||∞ ≤ λ}
• If D is not parallel to the closedL1-unit ball,B1, then the

Dantzig selector has a unique solution.

• If Xi are iid then the Dantzig selector has a unique solution
with probability 1.

March, 2009 Xihong Lin



12

Asymptotic Properties of the Dantzig Selector

• If C = limn→∞ n−1XTX is not parallel to theL1-ball.

• Asymptotic Limit: If λ/n → c0 andc0 ∈ [0,∞], thenβ̂
P→ β∗ ,

whereβ∗ is the true value ofβ andβ0 solves

minimize ||β||1
subject to ||C(β∗ − β)||∞ ≤ c0.
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Asymptotic Properties of the Dantzig Selector

• If λ/
√

n → c1 andc1 ∈ [0,∞), then
√

n(β̂ − β∗)
D→ u0, where

u0 solves

minimize
∑

j∈T ∗ sgn(β∗
j )uj +

∑
j /∈T ∗ |uj|

subject to ||C(v − u)||∞ ≤ c1,

andv ∼ N(0, σ2C−1).
• Model Selection Inconsistency: There exist a large class of

matricesC for which the Dantzig selector is not consistent for
model selection, regardless ofλ.
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Adaptive (Doubly Weighted) Dantzig Selector

• Ideas:
– When we suspectβj = 0, relax the constraint on thej-th

score equation and heavily penalize non-zeroβj.
– When we suspectβj 6= 0, Nearly solve thej-th scoring

equation and only moderately penalize non-zeroβj

• Adaptively Dantzig Selector (ADS)

minimize
∑n

j=1 wj|βj|
subject to |X ′

j(y − Xβ)| ≤ wjλ, j = 1, ..., p.
(ADS)

e.g.,wj = |βLS
j |−γ for someγ > 0.
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Adaptive Dantzig Selector

Dantzig Selector

β̂

β* +  C−1 B∞

|| β̂ ||1 B1

Doubly Weighted Dantzig Selector

β̂

β* +  C−1 W B∞

|| W β̂ ||1 W−1 B1

DWDS, n =  ∞

β̂ = β*

|| W∞ β̂ ||1 W∞
−1 B1

β* +  C−1 W∞ B∞
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Weighted Dantzig Selector: Asymptotics

• Suppose that
√

nwj/λ = OP (1) if j ∈ T ∗ and
√

nwj/λ → ∞
if j /∈ T ∗.

• Model Selection Consistency: The adaptive Dantzig
selector(ADS) is consistent for model selection:

lim
n→∞

P (T̂ = T ∗) = 1,

• Orcale Properties:The ADS estimators are asymptotically
equivalent to the OLS estimator ofβ∗ based on the true model
T ∗: √

n(β̂T ∗ − β∗
T ∗)

D→ N(0, σ2C−1
T ∗,T ∗).
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Adaptive Dantzig Selector and Adaptive Lasso

• Adaptive LASSO:

min
β

1

2
||y − Xβ||22 + λ

p∑

j=1

wj|βj|. (alasso)

• Adaptive DS and Adaptive LASSO have the same asymptotic
properties.
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Adaptive Dantzig Selector and Adaptive Lasso

• Setβ0 = Wβ andX0 = XW−1, we have

minimize ||β0||1
subject to ||X ′

0(y − X0β
0)||∞ ≤ λ

(ADS)

and

min
β0

1

2
||y − X0β

0||22 + λ||β0||1 (ALASSO)

• This implies ADS and DS have the same computational cost
and one can implement ADS using DASSO.
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Estimation of the Toning Parameterλ

• Degrees of Freedom for the Danzig Selection:

d̂f(λ) = trace{XT (X ′
EXT )−1XE} = |T |,

whereE = {j; |X ′
j{y − Xβ̂}| = λ} and letT = {j; β̂j 6= 0}.

• BIC for DS and ADS:

min
β

(nσ2)−1||y − Xβ̂||22 + n−1 log(n)d̂f(λ).

• If wj = |β̂j(OLS)|−1 andλ is chosen to minimize the BIC , then
the ADS is

(i) consistent for model selection and
(ii) asymp. equiv toβ∗

LS based on the true model,T ∗.
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Simulations

• Compare DS, adatpive DS, LASSO and Adaptive LASSO

• For adaptive DS (ADS) and Adaptive LASSO:wj = |β̂OLS

j |−1

• Implementation:
– LARS (Efron,et al., 2004) for lasso and alasso.
– DASSO (an extension of LARS; James,et al., 2008) for

Dantzig selector and ADS.
– Both LARS and DASSO efficiently obtain estimates forall

values ofλ.
• λ chosen to minimize prediction error using validation data

(Data validation (DV)) and BIC.
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Simulation Settings

• Simulation settings:

β0 = (3, 1.5, 0, 0, 2, 0, 0, 0) ∈ R
8,

X = (xij), xij ∼ N(0, 1), corr(xij, xij′) = 0.5|j−j′|, i 6= j,

with independent rows.

• Noise levelsσ = 1.

• Number of observations:n = 50.

• 500 runs.

March, 2009 Xihong Lin
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Simulation Results

TuningEstimationSq. ErrorModel ErrorModel SizeF+ F− Exact

DV DS 0.17 0.12 5.69 2.69 0.00 0.07

ADS 0.11 0.08 3.91 0.91 0.00 0.54

LASSO 0.17 0.12 5.70 2.70 0.00 0.07

ALASSO 0.11 0.09 4.01 1.01 0.00 0.50

BIC DS 0.19 0.15 4.08 1.08 0.00 0.34

ADS 0.12 0.09 3.22 0.22 0.00 0.83

LASSO 0.18 0.14 4.10 1.10 0.00 0.34

LASSO 0.12 0.09 3.23 0.23 0.00 0.83
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Concluding Remarks

• Adaptive DS has advantages over the Dantzig selector:
consistency in model selection and orcale properties, parallel
adaptive LASSO.

• ADS outperforms DS in finite sample simulation studies.

• More complex extensions of the Dantzig selector are possible.

LASSO −→ PL with penaltypλ

Dantzig selector−→ pλ-Dantzig selector

• Implementation and theory are more difficult withpλ-DS.

• Extensions to generalized linear models and longitudinal data
using estimating equations are in progress .
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