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Abstract— It is shown that the entropy of a sum of independent
random vectors is a submodular set function, and upper bounds
on the entropy of sums are obtained as a result in both discrete
and continuous settings. These inequalities complement the lower
bounds provided by the entropy power inequalities of Madiman
and Barron (2007). As applications, new inequalities for the
determinants of sums of positive-definite matrices are presented.

I. INTRODUCTION

Entropies of sums are not as well understood as joint
entropies. Indeed, for the joint entropy, there is an elaborate
history of entropy inequalities starting with the chain rule of
Shannon, whose major developments include works of Han,
Shearer, Fujishige, Yeung, Matúš, and others. The earlier part
of this work, involving so-called Shannon-type inequalities
that use the submodularity of the joint entropy, was synthe-
sized and generalized by Madiman and Tetali [1], who give
an array of lower as well as upper bounds for joint entropy
of a collection of random variables generalizing inequalities
of Han [2], Fujishige [3] and Shearer [4]. For a review of the
later history, involving so-called non-Shannon inequalities, one
may consult, for instance, Matúš [5].

When one considers the entropy of sums of independent
random variables instead of joint entropies, the most important
inequalities known are the entropy power inequalities, which
provide lower bounds on entropy of sums. In the setting
of independent summands, the most general entropy power
inequalities known to date are described by Madiman and
Barron [6].

In this note, we develop a basic submodularity property of
the entropy of sums of independent random variables, and
formulate a “chain rule for sums”. Surprisingly, these results
are entirely elementary and rely on the classical properties of
joint entropy. We also demonstrate as a consequence upper
bounds on entropy of sums that complement entropy power
inequalities.

The paper is organized as follows. In Section II, we review
the notation and definitions we use. Section III presents the
submodularity of the entropy of sums of independent random
vectors, which is a central result. Section IV develops general
upper bounds on entropies of sums, while Section V reviews
known lower bounds and conjectures some additional lower
bounds. In Section VI, we apply the entropy inequalities of
the previous sections to give information-theoretic proofs of
inequalities for the determinants of sums of positive-definite
matrices.

II. PRELIMINARIES

Let X1, X2, . . . , Xn be a collection of random variables
taking values in some linear space, so that addition is a
well-defined operation. We assume that the joint distribu-
tion has a density f with respect to some reference mea-
sure. This allows the definition of the entropy of various
random variables depending on X1, . . . , Xn. For instance,
H(X1, X2, . . . , Xn) = −E[log f(X1, X2, . . . , Xn)]. There
are the familiar two canonical cases: (a) the random variables
are real-valued and possess a probability density function, or
(b) they are discrete. In the former case, H represents the
differential entropy, and in the latter case, H represents the
discrete entropy. We simply call H the entropy in all cases,
and where the distinction matters, the relevant assumption will
be made explicit.

Since we wish to consider sums of various subsets of ran-
dom variables, the following notational conventions and defi-
nitions will be useful. Let [n] be the index set {1, 2, . . . , n}.
We are interested in a collection C of subsets of [n]. For any
set s ⊂ [n], Xs stands for the random variable (Xi : i ∈ s),
with the indices taken in their increasing order, while

Ys =
∑
i∈s

Xi.

For any index i in [n], define the degree of i in C as r(i) =
|{t ∈ C : i ∈ t}|. A function α : C → R+, is called a fractional
covering, if for each i ∈ [n], we have

∑
s∈C:i∈s αs ≥ 1.

A function β : C → R+, is called a fractional packing, if
for each i ∈ [n], we have

∑
s∈C:i∈s βs ≤ 1. If α is both

a fractional packing and a fractional covering, it is called a
fractional partition.

The mutual information between two jointly distributed
random variables X and Y is

I(X;Y ) = H(X) + H(Y )−H(X, Y ),

and is a measure of the dependence between X and Y .
In particular, I(X;Y ) = 0 if and only if X and Y are
independent. The following three simple properties of mutual
information can be found in elementary texts on information
theory such as Cover and Thomas [7]:
• When Y = X+Z, where X and Z are independent, then

I(X;Y ) = H(Y )−H(Z). (1)

Indeed, I(X;X + Z) = H(X + Z) −H(X + Z|X) =
H(X + Z)−H(Z|X) = H(X + Z)−H(Z).



• The mutual information cannot increase when one looks
at functions of the random variables (the “data processing
inequality”):

I(f(X);Y ) ≤ I(X;Y ).

• When Z is independent of (X, Y ), then

I(X;Y ) = I(X, Z;Y ). (2)

Indeed,

I(X, Z;Y )− I(X;Y )
= H(X, Z)−H(X, Z|Y )− [H(X)−H(X|Y )]
= H(X, Z)−H(X)− [H(X, Z|Y )−H(X|Y )]
= H(Z|X)−H(Z|X, Y )
= 0.

III. SUBMODULARITY

Although the inequality below is a simple consequence of
these well known facts, it does not seem to have been noticed
before.

Theorem I:[SUBMODULARITY FOR SUMS] If Xi are inde-
pendent Rd-valued random vectors, then

H(X1 + X2) + H(X2 + X3) ≥ H(X1 + X2 + X3) + H(X2).

Proof: First note that

H(X1 + X2) + H(X2 + X3)−H(X1 + X2 + X3)−H(X2)
= H(X1 + X2)−H(X2)−[

H(X1 + X2 + X3)−H(X2 + X3)
]

= I(X1 + X2;X1)− I(X1 + X2 + X3;X1),

using (1). Thus we simply need to show that

I(X1 + X2;X1) ≥ I(X1 + X2 + X3;X1).

Now

I(X1 + X2 + X3;X1)
(a)

≤ I(X1 + X2, X3;X1)
(b)
= I(X1 + X2;X1),

where (a) follows from the data processing inequality, and (b)
follows from (2); so the proof is complete.

Some remarks about this result are appropriate. First, this
result implies that the “rate region” of vectors (R1, . . . , Rn)
satisfying ∑

i∈s

Ri ≤ H(Ys)

for each s ⊂ [n] is polymatroidal (in particular, it has a
non-empty dominant face on which

∑
i∈[n] Ri = H(Y[n])).

It is not clear how this fact is to be interpreted since this is
not the rate region of any real information theoretic problem

to the author’s knowledge. Second, a consequence of the
submodularity of entropy of sums is an entropy inequality
that obeys the partial order constructed using compressions, as
introduced by Bollobas and Leader [8]. Since this inequality
requires the development of some involved notation, we defer
the details to the full version [9] of this paper. Third, an
equivalent statement of Theorem I is that for independent
random vectors,

I(X;X + Y ) ≥ I(X;X + Y + Z), (3)

as is clear from the proof of Theorem I.

IV. UPPER BOUNDS

Remarkably, if we wish to use Theorem I to obtain upper
bounds for the entropy of a sum, there is a dramatic difference
between the discrete and continuous cases, even though this
distinction does not appear in Theorem I.

First consider the case where all the random variables are
discrete. Shannon’s chain rule for joint entropy says that

H(X1, X2) = H(X1) + H(X2|X1) (4)

where H(X2|X1) is the conditional entropy of X2 given X1.
This rule extends to the consideration of n variables; indeed,

H(X1, . . . , Xn) =
n∑

i=1

H(Xi|X<i) (5)

where X<i is used to denote (Xj : j < i). Similarly, one may
also talk about a “chain rule for sums” of independent random
variables, and this is nothing but the well known identity (1)
that is ubiquitous in the analysis of communication channels.
Indeed, one may write

H(X1 + X2) = H(X1) + I(X1 + X2;X2)

and iterate this to get

H

( ∑
i∈[n]

Xi

)
= H(Y[n−1]) + I(Y[n];Yn)

= H(Y[n−2]) + I(Y[n−1];Yn−1) + I(Y[n];Yn)
= . . .

=
∑
i∈[n]

I(Y[i];Yi),

which has the form of a “chain rule”. Here we have used Ys

to denote the sum of the components of Xs, and in particular
Yi = Y{i} = Xi. Below we also use ≤ i for the set of indices
less than or equal to i, Y≤i for the corresponding subset sum
of Xi’s etc.

Theorem II:[UPPER BOUND FOR DISCRETE ENTROPY] If
Xi are independent discrete random variables, then

H(X1 + . . . + Xn) ≤
∑
s∈C

αsH

( ∑
i∈s

Xi

)
,

for any fractional covering α using any collection C of subsets
of [n].



Theorem II can easily be derived by combining the chain
rule for sums described above with Theorem I. Alternatively,
it follows from Theorem I because of the general fact that
submodularity implies “fractional subadditivity” (see, e.g.,
[1]).

For any collection C of subsets, [1] introduced the degree
covering, given by

αs =
1

r−(s)
,

where r−(s) = mini∈s r(i). Specializing Theorem II to this
particular fractional covering, we obtain

H(X1 + . . . + Xn) ≤
∑
s∈C

1
r−(s)

H

( ∑
i∈s

Xi

)
.

A simple example is the case of the collection Cm, consisting
of all subsets of [n] with m elements. For this collection, we
obtain

H(X1 + . . . + Xn) ≤ 1(
n−1
m−1

) ∑
s∈C

H

( ∑
i∈s

Xi

)
.

since the degree of each index with respect to Cm is
(

n−1
m−1

)
.

Now consider the case where all the random variables
are continuous. At first sight, everything discussed above for
the discrete case should also go through in this case, since
Theorem I holds in general. However this is not true; indeed,
the differential entropy of a sum does not even satisfy simple
subadditivity! To see why we cannot obtain subadditivity from
Theorem I, note that setting X2 = 0 makes Theorem I trivial
because the differential entropy of a constant is −∞ (unlike
the discrete entropy of a constant which is 0). Similarly, the
chain rule for sums described above is only partly true: while

H

( ∑
i∈[n]

Xi

)
= H(X1) +

n∑
i=2

I(Y[i];Yi), (6)

we cannot equate H(X1) = H(Y1) to I(Y1;Y1), since the
latter is ∞.

Still one finds that (6) is nonetheless useful; it yields the
following upper bounds for differential entropy of a sum.

Theorem III:[UPPER BOUND FOR DIFFERENTIAL EN-
TROPY] Let X and Xi, i ∈ [n] be independent Rd-valued
random vectors with densities. Suppose α is a fractional
covering for the collection C of subsets of [n]. Then

H

(
X +

∑
i∈[n]

Xi

)
≤

∑
s∈C

αsH

(
X +

∑
i∈s

Xi

)

−
( ∑

s∈C
αs − 1

)
H(X).

Proof: The modified chain rule (6) for sums implies that

H(X + Ys) = H(X) +
∑
i∈s

I(Yi;Ys∩≤i).

Thus∑
s∈C

αsH(X + Ys) =
∑
s∈C

αs[H(X) +
∑
i∈s

I(Yi;Ys∩≤i)]

(a)

≥
∑
s∈C

αsH(X) +
∑
s∈C

αs

∑
i∈s

I(Yi;Y≤i)

(b)
=

∑
s∈C

αsH(X) +
∑
i∈[n]

I(Yi;Y≤i)
∑
s3i

αs

(c)

≥
∑
s∈C

αsH(X) +
∑
i∈[n]

I(Yi;Y≤i)

=
( ∑

s∈C
αs − 1

)
H(X) + H(Y[n]),

where (a) follows from (3), (b) follows from an interchange
of sums, and (c) follows from the definition of a fractional
covering, and the last identity in the display again uses the
chain rule (6) for sums.

Note in particular that if H(X) ≥ 0, then Theorem III
implies

H

(
X +

∑
i∈[n]

Xi

)
≤

∑
s∈C αsH

(
X +

∑
i∈s Xi

)
,

which is identical to Theorem II except that the random
variable X is an additional summand in every sum.

V. LOWER BOUNDS

In this section, we only consider continuous random vectors.
An entropy power inequality relates the entropy power of a
sum to that of summands. We make the following conjecture
that generalizes the known entropy power inequalities.

Conjecture I:[FRACTIONAL SUPERADDITIVITY OF EN-
TROPY POWER] Let X1, . . . , Xn be independent Rd-valued
random vectors with densities and finite covariance matrices.
For any collection C of subsets of [n], let β be a fractional
packing. Then

e
2H(X1+...+Xn)

d ≥
∑
s∈C

βse
2H(

P
j∈s Xj)
d . (7)

Equality holds if and only if all the Xi are normal with pro-
portional covariance matrices, and β is a fractional partition.

Remark I: A canonical example of a fractional packing is given
by the coefficients

βs =
1

r+(s)
, (8)

where r+(s) = maxi∈s r(i) and r(i) is the degree of i. Thus
Conjecture I implies that

e
2H(X1+...+Xn)

d ≥
∑
s∈C

1
r+(s)

e
2H(

P
j∈s Xj)
d .



The following weaker statement is the main result of Madiman
and Barron [6]: if r+ is the maximum degree (over all i ∈ [n]),
then

e
2H(X1+...+Xn)

d ≥ 1
r+

∑
s∈C

e
2H(

P
j∈s Xj)
d . (9)

It is easy to see that this generalizes the entropy power
inequalities of Shannon-Stam [10], [11] and Artstein, Ball,
Barthe and Naor [12].

Of course, one may further conjecture that the entropy
power is also supermodular for sums, which would be stronger
than Conjecture I. In general, it is an interesting question to
characterize the class of all real numbers that can arise as
entropy powers of sums of a collection of underlying indepen-
dent random variables. Then the question of supermodularity
of entropy power is just the question of whether this class,
which one may call the Stam class to honour Stam’s role
in the study of entropy power, is contained in the class of
polymatroidal vectors.

There has been much progress in recent decades on char-
acterizing the class of all entropy inequalities for the joint
distributions of a collection of (dependent) random variables.
Major contributions were made by Han and Fujishige in the
1970’s, and by Yeung and collaborators in the 1990’s; we
refer to [13] for a history of such investigations; more recent
developments and applications are contained in [5] and [14].
The study of the Stam class above is a direct analogue of the
study of the entropic vectors by these authors. Let us point
out some particularly interesting aspects of this analogy, using
Xs to denote (Xi : i ∈ s) and H to denote (with some abuse
of notation) the discrete entropy, where (Xi : i ∈ [n]) is
a collection of dependent random variables taking values in
some discrete space. Fujishige [3] proved that h(s) = H(Xs)
is a submodular set function (analogous to the conjecture on
the supermodularity of entropy power), and Madiman and
Tetali [1] proved that∑

s∈C
βsH(Xs|Xsc) ≤ h([n]) ≤

∑
s∈C

αsh(s), (10)

the upper bound of which is analogous to the entropy power
inequalities for sums suggested in Conjecture I. However, it
does not seem to be easy to derive entropy lower bounds for
sums and inequalities for joint distributions using a common
framework; even the recent innovative treatment of entropy
power inequalities by Rioul [15], which partially addresses
this issue, requires some delicate analysis in the end to justify
the vanishing of higher-order terms in a Taylor expansion.
On the other hand, inequalities for joint distributions tend
to rely entirely on elementary facts such as chain rules.
Nonetheless the formal similarity begs the question of how
far this parallelism extends; in particular, are there “non-
Shannon-type” inequalities for entropy powers of sums that
impose restrictions beyond those imposed by the conjectured
supermodularity?

VI. APPLICATION TO DETERMINANTS

It has been long known that the probabilistic represen-
tation of a matrix determinant using multivariate normal
probability density functions can be used to prove useful
matrix inequalities (see, for instance, Bellman’s classic book
[16]). A new variation on the theme of using properties
of normal distributions to deduce inequalities for positive-
definite matrices was begun by Cover and El Gamal [17], and
continued by Dembo, Cover and Thomas [18] and Madiman
and Tetali [1]. Their idea was to use the representation of the
determinant in terms of the entropy of normal distributions,
rather than the integral representation of the determinant in
terms of the normal density. They showed that the classical
Hadamard, Szasz and more general inequalities relating the
determinants of square submatrices followed from properties
of the joint entropy function. Our development below also
uses the representation of the determinant in terms of entropy,
namely, the fact that the entropy of the the d-variate normal
distribution with covariance matrix K, written N(0,K), is
given by

H(N(0,K)) = 1
2 log

[
(2πe)d|K|

]
.

The ground is prepared to present an upper bound on the
determinant of a sum of positive matrices.

Theorem IV:[UPPER BOUND ON DETERMINANT OF SUM]
Let K and Ki be positive matrices of dimension d. Then the
function D(s) = log |

∑
i∈s Ki|, defined on the power set of

[n], is submodular. Furthermore, for any fractional covering α
using any collection of subsets C of [n],

|K + K1 + . . . + Kn| ≤ |K|−a
∏
s∈C

∣∣∣∣K +
∑
j∈s

Kj

∣∣∣∣αs

,

where a =
∑

s∈C αs − 1.

Proof: Substituting normals in Theorems I and III gives the
result.

As a corollary, one obtains for instance

|K + K1 + . . . + Kn|n−1|K| ≤
∏

i∈[n]

∣∣∣∣K +
∑
j 6=i

Kj

∣∣∣∣.
We now present lower bounds for the determinant of a sum.

Proposition I:[GENERALIZED MINKOWSKI DETERMINANT
INEQUALITY] Let K1, . . . ,Kn be d × d positive matrices.
Let C be a a collection of subsets of [n] maximum degree r+.
Then

|K1 + . . . + Kn|
1
d ≥ 1

r+

∑
s∈C

∣∣∣∣ ∑
j∈s

Kj

∣∣∣∣ 1
d

.

Equality holds if and only if all the matrices Ki are propor-
tional to each other, and each index appears in exactly r+

subsets.



In particular, when C is the collection of singleton sets,
r+ = 1, and one recovers the classical inequality. Specifically,
if K1 and K2 are d× d symmetric, positive-definite matrices,
then

|K1 + K2|
1
d ≥ |K1|

1
d + |K2|

1
d .

Many proofs of this inequality exist, see, e.g., [19]. Although
the bound in Proposition I is better in general than the classical
Minkowski bound of |K1|

1
d + . . . + |Kn|

1
d , mathematically

the former can be seen as a consequence of the latter. Indeed,
below we prove a more general version of Proposition I.

Theorem V: Let K1, . . . ,Kn be d×d positive matrices. Then
for any fractional packing β using the collection C of subsets
of [n],

|K1 + . . . + Kn|
1
d ≥

∑
s∈C

βs

∣∣∣∣ ∑
j∈s

Kj

∣∣∣∣ 1
d

.

Equality holds iff the matrices {
∑

j∈s Kj , s ∈ C} are propor-
tional.

Proof: First note that for any fractional partition,

K1 + . . . + Kn =
∑
s∈C

βs

∑
j∈s

Kj .

Applying the usual Minkowski inequality gives

|K1 + . . . + Kn|
1
d ≥

∑
s∈C

∣∣∣∣βs

∑
j∈s

Kj

∣∣∣∣ 1
d

=
∑
s∈C

βs

∣∣∣∣ ∑
j∈s

Kj

∣∣∣∣ 1
d

.

For equality, we clearly need the matrices

βs

∑
j∈s

Kj , s ∈ C

to be proportional.

It is not a priori clear that the bounds obtained using Propo-
sition I (or Theorem V) are better than the direct Minkowski
lower bound of

|K1|
1
d + . . . + |Kn|

1
d ,

but we observe that they are in general better. Consider the
collection Cn−1 of leave-one-out sets, i.e., C = {s ⊂ [n] :
|s| = n− 1}. The maximum degree here is r+ = n− 1, so

|K1 + . . . + Kn|
1
d ≥ 1

n− 1

∑
s∈Cn−1

∣∣∣∣ ∑
j∈s

Kj

∣∣∣∣ 1
d

. (11)

Lower bounding each term on the right by iterating this
inequality, and using Ck to denote the collection of all sets
of size k, one obtains

|K1 + . . . + Kn|
1
d ≥ 2

(n− 1)(n− 2)

∑
i∈[n]

∣∣∣∣ ∑
j∈s

Kj

∣∣∣∣ 1
d

.

Repeating this procedure yields the hierarchy of inequalities

|K1 + . . . + Kn|
1
d ≥ LBn−1 ≥ LBn−2 ≥ . . . ≥ LB1,

where LBk is the lower bound given by Proposition I using
Ck. Note that the direct Minkowski lower bound, namely LB1,
is the worst of the hierarchy.

Note that Theorem V gives evidence towards Conjecture
I, since it is simply the special case of Conjecture I for
multivariate normals! (Conversely, the inequality (9) may be
used to give an information-theoretic proof of Proposition I,
which is a special case of Theorem V.)

There are other interesting related entropy and matrix in-
equalities that we do not have space to cover in this note;
these can be found in the full paper [9].
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