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Introduction

e Response Y = (Y7,---,Y,)".
e Predictors: p-dimensional ; = (x;1, - - , Zsp).
e Regression model:
Yi=plx;) +e, 1=1,...,n, (1)
where u(z;) = x! Bande; ~ N(0,02).

e Goal: Identify all potential groupings for optimal predication of Y,

especially when p >> n.

e Grouping pursuit amounts to estimating grouping G° = (G}, ..., G%)"
aswellas &’ = (al,...,a%)" given G' when true
0 (0 0 T
BY = (61, 8,)" =or=(atljgy, .., e ligg )" with 1igo,

denoting a vector of 1’s with length |GY|.



Grouping pursuit

e Essential to high-dimensional analysis is seeking a certain

low-dimensional structure.

© Homogenous subgroups. Variable selection seeks only two
homogenous groups: zero-coefficient group vs non-zero-coefficient
group.

o Projection pursuit, - - -.
e Main idea: Group coefficients of roughly the same value or size.

e Benefits: Variance reduction, which goes beyond variable selection.
Simpler model with higher predictive power. Can be thought of as one

kind of supervised clustering.

e Challenges: Complexity for identifying the best grouping is the pth order
Bell number: B, = > %—order e forsome 0 < a < 1.



Relevant literature and motivation

e Literature:
o Grouping in series order (F-Lasso, TSRZK, 05): Z?zl 1B; — Bjt1].
o Grouping in size (Bondell & Reich, 08): » |, _. max(|3;], |5;]).

o Grouping pursuit is one kind of supervised clustering,.....

e Motivating example:

Figure 1: Plot of the PPI gene subnetwork for breast cancer data



Grouping

® Enumeration

o Partition {1,--- ,p}into G = (G, --- ,Gy). Given G, compute
OLS through regression of Y on grouped
Zgl — Xgll, Tt 7ZGk — ngl

o Choose the best grouping from all possible groupings.

o Computation is infeasible, i.e., p = 10 requires 115975 enumerations

(Bell number)—much worst than that in variable selection.

e Our objectives
o Accurate grouping.
o Computational efficiency.

o Reconstruction of true grouping & unbiased OLS based on it

simultaneously.



Grouping pursuit—our approach

e Regularization through designed nonconvex penalty

n

1
S(B) = %;( = B)+ MJ( Z;G
(2)

where \; > 0 is a regularization parameter, G(2) = Ay if |z| > A5 and

G(z) = |z| otherwise, and Ay > 0 is a thresholding parameter.

e Role of G(2)

o Piecewise linear for computational advantage through grouped

subdifferentials and difference convex (DC) programming.

o Three non-differentiable points: (a) z = 0 for grouping pursuit; (b)

2 = =)\ for computation and for theoretical advantages.



Grouped subdifferentials

e Subdifferential of convex S(3) at 3 is the set of all subgradients at (3.
e Subgradient of |3; — ;| wrt 3; at @ = B(N) is b; ().

Sign(3;(A) — B (A)) 10 < |B;(A) = By (M)
i (A)] <1 it 35(A) = By (A) = 0.

e Due to overcompleteness of the penalty, bjj/()\) can not be estimated.

e Subgradient of j wrt group G (A): Bj(A) = > _ireg, an g Digr (),
with > g n) Bj(A) = 0, because b;jy = —by; for j # j'.

e Subgradient of subset A wrt group G ():

Ba(A) =) Bj(A) = > biir(N), with

JjeEA (7,9")EAX(Gr(N)\A)
[Ba(A)| < JAI(|GR(X)] — |A]).



Solution surface via DC programming

e Decompose S(B) In (2) into a difference of two convex functions

S1(8) = 57 >y (Y — 2/ B)? +)\1Z\ﬁ] B and

7<y’
( ) A1 ZK] Gz(ﬁj 6]-/), through a DC decomposition of

G(-) = Gu1(+) = Ga() with G (2) = |2] & Ga(2) = ([2] = Ao)+-

Figure 2: DC decomposition of G(z).



Solution surface via DCP, continued

e Linearize Sy((3) at iteration m by its affine minorization from iteration
m — 1, leading to an upper convex approximating function at iteration m:

S (B) = S1(B) — S2(B™HV(A) — (B - B HN)TVS(B™Y(A), ©)

o V : the subgradient operator; Bkm_l)()\) . minimizer of (3) at

iteration m — 1.
e Solve (3) iteratively until it converges.

e No need to seek global solution—DC solution has desired optimality of a
global solution in grouping (Theorem), and can be computed much

efficiently (Theorem).



Homotopy method+DCP

e Key: homotopy via subdifferentials and DCP for solution 3™ ()
o Optimality through subdifferentials: V.S(™) (ﬂ)lﬂzg(m)o\) = 0.

e Major challenges: (1) (Discontinuity) B(m)()\) may contain jumps in
(Y, \2); (2) (Overcompleteness) computing Bj(m)()\) via enumerations

over {b,; } is infeasible, (Bell number).

e Homotopy (1) piecewise linear and continuous in A given (Y, \y) with
piecewise linear penalty and designed support point. Transition
conditions: (1) Combining groups Gy () with G (X): ag(A) = ag(N);
(2) Splitting group Gi(A): [Ba(A)] < |A[(IGk(N)] — |A]).

e Overcompleteness: Use piecewise linear property of B;m)()\) for

searching (order: O(p*log p)).

e Homotopy Algorithm for computing B(A) as a function of A

simultaneously.



Homotopy method+DCP, continued

Property: terminate finitely and converge rapidly. Control at one A\ implies

the entire surface.
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Figure 3: Regularization solution path/surface.



Model selection for prediction

e Model selection:

AN

GOF(B(N) = o Zm—m,mi)))%l&df@), )

2n n
—1

o For smooth B(A) (m = 0), df (A) = K () for fast computation, c.f.
SURE (Stein, 1981).

o For piecewise smooth B(X) (m > 0),
= ZCOV (Y, 1" (N, x;)) and Cov*(Y;, 1" (N, x;)),

through data perturbatlon (GSURE, Shen & Ye, 2002).



Theory: Error analysis

e Performance for grouping pursuit:

o Error: (Disagreement) P(G(X) # G°) < P(B(\) #£ 3)).
G(A), G: estimated and true grouping (uniquely defined). B()\), 3els).
estimator defined by Algorithm 2 and OLS based on GY.

Theorem: P(B(A) # 3°%)) is upper bounded by

K(K—l)@(—nl/z(%nin—)‘?))_|_pq)( —nA ) (5)

5 —1/2 0 maxi<;<p || ;||

20‘Cmin

e O(z): CDFof N(0,1).
|2;||: La-norm of x;.
Yimin: Min{|a —a?| >0:1 <k << K}
Coin: SMallest eigenvalue of Zgo Zgo/n.

K: 4 of estimated groups, which is no larger than min(n, p).



Theory: Error analysis, continued

min\ /min — A ’ )\2
Ifmax{nc 4 2) " }—logp—>oo
80?2 ' 202 max ||x;||*/n
1<5<p

e Grouping Consistency
P(G(A) #G°) < P(B(A) # B) = 0, p,n — +oo.

® Remarks:

o Roughly: p < exp(O(nA?)), \; — 0, n'/2\; — oo,

NComin(Vmin — A2) — 00. ( max |;]|* /n bounded, satisfied by

standardization).

o Note that ¢,,;, can be independent of (p, 1) or ¢y, — 0 as

p,n — 00, depending on if / increases in (p, n) even though the

true model is independent of (p, n).

o Aless sharp bound can be derived under a moment assumption of £;.



Theory: Grouping

Letr;(B(N)) = ! (Y — XTB()\)) which becomes the sample
correlation between X and the residual, after standardization of
{.’,Bj ]: 1,,]?}

Theorem: (Grouping) Forany j = 1,...,p, j € Gr(\) if
7, (B(AN)) = nA 0k (AN)| < A (|Gk(N)| —1);k=1,..., K(X). Here
6r(A) = ™) (\) and 6™ () is defined in Theorem 1.

e Predictors with similar values of correlations are grouped together, as
characterized by intervals Uf:(iq (n)\15k()\) — nA(|Ge(A)]| —

1), nA10k(A) + 1A (|Gk(A)]| — 1))



Numerical examples

e Ex1: (Sparse grouping). In (2), ¢; ~ N (0, 0c*) and o according to
SNR; x; ~ N(0,3,,) withn = 50, p = 20 and
diagonal/off-diagonal elements 1/0.5;

/8:(07”'70727°°°72707°°‘7O,7‘27""2,)T'
5 5 5 0

e Ex2: (Large p but small n). In(2), &; ~ N(0, %), with SN R = 10;
x; ~ N(0,X) with 0.5V ¥ the jk-th element of 3. Here

B=3,...,3,—-15,...,—-15,1,...,1,2,...,2,0,...,0)".
M h 5 . 5 5 180

e Mean squares error: averaged over 100 replications.
e Tuning: X is estimated by minimizing GDF over grid points.

e Comparison: Convex (Zj<j, \ﬁ] — ﬁj/\), OLS given estimated grouping.



Mean square error: Example 1
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e DCP outperforms its convex counterpart and OLS based on estimated grouping.
e DCP is close to the ideal optimal performance when SNR is high.

e The average number of iterations is about 3-4.



Mean square error. Example 2

p,Nn
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e DCP performs similarly as its convex counterpart and outperforms OLS based

on estimated grouping.
e DCP is not too close to the ideal optimal performance.

e The average number of iterations is about 2.



Take Away Messages

e Grouping in regression analysis can reduce estimation variance while
retaining the roughly the same amount of bias, leading to better predictive

accuracy.
e Develop its graph version.

e Study other types of grouping, e.g., grouping coefficients of similar size

not value, which involves the absolute values.



