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Abstract — The problem of approximating the dis-
tribution of a sum Sn =

Pn

i=1
Yi of n discrete ran-

dom variables Yi by a Poisson or a compound Pois-
son distribution arises naturally in many classical and
current applications, such as statistical genetics, dy-
namical systems, the recurrence properties of Markov
processes and reliability theory. Using information-
theoretic ideas and techniques, we derive a family
of new bounds for compound Poisson approximation.
We take an approach similar to that of Kontoyian-
nis, Harremoës and Johnson (2003), and we gener-
alize some of their Poisson approximation bounds to
the compound Poisson case. Partly motivated by these
results, we derive a new logarithmic Sobolev inequal-
ity for the compound Poisson measure and use it to
prove measure-concentration bounds for a large class
of discrete distributions.

I. Introduction

Consider a sum Sn =
Pn

i=1
Yi of n random variables Yi

taking values in {0, 1, 2, . . .}. The study of the distribution
PSn

of Sn is an important part of classical probability theory,
and it arises naturally in many important applications. In
particular, it is often the case that PSn

can be well approxi-
mated by a Poisson or a compound Poisson distribution; see,
e.g., [1][2][3] and the references therein. This is hardly sur-
prising since, for example, in the special case when the Yi are
independent, the only possible limiting distributions of such
sums (as n → ∞) are compound Poisson distributions [4].

The two most well-known classical examples are:

Example 1. The Poisson Law. We find it convenient to
write each Yi as a product BiXi, where Bi is a Bernoulli(pi)
random variable and Xi is independent of Bi and has distri-
bution Qi, say, on {1, 2, . . .}. This representation is unique,
with pi = Pr{Yi 6= 0} and Qi(k) = Pr{Yi = k}/pi, for k ≥ 1.

Suppose that the Xi are all identically equal to 1, and
that the Bi are independent and identically distributed (i.i.d.)
Bernoulli(λ/n) random variables for some λ > 0. Then Sn

has a Binomial(n, λ/n) distribution, which for large n is well
approximated by the Poisson distribution with parameter λ,
Po(λ). In fact, PSn

converges to Po(λ) as n → ∞.

Example 2. The Compound Poisson Law. In the same
notation as above suppose that the Xi are i.i.d. with com-
mon distribution Q, and that the Bi are i.i.d. Bernoulli(λ/n)
random variables for some λ > 0. Then Sn can be expressed
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as

Sn =
n

X

i=1

BiXi =

S′

n
X

i=1

Xi,

where S′
n =

Pn

i=1 Bi has a Binomial(n, λ/n) distribution.
[Throughout the paper we take the empty sum

P0

i=1
(· · · ) to

be equal to zero.] Since PS′

n
converges to Po(λ) as n grows to

infinity, it is easy to see that Sn itself will converge in distri-
bution to the compound Poisson sum

Z
X

i=1

Xi, (1)

where Z is a Po(λ) random variable independent of the Xi.

Definition. Given an arbitrary probability distribution Q
on the positive integers and a λ > 0, the compound Poisson
distribution CP(λ, Q) is the distribution of the sum (1), where
the Xi are i.i.d. with common distribution Q and Z is an in-
dependent Po(λ) random variable. The parameter λ is called
the rate of CP(λ, Q) and Q is the base distribution.

The natural interpretation of the compound Poisson dis-
tribution comes from thinking of events occuring at random
times, and in clusters; cf. [5]. For example, we can imagine
major earthquakes in San Francisco as occuring at approxi-
mately the event times of a Poisson process with rate λ/year,
and with each major earthquake followed by smaller quakes,
or aftershocks, the number of which is varies according to the
distribution Q. Then a simple model for the total number of
quakes in t years would be a compound Poisson distribuition
with rate λt and base distribution Q.

Thus motivated, it is natural to expect that the compound
Poisson should provide a good approximation for PSn

under
more general conditions than those in Example 2. Intuitively,
the minimal requirements for such an approximation to hold
should be that:

1. None of the Yi dominate the sum, i.e., their parameters
pi = Pr{Yi 6= 0} are all appropriately small;

2. The Yi are only weakly dependent.

The main result of the following section, Theorem 1, pro-
vides a quantitative version of these requirements, as well as a
precise bound on the accuracy of the resulting compound Pois-
son approximation. It generalizes the corresponding Poisson
approximation bound of [6]. In Section III we derive a sharper
bound on the approximation of PSn

by a general compound
Poisson distribution, in terms of a new version of the Fisher in-
formation for discrete random variables. This bound belongs
to the family of logarithmic Sobolev inequalities. Finally, in
Section IV we use this inequality to derive concentration of



measure bounds for the tails of Lipschitz functions with re-
spect to a general class of measures that includes the com-
pound Poisson.

It is perhaps worth mentioning that, although all the results
we prove here have known counterparts in the simple Poisson
case, it is perhaps somewhat surprising that their compound
Poisson versions take such simple and rather elegant forms,
and admit relatively straightforward proofs. Moving from the
Poisson to the much richer class of compound Poisson mea-
sures typically requires considerable effort, as illustrated by
the difficulties that have been encountered in the compound
Poisson approximation literature; see for example the relevant
comments [7].

II. An Information-Theoretic Compound

Poisson Approximation Bound

We will measure the closeness between PSn
and an appro-

priately chosen compound Poisson distribution CP(λ, Q̄) in
terms of the relative entropy D(PSn

‖CP(λ, Q̄)), defined as
usual by

D(P‖Q) =
X

s∈S

P (s) log
hP (s)

Q(s)

i

,

for any pair of probability distributions on the same finite
or countably infinite set S. [Throughout the paper, log de-
notes the natural logarithm to base e.] Although not a proper
metric, relative entropy is an important measure of closeness
between probability distributions [8][9] and it can be used to
obtain total variation bounds via Pinsker’s inequality [9],

‖P − Q‖2
TV ≤ 2D(P‖Q). (2)

Our first result is a general, non-asymptotic bound for com-
pound Poisson approximation in relative entropy.

Theorem 1. Suppose Sn is the sum
Pn

i=1
Yi of n possibly

dependent random variables Yi with values in {0, 1, 2, . . .}. For
each i = 1, 2, . . . , n, let pi denote the probability Pr{Yi 6= 0}
and Qi denote the conditional distribution of Yi given that it
is not equal to zero, Qi(k) = Pr{Yi = k}/pi, k ≥ 1. Then,

D(PSn
‖CP(λ, Q̄)) ≤

n
X

i=1

p2
i +

h

n
X

i=1

H(Yi) − H(Y1, . . . , Yn)
i

,

where λ =
Pn

i=1
pi and Q̄ is the mixture distribution

Q̄ =
n

X

i=1

pi

λ
Qi.

The entropy of a discrete random variable X with distri-
bution P on some set S is defined as usual,

H(P ) = H(X) = −
X

s∈S

P (s) log P (s)

where log denotes the natural logarithm.

Remark. The first term in the right-hand-side of this bound
measures the individual smallness of the Yi, as demanded by
requirement 1. above, and the second term measures their
degree of dependence: It is the difference between the sum
of their individual entropies and their joint entropy, which of
course is zero iff the Yi are independent.

Despite the great generality of its statement, the proof of
Theorem 1 is entirely elementary and relies only a couple of
basic information-theoretic properties of relative entropy and
some simple calculus.

Proof of Theorem 1. Let Z1, Z2, . . . , Zn be independent com-
pound Poisson random variables with each Zi ∼ CP(pi, Qi),
and write Tn =

Pn

i=1
Zi for their sum. By the basic infinite

divisibility property of the compound Poisson law, the distri-
bution of Tn is CP(λ, Q̄). By the data processing inequality
for relative entropy we have,

D(PSn
‖CP(λ, Q̄)) = D(PSn

‖PTn
)

≤ D(PY1,...,Yn
‖PZ1,...,Zn

),

where PY1,...,Yn
denotes the joint distribution of the Yi and

similarly for PZ1,...,Zn
. Applying the chain rule for relative

entropy gives,

D(PSn
‖CP(λ, Q̄))

≤
n

X

i=1

D(PYi
‖PZi

) +
n

X

i=1

H(Yi) − H(Y1, . . . , Yn),

where PYi
denotes the marginal distribution of Yi and simi-

larly for PZi
. Combining this with the simple estimate of the

following lemma completes the proof. �

Lemma. For each i = 1, 2, . . . , n,

D(PYi
‖PZi

) ≤ p2
i .

Proof of Lemma. The first term in the relative entropy

D(PYi
‖PZi

) =

∞
X

j=0

PYi
(j) log

PYi
(j)

PZi
(j)

corresponding to j = 0 is

(1 − pi) log
1 − pi

e−pi

= (1 − pi) log(1 − pi) + pi(1 − pi) ≤ 0,

where the inequality follows from the fact that log(1−p) ≤ −p
for p < 1. To estimate the jth term, let Q∗k

i denote the k-fold
convolution of Qi with itself, namely, the law of the sum of k
i.i.d. random variables with common distribution Qi. Then,

PZi
(j) =

∞
X

k=1

e−pi
pk

i

k!
Q∗k

i (j) ≥ e−pipiQi(j),

where the inequality follows from taking only the first term in
the series. Therefore, the jth term of D(PYi

‖PZi
) is

PYi
(j) log

PYi
(j)

PZi
(j)

≤ [piQi(j)] log
piQi(j)

e−pipiQi(j)
= Qi(j)p

2
i .

Summing over j yields the result. �

Next we would like to examine how accurate an approxi-
mation the bound in Theorem 1 provides. Coming back to the
basic setting in Example 2, let Sn =

Pn

i=1
Yi =

Pn

i=1
BiXi,

where the Xi are i.i.d. with common distribution Q and the
Bi are i.i.d. Bernoulli(λ/n) for some λ > 0. In the notation
of Theorem 1 we have Qi = Q̄ = Q and pi = λ/n, for all
i = 1, 2, . . . , n. Therefore,

D(PSn
‖CP(λ, Q)) ≤

n
X

i=1

(λ/n)2 =
λ2

n
,



and by Pinsker’s inequality (2),

‖PSn
− CP(λ, Q)‖TV ≤

√
2

λ√
n

. (3)

This offers an explicit error term for the approximation and it
is certainly sufficient to prove the convergence (both in total
variation and in the stronger sense of relative entropy) of PSn

to CP(λ, Q). But compared to the well-known bound of Le
Cam [10],

‖PSn
− CP(λ, Q)‖TV ≤ λ2/n,

we see that (3) gives a suboptimal rate of convergence.
More generally, applying Theorem 1 to a variety of differ-

ent examples, including ones with non-trivial dependence in
the Yi, we typically find that the bounds we obtain are strong
enough to prove convergence, but their rate is often subopti-
mal. In order to get sharper rates, at least in the case when
the Yi are independent, we take a hint from [6] and turn to
the notion of Fisher information.

III. Fisher Information and a Logarithmic

Sobolev Inequality

As discussed in [6], there is no universal way to define the
Fisher information of an arbitrary discrete random variable.
For our purposes, the following expression turns out to provide
a natural candidate.

Definition. Given any λ > 0 and an arbitrary base distri-
bution Q, we define the CP-Fisher information of a random
variable X with distribution P on {0, 1, 2, . . .} as,

Jλ,Q(X) = λ

∞
X

j=1

Q(j)E
h“P (X + j)

P (X)

Cλ,Q(X)

Cλ,Q(X + j)
− 1

”2i

where Cλ,Q denote the CP(λ, Q) distribution.

For any random variable X, it is obvious from the definition
that Jλ,Q(X) = 0 iff X ∼ CP(λ,Q). Our next result says that,
moreover, the smaller the value of the CP-Fisher information
Jλ,Q(X), the closer X is to having a CP(λ, Q) distribution.

Theorem 2. Let X ∼ P be a nonnegative integer-valued
random variable. For any λ > 0 and any base distribution Q,

D(P‖CP(λ, Q)) ≤ Jλ,Q(X),

as long as either X has full support (i.e., P (k) > 0 for all k) or
finite support (i.e., there exists an M > 0 such that P (k) = 0
for all k ≥ M).

This inequality can be thought of as a natural logarithmic
Sobolev inequality for the compound Poisson measure. In-
deed, its proof uses an earlier logarithmic Sobolev inequality
by Bobkov and Ledoux [11] for the Poisson measure.

Proof Outline. A simple exercise using characteristic func-
tions shows that an alternative representation for CP(λ, Q) to
that given by (1) in its definition above, is as a series

∞
X

j=1

jZj , (4)

where the Zj are independent Poisson random variables with
each Zj ∼ Po(λQ(j)). The starting point for our proof is
the logarithmic Sobolev inequality for a Poisson distribution

proved by Bobkov and Ledoux in [11], stating that for any P
on {0, 1, . . .} and any λ > 0,

D(P‖Po(λ)) ≤ λE
h“ (X + 1)P (X + 1)

λP (X)
− 1

”2i

.

Also see [6] for details.

Step 1. We “tensorize” the Bobkov-Ledoux result to ob-
tain a corresponding inequality for any finite product of (not
necessarily identical) Poisson distributions.

Step 2. Since Step 1 holds for the product distribution, it
also holds for any deterministic transformation of that prod-
uct, so we can apply it to the distribution of the finite sum
Tn =

Pn

j=1 jZj , where the Zj are as above. This yields a
logarithmic Sobolev inequality for the distribution of Tn.

Step 3. Taking the limit as n → ∞ and using the represen-
tation in (4) we obtain the required result. �

An easy corollary is the following equivalent (although
seemingly more general) version of the logarithmic Sobolev in-
equality for CP(λ, Q). First we need to extend the definition
of relative entropy. For any random variable X with distribu-
tion P on {0, 1, 2, . . .} and any function f on {0, 1, 2, . . .}, we
define,

D(f‖P ) = E[f(X) log f(X)] − E[f(X)] log E[f(X)],

whenever all the expectations make sense.

Corollary 1. For any λ > 0, any base distribution Q and
any function f on {0, 1, 2, . . .} with f(k) > 0 for all k, we have,

D(f‖CP(λ, Q)) ≤ λ
∞

X

j=1

Q(j)E
h

f(Z)
“f(Z + j)

f(Z)
− 1

”2i

,

where Z ∼ CP(λ, Q).

From the point of view of compound Poisson approxima-
tion, the obvious next step would be to examine the properties
of the CP-Fisher information Jλ,Q(Sn) of sums Sn of indepen-
dent random variables, similar to the development in [6] in the
Poisson case. Here, however, we pursue a different direction.
In the next section we show how the result of Theorem 2 can
be used to obtain concentration properties of Lipschitz func-
tions on {0, 1, . . .}.

IV. Measure Concentration

Logarithmic Sobolev inequalities like the one obtained in
Theorem 2 are well-known to be intimately connected to con-
centration properties of Lipschitz functions. In unpublished
work in the 1970s, Herbst used Gross’ [12] celebrated logarith-
mic Sobolev inequality for the Gaussian measure to derive con-
centration properties of Lipschitz functions on R

n. Herbst’s
proof has been generalized and adapted by many authors since
then; see, e.g., [13][14]. Our development follows closely along
the lines of the corresponding discussion of Herbst’s argument
in [11] and [15].

In the following result we give a precise description of the
tails of any discrete-Lipschitz function, with respect to the
compound Poisson measure or any other measure which sat-
isfies a similar logarithmic Sobolev inequality.



Theorem 3. Let Q be a given base distribution with finite
support {1, 2, . . . , m}. Suppose that for some probability mea-
sure µ on {0, 1, 2, . . .} there is a fixed, finite constant C > 0
such that,

D(f‖µ) ≤ C
m

X

j=1

Q(j)E
h

f(Z)
“ f(Z + j)

f(Z)
− 1

”2i

, Z ∼ µ,

for every function f on {0, 1, . . .} with strictly positive values.
Then, for any function g that satisfies the Lipschitz condition

sup
x∈{0,1,2,...}

|Dg(x)| ≤ 1 , (5)

we have Eµ(|g|) < ∞ and the following tail estimates hold:
(a) For all t > 0,

µ{g ≥ Eµ(g) + t} ≤ exp



− t

4m
log

“

1 +
t

m2C

”

ff

(b) For 0 < t ≤ 2V C/m,

µ{g ≥ Eµ(g) + t} ≤ exp



− t2

8V C

ff

.

where V =
Pm

j=1
j2Q(j) is the second moment of Q.

Remarks.

(i) The proof of the theorem is somewhat technical, but
the main gist of the argument is as follows. First we ap-
ply the logarithmic Sobolev inequality (assumed in the
theorem) to the function f = eαg, where g is assumed
to satisfy an appropriate Lipschitz condition. Expand-
ing, we get a differential inequality for the function
L(α) = Eµ[eαg ], from which we can deduce an expo-
nential upper bound on Eµ[eαg]. The rest follows by a
simple application of Chebychev’s inequality.

(ii) Although all the constants in the statement of the the-
orem are explicit and take a rather simple form, there
is no reason to expect that they are optimal.

(iii) From the two bounds in Theorem 3 we see that the
tails of any Lipschitz function with respect to a com-
pound Poisson measure with finitely supported base dis-
tribution (or any other measure satisfying the analogous
logarithmic Sobolev inequality) are Gaussian near the
mean and Poisson-like away from the mean. In partic-
ular, the following integrability result is an immediate
consequence of the bound in (b) above.

Corollary 2. Let Q be a given base distribution with
finite support {1, 2, . . . , m}, and suppose that the probability
measure µ satisfies the logarithmic Sobolev inequality in the
statement of Theorem 3. Then for any function g that satisfies
the Lipschitz condition (5) we have,

Eµ[eθ|g| log+ |g|] < ∞,

for all θ > 0 small enough, where log+ x = max{log x, 0}.

The assumption that the base distribution Q has finite sup-
port is quite restrictive, and was made primarily for technical
convenience. It can be replaced by much weaker conditions
on the form of Q. In that case, not only the assumptions, but
also the form of the bound is somewhat different.

In this context, it is useful to recall the following simple fact
about the compound Poisson distribution: For a wide range of
distributions Q, the tail of the compound Poisson distribution
CP(λ, Q) decays at roughly the same rate as the tail Q. This
holds as long as Q has infinite support and a polynomial or
exponential tail, but not when it has a super-exponential tail;
see, e.g., [16] for details.

Thus it would seem reasonable to expect that this result
about the tail of CP(λ, Q) can be extended to a result about
the tails of Lipschitz functions with respect to CP(λ, Q). In-
deed, we are able to establish the following result in this re-
gard.

Theorem 4. Let Q be a given base distribution, and assume
there exists a positive δ such that

2δ < sup
n

α ∈ R :
X

j

[Q(j)eαj ] < ∞
o

.

If for some probability measure µ on {0, 1, 2, . . .} there is a
fixed, finite constant C > 0 such that

D(f‖µ) ≤ C
∞

X

j=1

Q(j)E
h

f(Z)
“ f(Z + j)

f(Z)
− 1

”2i

, Z ∼ µ,

for every function f on {0, 1, . . .} with strictly positive values,
Then for any function g > 0 that satisfies the Lipschitz condi-
tion (5), we have Eµ(g) < ∞ and the following tail estimate
holds for all t > 0:

µ({g ≥ Eµg + t}) ≤ C′ exp{−tδ}

where

C′ = exp
nCδ

2

∞
X

j=1

jQj(e
2jδ − 1)

o

.

On the other hand, when the tail of Q has superexponen-
tial decay, as is trivially the case when Q has finite support,
the tail of the tail of CP(λ, Q) is Poisson-like (see, for e.g.,
[16]). It is this result that Theorem 3 generalizes from the
tail of the compound Poisson distribution to the tails of Lip-
schitz functions under a certain class of measures satisfying a
logarithmic Sobolev inequality.
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