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Abstract— Using a simple inequality about the relative entropy,
its so-called “tensorization property,” we give a simple proof of a
functional inequality which is satisfied by any compound Poisson
distribution. This functional inequality belongs to the class of
modified logarithmic Sobolev inequalities. We use it to obtain
measure concentration bounds for compound Poisson distribu-
tions under a variety of assumptions on their tail behavior. In
particular, we show how the celebrated “Herbst argument” can
be modified to yield sub-exponential concentration bounds. For
example, supposeZ is a compound Poisson random variable with
values on the nonnegative integers, and letf be a function such
that |f(k+1)−f(k)| ≤ 1 for all k. Then, if the base distribution of
Z does not have a finite moment-generating function but has finite
moments up to some orderL > 1, we show that the probability
that f(Z) exceeds its mean by a positive amountt or more decays
approximately like (const)·t−L, where the constant is explicitly
identified. This appears to be one of the very first examples of
concentration bounds with power-law decay.

I. I NTRODUCTION

Concentration of measure is a well-studied phenomenon,
and in the past 30 years or so it has been explored through a
wide array of tools and techniques; see, e.g., [20][15][16][18]
for broad introductions to the subject. The concentration
phenomenon is equally strongly motivated by theoretical ques-
tions (in areas such as geometry, functional analysis and
probability), as by its numerous applications in differentfields
including the analysis of algorithms, mathematical physics and
empirical processes in statistics.

A typical measure concentration result is an explicit bound
for the probability of an event of the form{X − m > t},
for some random variableX to exceed its meanm by a
certain amountt. Two classical, well-known examples are the
following:

(i) If X =
∑n

i=1 Xi is the sum ofn independent random
variablesXi with values in an interval[a, b] of length ∆ =
b − a, then

Pr
{

X − E(X) > t
}

≤ e−2t2/n∆2

.

This is a special case of Hoeffding’s inequality [16], and it
gives a simple exponential bound on the probability that the
sum X will exceed its mean by an amountt. Note that the
bound depends on the distribution of the summandsXi only
through the size of their support.

(ii) If X ∼ N(0, 1) is a standard normal random variable
andf is an arbitrary 1-Lipschitz function, i.e.,|f(x)−f(y)| ≤
|x − y| for all x, y ∈ R, then [5][1],

Pr
{

f(X)− E[f(X)] > t
}

≤ e−t2/2. (1)

Again we see that, although the distribution of the random
variable of interestf(X) may be quite complex we have a
simple, explicit bound on the probability that it deviates from
its mean by an amountt. This is a general theme in many
measure concentration results: Under certain conditions,it is
possible to derive useful, accurate bounds for the deviations
away from the mean for a large class of random variables with
complex and possibly not completely known distributions.

Our purpose in this work is to use methods related to
information-theoretic ideas in order to prove concentration
bounds similar to (1) whenX is acompound Poisson random
variable.

Over the past 10 years, several authors have drawn inter-
esting connections between different aspects of measure con-
centration and information theory; see, e.g., [17][6][12][7]. In
particular, one of the main strategies for establishing measure
concentration bounds is the “entropy method” pioneered by
Ledoux; cf. [13][14][15]. An important step in applying this
method often involves the use of the “tensorization property
of the entropy,” which, in information-theoretic terms, can be
stated as follows.

Let A be a discrete alphabet. Consider the distributionP
of an arbitraryn-tuple of random variables(X1, X2, . . . , Xn)
with values inA, and similarly letQ be the distribution of an
arbitrary collection ofindependentA-valued random variables
(Y1, Y2, . . . , Yn).

Tensorization Property. [14, Prop. 4.1][15, Prop. 5.6][16,
Sect. 5] WithP andQ as above we have,

D(P‖Q) ≤

n
∑

j=1

[D(P‖Q) − D(P (j)‖Q(j))], (2)

where P (j) (resp. Q(j)) denotes the(n − 1)-dimensional
distribution of (X1, X2, . . . , Xj−1, Xj+1, . . . , Xn) (resp. of
(Y1, Y2, . . . , Yj−1, Yj+1, . . . , Yn)).



The proof of (2) is straightforward and only involves an
application of Jensen’s inequality and simple algebraic ma-
nipulations.

Historically, the entropy method was first developed by
Herbst (in an unpublished observation) who used a celebrated
logarithmic Sobolev inequality due to Gross [8] in order to
prove the Gaussian concentration bound in (1). More recently,
Bobkov and Ledoux [2] adopted a similar strategy to prove
corresponding bounds for the case of the Poisson distribution.
They derived a “modified” logarithmic Sobolev inequality,
and adapted Herbst’s argument to prove concentration bounds
analogous to (1) for Poisson-distributed random variablesX .

In this work we continue along the same line of investigation
and obtain concentration bounds for the much richer family
of nonnegative integer-valuedcompound Poissondistributions.
Given λ > 0 and a probability distributionQ = (Qj) on the
positive integersj ∈ N = {1, 2, 3, . . .}, the random variableZ
has acompound Poisson distribution with parametersλ and
Q, denoted CP(λ, Q), if its law can be written as that of the
sum of a Poisson(λ) number of independent random variables
with distributionQ, i.e.,

Z
D
=

W
∑

i=1

Xi,

where W ∼ Poisson(λ) and theXi are independent and
identically distributed according toQ [by convention we take
the empty sum fromi = 1 to i = 0 to be equal to zero]. An
alternative representation for the law ofZ which we will find
useful below, is in terms of the series

Z
D
=

∞
∑

j=1

j Wj , Wj ∼ Poisson(λQj), (3)

where theWj are independent random variables, eachWj

having the Poisson(λQj) distribution.
The class of compound Poisson distributions is of course

much richer that the simple Poisson law, and they are, in a
certain sense, dense among all infinitely divisible laws [19].
In particular, the compound Poisson law CP(λ, Q) inherits its
tail behavior from that of the so-called “base distribution” Q.
For example ifQ has a finite moment-generating function,
then so does CP(λ, Q) for any λ; similarly, if Q has finite
moments up to some orderL, then so does CP(λ, Q); and so
on. It is in part from this versatility of tail behavior that the
CP distribution draws its importance in many applications.

Our main result is a concentration inequality for the
CP(λ, Q) measure whenQ only has finite moments up to
a certain orderL > 1, Theorem 2 below. This is one of the
first results onsub-exponentialconcentration bounds. To our
knowledge, the only other works on such bounds are [10],
[4] and [3]. In [10], the idea of covariance representations
was combined with truncation and explicit computations to
prove concentration bounds for the class of stable laws on
Rd. The recent preprint [4] extends these results to a large
class of functionals on Poisson space, including infinitely

divisible random variables satisfying certain conditions. Both
the methods of [10][4] as well as the form of the results
themselves are very different from those derived here; how-
ever, more detailed comparisons are made in [11]. Another
recent paper [3] contains moment inequalities for functions
of independent random variables, primarily with statistical
applications in mind. This relates to our work in that [3]
also extends the Herbst argument to certain situations where
exponential moments do not exist, but their extension as
well as the results they obtain are very different from those
presented here.

Our methods are general but also elementary. Following
along the same path as Bobkov and Ledoux, in Section II we
first establish a modified logarithmic Sobolev inequality for an
arbitrary CP law. Although this can be immediately deduced
from the recent (and more general) results of [21], we give
a much simpler proof using the tensorization property of the
entropy, thus avoiding Wu’s sophisticated methods involving
stochastic calculus.

Section III contains our main contribution, which is a new
modification of the Herbst argument to obtain concentration
inequalities with power-law decay. When the base distribution
Q of a random variableZ with CP(λ, Q) distribution only has
finite moments up to orderL > 1, we give explicit bounds
for the probability of event{f(Z) − E[f(Z)] > t} that are
approximately of ordert−L; f here is an arbitrary Lipschitz
function on the nonnegative integers. We also show how our
methods can be readily adapted to recover some recent results
on the concentration of CP(λ, Q) laws whenQ has finite
support or finite exponential moments.

II. A M ODIFIED LOGARITHMIC SOBOLEV INEQUALITY

To state the main result of this section we find it convenient
to introduce the following minor generalization of the relative
entropy. Given a probability distributionP = (Pi) on the
nonnegative integersZ+ = {0, 1, 2, . . .} and a nonnegative
function f : Z+ → R, define theentropy functionalEntP (f)
as

EntP (f) =
∑

i

Pifi log fi − [
∑

i

Pifi] log[
∑

i

Pifi].

Note that iff is the discrete density between some probability
distributionQ andP , i.e., fi = Qi/Pi, then EntP (f) reduces
to the familiar relative entropyD(Q‖P ).

The following result is an immediate consequence of [21,
Cor. 4.2]. As discussed above, we provide an alternative proof.

Theorem 1. (MODIFIED LOGARITHMIC SOBOLEV INEQ.) If
Z has distribution CP(λ, Q), then for any bounded function
f : Z+ → R we have,

EntCP(λ,Q)(e
f )

≤ λ
∑

j≥1

QjE
[

ef(Z)
{

e|D
jf(Z)|(|Djf(Z)| − 1) + 1

}]

,

whereDjf(x) = f(x + j) − f(x).



PROOFOUTLINE . Our starting point is the following modified
logarithmic Sobolev inequality due to Bobkov and Ledoux [2]:
If W has Poisson(λ) distribution, denoted Po(λ), then for any
bounded functionf : Z+ → R we have,

EntPo(λ)(e
f ) (4)

≤ λE
[

ef(W )
{

e|Df(W )|(|Df(W )| − 1) + 1
}]

, (5)

whereD is the difference operator,Df(x) = f(x+1)−f(x).
In order to prove the corresponding statement for the

CP(λ, Q) distribution we first rewrite the tensorization prop-
erty in terms of the entropy functional. Let(Y1, Y2, . . . , Yn) be
independent random variables with eachYj ∼ Poisson(λQj),
and let Qn denote their joint distribution. For an arbitrary
function G : Zn

+ → R, the tensorization property (2) can be
expressed as

EntQn
(G) ≤

n
∑

j=1

E
{

EntPo(λQj)

(

Gj(Y
j−1
1 , ·, Y n

j+1)
)

}

, (6)

where the entropy functional on the right hand side is applied
to the restrictionGj of G to its jth co-ordinate.

Now given anf as in the statement of the theorem, define
the functionsG : Zn

+ → R andH : Zn
+ → R by

H(yn
1 ) = f

(

n
∑

k=1

kyk

)

, yn
1 ∈ Zn

+,

andG = eH . Let Qn denote the distribution of
∑n

k=1 kYk and
write Hj : Z+ → R for the restriction ofH to the variableyj

with the remainingyi’s held fixed. Applying (6) to thisG we
obtain

EntQn
(ef ) = EntQn

(eH)

= EntQn
(G)

≤

n
∑

j=1

E
{

EntPo(λQj)

(

Gj(Y
j−1
1 , ·, Y n

j+1)
)}

=

n
∑

j=1

E
{

EntPo(λQj)

(

eHj(Y
j−1

1
,·,Y n

j+1)
)

}

,

and using the Bobkov-Ledoux logarithmic Sobolev inequality
(5) to bound each term in the above right hand side,

EntQn
(ef ) ≤ λ

n
∑

j=1

QjE
{

eH(Y n
1 )η

(

DHj(Y
n
1 )

)

}

,

where

η(x) = |x|e|x| − e|x| + 1, x ∈ R. (7)

Observing that, trivially,

DHj(y
n
1 ) = Djf

(

n
∑

k=1

kyk

)

,

and writingSn for the sumSn =
∑n

k=1 kYk, we obtain that

EntQN
(ef ) ≤ λ

n
∑

j=1

QjE
{

ef(Sn)η
(

Djf(Sn)
)

}

. (8)

Finally, we recall from the Introduction that the compound
Poisson law CP(λ, Q) of the random variableZ can be
expressed as the limit (in the sense of convergence of dis-
tribution) asn → ∞ of the laws of the sumsSn; equivalently,
Qn → CP(λ, Q) in distribution, asn → ∞. Therefore, taking
the limit in (8) yields,

EntCP(λ,Q)(e
f ) ≤ λ

∞
∑

j=1

QjE
{

ef(Z)η
(

Djf(Z)
)

}

.

as claimed. �

III. M AIN RESULTS: CONCENTRATION FORCOMPOUND

POISSONDISTRIBUTIONS

Here we state our main results, namely three concentration
of measure inequalities for Lipschitz functions of CP random
variables. Their complete proofs will be given in an extended
version of this paper [11].

Our main result gives a sharp concentration bound for the
tails of a CP(λ, Q) random variable, whenQ only has finite
moments up to some orderL.

Theorem 2.(POWER-LAW CONCENTRATION) SupposeZ has
distribution CP(λ, Q), where the base distribution has finite
moments up to orderL,

L = sup{t ≥ 1 :
∑

j≥1

Qjj
t < ∞} ∈ (1,∞).

Let f : Z+ → R be K-Lipschitz,

|Df(x)| = |f(x + 1) − f(x)| ≤ K for all x.

Then, for anyt > 0 and anyε > 0, the probabilityPr{|f(Z)−
E[f(Z)]| > t} is bounded above by

exp
{

min
0<α<L

[

Iε(α) − α log
( t

2|f(0)|+ 2λKq1 + ε

)]}

where

q1 =

∞
∑

j=1

jQj

Iε(α) = λ

∞
∑

j=1

Qj

[

Cα
j,ε − 1 − α log Cj,ε

]

and Cj,ε = 1 +
jK

ε
.

Remarks.
1) This upper bound is meaningful (less than 1) when

t > 2|f(0)| + 2λKq1 + ε, and in this case, one has
the alternate representation

exp

{

−

∫ a

0

i−1
ε (s)ds

}

whereiε(α) = I ′ε(α) anda = log(t/[2|f(0)|+2λKq1+
ε]).



2) Although the constants in the bound given in the theorem
are expressed in an implicit form, it is straightforward
to get exact bounds by taking specific values for the
parametersα and ε. In particular, it is easy to see
that this bound decays approximately liket−L for t
large. A simpler form of the bound in Theorem 2
indicating this is given in the corollary below. Moreover,
a different, sometimes better result than the corollary can
be obtained in the case whenL > 2.

3) From the theorem we immediately obtain useful in-
tegrability properties of Lipschitz functions of a CP
random variable; e.g., for anyK-Lipschitz functionf ,
E[|f(Z)|τ ] < ∞ for all τ < L.

4) In particular, usingf(x) = x we can recover the follow-
ing well-known result: The tail of CP(λ, Q) decays like
the tail of Q, whenever the tail ofQ has a power-law
decay for some powerL > 1; cf. [19].

5) Since in the proof we do not use explicitly the fact
that Z has a CP distribution, except to say that we can
apply the logarithmic Sobolev inequality of Theorem 1,
it follows that analogous concentration bounds hold for
any random variableZ with values inZ+ whose law
satisfies the same logarithmic Sobolev inequality.

PROOF OUTLINE . The main idea is to extend the Herbst
argument from its usual (exponential) form to the present
setting of power-law tails. Therefore, unlike the typical case
where the goal is to first obtain bounds on the moment
generating function off(Z), we instead obtain bounds for
the function

G(τ) = E[|f(Z)|τ ], τ ∈ (1, L).

Roughly speaking, this is achieved by substituting the
function

fτ (x) = τ log |f(x)|

in the logarithmic Sobolev inequality of Theorem 1, to get a
bound of the form

EntCP(λ,Q)

(

|f |τ
)

≤ λG(τ)

∞
∑

j=1

η(τ log Cj,ε),

where the functionη(x) is defined as in (7). We also note that

EntCP(λ,Q)

(

|f |τ
)

= τG′(τ) − G(τ) log G(τ),

so that expanding the last two expressions and rearranging
terms appropriately yields a differential inequality forG(τ).
Solving this inequality gives us an explicit upper bound for
G(τ) which, in conjunction with Markov’s inequality, proves
the result. �

Corollary. Under the assumptions of Theorem 2, suppose
n ≥ 1 is integer withn < L. Then, for anyt > 0,

Pr{|f(Z) − E[f(Z)]| > t} ≤ A
(B

t

)n

where

A = exp
{

λ
n

∑

r=1

(

n

r

)

Krqr − λn log K
}

B = 1 + 2|f(0)|+ 2λKq1,

andqk denotes thekth moment of the base distributionQ,

qk =
∑

j≥1

jkQj .

Next we show how elementary techniques – the standard
Herbst argument in conjunction with the logarithmic Sobolev
inequality of Theorem 1 – can be used to give a simple proof
for a recent result of [9], without requiring the more sophisti-
cated covariance representations used there. Theorem 3 gives
concentration bounds for Lipschitz functions of CP random
variables under the assumption of exponential moments.

Theorem 3. (EXPONENTIAL CONCENTRATION) SupposeZ
has distribution CP(λ, Q), where the base distribution has
finite exponential moments up to orderM ,

M = sup{t ≥ 0 :
∑

j≥1

Qje
tj < ∞} ∈ (0,∞).

Let f : Z+ → R be K-Lipschitz,

|Df(x)| = |f(x + 1) − f(x)| ≤ K for all x.

Then, for anyt > 0,

Pr{f(Z) − E[f(Z)] ≥ t}

≤ exp

(

min
0<α<M

[

H(α) − αt
]

)

= exp

(

−

∫ t

0

h−1(s)ds

)

where

H(α) = λ

∞
∑

j=1

Qj

[

eαKj − 1 − αKj
]

,

andh−1 is the inverse of the function

h(α) = H ′(α) = λK

∞
∑

j=1

Qj

[

j
(

eαKj − 1
)]

.

Remarks.
1) Simple calculations show that fort small this bound

behaves like the Gaussian tail. However, fort large, we
get exponential decay of order approximatelye−M/K .

2) As for Theorem 2, integrability properties of Lipschitz
functions are a simple consequence of the proof: For
any K-Lipschitz functionf ,

E[eτf(Z)] < ∞ for all τ <
M

K
.

Finally we show, extending a different result from [9],
that better results can be obtained under the assumption that
the base distributionQ corresponding to some CP(λ, Q) law



has bounded support. In that case, Lipschitz functions have
Poisson-like tails of the forme−ct log t.

Theorem 4. (POISSON CONCENTRATION) SupposeZ has
distribution CP(λ, Q), where the base distribution has finite
support,

m = max{j ∈ Z+ : Qj > 0} < ∞.

Let f : Z+ → R be K-Lipschitz,

|Df(x)| = |f(x + 1) − f(x)| ≤ K for all x.

Then, for anyt > 0,

Pr{f(Z)− E[f(Z)] ≥ t} ≤ exp{ρ(t)},

where ρ(t) is defined as the minimum between the two
expressions

−
t

2m
log

(

1 +
t

2mλ

)

and
t

m
−

(

t

m
+

q2
2λ

m2

)

log

(

1 +
mt

q2
2λ

)

,

with q2 denoting the second moment of the base distribution
Q as before.

Furthermore, fort ∈ [0, 3λm2

2 ],

Pr{f(Z) − E[f(Z)] ≥ t}) ≤ exp

{

−
t2

3λm3

}

.

Remark. In fact, given any finite-range interval (that is,
restricting t to [0, T ] for some T < ∞), the method of
proof can be easily modified to yield a Gaussian bound for
deviations in that range. As we would expect from our result
that the “far” tails of Lipschitz functions decay in a Poisson-
like manner and not in a Gaussian fashion, the variance of
these bounds increases without bound as the size of the finite
range increases.
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