BROWN UNIVERSITY, DIVISION OF APPLIED MATHEMATICS ISIT 2004

A Minimum Description Length Proposal for Lossy Data Compression

by Mokshay Madiman

Joint work with M. Harrison and I. Kontoyiannis

Outline

- The Problem: Lossy Data Compression
- Codes as Probability Distributions
- Fundamental limits and a generalized AEP
- Selecting good codes: Inference
- Consistency
- MLE/MDL Dichotomy + Examples
- Comments and conclusions

The Problem: Data Compression

Setting

Data:	$x_1^n \in A^n$, arbitrary alphabet A	
Quantizer:	$q_n: A^n \to C^n$, discrete $C \subset \hat{A}$	
Encoder:	$e_n: C^n \to \{0, 1\}^*$	
Code-length:	$L_n(x_1^n) = ext{ length of } e_n(q_n(x_1^n))$	bits

Distortion

 $\begin{array}{ll} \text{Distortion function:} & \rho_n:A^n\times \hat{A}^n\to [0,\infty)\,\text{is "nice"}\\ & \text{Distortion ball:} & B(x_1^n,D):=\left\{y_1^n\in \hat{A}^n:\rho_n(x_1^n,y_1^n)\leq D\right\}\\ \text{Code operates at dist'n level } D: & q_n(x_1^n)\in B(x_1^n,D)\,\text{for all }x_1^n\in A^n \end{array}$

Codes as Probability Distributions

For lossless codes, $L_n(x_1^n) \approx -\log Q_n(x_1^n)$ For lossy codes, $L_n(X_1^n) \approx -\log Q_n(B(X_1^n, D))$

More specifically, we have a Lossy Kraft Inequality (K&Z, 2002):

(\Leftarrow) For any code with code-lengths L_n and distortion level D, there is a probability distribution Q_n on \hat{A}^n with

$$L_n(x_1^n) \ge -\log Q_n(B(x_1^n,D))$$
 bits, for all x_1^n

 (\Rightarrow) For any source $\{X_n\}$ and any reasonable sequence of probability distributions Q_n on \hat{A}^n , $n = 1, 2, \ldots$, there is a sequence of codes with distortion levels D and code-lengths such that

$$L_n(X_1^n) \le -\log Q_n(B(X_1^n, D)) + 2\log n \text{ bits, eventually, w.p.1}$$
$$EL_n(X_1^n) \le E[-\log Q_n(B(X_1^n, D))] + 2\log n \text{ bits, eventually}$$

Fundamental limits and a generalized AEP

Asymptotic Equipartition Property (AEP)

If the source $\{X_n\} \sim \mathbb{P}$ is stationary and ergodic, the (lossless) compression performance w.r.t **any** sequence of "nice" distributions $\{Q_n\} = \mathbb{Q}$ is given by

$$\label{eq:product} \begin{split} -\frac{1}{n}\log Q_n(X_1^n) &\to H(\mathbb{P}) + D(\mathbb{P}\|\mathbb{Q}) \\ & \text{bits/symbol, as } n \to \infty \text{, w.p.1} \end{split}$$

A Generalized AEP (Kieffer'91, L&S'97, Y&K'98, Y&Z'99, Chi'01, D&K'02)

If the source $\{X_n\} \sim \mathbb{P}$ is stationary and ergodic, and ρ_n is a singleletter distortion measure, the compression performance w.r.t **any** sequence of "nice" distributions $\{Q_n\} = \mathbb{Q}$ is given by

$$\begin{aligned} &-\frac{1}{n}\log Q_n(B(X_1^n,D)) \to R(\mathbb{P},D) + \Delta(\mathbb{P},\mathbb{Q},D) := R(\mathbb{P},\mathbb{Q},D) \\ & \text{bits/symbol, as } n \to \infty, \text{ w.p.1} \end{aligned}$$

How to select good codes?

The IID Example

Lossless coding	Lossy coding
Want a code based on the Q^* that min-	Want a code based on "the" Q^* that
imizes $H(P) + D(P \ Q)$	minimizes $R(P,Q,D)$
The optimal Q^* is true source distribu-	For $D > 0$, optimal $Q^* (\neq P)$ achieves
tion P	Shannon's r.d.f. $R(P, D)$
Selecting a good code is like estimating	Selecting a good code is an indirect es-
a source distribution from data	timation problem

How to select good codes?

The IID Example

Lossless coding	Lossy coding
Want code based on the Q^* that mini-	Want code based on "the" Q^* that min-
mizes $H(P) + D(P \ Q)$	imizes $R(P,Q,D)$
Optimal Q^* is true source distribution	For $D > 0$, optimal $Q^* (\neq P)$ achieves
Р	Shannon's r.d.f. $R(P, D)$
Selecting a good code is like estimating	Selecting a good code is an indirect es-
a source distribution from data	timation problem

which motivates...

Information theory	Statistics
Code (L_n)	Probability distribution (Q_n)
Class of codes	Statistical model $\{\mathbb{Q}_{\theta} : \theta \in \Theta\}$
Code selection	Estimation : find optimal $ heta^* \in \Theta$
	(i.e., one which minimizes
	$R(P,Q_{ heta},D)$)

Statistical Inference - I

Choose a parametric family of probability distributions $\{\mathbb{Q}_{\theta} : \theta \in \Theta\}$ corresponding to a convenient class of codes.

Lossy MLE

The Lossy Maximum Likelihood Estimator (LMLE) is

$$\hat{\theta}_n^{\text{iml}} = \underset{\theta \in \Theta}{\arg\min}[-\log \mathbb{Q}_{\theta}(B(X_1^n, D))]$$

Statistical Inference - I

Choose a parametric family of probability distributions $\{\mathbb{Q}_{\theta} : \theta \in \Theta\}$ corresponding to a convenient class of codes.

Lossy MLE

The Lossy Maximum Likelihood Estimator (LMLE) is

$$\hat{\theta}_n^{\text{iml}} = \underset{\theta \in \Theta}{\arg\min}[-\log \mathbb{Q}_{\theta}(B(X_1^n, D))]$$

The LMLE is nice...

The LMLE is consistent in great generality: As $n \to \infty$, $\hat{\theta}_n^{\text{\tiny LML}} \to \theta^*$ w.p.1 under weak conditions

Statistical Inference - I

Choose a parametric family of probability distributions $\{\mathbb{Q}_{\theta} : \theta \in \Theta\}$ corresponding to a convenient class of codes.

Lossy MLE

The Lossy Maximum Likelihood Estimator (LMLE) is

$$\hat{\theta}_n^{\text{iml}} = \underset{\theta \in \Theta}{\arg\min}[-\log \mathbb{Q}_{\theta}(B(X_1^n, D))]$$

The LMLE is nice...

The LMLE is consistent in great generality: As $n \to \infty$, $\hat{\theta}_n^{\text{\tiny LML}} \to \theta^*$ w.p.1 under weak conditions

But Problems with LMLE

- Overfitting
- Not a real code

Statistical Inference - II

Lossy MDL

The Lossy Minimum Description Length Estimator (LMDLE) is

$$\hat{\theta}_n^{\text{imdl}} = \underset{\theta \in \Theta}{\arg\min}[-\log \mathbb{Q}_{\theta}(B(X_1^n, D)) + \ell_n(\theta)],$$

where $\ell_n(\theta)$ is a given "penalty function"

The LMDLE is nice...

The LMDLE is consistent in great generality: As $n \to \infty$, $\hat{\theta}_n^{\text{LMDL}} \to \theta^*$ w.p.1 under weak conditions

Does the LMDLE solve the problems of the LMLE?

IID Gaussian example: Illustration

Let the source be IID $P \sim N(0, 1)$ and consider IID coding distributions $Q_{\theta} \sim N(0, \theta), \ \theta \in (0, \infty)$. We use the penalty function

$$\ell_n(\theta) = \begin{cases} 0 & \text{if } \theta = \theta^* = 1 - D \\ \frac{1}{2} \log n & \text{if } \theta \neq \theta^* \end{cases}$$

where the lower-dimensional set $\{\theta^*\} \subset (0,\infty)$ is declared to be our "preferred" set.

The dashed line denotes the pseudo-LMLE and the solid line is the pseudo-LMDLE.

Inference for IID source & coding distributions

An approximate codelength (Y&Z'98)

 $-\log Q_{\theta}^n(B(X_1^n,D)) \thickapprox nR(\hat{P_n},\theta,D) \quad \text{ eventually w.p.1}$

where $\hat{P_n}$ is the empirical distribution of the data X_1^n

Idea of Pseudo-estimators

Replace $[-\log Q_{\theta}^{n}(B(X_{1}^{n}, D))]$ in definition of lossy estimators by $[nR(\hat{P}_{n}, \theta, D)]$ Definitions

The pseudo-LMLE and pseudo-LMDLE are

$$\begin{split} \tilde{\theta}_n^{\text{LML}} &\equiv \mathop{\arg\min}_{\theta \in \Theta} R(\hat{P}_n, \theta, D) \\ \tilde{\theta}_n^{\text{LMDL}} &\equiv \mathop{\arg\min}_{\theta \in \Theta} [nR(\hat{P}_n, \theta, D) + \ell_n(\theta)] \end{split}$$

where $\ell_n(\theta)$ is a given penalty function

Consistency

The pseudo-estimators are consistent

Gaussian example: Details

Source	$P \sim N(0, V)$
Class of codes	$\{Q_{\theta} \sim N(0,\theta) : \theta \in (0,\infty)\}$
Distortion	Single-letter with $\rho(x,y) = (x-y)^2$; assume $D \in (0,V)$
Optimal code	$\theta^* = V - D$
Penalty function	$\ell_n(\theta) = \begin{cases} 0 & \text{if } \theta = \theta^* \\ \frac{1}{2} \log n & \text{if } \theta \neq \theta^* \end{cases}$
Pseudo-LMLE	$\widetilde{ heta}_n^{ extsf{LML}} = \mu_n^2 + V_n - D$ where μ_n and V_n are
	the mean and variance of $\hat{P_n}$
Pseudo-LMDLE	$\tilde{\theta}_n^{\text{LMDL}} = \begin{cases} \theta^* & \text{if } R_2 \leq R_1 \\ \tilde{\theta}_n^{\text{LML}} & \text{otherwise} \end{cases}$
	where $R_1 = R(P_n, D) + \frac{108 n}{2n}$ and $R_2 = R(P_n, \theta^*, D)$

Apply the Law of the Iterated Logarithm

- Detailed computation yields $R_2 R(\hat{P_n}, D) = O(V_n V)^2$
- $R_2 R(\hat{P_n}, D)$ is $O(\frac{\log \log n}{n})$ and in particular, $o(\frac{\log n}{n})$
- Thus $R_2 < R_1 \Rightarrow \widetilde{ heta}_n^{ ext{LMDL}} = heta^*$ eventually w.p.1
- On the other hand, $\tilde{\theta}_n^{\text{\tiny LML}} \theta^* = \frac{1}{n} \sum_{i=1}^n (X_i^2 EX^2) \neq 0$ i.o. w.p.1

The IID finite alphabet case

Setting

- \bullet Source distribution P takes values in a finite alphabet A
- $\bullet~\Theta$ parametrizes the simplex of all IID probability distributions on $\hat{A}=A$
- Single-letter distortion measures

Complexity

- Suppose $L_1 \subset L_2 \subset ... \subset L_s \subset \Theta$ parametrize increasingly "complicated" subsets of the simplex (or "model classes")
- Preference for "simpler models" is expressed by using the penalty

$$\ell_n(\theta) = \frac{k(\theta)}{2} \log n$$

where

$$k(\theta) \equiv \min\{1 \le i \le s : \theta \in L_i\}$$

denotes the index of the simplest L_i containing θ

IID Finite Alphabet Result

Under reasonable restrictions on P and θ^* and a simple technical condition, we have

1. $\tilde{\theta}_n^{\text{LML}} \notin L_{k(\theta^*)}$ i.o. w.p.1 2. $\tilde{\theta}_n^{\text{LMDL}} \in L_{k(\theta^*)}$ eventually w.p.1 3. $\hat{\theta}_n^{\text{LMDL}} \in L_{k(\theta^*)}$ eventually w.p.1

Conclusions

The message

- We proposed maximum likelihood and MDL-type estimators for the purpose of finding good lossy source codes
- These estimators are consistent (i.e., they eventually yield optimal codes)
- Lossy MDL is efficient at model selection (unlike the lossy MLE)

Comments and Directions

- Penalty term of order $O(\log n)$ suffices (as in the lossless case) for the lossy MDL estimator to "find" the appropriate model class in finite time
- Practical Applications to VQ design need to be explored
- Suggests a theoretical framework for looking at lossy source coding through its statistical interpretation, and throws up many directions for future work