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Abstract— Notions from cooperative game theory arise in a
very natural way in connection with the study of rate and
capacity regions for many important problems. Furthermore,
(i) game theory clarifies the fundamental structural connection
between rate regions and information inequalities, and (ii) the
interpretation of these regions in terms of users that are thought
of as players in a cooperative game is of intrinsic value. Both these
aspects are illustrated in a variety of settings, including Slepian-
Wolf compression and Gaussian multiple access channels.

I. INTRODUCTION

A central problem in information theory is the determination
of rate regions in data compression problems, and that of
capacity regions in communication problems. Our primary
goal in this paper is to point out that notions from cooperative
game theory arise in a very natural way in connection with
the study of rate and capacity regions for many important
problems. First we provide some motivation via an example.

Consider the classical Slepian-Wolf (henceforth, S-W)
data compression problem, where n sources produce data
X1, X2, . . . , Xn that are correlated, but source i can only
use its own piece of the data (namely Xi) in its encoding
procedure, without access to the data produced by the other
sources. It is well known that if one is interested in the
sum rate, then there is no worsening of the sum rate for
this distributed compression scenario compared to the usual
compression scenario where the optimal compression rate is
H(X1, . . . , Xn) bits per symbol. However, perhaps it is less
well known that this “no worsening of sum rate” result is not
automatic, even after Slepian and Wolf’s characterization of
the rate region for the distributed compression problem, except
in the simplest case of n = 2. To identify the reason, recall
the S-W rate region: a vector of rates (R1, . . . , Rn), where Ri

is the number of bits per symbol used in encoding by source
i, is achievable in a distributed fashion if and only if∑

i∈s
Ri ≥ H(Xs|Xsc) for all s ⊂ {1, . . . , n},

where Xs denotes (Xi : i ∈ s). Clearly the constraint
corresponding to the full set implies that the best sum rate
one can hope for is H(X1, . . . , Xn), but it is not a priori
clear that there exists a rate point with this sum rate that
also satisfies the 2n − 2 other constraints! Usually this gap is
resolved in one of two ways– by using structural consequences
of the polymatroidal property of entropy, or by constructing an

explicit rate point with optimal sum rate and showing that it
satisfies all the necessary constraints. However, neither of these
approaches puts its finger on the precise reason why the “no
worsening of sum rate” result is true. Indeed, as we will see,
every nice property of the rate region (including the fact that
a sum rate equal to the joint entropy is achievable) is dual to
some class of information-theoretic inequalities; furthermore,
this is best understood in the language of cooperative game
theory, where such a duality has been studied for over 50
years. In particular, the information inequalities dual to the
“no worsening of sum rate” result are the weak fractional form
of the joint entropy inequalities of [1], which are weaker than
the polymatroidal property of entropy. We will describe several
such structural connections in this paper.

Let us now move on to more practical considerations and
the utility of game theoretic intuition. In multiuser scenarios,
rate or capacity regions are subsets of some Euclidean space
whose dimension depends on the number of users. The search
for an “optimal” rate point is no longer trivial, even if the
rate region is known, because of the fact that there is no
natural total ordering on points of Euclidean space. Indeed,
it is important to ask in the first place what optimality means
in the multiuser context. As a first cut, one might ask for
efficiency in the sense of optimal sum rate or sum capacity, but
often there are many rate points that are efficient in this sense.
Further criteria for optimality, depending on the scenario of
interest, would derive from considerations of fairness, net
efficiency, extraneous costs, or robustness to various kinds of
network failures. Such considerations are easy to interpret as
considerations important to players in a cooperative game. For
instance, we will point out in this paper robustness properties
of some rate and capacity regions to network failures in the
form of some users dropping out, as well as some useful
criteria for rate or capacity allocation.

Most of the results in this note are very well known; perhaps
some of the interpretations are unusual, but the experts will
not find them surprising. Since we need to recollect a number
of results from the literature in this paper, we label old results
as Facts, and newly interpreted results as Translations; this
note has no theorems.

In Section II, some basic cooperative game theory is re-
viewed. Section III examines the S-W problem, and Section IV
examines Gaussian multiple access channels. Section V dis-
cusses other examples and makes concluding remarks.



II. COOPERATIVE GAMES

The theory of cooperative games is classical in the eco-
nomics and game theory literature, and has been extensively
developed. The basic setting of such a game consists of n
players, who can form arbitrary coalitions s ⊂ [n], where
[n] denotes the set {1, 2, . . . , n} of players. The value of a
coalition s is equal to v(s), where v : 2[n] → R, and it is
always assumed that v(φ) = 0. Thus a game is specified by
the number n of players, and the value function v.

We will interpret the cooperative game as the setting for a
cost allocation problem. Suppose that player i contributes an
amount of ti. Since the game is assumed to involve (linearly)
transferable utility, the cumulative cost to the players in the
coalition s is simply

∑
i∈s ti. Since each coalition must pay its

due of v(s), the individual costs ti must satisfy
∑

i∈s ti ≥ v(s)
for every s ⊂ [n]. This set of cost vectors, namely

A(v) =
{

t ∈ Rn
+ :

∑
i∈s

ti ≥ v(s) for each s ⊂ [n]
}

is the set of aspirations of the game, in the sense that this
set defines what the players can aspire to. The goal of the
game is to minimize social cost, i.e., the total sum of the costs∑

i∈[n] ti. Clearly this minimum is achieved when
∑

i∈[n] ti =
v([n]). This leads to the definition of the core of a game.

Definition 1: The core of a game v is the set of aspiration
vectors t ∈ Rn such that

∑
i∈[n] ti = v([n]).

One may think of the core of an arbitrary game as the
intersection of the set of aspirations A(v) and the efficiency
hyperplane

F (v) =
{

t ∈ Rn :
∑
i∈[n]

ti = v([n])
}

. (1)

A pathbreaking result in the theory of transferable utility
games was the Bondareva-Shapley theorem characterizing
whether the core of the game is empty. First we need to define
the notion of a balanced game.

Definition 2: Given a collection C of subsets of [n], a function
α : C → R+ is a fractional partition if for each i ∈ [n], we
have

∑
s∈C:i∈S α(s) = 1. A game is balanced if

v([n]) ≥
∑
s∈C

α(s)v(s) (2)

for any fractional partition α for any collection C.

We now state the Bondareva-Shapley theorem [2], [3],
which is essentially just linear programming (LP) duality.

Fact 1: The core of a game is non-empty iff the game is
balanced.

An important class of games is that of convex games.

Definition 3: A game is convex if

v(s ∪ t) + v(s ∩ t) ≥ v(s) + v(t)

for any sets s and t. (In this case, the set function v is also
said to be supermodular.)

The connection between convexity and balancedness goes
back to Shapley [4].

Fact 2: A convex game has non-empty core and is balanced;
the converse need not hold.

For any game v and any ordering (permutation) σ =
(i1, . . . , in) on [n], the marginal worth vector mσ(v) ∈ Rn

is defined by

mσ
ik

(v) = v({i1, . . . , ik})− v({i1, . . . , ik−1})

for each k > 1, and mσ
i1

(v) = v({i1}). The Shapley-Ichiishi
theorem [4], [5] says that the convex hull of all the marginal
vectors is identical to the core if and only if the game is
convex. In particular, the extreme points of the core of a
convex game are precisely the marginal vectors.

This characterization of convex games is obviously useful
from an optimization point of view, as studied deeply in [6]
in the closely related theory of polymatroids. Indeed, polyma-
troids (strictly speaking, contra-polymatroids) may simply be
thought of as the aspiration sets of convex, games. Note that
in the presence of the convexity condition, the non-decreasing
condition v(s) ≤ v(t) if s ⊂ t is equivalent to the assumption
that v takes only non-negative values. Since a linear program is
solved at extreme points, the results of Edmonds (stated in the
language of polymatroids) and Shapley (stated in the language
of convex games) imply that any linear function defined on the
core of a convex game (or the dominant face of a polymatroid)
must be extremized at a marginal vector. [6] uses this to
develop greedy methods for such optimization problems. The
two parallel theories of polymatroids and convex games were
developed around the same time in the mid-1960’s; however,
in information theory, this parallelism does not seem to be part
of the folklore and the game interpretation of rate or capacity
regions has only been used to the author’s knowledge in the
important paper [7].

The Shapley value of a game v is the centroid of the
marginal vectors, i.e., φ[v] = 1

n!

∑
σ∈Sn

mσ , where Sn is
the symmetric group consisting of all permutations. It is the
unique vector satisfying the following axioms: (a) φ lies
in the efficiency hyperplane F (v), (b) it is invariant under
permutation of players, and (c) if u and v are two games,
then φ[u + v] = φ[u] + φ[v]. Clearly, the Shapley value gives
one possible formalization of the notion of a “fair allocation”
to the players in the game.

Fact 3: For a convex game, the Shapley value is in the core.

If
∑

i∈s yi ≥ v(s) for each s, does there exist x in the core
such that x ≤ y (component-wise)? If so, the core is said to
be large. [8] showed the following fact.

Fact 4: A convex game has a large core.



III. THE SLEPIAN-WOLF GAME

Recall the basic result for the S-W problem, developed for
i.i.d. sources in [9] and for jointly ergodic sources in [10].

Fact 5: Correlated sources (X1, . . . , Xn) can be described
separately at rates (R1, . . . , Rn), and recovered with arbitrarily
low error probability by a common decoder if and only if∑

i∈s
Ri ≥ H(Xs|Xsc) =: vSW (s)

for each s ⊂ [n]. In other words, the S-W rate region is the
set of aspirations of the cooperative game vSW , which we call
the S-W game.

As discussed in the Introduction, using only knowledge of
the joint distribution of the data, one can achieve a compres-
sion rate equal to the joint entropy of the users (i.e., there
is no loss from the incapability to communicate). We may
understand this in the following manner.

Translation 1: The S-W game is a convex game. In particular,
the core is non-empty and a sum rate of H(X[n]) is achievable.

Proof: To show that the S-W game is convex, we need to show
that vSW (s) = H(Xs|Xsc) is supermodular. This fact was
first explicitly pointed out in [11]. By application of Fact II,
the core is non-empty, which means that there exists a rate
point satisfying∑

i∈[n]

Ri = vSW ([n]) = H(X[n]).

We now look at how robust this situation is to network
degradation because some users drop out.

Translation 2:[ROBUST S-W CODING] Suppose the users
can only drop out in a certain order, which without loss of
generality we can take to be the natural decreasing order on
[n] (i.e., we assume that the first user to potentially drop out
would be user n, followed by user n−1, etc.). Then there exists
a rate point for S-W coding which is feasible and optimal
irrespective of the number of users that have dropped out.

Proof: The solution to this problem is related to a modified
S-W game, given by the utility function

v̄SW (s) = H(Xs|Xsc\>s),

where > s = {i ∈ [n] : i > j for every j ∈ s}. Indeed, if this
game is shown to have a non-empty core, then there exists a
rate point which is simultaneously in the S-W rate region of
every [k], for k ∈ [n]. However, the non-emptiness of the core
is equivalent to the balancedness of v̄SW , which follows from
the inequality

H(X[n]) ≥
∑
S∈C

α(s)H(Xs|Xsc\>s),

where α is any fractional partition using C, which was proved
in [1]. To see that the core of this modified game actually

contains an optimal point (i.e., a point in the core of the
subgame corresponding to the first k users) for each k, simply
note that the marginal vector corresponding to the natural order
on [n] gives a constructive example.

The main idea here is known in the literature, although not
interpreted or proved in this fashion. Indeed, other uses of the
extreme points of the S-W rate region are known (cf., [12]).

It is interesting to interpret some of the game-theoretic facts
described in Section II for the S-W game. This is particularly
useful when there is no natural ordering on the set of players,
but rather our goal is to identify a permutation-invariant (and
more generally, a “fair”) rate point. By Fact II, we have:

Translation 3: The Shapley value of the S-W game satisfies
the following properties: (a) It is in the core of the S-W game,
and hence is sum-rate optimal. (b) It is a fair allocation of
compression rates to users because it is permutation-invariant.
(c) Suppose an additional set of n sources, independent of the
first n, is introduced. Suppose the Shapley values of the S-W
games for the first set of sources is φ1, and for the second set
of sources is φ2. If each source from the first set is paired with
a distinct source from the second set, then the Shapley value
for the S-W game played by the set of pairs is φ1 + φ2. (In
other words, the “fair” allocation for the pair can be “fairly”
split up among the partners in the pair.)

It is pertinent to note, moreover, that implementing S-W
coding at any point in the core is practically implementable.
While it has been noticed for some time that one can efficiently
construct codebooks that nearly achieve the rates at an extreme
point of the core, [12] shows a practical approach to efficient
coding for any rate point in the core (based on viewing any
such rate point as an extreme point of the core of a S-W game
for a larger set of sources).

Fact II says that the S-W game has a large core, which may
be interpreted as follows.

Translation 4: Suppose, for each i, Ti is the maximum
compression rate that user i is willing to tolerate. A tolerance
vector T = (Ti) is said to be feasible if∑

i∈s
Ti ≥ vSW (s)

for each s ⊂ [n]. Then, for any feasible tolerance vector T , it
is always possible to find a rate point R = (Ri) in the core
so that Ri ≤ Ti (i.e., the rate point is tolerable to all users).

IV. GAUSSIAN MULTIPLE ACCESS CHANNEL GAMES

A multiple access channel (MAC) refers to a channel
between multiple independent senders (the data sent by the
i-th sender is denoted Xi) and one receiver (the received
data is denoted Y ). The Gaussian memoryless multiple access
channel (g-MAC) imposes a power constraint Pi on sender i,
and the noise introduced to the superposition of the data from
the sources is additive Gaussian noise with variance N . In



other words,

Y =
∑
i∈[n]

Xi + Z,

where Xi are the independent sources, and Z is a mean-
zero, variance N normal independent of the sources. Each
transmission is assumed to occur independently according to
this channel transition rule.

To use games to study capacity regions, one needs to look
at resource allocation games as opposed to the cost allocation
games discussed in the previous sections. The definitions
are exactly analogous, except that many of the inequalities
are reversed. For instance, the aspiration set for a resource
allocation game is

A(v) =
{

t ∈ Rn
+ :

∑
i∈s

ti ≤ v(s) for each s ⊂ [n]
}

,

and the core is the intersection of this set with the efficiency
hyperplane F (v) defined in (1), which represents the maxi-
mum achievable resource for the grand coalition of all players,
and thus a public good. A resource allocation game is concave
if

v(s ∪ t) + v(s ∩ t) ≤ v(s) + v(t)

for any sets s and t. The concavity of a game can be
thought of as the “decreasing marginal returns” property of
the value function, well motivated by economics. One can
easily formulate equivalent versions of Facts 1, 2, 3 and 4
for resource allocation games.

The capacity region of the g-MAC has a simple game-
theoretic description.

Fact 6: The capacity region of the n-user g-MAC is given by

R(s) ≤ C

(∑
i∈s Pi

N

)
=: vg(s)

for each s ⊂ [n], where C(x) = 1
2 log(1+x). In other words,

the capacity region of the g-MAC is the aspiration set of the
game defined by vg , which we may call the g-MAC game.

From results of [13], one can deduce the following.

Translation 5:[THE g-MAC GAME] The g-MAC game is a
concave game. In particular, its core is non-empty, and a sum

capacity of C

(P
i∈[n] Pi

N

)
is achievable.

As in the previous section, we may ask whether this is robust
to network degradation in the form of users dropping out,
at least in some order; the answer is obtained in an exactly
analogous fashion.

Translation 6:[ROBUST CODING FOR THE g-MAC] Suppose
the senders can only drop out in a certain order, which without
loss of generality we can take to be the natural decreasing
order on [n] (i.e., we assume that the first user to potentially
drop out would be sender n, followed by sender n− 1, etc.).

Then there exists a rate point for the g-MAC which is feasible
and optimal irrespective of the number of users that have
dropped out.

Furthermore, just as for the S-W game, Fact II has an
interpretation in terms of tolerance vectors, while Fact II
suggests that when there is no natural ordering of senders,
the Shapley value is a good choice of capacity allocation for
the g-MAC game.

While the ground for the study of the geometry of the g-
MAC capacity region using the theory of polymatroids was
laid by Han, such a study and its implications was further
developed, and in the more general setting of fading that allows
the modeling of wireless channels, by [14]. Statements like
Translation IV can be carried over to the more general setting
of fading channels by building on the observations made in
[14].

[7] provides an elegant analysis of the Gaussian MAC using
cooperative game theoretic ideas, focusing on the issue of
capacity allocation when the channel is arbitrarily varying.
We briefly review their results in the context of the preceding
discussion.

Consider an arbitrarily varying Gaussian multiple access
channel, where the users are potentially hostile, aware of
each others’ codebooks, and capable of coherently combining
to form “jamming coalitions”. A jamming coalition is a set
of users, say sc, who decide not to communicate but to
jam the channel for the remaining users, who constitute the
communicating coalition s. As before, each user has a power
constraint; the i-th sender cannot use power greater than Pi

whether it wishes to communicate or jam. It is still a Gaussian
MAC because the received signal is the superposition of the
inputs provided by all the senders, plus additive Gaussian
noise of variance N . In [7], the value function vLA for the
game corresponding to this channel is derived; the value for
a coalition s is the capacity achievable by the users in s even
when the users in sc coherently combine to jam the channel.

Fact 7: The capacity region of the arbitrarily varying Gaussian
MAC with potentially hostile senders is the aspiration set of
the La-Anantharam game, defined by

vLA(s) := C

(
Pŝ

Λsc + N

)
,

where Ps =
∑

i∈s Pi, Λs = [
∑

i∈s
√

Pi]2, and ŝ = {i ∈ s :
Pi ≥ Λsc}.

Note that two things have changed relative to the naive g-
MAC game; the power available for transmission (appearing in
the numerator of the argument of the C function) is reduced
because some senders are rendered incapable of communi-
cating by the jammers, and the noise term (appearing in the
denominator) is no longer constant for all coalitions but is
augmented by the power of the jammers. This tightening of
the aspiration set of the La-Anantharam game versus the g-
MAC game causes the concavity property to be lost.



Translation 7: The La-Anantharam game is not a concave
game, but it has a non-empty core. In particular, a sum capacity

of C

(P
i∈[n] Pi

N

)
is achievable.

Proof: [7] show that the Shapley value need not be in the
core for the Gaussian MAC game, but they demonstrate the
existence of another distinguished point in the core. Thus the
La-Anantharam game cannot be concave.

Although [7] shows that the Shapley value may not lie in
the core, they demonstrate the existence of a unique capacity
point that satisfies three desirable axioms: (a) efficiency, (b)
invariance to permutation, and (c) envy-freeness. While the
first two are also among the Shapley value axioms, [7]
provides justification that envy-freeness is a more appropriate
axiom from an application point of view than the summability
axiom that the Shapley value satisfies.

Of course, there is much more to the well-developed theory
of multiple access channels than the memoryless scenarios
discussed above. For instance, there is much recent work
on multiuser channels with memory and also with feedback
(see, e.g., [15]); things can change considerably in these more
general scenarios, and it is conceivable that the associated
games may even have empty cores.

V. CONCLUSION

The general approach to using cooperative game theory
to understand rate or capacity regions involves the following
steps: (i) Formulate the region of interest as the aspiration set
of a cooperative game. This is frequently the right kind of
formulation for multiuser problems. (ii) Study the properties
of the value function of the game, starting with checking if
it is balanced, and then by checking convexity or concavity.
(iii) Interpret the properties of the game that follow from the
discovered properties of the value function. For instance, bal-
ancedness implies a non-empty core, while convexity implies
a host of results, including nice properties of the Shapley
value. These are structural results, and their game-theoretic
interpretation has the potential to provide some additional
intuition.

While we only looked at two settings in this note, the
full paper [16] treats other settings as well. For instance,
consider the problem of distributed estimation of a background
parameter, embedded in a field of noisy sources, using sensor
networks. In such scenarios, one is interested in allocating
risk permissions to sources. This must be done in such a way
that any sensor is able to estimate the parameter with variance
not more than the permitted variance allotted to it, where the
variance permitted to a sensor is obtained by adding up all
the risk permissions associated with sources that the sensor
is exposed to. The overall goal is to minimize the sum total
of the risk permissions given out. One can show that this
multiuser scenario also corresponds to a cost allocation game,
and that its core is nonempty. Other examples include more
general multiple access channels than the Gaussian, and robust
hypothesis testing problems that involve infinite games.
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