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Some LDA Background

» n training samples (X;, Y;)

» X; ~ N(Y;-p, X): feature vectors in RP
» Y;==£1: class labels

» Goal. given test feature (X), predict class label Y
Fisher's linear classifier

LX) =Y w() - X())

j=1

> w(j): feature weights determined by (X;, Y;)

1, L(X)>0

> Classify Y = { -1, L(X) <0

» Optimal weights: w oc ¥ =1y, approachable when n>> p
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Modern Challenges

Iconic examples: gene microarray

Data Name Source n, # samples | p,# features
Colon cancer Alon et al. (99) 62(22,40) 2000
Leukemia Golub et al. (99) || 73(38,35) 7129
Prostate cancer | Singh et al. (02) || 102(50,52) 12600

Problem: Too few observations to estimate ¥~ (p > n).
Response: use separable classifiers diag(X) ™.

Problem: Many features, most useless, a few useful /weak
Response: feature selection

Qutcome: Feature Selection + DLDA

e.g. Bickel and Levina (04), Fan &Fan (08), Tibshirani et al. (02)
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Feature Selection + DLDA

Step 1. Calculate training Z-vector

» Z = Group Mean DifFerence/\/(ni1 + n%)pooled variance
> Standardized by Z = [Z — mean(Z)]/SD(Z)
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Step 2. Feature Selection by thresholding Z

sgn(Z;) - Liz|>t} * = clip
Feature weights: w;(j) = ¢ Zi - 1z/>1), * = hard
sgn(Z;)(1Z;| — t) - l{z|>ty, *=soft

Step 3. Classification using LDA:

X()

0j

) < >0

L'(X: 6) = Y wil) - (

J=1

Problem: What is the best threshold t7?
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Threshold Choice

Commonly seen intuition:

low feature FDR (e.g. keep strongest 3 or 5)
Sure Indep. Screening (SIS) (Fan & Lv 08 )
cross validation (CV)

threshold monotone with feature strength

v

v

v

v

For today:
» Threshold choice by Higher Criticism (HC)
» Re-investigate the above ideas
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Higher Criticism Thresholding (HCT)
Insight, and Rare Weak Model (RW)

Phase diagram/Optimality (Asymptotic RW)
Comparison with FDRT /SIS/CVT

v

v

v

v

David Donoho (s) Jiashun Jin (c) Higher Criticism Thresholding



Higher Criticism Threshold (HCT)

Zi: z-score for testing whether j-th feature is useful

1. Convert to P-values: m; = P{|N(0,1)| > |Z;|}

2. Sort: 1) < TRy .- < T(p)

3. HC objective function HC,’f = Maxi<<ayp- p{f(ﬁ)}
P i/p(1—i/p

4. HC-threshold (HCT): (new ingredient)

tc = |Z|;) corresponding to maximizing i

Note: (1). slight difference of HC from Donoho & Jin 04. (2). Hall et al 08 uses HC

for classification without features selection; see Donoho & Jin 08 for comparison
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ordered z-scores
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ordered p-values
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HC objective Function
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Comparison with Popular Classifiers

Data: Leukemia/Colon/Prostate
» (2/3,1/3) random split (Train, Test).
» average test errors across 50 replications

> regret — Cell value — Column min
Column max — Column min

All except that of HC is from Dettling's paper.

Method Colon regret Leukemia regret Prostate regret Max. Regret Rank
Bagboost 16.10 .58 4.08 .59 7.53 0 .59 4
Boosting 19.14 1 5.67 1 8.71 .13 1.00 7.5
RanFor 14.86 41 1.92 .02 9.00 41 41 2
SVM 15.05 44 1.83 0 7.88 .04 .44 3
PAM * 11.90 0 3.75 .50 16.54 1 1.00 7.5
DLDA 12.86 .13 2.92 .28 14.18 74 74 6
KNN 16.38 .62 3.83 .52 10.59 .34 .62 5
[ HCT-hard [ 13.77 ] 26 ] 3.02 [ 31 ] 9.47 [ 22 ] 31 ] 1]

* Tibshirani et al. posted very different figures.

See Donoho and Jin (2008) for comparison with simulated results
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Rare/Weak Features Model (RW)

» n training samples (X, Y;):

X~ N(Y;-p, X), Y; = £1: class lables
» Z-vector: Z ~ N(y/n-p, ¥)
> test feature: X ~ N(dpu, X)

RW model:
> Z = IP
T J-th feature is useful
> Vin = { 0, J-th feature is useless

»e=2-#{w # 0}

Four key parameters:

p > n, €~ 0, 7 small or moderately large
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Definition
» Optimal threshold: minimizes P{misclassified |t }
» Ideal threshold: minimizes a proxy of P{misclassified|t}
» HCT: maximizes HC objective function
» Ideal HCT: maximizes Ideal HC objective function

Key: in a broad situation (including RW Model)

Optima threshold ~ Ideal threshold ~ Ideal HCT ~ HCT
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Insight |, Fisher's Separation

Linear Classifier score L(X) = w'X.

(Diff. of mean scores | 1)  w'p

SEP(L; i) = =
(L) v/(Variance of scores | ) [[wll2

> Clip:  L(X) = >_sgn(Z)) - Lyzz - X() < >0
» P{misclassified |t} = E..EZ[®(SEP(L; | 11))]
» IF order of “E” and "“®" can be interchanged:
E.-Ez[®(SEP(Ly; )] ~ &(SEP(t))
where SEP(t) = (EL¢(1))/||EVar(Le(X)|u)l2
THEN Optimal threshold = Ideal threshold
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Signal Detection Background

Positives: call a training z-score Z; a positive if
|Zi| >t
Positive Rate (PR):
PR(t) = 2(1 — )®(t) + ed(t — 7) + ed(t + 7)
True Positive Rate (TPR)
TPR(t) = e - [®(t — 7) + e®(t + 7))

note: both are expected values
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Insight I, Intimacy of SEP and HC

» Neglect stochastic fluctuations, HC reduces to Ideal HC:

e [P(t —7)+ &(t +7) — 2d(1)]

HC(t e, 7) = VPR(t)(1 - PR(t))

» Ideal Thresholding: maximize

e [O(t —7)— &t +7)] € TPR(t)

VPR(®) =~ VPR(D)

» In RW Model, parameters € =~ 0, 7 moderate to large, so

gé;JJ(t; €,7T)=

e TPR(t)

T-I\(,/'t;, %g\/t;, ~
(te7)~ Seplticm) ~ ~—pmrs

» Optimal threshold = Ideal threshold = Ideal HCT ~ HCT
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Green: Average HCT over 100 simulations; Red: Optimal threshold
p = 10,000, e = 0.01, 7 = 3.5, n ranges from 50 to 10,000
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Asymptotic Rare/Weak Model (ARW)

Number of features p grows to oo
» Linking rarity /weakness to p:

ep:p_ﬁ, 0<pf<l1

Tp = y/2rlog p, O<r<l1

» Linking sample size n to p (3 types of growth):
» (No growth): n is fixed
> (Slow growth): 1 < n < p?, for any 6 > 0
> (Regular growth): n = p? for some 6 € (0, 1)
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Impossibility and Possibility

Introduce
0, 0<pf<1)2
p(B) =14 (B-1/2), 1/2< 3 <3/4
(1-vI-P2,  3/4<p8<1
and
,,11 -p(B), * = no growth
p*(8) = r(B), * = slow growth
(1-19)- p(%)7 * = regular growth

r = p*(0) partitions 3-r plane into two regions:

Region of Possibility, Region of Impossibility
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Phase Diagram (Slow Growth)
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e=p P, T =+/2rlogp, 1/2<p8<1, 0<r<1

Region of Impossibility: help to explain failure of reproducibility
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Comparison: HCT vs. FDRT and SIS
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e=p P, T = /2rlogp, 1/2<pB<1, 0<r<1
Number in brackets: (FDR, MDR, local FDR)
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Comparison to Shrunken Centroid (CVT)

0.5
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p = 10%, n = 40;

100 useful features generated from N(7/y/n,1), T € [1,3];
9900 useless features generated from N(0,1)
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Take-home messages

» New threshold for feature selection when useful features are rare
and weak (RW) in the large-p, small-n setting

» Optimal classification performance
» Very different from fashionable FDRT
» Can replaced CVT with lower cost and better performance

» Competitive on standard real datasets
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Available: DLD & JJ (2008): definition, heuristics, practical results
JJ (2009): region of possibility/impossibility
DLD & JJ (2009): phase diagram, first order asymptotics

In preparation: full achievability, extensions, second order asymptotics
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