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I. Introduction

Consider a source {Xn} with values in A, to be compressed
with distortion no more than D with respect to an arbitrary
sequence of distortion measures ρn : An × Ân → [0,∞).
Let B(xn

1 , D) = {yn

1 ∈ Ân : ρn(xn

1 , y
n

1 ) ≤ D} denote the
distortion-ball of radius D around the source string xn

1 . We
consider codes Cn : An → {0, 1}∗ that operate at distortion
level D. Any such code is the composition of a quantizer φn

that maps An to a discrete codebook Bn ⊂ Ân, followed by a
prefix-free encoder ψn : Bn → {0, 1}∗. The code Cn operates
at distortion level D, if ρn(xn

1 , φn(xn

1 )) ≤ D for all xn

1 ∈ An.
The figure of merit is the length function Ln of the code Cn:

Ln(xn

1 ) = length ofψn(φn(xn

1 )), in bits.

Our starting point is the following precise correspondence
between compression algorithms and probability distributions
Q on Ân: Similarly to the lossless case, this correspondence is
expressed in terms of the idealized lossy Shannon code-lengths

Ln(Xn

1 ) = − logQ(B(Xn

1 ,D)) bits. (1)

Thus motivated, we pose the problem of selecting a “good”
code among a given family as the statistical estimation prob-
lem of selecting one of the available probability distributions
{Qθ; θ ∈ Θ} on the reproduction space.

In the lossless case the problem of optimal compression is
theoretically equivalent to finding a distribution Q that in
some sense minimizes the code-lengths − logQ(xn

1 ). In the
lossy case, given a family of probability distributions {Qθ; θ ∈
Θ} on the reproduction space, we want to chose the one whose
limiting rate R(θ,D) is as small as possible,

R(θ,D) = lim
n→∞

−
1

n
logQθ(B(Xn

1 ,D)).

If the above class is large enough, then R(θ∗,D) is just the
rate-distortion function, but in general our target distribution
Qθ∗ is that corresponding to θ∗ = arg min

θ
R(θ,D). Thus,

our goal here is to do statistical inference to estimate this
distribution Q∗, and not the true source distribution.

II. A Lossy MDL Principle

A natural way to estimate the optimal θ∗ empirically is to
minimize the idealized code-lengths (1). We thus define the
Lossy Maximum Likelihood Estimate (LMLE) as

θ̂LML
n = arg min

θ∈Θ

[− logQθ(B(Xn

1 ,D))].

Our first main result [1] is that: Under very general
conditions the LMLE is consistent, θ̂LML

n → θ∗ w.p.1.
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But as with the classical (lossless) MLE, this θ̂LML
n also

has some undesirable properties – it tends to “overfit” the
data. To rectify this, we considered “penalized” versions of
the LMLE, and define the Lossy Minimum Description
Length Estimate (LMDLE) as

θ̂LMDL
n = arg min

θ∈Θ

[− logQθ(B(Xn

1 ,D)) + `n(θ)],

where `n(θ) is a given “penalty function.” For simplicity, we
only consider penalties of the form 1

2
k(θ) log n, where k(θ) is

an integer (intuitively, k(θ) is the dimension of the smallest
subspace θ belongs to in a hierarchy of nested subspaces).

Our second main result [1] is that: Under general con-
ditions, the LMDLE is: (i) consistent; (ii) it finds
the smallest-dimensional subspace that θ∗ belongs to,
with probability 1.

Example. Lossy MDL vs. Lossy MLE. Suppose that
the i.i.d. source {Xn} takes values in a finite alphabet A, let Θ
parametrize the simplex of all i.i.d.probability distributions on
A = Â, and let L0 ⊂ L1 ⊂ ... ⊂ Ls ⊂ Θ be nested parameter
sets. We express our preference for “simpler” subsets L by
penalizing θ more when it belongs to more complicated sets:
k(θ) = min{0 ≤ i ≤ s : θ ∈ Li}. Suppose the dimension of
Ls∗ , where s∗ = k(θ∗), is strictly less than |A| − 1. Here:

Theorem. Under simple technical conditions, with prob-

ability 1: The LMLE will forever fluctuate outside Ls∗ as it

approaches Q∗, whereas the LMDLE will approach Q∗ even-

tually through codes in Ls∗ .

For a Bernoulli(p) source, Fig. 1 illustrates the behavior of
(very good approximations to) the LMLE and LMDLE when
the “preferred” set L0 is the singleton {θ∗} containing the
R(D)-achieving distribution θ∗ = (p−D)/(1−2D). Repeated
simulations show that the LMDLE “hits and stays at” θ∗ quite
fast, unlike the LMLE which bounces around forever.
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Fig. 1: The dashed and solid lines denote the LMLE and LMDLE
respectively. Here p = .4, D = .1 and θ∗ = .375.
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