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Reminiscences

I Clustering Algorithms

I Harvard-Yale days

I John’s opinions
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Some papers I lived inside

I Uniform Convergence of the Empirical Distribution Function
Over Convex Sets W. F. Eddy, J. A. Hartigan The Annals of
Statistics, Vol. 5, No. 2 (Mar., 1977), pp. 370-374

I Representing Points in Many Dimensions by Trees and Castles
B. Kleiner, J. A. Hartigan Journal of the American Statistical
Association, Vol. 76, No. 374 (Jun., 1981), pp. 260-269

I The Dip Test of Unimodality J. A. Hartigan, P. M. Hartigan
The Annals of Statistics, Vol. 13, No. 1 (Mar., 1985), pp.
70-84
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Back to the Future

I Today: Genomics, Proteomics, Metabolonomics, Medical
Imaging

I Features Xi,j , j = 1, . . . , p of gene expression, or spectrum, or
...

I Response Yi : Categorical (e.g. disease ±) or Continuous (e.g.
survival time)

I Large p, Fixed n
I p ≥ 10K (Gene expression, SNP, Mass Spectra, ...)
I n ≤ 1K (Affecteds, Compliants,...)

I Goals:
I Prediction: Y = Xβ + Z , eg Z normal
I Classification: E (X |±) = β0 ± β

I Generalization of Many Normal Means!
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The Hydrogen Atom: Underdetermined Linear Systems

I Alternate notation, rest of talk
I A an n × N matrix, n < N.
I x0 unknown vector
I y = Ax0.

I Correspondence to Statistics
I Y ↔ y
I X ↔ A
I β ↔ x0

I n↔ n
I p ↔ N
I p > n ↔ N > n.

I Problem: the system y = Ax is underdetermined; infinitely
many solutions, no hope to determine x0.

I What if most of the entries in x0 are zero or nearly zero?
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Apparently Same Phenomena (Unproven)

`1-`0 equivalence

I Sparsest Solution

(P0) min ‖x‖0 subject to y = Ax

I NP Hard in general

I Minimal `1 Solution

(P1) min ‖x‖1 subject to y = Ax

I In many cases the two problems have the same, unique,
solution.

I Much literature on this topic; IEEE IT 2001-today
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Apparently Same Phenomena (Unproven)

Empirical Results

Gaussian Random Matrix A, δ = k/n, ρ = n/N.
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ρ±W (δ): DLD (2004,2006) DLD and Jared Tanner, JAMS 2008

DLD and Jared Tanner The Pleasures of Counting



Empirical Phenomena
Counting Faces of Polytopes

Recent Developments
Big Picture

Apparently Same Phenomena (Unproven)

Nonnegative coefficients

I Underdetermined system of equations:

y = Ax , x ≥ 0

I Sparsest Solution

(NP) x0 = argmin ‖x‖0 s.t. y = Ax , x ≥ 0

I Problem: NP-hard in general.

I Relaxation:

(LP) x1 = argmin 1′x s.t. y = Ax , x ≥ 0.

Convex optimization – linear program

DLD and Jared Tanner The Pleasures of Counting
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Apparently Same Phenomena (Unproven)

Empirical Results

Jared Tanner (2005)

δ

Fraction of NP/LP equivalence; weak neighborliness transition ρVS  (red)
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Apparently Same Phenomena (Unproven)

Appearance in Stepwise Regression

Victoria Stodden, Stanford Thesis, 2006

I p = 200 potential predictors

I n observations, a fraction δ = n/p ∈ (0, 1) of number of
potential predictors

I k useful predictors, a fraction ρ = k/n ∈ (0, 1) of number of
observations

I Gaussian white noise

I U(0, 1) regression coefficients

I Forward Stepwise Regression

I False Discovery Rate Stopping rule (FDR ≤ 1
2).
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Apparently Same Phenomena (Unproven)

Phase Diagram for Stepwise FDR
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Apparently Same Phenomena (Unproven)

Appearance in Computational Complexity

I Minimal `1 Solution

(P1) min ‖x‖1 subject to y = Ax

I Mixed `1-`2 objective

(Hλ) min ‖y − Ax‖22/2 + λ‖x‖1

I As λ→ 0 solves `1.

I Solution Path (xλ) is polygonal.

I Osborne et al. (1999)

I Efron, Hastie Johnstone, Tibshirani (2003)

DLD and Jared Tanner The Pleasures of Counting



Empirical Phenomena
Counting Faces of Polytopes

Recent Developments
Big Picture

Apparently Same Phenomena (Unproven)

Solution Cost of `1 minimization problems

DLD and Tsaig IEEE IT 2008
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Apparently Same Phenomena (Unproven)

Take-Away Messages for Today

I Phase Diagrams fundamental tool

I Phase Transitions for key observables in large N.

I Rigorous theory for Gaussian Random A
Geometric Combinatorics.

I Conclusive Evidence:
I Universality across broad classes of random matrices A
I Extends to other algorithms
I Extends to noisy observations

I Applications: Compressed Sensing
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Random Convex Hulls

I Xi n random points in Rd

I Xi , i = 1, . . . , n iid N(0,Σ)

I P = Pd ,n = conv{Xi}
I Classically: d fixed

#vertP ∼ cd log(d−1)/2 n, n→∞.

I Renyi-Sulanke (1963), Efron (1965), Raynaud (1971), Hueter
(1998)
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Our Low-Dimensional Intuition
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Modern Era: High-Dimensional Case

I d proportional to n, both large.

I n larger than d but only proportionally so
I Surprise:

I Every Xi is a vertex
I Every (Xi ,Xj) span an edge
I Every k-tuple spans a k − 1 face, k = 1, 2, . . . , ρd
I ... up to quite large k!

I ρ = k/d

I δ = d/n

DLD and Jared Tanner The Pleasures of Counting
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Weak/Strong Transition ρ+
W (δ),ρ+

S (δ)
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

4 Simplex Projected to R3
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

5 Simplex Projected to R3

DLD and Jared Tanner The Pleasures of Counting



Empirical Phenomena
Counting Faces of Polytopes

Recent Developments
Big Picture

Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Symmetrized Gaussian Point Cloud

I Xi n random points in Rd

I Xi , i = 1, . . . , n iid N(0,Σ)

I P± = conv{±Xi}
I Classically: d fixed

#vertP ∼ c ′d log(d−1)/2 n, n→∞.

I Böroczky and Henk (1998)
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

High-Dimensional Case

I d proportional to n!
I Novel Setting:

I Every ±Xi is a vertex
I Every (±Xi ,±Xj) span an edge
I Every k-tuple spans a k − 1 face, k = 1, 2, . . . , ρd , provided it

contains no antipodal pair.
I This continues up to some threshold in k .

I ρ = k/d

I δ = d/n

DLD and Jared Tanner The Pleasures of Counting
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Strong/Weak Transitions ρ±S (δ)
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

4D Cross-Polytope Projected to R3
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Correspondence: Faces ↔ Models

I Collection of statistical models: poset.

M0 = {X3,X12,X106}, M1 = {X3,X12,X21,X106,X203}.

I Faces of a polytope: poset

F0 = {x : x ≥ 0, xj = 0, j 6∈ {3, 12, 106},
∑

j

xj = 1},

F1 = {x : x ≥ 0, xj = 0, j 6∈ {3, 12, 21, 106, 203},
∑

j

xj = 1},

I In some sense, k-sparse model should a k + 1-face of a
combinatorial structure

I If fewer than ‘full’ number of faces of a projected polytope
can’t determine certain models from data.

DLD and Jared Tanner The Pleasures of Counting
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Underdetermined Equations w/ nonnegative coefficients

Solution method:

(NP) x0 = argmin‖x‖0 s.t. y = Ax , x ≥ 0

(LP) x1 = argmin‖x‖1 s.t. y = Ax , x ≥ 0

Lemma Suppose that x0 is a fixed k-sparse vector, and A is
Gaussian iid N(0, 1/n). Then

P{x1 = x0} =
fk−1(ATN−1)

fk−1(TN−1)

Theorem For large N, n, n/N → δ and k/n→ ρ

fk−1(ATN−1)

fk−1(TN−1)
≥ 1− o(1)

provided ρ < ρ+
W (δ). DLD and Tanner 2005.
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Underdetermined Equations

Solution method:

(P0) x0 = argmin‖x‖0 s.t. y = Ax

(P1) x1 = argmin‖x‖1 s.t. y = Ax

Lemma Suppose that x0 is a fixed k-sparse vector. Consider
random problem instance y = Ax0, A Gaussian N(0, 1/n). Then

P{x1 = x0} =
fk−1(ACN)

fk−1(CN)
.

Theorem For large N, n, n/N → δ and k/n→ ρ

fk−1(ACN)

fk−1(CN)
≥ 1− o(1)

provided ρ < ρ±W (δ). DLD (2004,2005)
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

A. Vershik & R. Schneider
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Expected Face Count

Efk(R) = fk(Q)− 2
∑
s≥0

∑
F∈Fk (Q)

∑
G∈Fn+1+2s(Q)

β(F ,G )γ(G ,Q);

I R = AQ with A uniform random projection

I Affentranger and Schneider (1992), Vershik and Sproyshev
(1992) McMullen (1972), Grünbaum (1968) H. Ruben (1960)

I β(F ,G ) Internal Angles (explain)

I γ(G ,Q) External Angles (explain)
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Example of Internal Angle
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Example of External Angles
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Convex Hulls of Gaussian Point Clouds
Convex Hulls and Systems of Equations

Angles and Gaussian Integrals

γ(F `,T n−1) =

√
`+ 1

π

∫ ∞
0

e−(`+1)x2

(
2√
π

∫ x

0
e−y2

dy

)n−`−1

dx .

β(F ,G ) is proportional to:

J(m, θ) =
1√
π

∫ ∞
−∞

(

∫ ∞
0

e−θv
2+2ivλdv)me−λ

2
dλ.
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Asymptotics as δ → 0

Theorem DLD & Tanner JAMS 2008

ρ+
W (δ) ∼ ρ±W (δ) ∼ 1

2 log(1/δ)
, δ → 0.

ρ+
S (δ) ∼ 1

2e| log(2
√
πδ)|

, δ → 0.

ρ±S (δ) ∼ 1

2e| log(
√
πδ)|

, δ → 0.

Proof: Careful analysis of internal, external angles in asymptotic
setting where d , k, `� n.
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Empirical Phenomena
Counting Faces of Polytopes

Recent Developments
Big Picture

Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Practical Implication of δ → 0: Undersampling Theorem

Rule of Thumb.

I Suppose k,N both large.

I k/N is small and x0 ∈ Rn is k-sparse.

I How many random projections of x0 do we need so that (P1)
perfectly reconstructs?

I Answer:
n ≈ 2k log(N/n).

I Proof: ρ±W (n/N) ≈ 1
2 log(n/N) for n/N small.

I Implication: Compressed Sensing. DLD IEEE IT 2006

DLD and Jared Tanner The Pleasures of Counting
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Recent Developments: Finite n bounds (a)

DLD & Tanner (2008) ; n =∞, 5000, 1000,200
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
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Recent Developments: Finite n bounds (b)

DLD & Tanner (2008) ;

Positivity-Constrained Unconstrained

N n k ε θ n k ε θ

104 3,529 1,253 10−3 1/5 4,299 1,208 10−3 1/5

106 30,510 4,472 10−3 1/10 31,323 3860 10−3 1/10

106 35,766 5,487 10−10 1/10 36,819 4,722 10−10 1/10

109 1,355,580 113,004 10−10 1/50 1,365,079 102,646 10−10 1/50

Table: For the specified (k , n,N) and ε, the probability of succesfully
recovering a k-sparse vector x0 ∈ RN from n samples exceeds 1− ε . θ is
a parameter of our method measuring proximity to the asymptotic
thresholds

DLD and Jared Tanner The Pleasures of Counting
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Recent Developments: Finite n bounds (c)

DLD & Tanner (2008)

Here RV

N n k n k

103 500 40 652 1

104 1,000 45 1,089 3

105 1,000 27 4,377 27

107 100,000 2,993 100,090 895

Table: Comparison of our existence results with implications of Rudelson
and Vershynin. Note: RV seemingly much stronger than RIP arguments
of Candes-Tao
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Recent Developments: Universality

I Same experiment, different matrix ensembles
I Bernoulli, Rademacher
I Partial Fourier, Hadamard: sample n rows from N × N ortho

matrix
I Gaussian: Ai,j ∼ N(0, 1)
I Uniform Random Projection
I Expander Graphs

Empirically: same behavior. Tanner and DLD (2009, Submitted
Phil. Trans. Roy. Soc.)

I 16,000 situations studied

I 2.8 Million Linear programs solved

I 6.8 CPU years

I Data analysis: 33 pages

DLD and Jared Tanner The Pleasures of Counting
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Results for 9 Matrix Ensembles
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Other Algorithms

I Basic Schemas
I Iterative Hard/Soft Thresholding
I Iterative Multiple Regression

I Tuning
I Threshold Levels
I Relaxation Parameters
I Pruning Parameters

I Empirical Study:
Maleki and DLD (2009, Submitted IEEE SP)

I 100 Million Reconstructions
I 3.8 CPU years
I Vary Matrix & Coefficient ensembles
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Asymptotics as δ → 0
Recent developments: Finite n bounds
Recent Developments: Universality
Recent Developments: Other Algorithms

Maximin Tuned Algorithms Compared with `1
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Is this Fundamental?

I We’ve been studying The Hydrogen Atom.
I no noise
I exact sparsity
I `1 only

I ’Natural Boundary’ for more general settings

I Relax Exact Sparsity: Xu and Hassibi (2008)
I Add noise, Minimax Bayes Risk (w/Johnstone)

I Add noise, let δ = n/N → zero: minimax MSE explodes above
2k log(N/n)(1 + o(1)).

I Other properties, story can differ, see Wainwright and
co-authors.

I Other polytopes & convex bodies: eg Hypercube, etc. DLD &
Tanner; Semidefinite Cone Recht, Xu, Hassibi

DLD and Jared Tanner The Pleasures of Counting
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Take Away Messages

I Draw Phase diagrams: n/N on one axis k/n on other.
I Phase Transitions:

I Observable empirically
I Rigorous foundation in combinatorial geometry
I Universal across many matrix ensembles
I Exist for many algorithms, properties

I Phase Transition at n � 2k · log(N/n) is useful, fundamental

I zero-noise, exact sparsity PT continued analytically to
positive-noise, approximate sparsity results
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