
Brown University, Division of Applied Mathematics

ISIT 2004

A Minimum Description Length Proposal for Lossy

Data Compression

by Mokshay Madiman

Joint work with M. Harrison and I. Kontoyiannis



Outline

• The Problem: Lossy Data Compression

• Codes as Probability Distributions

• Fundamental limits and a generalized AEP

• Selecting good codes: Inference

• Consistency

• MLE/MDL Dichotomy + Examples

• Comments and conclusions



The Problem: Data Compression

Setting

Data: xn
1 ∈ An, arbitrary alphabet A

Quantizer: qn : An → Cn, discrete C ⊂ Â

Encoder: en : Cn → {0, 1}∗

Code-length: Ln(x
n
1) = length of en(qn(x

n
1)) bits

Distortion

Distortion function: ρn : An × Ân → [0,∞) is “nice”

Distortion ball: B(xn
1 , D) :=

{

yn
1 ∈ Ân : ρn(xn

1 , y
n
1 ) ≤ D

}

Code operates at dist’n level D: qn(xn
1) ∈ B(xn

1 , D) for all xn
1 ∈ An



Codes as Probability Distributions

For lossless codes, Ln(xn
1 ) ≈ − log Qn(xn

1 )

For lossy codes, Ln(Xn
1 ) ≈ − log Qn(B(Xn

1 , D))

More specifically, we have a Lossy Kraft Inequality (K&Z, 2002):

(⇐) For any code with code-lengths Ln and distortion level D, there is a probability

distribution Qn on Ân with

Ln(x
n
1) ≥ − log Qn(B(xn

1 , D)) bits, for all xn
1

(⇒) For any source {Xn} and any reasonable sequence of probability distributions Qn

on Ân, n = 1, 2, . . ., there is a sequence of codes with distortion levels D and code-lengths

such that

Ln(X
n
1 ) ≤ − log Qn(B(Xn

1 , D)) + 2 log n bits, eventually, w.p.1

ELn(Xn
1 ) ≤ E[− log Qn(B(Xn

1 , D))] + 2 log n bits, eventually



Fundamental limits and a generalized AEP

Asymptotic Equipartition Property (AEP)

If the source {Xn} ∼ P is stationary and ergodic, the (lossless) compres-
sion performance w.r.t any sequence of “nice” distributions {Qn} = Q is
given by

−
1

n
log Qn(X

n
1 ) → H(P) + D(P‖Q)

bits/symbol, as n → ∞, w.p.1

A Generalized AEP (Kieffer’91, L&S’97, Y&K’98, Y&Z’99, Chi’01, D&K’02)

If the source {Xn} ∼ P is stationary and ergodic, and ρn is a single-
letter distortion measure, the compression performance w.r.t any sequence
of “nice” distributions {Qn} = Q is given by

−
1

n
log Qn(B(Xn

1 , D)) → R(P, D) + ∆(P, Q, D) := R(P, Q, D)

bits/symbol, as n → ∞, w.p.1



How to select good codes?

The IID Example

Lossless coding Lossy coding

Want a code based on the Q∗ that min-

imizes H(P ) + D(P‖Q)

Want a code based on “the” Q∗ that

minimizes R(P, Q, D)

The optimal Q∗ is true source distribu-

tion P

For D > 0, optimal Q∗( 6= P ) achieves

Shannon’s r.d.f. R(P, D)

Selecting a good code is like estimating

a source distribution from data

Selecting a good code is an indirect es-

timation problem



How to select good codes?

The IID Example

Lossless coding Lossy coding

Want code based on the Q∗ that mini-

mizes H(P ) + D(P‖Q)

Want code based on “the” Q∗ that min-

imizes R(P, Q, D)

Optimal Q∗ is true source distribution

P

For D > 0, optimal Q∗( 6= P ) achieves

Shannon’s r.d.f. R(P, D)

Selecting a good code is like estimating

a source distribution from data

Selecting a good code is an indirect es-

timation problem

which motivates...

Information theory Statistics

Code (Ln) Probability distribution (Qn)

Class of codes Statistical model {Qθ : θ ∈ Θ}

Code selection Estimation : find optimal θ∗ ∈ Θ

(i.e., one which minimizes

R(P, Qθ, D))



Statistical Inference - I

Choose a parametric family of probability distributions {Qθ : θ ∈ Θ}
corresponding to a convenient class of codes.

Lossy MLE

The Lossy Maximum Likelihood Estimator (LMLE) is

θ̂LML

n = arg min
θ∈Θ

[− log Qθ(B(Xn
1 , D))]
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θ∈Θ
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The LMLE is consistent in great generality: As n → ∞, θ̂LML

n → θ∗ w.p.1
under weak conditions



Statistical Inference - I

Choose a parametric family of probability distributions {Qθ : θ ∈ Θ}
corresponding to a convenient class of codes.

Lossy MLE

The Lossy Maximum Likelihood Estimator (LMLE) is

θ̂LML

n = arg min
θ∈Θ

[− log Qθ(B(Xn
1 , D))]

The LMLE is nice...

The LMLE is consistent in great generality: As n → ∞, θ̂LML

n → θ∗ w.p.1
under weak conditions

But Problems with LMLE

• Overfitting

• Not a real code



Statistical Inference - II

Lossy MDL

The Lossy Minimum Description Length Estimator (LMDLE) is

θ̂LMDL

n = arg min
θ∈Θ

[− log Qθ(B(Xn
1 , D)) + `n(θ)],

where `n(θ) is a given “penalty function”

The LMDLE is nice...

The LMDLE is consistent in great generality: As n → ∞, θ̂LMDL

n → θ∗

w.p.1 under weak conditions

Does the LMDLE solve the problems of the LMLE?



IID Gaussian example: Illustration

Let the source be IID P ∼ N(0, 1) and consider IID coding distributions Qθ ∼ N(0, θ), θ ∈

(0,∞). We use the penalty function

`n(θ) =

{

0 if θ = θ∗ = 1 − D
1
2 log n if θ 6= θ∗

where the lower-dimensional set {θ∗} ⊂ (0,∞) is declared to be our “preferred” set.
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The dashed line denotes the pseudo-LMLE and the solid line is the pseudo-LMDLE.



Inference for IID source & coding distributions

An approximate codelength (Y&Z’98)

− log Qn
θ (B(Xn

1 , D)) ≈ nR(P̂n, θ,D) eventually w.p.1

where P̂n is the empirical distribution of the data Xn
1

Idea of Pseudo-estimators

Replace [− log Qn
θ (B(Xn

1 , D))] in definition of lossy estimators by [nR(P̂n, θ,D)]

Definitions

The pseudo-LMLE and pseudo-LMDLE are

θ̃LML

n ≡ arg min
θ∈Θ

R(P̂n, θ,D)

θ̃LMDL

n ≡ arg min
θ∈Θ

[nR(P̂n, θ,D) + `n(θ)]

where `n(θ) is a given penalty function

Consistency

The pseudo-estimators are consistent



Gaussian example: Details

Source P ∼ N(0, V )

Class of codes {Qθ ∼ N(0, θ) : θ ∈ (0,∞)}

Distortion Single-letter with ρ(x, y) = (x−y)2; assume D ∈ (0, V )

Optimal code θ∗ = V − D

Penalty function

`n(θ) =

{

0 if θ = θ∗
1
2
log n if θ 6= θ∗

Pseudo-LMLE θ̃LML

n = µ2
n + Vn − D where µn and Vn are

the mean and variance of P̂n

Pseudo-LMDLE

θ̃LMDL

n =

{

θ∗ if R2 ≤ R1

θ̃LML

n otherwise

where R1 = R(P̂n, D) + log n
2n and R2 = R(P̂n, θ

∗, D)

Apply the Law of the Iterated Logarithm

• Detailed computation yields R2 − R(P̂n, D) = O(Vn − V )2

• R2 − R(P̂n, D) is O( log log n
n

) and in particular, o( log n
n

)

• Thus R2 < R1 ⇒ θ̃LMDL

n = θ∗ eventually w.p.1

• On the other hand, θ̃LML

n − θ∗ = 1
n

∑n
i=1(X

2
i − EX2) 6= 0 i.o. w.p.1



The IID finite alphabet case

Setting

• Source distribution P takes values in a finite alphabet A

• Θ parametrizes the simplex of all IID probability distributions on Â = A

• Single-letter distortion measures

Complexity

• Suppose L1 ⊂ L2 ⊂ ... ⊂ Ls ⊂ Θ parametrize increasingly “compli-
cated” subsets of the simplex (or “model classes”)

• Preference for “simpler models” is expressed by using the penalty

`n(θ) =
k(θ)

2
log n

where
k(θ) ≡ min{1 ≤ i ≤ s : θ ∈ Li}

denotes the index of the simplest Li containing θ



IID Finite Alphabet Result

L3

L1

L2

Under reasonable restrictions on P and θ∗ and a simple technical condition,
we have

1. θ̃LML

n /∈ Lk(θ∗) i.o. w.p.1

2. θ̃LMDL

n ∈ Lk(θ∗) eventually w.p.1

3. θ̂LMDL

n ∈ Lk(θ∗) eventually w.p.1



Conclusions

The message

• We proposed maximum likelihood and MDL-type estimators for the pur-
pose of finding good lossy source codes

• These estimators are consistent (i.e., they eventually yield optimal codes)

• Lossy MDL is efficient at model selection (unlike the lossy MLE)

Comments and Directions

• Penalty term of order O(log n) suffices (as in the lossless case) for the
lossy MDL estimator to “find” the appropriate model class in finite time

• Practical Applications to VQ design need to be explored

• Suggests a theoretical framework for looking at lossy source coding through
its statistical interpretation, and throws up many directions for future
work

◦ − ◦ − ◦


