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Abstract— Fisher information plays a fundamental role in the
analysis of Gaussian noise channels and in the study of Gaussian
approximations in probability and statistics. For discrete random
variables, the scaled Fisher information plays an analogous role in
the context of Poisson approximation. We show that it also admits
a minimum mean squared error characterization, and we prove
a monotonicity result analogous to the monotonicity recently
established for the central limit theorem in terms of Fisher
information. More generally, replacing the Poisson distribution
by the richer class of compound Poisson distributions on the
non-negative integers, we define two new “local information
quantities,” which, in many ways, play a role analogous to that
of the Fisher information for a continuous random variable. We
show that they satisfy subadditivity properties which parallel
those of classical Fisher information, we derive a minimum mean
squared error characterization, and we explore their utility for
obtaining compound Poisson approximation bounds.

I. INTRODUCTION

Consider a sum Sn =
∑n

i=1 Yi of random variables Yi

taking values in the set Z+ = {0, 1, 2, . . .} of non-negative
integers. The study of the distribution PSn of Sn is an
important part of classical probability theory, and it arises
naturally in applications involving counting. In particular, it
is often the case that PSn

can be well-approximated by a
compound Poisson distribution. In the simplest case, when
the Yi are i.i.d. Bernoulli( λ

n ) random variables, we know that
for large n the distribution PSn approaches the Poisson(λ)
distribution.

In the general case, we find it convenient to write each Yi

as the product BiUi of two independent random variables,
where Bi takes values in {0, 1} and Ui takes values in
N = {1, 2, . . .}. This can be done uniquely and without
loss of generality, by taking Bi to be Bernoulli(pi) with
pi = Pr(Yi 6= 0), and Ui having distribution Qi on N, where
Qi(k) = Pr(Yi = k)/pi for k ≥ 1. The distribution of Ui is
clearly the conditional distribution of Yi given that {Yi ≥ 1}.

If the {Yi} are i.i.d. then so are the {Ui}, and we write
Q for their common distribution. Similarly, the {Bi} are i.i.d.
Bernoulli, and we denote their common parameter by λ

n for
some λ > 0. Then we can write,

Sn =
n∑

i=1

BiUi
(d)
=

S′
n∑

i=1

Ui, (1)

where S′n =
∑n

i=1Bi has a Binomial(n, λ
n ) distribution, and

(d)
= denotes equality in distribution. [Throughout, we take the

empty sum
∑0

i=1[. . .] to be equal to zero.] The sum Sn in (1)
is said to have a compound binomial distribution. Since the
distribution of S′n converges to Po(λ), the Poisson distribution
with parameter λ, as n→∞, the distribution of Sn itself will
converge to that of the compound sum,

Z∑
i=1

Ui, (2)

where Z is a Po(λ) random variable independent of the {Ui}.
This expression is precisely the definition of the compound
Poisson distribution with parameters λ and Q, denoted by
CP (λ,Q).

More generally, even if the summands {Yi} are not i.i.d.,
it is often the case that the distribution PSn

of Sn can be
accurately approximated by a compound Poisson distribution.
Intuitively, the minimal requirements for such an approxima-
tion to hold are that: (i) none of the Yi dominate the sum,
i.e., the parameters pi = Pr{Yi 6= 0} are all appropriately
small; and (ii) the {Yi} are only weakly dependent. Compound
Poisson approximation is very widely applicable, see, e.g., [1].

In this paper, we focus on the case where the summands
are independent. Although most of the results do not require
further restriction of the distributions, for clarity of exposition
we only present the details in the case where all the Qi are
identical. An example of the type of result that we prove using
information-theoretic ideas is the following bound. The ideas
behind its proof are outlined in Section III.

Theorem I: [COMPOUND POISSON APPROXIMATION] Con-
sider Sn =

∑n
i=1BiUi, where the Ui are i.i.d. ∼ Q and the

Bi are independent Bernoulli(pi). Then, writing λ =
∑n

i=1 pi,
the relative entropy between the distribution PSn

of Sn and
the CP (λ,Q) distribution satisfies,

D(PSn
‖CP (λ,Q)) ≤ 1

λ

n∑
i=1

p3
i

1− pi
.

In 1986, Barron [2] proved a relative entropy version of
the central limit theorem (CLT). The proof was based on
estimates of (the standardized) Fisher information, which acts



as a “local” version of the relative entropy. In fact, virtually
every approach to the information-theoretic CLT relies in some
way on the (more tractable) notion of Fisher information as
an intermediary; see, e.g., [3], [4], [5], and the references
therein. Recently, [6] used similar ideas to prove Poisson
approximation bounds. Our work builds on the work of these
and other authors, and is motivated by information-theoretic
tools.

The key methodological idea in this work is to break up the
problem into two smaller problems, using a “local information
quantity.” This is partly motivated by the normal approxima-
tion results mentioned above; there, the standardized Fisher
information of a random variable X with differentiable density
f is,

JN (X) = E

[
∂

∂x
log f(X)− ∂

∂x
log g(X)

]2
, (3)

where g is the density of a normal with the same variance as
X . The quantity JN satisfies the following properties:

(A) JN is the variance of a zero-mean quantity,
namely the (standardized) score function.
(B) JN (X) = 0 if and only if D(f‖g) = 0, i.e., if
and only if X is normal.
(C) JN satisfies a subadditivity property for sums.
(D) If JN (X) is small, then D(f‖g) is also appro-
priately small.

Roughly speaking, the information-theoretic version of the
CLT can be proved by first using property (C) to show that
JN (Sn/

√
n) → 0 as n → ∞, and then using (D) to obtain

convergence in relative entropy.
The “scaled Fisher information” JP of [6] plays the same

role for Poisson approximation that JN plays for normal
approximation. In particular, it satisfies properties (A-D). In
this paper, we identify two quantities which can play similar
roles for compound Poisson approximation; however we relax
property (D) in that we only require that these new local
information quantities should control total variation distance
(and not necessarily relative entropy), and we relax property
(C) to allow for modified forms of “subadditivity.” We then
use these properties to prove compound Poisson approximation
bounds.

Note that we do not refer to these new local information
quantities as “Fisher informations.” This is because they do
not naturally arise in the context of parametric inference like
Fisher’s information does [7], and we are not aware of any
analogous interpretations in the present context.

In addition to obtaining approximation bounds, we also
demonstrate some results of independent interest. In Section II,
where we also review the information-theoretic approach to
Poisson approximation, we give a new interpretation of the
scaled Fisher information of [6] involving minimum mean
square estimation for the Poisson channel. We also prove a
monotonicity property for the convergence of the Binomial
to the Poisson, which is analogous to the recently proved
monotonicity of Fisher information in the CLT [8], [9], [10].

Section III contains our main approximation bounds, and also
some results indicating that connections to minimum mean
square estimation and monotonicity properties extend in an
appropriate fashion to the compound Poisson case.

II. POISSON APPROXIMATION

The classical Binomial-to-Poisson convergence result has
an information-theoretic interpretation. First, like the normal,
the Poisson distribution has a maximum entropy property; for
example, in [11] it is shown that it has the highest entropy
among all ultra log-concave distributions on Z+ with mean λ;
see also [12], [13]. Second, an information-theoretic approach
to Poisson approximation bounds was developed in [6]. This
was partly based on the introduction of the following local
information quantity:

Definition: Given a Z+-valued random variable Y with dis-
tribution PY and mean λ, the score function ρY is defined
by,

ρY (y) =
(y + 1)PY (y + 1)

λPY (y)
− 1, (4)

and the scaled Fisher information of Y is defined as,

JP (Y ) = λE[ρY (Y )]2. (5)

For sums of independent Z-valued random variables, this
local information quantity was used in [6] to establish near-
optimal Poisson approximation bounds in relative entropy
and total variation distance. Previous analogues of Fisher
information for discrete random variables [14], [15], [16]
suffered from the drawback that they are infinite for random
variables with finite support, a problem that is overcome by
this JP (Y ). Furthermore, JP (Y ) satisfies properties (A-D)
stated above, as discussed in detail in [6].

We now give an alternative characterization of the scaled
Fisher information, related to minimum mean square estima-
tion for the Poisson channel. This extends to the case of
the Poisson channel a similar characterization for the Fisher
information JN developed in the recent work of Guo, Shamai
and Verdú [19], [17] for signals in Gaussian noise. [See also
the earlier work of L.D. Brown in the context of statistical
decision theory, discussed in [18], as well as the relevant
remarks in [9].]

Theorem II: [MMSE AND SCALED FISHER INFORMATION]
Let X ≥ 0 be a continuous random variable whose value is
to be estimated based on the observation Y , and suppose that
the conditional distribution of Y given X is Poisson(X). Then
the scaled Fisher information JP (Y ) of Y can be expressed
as the variance-to-mean ratio of the minimum mean square
estimate of X based on Y :

JP (Y ) =
Var{E[X|Y ]}

EX
. (6)

Proof: If X has density f supported on [0,∞), then the
distribution P of Y is given by

P (y) =
∫ ∞

0

P (y|x)f(x)dx =
∫ ∞

0

e−xxyf(x)
y!

dx, (7)



where P (y|x) ∼Poisson(x). This implies that

(y + 1)P (y + 1) =
1
y!

∫ ∞

0

e−xxy+1f(x)dx, (8)

and thus

(y + 1)P (y + 1)
P (y)

=

∫∞
0
e−xxy+1f(x)dx∫∞

0
e−xxyf(x)dx

=
∫ ∞

0

xgy(x)

= E[X|Y = y],

(9)

where gy(x) is the density on [0,∞) corresponding to the
conditional distribution of X given Y . Thus

ρY (y) =
E[X|Y = y]

EY
− 1, (10)

and substituting this into the definition of JP proves the
desired result, since EX = EY .

The following convolution identity for the score function of
a sum Sn = X1 + . . .+Xn of independent Z+-valued random
variables was established in [6],

ρSn(z) = E

[
n∑

i=1

λi

λ
ρXi(Xi)

∣∣∣∣∣Sn = z

]
, (11)

where E(Xi) = λi and E(Sn) =
∑n

i=1 λi = λ. As a result,
JP (Sn) has a subadditivity property, implying in particular
that, when the summands are i.i.d., then JP (S2n) ≤ JP (Sn).
Theorem III below shows that the sequence {JP (Sn)} is in
fact monotonic in n. This fact is analogous to the monotonic
decrease of the Fisher information for the normalized sums in
the CLT; c.f. [8][9], [10].

Theorem III: [MONOTONICITY OF SCALED FISHER INFOR-
MATION] Let Sn be the sum of n independent random vari-
ables X1, X2, . . . , Xn. Write U (i) =

∑
j 6=iXi for the leave-

one-out sums, and let λ(i) denote the mean of U (i), for each
i = 1, 2, . . . , n. Then,

JP (Sn) ≤ 1
n− 1

n∑
i=1

λ(i)

λ
JP (U (i)), (12)

where λ is the mean of Sn. In particular, when the summands
are i.i.d., we have JP (Sn) ≤ JP (Sn−1).

Proof: The proof we give here adapts the corresponding
technique used in [9]; an alternative proof can be given
by combining the characterization of Theorem II with the
technique of [10]. In either case, the key idea is Hoeffding’s
variance drop inequality (see [9] for historical remarks),

E

(∑
S∈S

ψ(S)(XS)

)2

≤ (n− 1)
∑
S

Eψ(S)(XS)2, (13)

where S is the collection of subsets of {1, . . . , n} of size n−1,
{ψ(S) ; S ∈ S} is an arbitrary collection of square-integrable
functions, and XS =

∑
i∈S Xi for any S ∈ S.

In the present setting, for each i = 1, 2, . . . , n, write Pi and
Ri for the distribution of Xi and U (i), respectively, and let

F denote the distribution of Sn. Then F can be decomposed
as F (z) =

∑
x Pi(x)Ri(z − x), for each i = 1, 2, . . . , n.

Multiplying this with the expression,

(n− 1)z =
n∑

i=1

E(z − Yi |Y1 + . . .+ Yn = z),

gives,

(n− 1)zF (z) =
n∑

i=1

∑
yi

Pi(yi)Ri(z − yi)(z − yi). (14)

We can substitute this in Equation (4) to obtain,

ρSn
(z) =

(z + 1)F (z + 1)
λF (z)

− 1

=
n∑

i=1

∑
yi

Pi(yi)Ri(z + 1− yi)(z + 1− yi)
λ(n− 1)F (z)

− 1

=
1

n− 1

n∑
i=1

∑
yi

Pi(yi)Ri(z − yi)
F (z)

λ(i)

λ
×(

(z + 1− yi)Ri(z + 1− yi)
λ(i)Ri(z − yi)

− 1
)

= E

[
n∑

i=1

λ(i)

λ(n− 1)
ρU(i)(U (i))

∣∣∣∣∣Sn = z

]
.

Using the conditional Jensen inequality, this implies that
JP (Sn) equals,

λEρSn
(Sn)2

≤ λE

(
n∑

i=1

λ(i)

λ(n− 1)
ρU(i)(U (i))

)2

≤ λ(n− 1)
n∑

i=1

(
λ(i)

λ(n− 1)

)2

EρU(i)(U (i))2

=
1

n− 1

n∑
i=1

λ(i)

λ
JP (U (i)),

as claimed.

Another way in which scaled Fisher information naturally
arises, is in connection with a modified logarithmic Sobolev-
type inequality for the Poisson distribution proved in [20]. This
states that, for an arbitrary distribution P on Z+ with mean
λ,

D(P‖Po(λ)) ≤ JP (X). (15)

This was combined in [6] with the subadditivity of scaled
Fisher information (mentioned above) to obtain the following
Poisson approximation bound: If Sn is the sum of n inde-
pendent Bernoulli random variables {Bi} with corresponding
parameters {pi}, then,

D(PSn‖Po(λ)) ≤ 1
λ

n∑
i=1

p3
i

1− pi
, (16)

where λ =
∑n

i=1 pi. Our Theorem I stated in the Introduction
generalizes this result to the compound Poisson case. Note



that by Pinsker’s inequality, (16) gives a total variation ap-
proximation bound, which is near optimal in the regime where
λ = O(1) and n is large; see [21].

III. COMPOUND POISSON APPROXIMATION AND LOCAL
INFORMATIONS

In this section we develop an information-theoretic setting
within which compound Poisson approximation results can
be obtained, generalizing the Poisson approximation results
described in the previous section. All of the results below
are stated without proof; details will be given in an extended
version of the present paper.

Although maximum entropy properties are not the main
focus of this work, we should mention that the compound
Poisson can also be seen as a maximum entropy distribution,
at least under certain conditions. [Details will be given in
forthcoming work.] Another important characterization of the
compound Poisson distribution is via size-biasing. Recall that,
for any distribution P on Z+ with mean λ, the size-biased
distribution P# is defined by,

P#(y) =
(y + 1)P (y + 1)

λ
.

[Some authors define size-biasing as the above P# shifted by
1.] If X has distribution P , then we write X# for a random
variable with distribution P#. Notice that the score function
introduced previously is simply P#(y)/P (y)− 1.

We also need to define the following compounding opera-
tion: If X is a Z+-valued random variable with distribution P
and Q is a distribution on N, then the random variable CQX
with distribution CQP is defined by,

CQX
(d)
=

X∑
i=1

Ui,

where,
(d)
= denotes equality in distribution as before, and the

random variables Ui, i = 1, 2, . . . are i.i.d. with common
distribution Q. We refer to such a random variable as being
Q-compound. Note that CQX ∼ CP (λ,Q) if and only if
X ∼ Po(λ); therefore, CQX ∼ CP (λ,Q) if and only if
P = P#.

These ideas lead to the following first definition of a new
local information quantity. Note that it is only defined for Q-
compound random variables.

Definition: Let X be a Z+-valued random variable with
distribution CQP . Then, the local information JQ,1(X) of X
relative to the compound Poisson distribution CP (λ,Q), is
defined by,

JQ,1(X) = λXE[r21(X)], (17)

where λX is the mean of X , and the score function r1 is,

r1(x) =
CQ(P#)(x)
CQP (x)

− 1. (18)

This definition is motivated by the fact that P = P# if and
only if P is Poisson, so that JQ,1(X) is identically zero if and

only if X ∼ CP (λ,Q). Note that if Q = δ1, the compounding
operation does nothing, and JQ,1 reduces to JP .

The following property is easily proved using characteristic
functions:

Lemma I: Z ∼ CP (λ,Q) if and only if Z# (d)
= Z + U#,

where U ∼ Q is independent of Z. That is, CQP = CP (λ,Q)
if and only if (CQP )# = (CQP ) ? Q#, where ? is the
convolution operation.

We now define another local information quantity in the
compound Poisson context.

Definition: Let X be an Z+-valued random variable with
distribution R. Then, the local information JQ,2(X) of X
relative to the compound Poisson distribution CP (λ,Q), is
defined by,

JQ,2(X) = λXE[r22(X)], (19)

where λX is the mean of X , and the score function r2 is,

r2(x) =
xR(x)

λX

∑
u uQ(u)R(x− u)

− 1. (20)

Note that again JQ,2 reduces to JP when Q = δ1. In
the simple Poisson case, as we saw, the quantity JP has
a minimum mean square estimation interpretation, and it
satisfies certain subadditivity and monotonicity properties. In
the compound case, each of these properties is satisfied by one
of JQ,1 or JQ,2.

The following result shows that the local information JQ,2

can be interpreted in terms of minimum mean square estima-
tion for an appropriate channel.

Theorem IV: [MMSE AND JQ,2] Let X ≥ 0 be a continuous
random variable whose value is to be estimated based on the
observation Y + V , suppose that the conditional distribution
of Y given X is CP(X,Q), and that V ∼ Q# is independent
of Y . Then,

JQ,2(Y ) =
Var{E[X|Y + V ]}

EX
. (21)

The local information quantity JQ,1 satisfies a subadditivity
relation:

Theorem V: [SUBADDITIVITY OF JQ,1] Suppose the indepen-
dent random variables Y1, Y2, . . . , Yn are Q-compound, with
each Yi having mean λi, i = 1, 2, . . . , n. Then,

JQ,1(Y1 + Y2 + . . .+ Yn) ≤
n∑

i=1

λi

λ
JQ,1(Yi), (22)

where λ =
∑n

i=1 λi.

A corresponding result can be proved for JQ,2, but the right-
hand side includes additional cross-terms.

In the case of i.i.d. summands, we deduce from Theorem
V that JQ,1(Sn) is monotone on doubling of sample size n.
As in the normal and Poisson cases, it turns out that JQ,1(Sn)
is decreasing in n at every step. The statement and proof of
Theorem III easily carry over to this case:



Theorem VI: [MONOTONICITY OF JQ,1] Let Sn be the
sum of n independent, Q-compound, random variables
X1, X2, . . . , Xn. Write U (i) =

∑
j 6=iXi the leave-one-out

sums, and let λ(i) denote the mean of U (i), for each i =
1, 2, . . . , n. Then,

JQ,1(Sn) ≤ 1
n− 1

n∑
i=1

λ(i)

λ
JQ,1(U (i)), (23)

where λ is the mean of Sn. In particular, when the summands
are i.i.d., we have JQ,1(Sn) ≤ JQ,1(Sn−1).

In the special case of Poisson approximation, the logarith-
mic Sobolev inequality (15) proved in [20] directly relates
the relative entropy to the local information quantity JP . In
fact, the Poisson approximation bounds developed in [6] in
relative entropy, are proved by combining this result with the
subadditivity property of JP . However, the known logarithmic
Sobolev inequalities for compound Poisson distributions [22],
[23], only relate the relative entropy to quantities different
from JQ,1 and JQ,2. Instead of developing subadditivity results
for those quantities, we build on ideas from Stein’s method
for compound Poisson approximation and prove the following
relationship between the total variation distance and the local
informations JQ,1 and JQ,2.

Theorem VII: [STEIN’S METHOD-LIKE BOUNDS] Let X be
a Z+-valued random variable with distribution P , and let Q
be an arbitrary distribution on N with finite mean q. Then for
i = 1, 2,

‖P − CP (λ,Q)‖TV ≤ qH(λ,Q)
√
λJQ,i(X), (24)

where λ = E(X)/q, and H(λ,Q) is a constant depending
only on λ and Q.

The quantity H(λ,Q) arises from the so-called ‘magic
factors’ which appear in Stein’s method, and it can easily be
bounded in an explicit and easily applicable way. Combining
Theorems V and VII leads to very effective approximation
bounds in total variation distance.

Finally, we give a short proof outline for the compound
Poisson approximation result stated in the Introduction.

Proof of Theorem I: Let Z ′ ∼ Po(λ), where λ is the sum of
the pi, and S′n =

∑n
i=1Bi. Then Sn can also be expressed

Sn =
∑S′

n
i=1 Ui, while we can construct a CP (λ,Q) random

variable Z as
∑Z′

i=1 Ui. Thus Sn = f(U1, . . . , Un, S
′
n) and

Z = f(U1, . . . , Un, Z
′), where the function f is the same in

both places. By the data processing inequality and chain rule,

D(PSn
‖CP (λ,Q)) ≤ D(PS′

n
‖Po(λ)),

and the result follows from the Poisson approximation bound
(16) of [6].

This data processing argument does not directly extend to
the case where the Qi associated with the summands are
different. However, versions of Theorems V and VII can be
generalized to this case, although they become much more
complicated to state. Such extensions, and their consequences

for compound Poisson approximation bounds in total variation,
may be found in a forthcoming longer version [24] of the
present work.
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