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Abstract— Using a simple inequality about the relative entropy,
its so-called “tensorization property,” we give a simple ppoof of a
functional inequality which is satisfied by any compound Pa@son
distribution. This functional inequality belongs to the class of
modified logarithmic Sobolev inequalities. We use it to obte
measure concentration bounds for compound Poisson distrib
tions under a variety of assumptions on their tail behavior.In
particular, we show how the celebrated “Herbst argument” can
be modified to yield sub-exponential concentration bounds. For
example, suppos€ is a compound Poisson random variable with
values on the nonnegative integers, and lef be a function such
that | f(k+1)—f(k)| < 1forall k. Then, if the base distribution of
Z does not have a finite moment-generating function but has fite
moments up to some orderL > 1, we show that the probability
that f(Z) exceeds its mean by a positive amouritor more decays
approximately like (const)t~L, where the constant is explicitly
identified. This appears to be one of the very first examples of
concentration bounds with power-law decay.
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(i4) If X ~ N(0,1) is a standard normal random variable

andf is an arbitrary 1-Lipschitz function, i.d.f (x)— f(y)] <
|x — y| for all z,y € R, then [5][1],
PH{f(X) — B[f(X)] >t} <e /2. (1)

Again we see that, although the distribution of the random
variable of interestf(X) may be quite complex we have a
simple, explicit bound on the probability that it deviatesm

its mean by an amount This is a general theme in many
measure concentration results: Under certain conditiibris,
possible to derive useful, accurate bounds for the deviatio
away from the mean for a large class of random variables with
complex and possibly not completely known distributions.

Our purpose in this work is to use methods related to
information-theoretic ideas in order to prove concentrati
bounds similar to (1) wheX is acompound Poisson random

Concentration of measure is a well-studied phenomenaayriable.
and in the past 30 years or so it has been explored through @ver the past 10 years, several authors have drawn inter-

wide array of tools and techniques; see, e.g., [20][15][d]

esting connections between different aspects of measure co

for broad introductions to the subject. The concentratiafentration and information theory; see, e.qg., [17][6][ZR]In
phenomenon is equally strongly motivated by theoreticakgu particular, one of the main strategies for establishingsuea
tions (in areas such as geometry, functional analysis agéncentration bounds is the “entropy method” pioneered by

probability), as by its numerous applications in differgelds
including the analysis of algorithms, mathematical physied
empirical processes in statistics.

Ledoux; cf. [13][14][15]. An important step in applying thi
method often involves the use of the “tensorization propert
of the entropy,” which, in information-theoretic termsnche

A typical measure concentration result is an explicit boursiated as follows.

for the probability of an event of the forfiX — m > t},
for some random variabl&X' to exceed its meann by a

Let A be a discrete alphabet. Consider the distribution
of an arbitraryn-tuple of random variable§X1, X, ..., X,,)

certain amount. Two classical, well-known examples are thguith values inA, and similarly letQ be the distribution of an

following:

(1) If X =37 | X; is the sum ofn independent random (

variablesX; with values in an intervala, b] of length A =
b — a, then

Pr{X — E(X) >t} <e 2/m8%,

This is a special case of Hoeffding’s inequality [16], and

arbitrary collection ofindependenti-valued random variables
}/la}/Qa"'7Yn)'

Tensorization Property. [14, Prop. 4.1][15, Prop. 5.6][16,
Sect. 5] WithP and(@ as above we have,

(P|Q) < Z (P|Q) — D(PDIQ))], (2)

it

gives a simple exponential bound on the probability that the

sum X will exceed its mean by an amount Note that the
bound depends on the distribution of the summaigonly
through the size of their support.

where PU) (resp. Q1)) denotes the(n — 1)-dimensional
distribution of (X1, Xo,...,X,-1,Xj4+1,...,X,) (resp. of
", Ys,.. Y1, Y, L Y).



The proof of (2) is straightforward and only involves ardivisible random variables satisfying certain conditioBsth
application of Jensen’s inequality and simple algebraic mthe methods of [10][4] as well as the form of the results
nipulations. themselves are very different from those derived here; how-
ever, more detailed comparisons are made in [11]. Another
Yecent paper [3] contains moment inequalities for funcion
5 independent random variables, primarily with statastic

Historically, the entropy method was first developed b
Herbst (in an unpublished observation) who used a celabral
Iogant?hmuéSobqlev mequatlltyt_duito (jr_ossl [8]M|n order t pplications in mind. This relates to our work in that [3]
prove the f>aussian concentration bouna in (1). More regen Iso extends the Herbst argument to certain situationsevher
Bobkov and Ledoux [2] adopted a similar strategy to prov

dina bounds for th f the Poi distibuti @xponential moments do not exist, but their extension as
corresponding O:m s for . € case of tne FoIsson ISt o) a5 the results they obtain are very different from those
They derived a “modified” logarithmic Sobolev inequality.

d adapted Herbst’ tt tration s 5esent8d here.
and adapted Herbsts argument to prove concentration Bouhte, . methods are general but also elementary. Following

analog_ous to (1) for P_0|sson-d|str|buted ra_”dom_"a”a*?"es_ along the same path as Bobkov and Ledoux, in Section Il we

In this work we continue along the same line of mvestlgatlogSt establish a modified logarithmic Sobolev inequality 4o
rbitrary CP law. Although this can be immediately deduced
from the recent (and more general) results of [21], we give
a much simpler proof using the tensorization property of the
entropy, thus avoiding Wu's sophisticated methods invgvi
stochastic calculus.

Section Ill contains our main contribution, which is a new
Modification of the Herbst argument to obtain concentration
inequalities with power-law decay. When the base distidiout

and obtain concentration bounds for the much richer fami
of nonnegative integer-valuedmpound Poissodistributions.
Given A > 0 and a probability distributio) = (Q,) on the
positive integerg € N = {1,2,3,...}, the random variabl&
has acompound Poisson distribution with parametersand
Q, denoted CP\, Q), if its law can be written as that of the
sum of a Poissaf\) number of independent random variable
with distribution @, i.e.,

» Q of a random variableZ with CP(\, Q) distribution only has
zZ = ZXi finite moments up to ordet. > 1, we give explicit bounds
i=1 for the probability of evenf f(Z) — E[f(Z)] > t} that are

where W ~ Poissof\) and the X; are independent and apprqximately of ordet‘L_; f_here is an arbitrary Lipschitz
identically distributed according t@ [by convention we take function on the nonnegative integers. We also show how our
the empty sum fromi = 1 to i = 0 to be equal to zero]. An Methods can be readily adapted to recover some recentsresult
alternative representation for the law Bfwhich we will find ©n the concentration of GR,Q) laws when@ has finite
useful below, is in terms of the series support or finite exponential moments.

II. AMODIFIED LOGARITHMIC SOBOLEV INEQUALITY

To state the main result of this section we find it convenient
to introduce the following minor generalization of the tela

having the PoissdidQ,) distribution. entropy. Given a probability distributio®® = (P;) on the

. N . nonnegative integer&, = {0,1,2,...} and a nonnegative
The class of compound Poisson distributions is of cour : i . :
much richer that the simple Poisson law, and they are, inﬁ?nctlonf + 2+ — R, define theentropy functionaknty(f)
certain sense, dense among all infinitely divisible lawsg].[19
In particular, the compound Poisson law (GPQ) inherits its Entp(f) = Zpifi log f; — [Z Pifi] 1og[z Pifi.
tail behavior from that of the so-called “base distributiap. f f f
For example if@ has a finite moment-generating function
then so does GR, Q) for any \; similarly, if @ has finite
moments up to some ordér, then so does GR, Q); and so
on. It is in part from this versatility of tail behavior thate
CP distribution draws its importance in many applications.

Our main result is a concentration inequality for th

CP()\, Q) measure wherQ only has finite moments up to Theorem 1.(MODIFIED LOGARITHMIC SOBOLEV INEQ.) If

a certain orderl > 1, Theorem 2 below. This is one of thez has distribution CP\, Q), then for any bounded function
first results onsub-exponentiatoncentration bounds. To ourf . 7. — R we have,

knowledge, the only other works on such bounds are [10], ,
[4] and [3]. In [10], the idea of covariance representations Entep,q)(ef)
was combined with truncation and explicit computations to <A Elef@ D1 (1pi (7 1

. j -1)+1;],
prove concentration bounds for the class of stable laws on - ZQJ {e {e (D7 A2 =1) H
R?. The recent preprint [4] extends these results to a large
class of functionals on Poisson space, including infinitelyhere D7 f(z) = f(z + j) — f(x).

z2 Zjo, W; ~ PoissoiiA@; ), 3)
j=1

where theW; are independent random variables, edth

Note that if f is the discrete density between some probability
distribution@ and P, i.e., f; = Q;/F;, then Enp(f) reduces
to the familiar relative entropy(Q||P).

The following result is an immediate consequence of [21,
gor. 4.2]. As discussed above, we provide an alternativefpro

Jj=1



PROOFOUTLINE. Our starting point is the following modified Finally, we recall from the Introduction that the compound
logarithmic Sobolev inequality due to Bobkov and Ledoux [2JPoisson law CP\, Q) of the random variableZ can be
If W has Poissof)\) distribution, denoted Ra), then for any expressed as the limit (in the sense of convergence of dis-

bounded functiory : Z, — R we have, tribution) asn — oo of the laws of the sums,,; equivalently,
of Q,, — CP(\, Q) in distribution, asn — co. Therefore, taking
Enfeo(a) (e7) @) the limit in (8) yields,
< AB[S WL LI (D W)] - 1) + 1}], (B)
) < .
whereD is the difference operatof) f(z) = f(z+1)— f(x). Entern,q) (¢ /\Z @ E{ f(Z))}
In order to prove the corresponding statement for the _
CP()\, Q) distribution we first rewrite the tensorization propas claimed. [

erty in terms of the entropy functional. L€t1,Ys,...,Y,,) be
independent random variables with edch~ PoissofAQ);),
and letQ,, denote their joint distribution. For an arbitrary
function G : Z — R, the tensorization property (2) can be

I1l. M AIN RESULTS. CONCENTRATION FORCOMPOUND
POISSONDISTRIBUTIONS

expressed as Here we state our main results, namely three concentration
n of measure inequalities for Lipschitz functions of CP ramdo
Entg, ( Z {Emivo(AQJ G (Y7 th))}a (6) Vvariables. Their complete proofs will be given in an extehde

version of this paper [11].

where the entropy functional on the right hand side is applie Our main result gives a sharp concentration bound for the
to the restriction; of G to its jth co-ordinate. tails of a CRA, Q) random variable, whe® only has finite

Now given anf as in the statement of the theorem, defini0ments up to some ordér.

the functions: : Z%} — R andH : Z'} — R by Theorem 2.(POWER-LAW CONCENTRATION) SupposeZ has
n distribution CR\, @), where the base distribution has finite
= f(Zkyk), yr e 71, moments up to ordek,
- L:sup{tZ1:Zijt<oo}€(1,oo).

andG = e’’. Let@,, denote the distribution of,_, kY}, and
write H; : Z — R for the restriction off to the variabley; ) _
with the remainingy;’s held fixed. Applying (6) to this? we Let f:Z; — R be K-Lipschitz,

Jj=1

obtain IDf(x)| = |f(x+1) - fz)| < K for all z.
N = H
Enlg, (¢!) = Enlg,(e7) Then, for anyt > 0 and anye > 0, the probabilityPr{|f(Z)—
= E”'Qn (@ E[f(Z)]| > t} is bounded above by
< EJEnkoarg;) G i — t
00 (Gl )} eXp{o?EilL [7:(0) — arlog (2|f(0)| T 2AK +e)]}
j=1
and using the Bobkov-Ledoux logarithmic Sobolev inequalit Q@ = Zij
(5) to bound each term in the above right hand side, =
El’lt@ (ef)S)\ZQJE{eH(YI")n(DHJ(Yln))}7 Ie(O[) = /\ZQJ[CJ@—I—alogC’Je}
j=1 jK
where and Cj. = 14+—.
n(z) = |zl —el*l 41, zeR. (7) Remarks
Observing that, trivially, 1) This upper bound is meaningful (less than 1) when
t > 2|f(0)] + 2AK¢:1 + ¢, and in this case, one has
DH;( (Z kyk) the alternate representation
and writing S,, for the sumS,, = Y_7'_, kY, we obtain that eXp{ - / iel(s)ds}
0

Ents (ef) < )\i QjE{ef(S")n(Djf(Sn)) } (8) V\]I)hereie(oz) = I'(a) anda = log(t/[2|f(0)|+2AK q1 +



2) Although the constants in the bound given in the theorewhere

are expressed in an implicit form, it is straightforward L

to get exact bounds by taking specific values for the A= exp{/\z ( )qur — Anlog K}
parametersae and e. In particular, it is easy to see =1 \"

that this bound decays approximately like” for ¢ B =1+42|f(0)] + 2\Kqu,

!arge. .A smpler_form of the bound in Theorem 2anqu denotes théith moment of the base distributiap,
indicating this is given in the corollary below. Moreover,
a different, sometimes better result than the corollary can qr = ijQj,
be obtained in the case whdn> 2. i>1
3) From the theorem we immediately obtain useful in-
tegrability properties of Lipschitz functions of a CP Next we show how elementary techniques — the standard
random variable; e.g., for ani-Lipschitz functionf, Herbst argument in conjunction with the logarithmic Solole
Ellf(2)|"] < oo forall 7 < L. inequality of Theorem 1 — can be used to give a simple proof
4) In particular, usingf(z) = = we can recover the follow- for a recent result of [9], without requiring the more sofihis
ing well-known result: The tail of CR\, Q) decays like cated covariance representations used there. Theorene§ giv
the tail of Q, whenever the tail of) has a power-law concentration bounds for Lipschitz functions of CP random
decay for some powek > 1; cf. [19]. variables under the assumption of exponential moments.

5) Since in the proof we do not use explicitly the faCII'heorem 3. (EXPONENTIAL CONCENTRATION) SupposeZ

that 7 has a C.P dl;tnbutlon, except to say that we “Yhas distribution CP\, @), where the base distribution has
apply the logarithmic Sobolev inequality of Theorem ]Tinite exponential moments up to ordaf
it follows that analogous concentration bounds hold for '

any random variableZ with values inZ; whose law M =sup{t>0: ZQjetj < oo} € (0,00).
satisfies the same logarithmic Sobolev inequality. i>1

PROOF OUTLINE. The main idea is to extend the Herbste!/ : Z+ — R be K-Lipschitz,

argument from its usual (exponential) form to the present IDf(z)] = |f(z+1)— f(z)| <K forall z.
setting of power-law tails. Therefore, unlike the typicalse

where the goal is to first obtain bounds on the momehten, for anyt >0,

generating function off(Z), we instead obtain bounds for Pr{f(Z) — E[f(2)] > t}
the function N
<exp|( min [H(a)— at})
G(r) = E[lf(2)], 7e(1,L) fsasi

exp ( - /Ot h_l(s)ds)

fr(@) = 7log|f(x)] o ,
H(o) =AY Q;[e*™ —1 - aKjl,
in the logarithmic Sobolev inequality of Theorem 1, to get a e
bound of the form

Roughly speaking, this is achieved by substituting the

function
where

andh~! is the inverse of the function

Enteron) (1f17) < AG(T) 3_n(rlog Cse), h(e) = H'(@) = AK' S @ (657 — 1)].

Jj=1

where the functiom(z) is defined as in (7). We also note that
Remarks.

Entepr,@) (If]7) = 7G' (1) — G(1) log G(7), 1) Simple calculations show that far small this bound

behaves like the Gaussian tail. However, fdarge, we

get exponential decay of order approximately/ X

2) As for Theorem 2, integrability properties of Lipschitz
functions are a simple consequence of the proof: For
any K-Lipschitz functionf,

so that expanding the last two expressions and rearranging
terms appropriately yields a differential inequality f6f(r).
Solving this inequality gives us an explicit upper bound for
G(7) which, in conjunction with Markov’s inequality, proves
the result.

M
Ele™@] <00 foral 7<=—.
Corollary. Under the assumptions of Theorem 2, suppose K
n > 1is integer withn < L. Then, for anyt > 0, Finally we show, extending a different result from [9],

BAyn that better results can be obtained under the assumption tha

Pr{|f(Z) — E[f(Z2)]| > t} < A(?) the base distributiof) corresponding to some CR,Q) law



has bounded support. In that case, Lipschitz functions have
Poisson-like tails of the form—ctlost, [1]

Theorem 4. (POISSON CONCENTRATION) SupposeZ has 2]
distribution CRA, @), where the base distribution has finite

support, @l
m=max{j € Zy : Q; > 0} < 0.

Let f: Z, — R be K-Lipschitz,
IDf(x)|=|f(z+1)— f(z)| < K forall z.
Then, for anyt > 0,
PH{f(2) — BIF(2)) > 1} < explp(t)}. .

where p(t) is defined as the minimum between the two
expressions (8]
El

[10]

(4]
(5]

2
and i—(i—l—%>log(1—|—mTt),
m m m g5\ [11]
with ¢ denoting the second moment of the base distributi?&]
Q as before.

Furthermore, fort € [0, 2z

)

Prf(2) - BLAZ)] 2 ) < e { — 5
[14]
Remark. In fact, givenany finite-range interval (that is, 1]

restricting ¢ to [0,7] for someT < o), the method of
proof can be easily modified to yield a Gaussian bound fgis]
deviations in that range. As we would expect from our result
that the “far” tails of Lipschitz functions decay in a Poigso 17
like manner and not in a Gaussian fashion, the variance of
these bounds increases without bound as the size of the fit
range increases.
[19]
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