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On the entropy and log-concavity of compound Poisson measures
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Abstract

Motivated, in part, by the desire to develop an information-theoretic foundation for
compound Poisson approximation limit theorems (analogous to the corresponding devel-
opments for the central limit theorem and for simple Poisson approximation), this work
examines sufficient conditions under which the compound Poisson distribution has max-
imal entropy within a natural class of probability measures on the nonnegative integers.
We show that the natural analog of the Poisson maximum entropy property remains valid
if the measures under consideration are log-concave, but that it fails in general. A parallel
maximum entropy result is established for the family of compound binomial measures. The
proofs are largely based on ideas related to the semigroup approach introduced in recent
work by Johnson [12] for the Poisson family. Sufficient conditions are given for compound
distributions to be log-concave, and specific examples are presented illustrating all the
above results.
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1 Introduction

A particularly appealing way to state the classical central limit theorem is to say that, if
X1,X2, . . . are independent and identically distributed, continuous random variables with zero
mean and unit variance, then the entropy of their normalized partial sums Sn = 1√

n

∑n
i=1 Xi

increases with n to the entropy of the standard normal distribution, which is maximal among
all random variables with zero mean and unit variance. More precisely, if fn denotes the
density of Sn and φ the standard normal density, then, as n → ∞,

h(fn) ↑ h(φ) = sup{h(f) : densities f with mean 0 and variance 1}, (1)

where h(f) = −
∫

f log f denotes the differential entropy and log denotes the natural logarithm.
Precise conditions under which (1) holds are given in [1][25][20]; also see [19][4][11] and the
references therein, where numerous related results are stated, along with their history.

Part of the appeal of this formalization of the central limit theorem comes from its analogy
to the second law of thermodynamics: The “state” (meaning the distribution) of the random
variables Sn evolves monotonically, until the maximum entropy state, the standard normal dis-
tribution, is reached. Moreover, the introduction of information-theoretic ideas and techniques
in connection with the entropy has motivated numerous related results (and their proofs), gen-
eralizing and strengthening the central limit theorem in different directions; see the references
mentioned above for details.

The classical Poisson convergence limit theorems, of which the binomial-to-Poisson is the pro-
totypical example, have also been examined under a similar light. An analogous program has
been recently carried out in this case [23][14][9][18][12]. The starting point is the identification
of the Poisson distribution as that which has maximal entropy within a natural class of prob-
ability measures. Perhaps the simplest way to state and prove this is along the following lines;
first we make some simple definitions:

Definition 1.1 For any parameter vector p = (p1, p2, . . . , pn) with each pi ∈ [0, 1], the sum of
independent Bernoulli random variables Bi ∼ Bern (pi),

Sn =

n∑

i=1

Bi,

is called a Bernoulli sum, and its probability mass function is denoted by bp(x) := Pr{Sn = x},
for x = 0, 1, . . .. Further, for each λ > 0, we define the following sets of parameter vectors:

Pn(λ) =
{
p ∈ [0, 1]n : p1 + p2 + · · · + pn = λ

}
and P∞(λ) =

⋃

n≥1

Pn(λ).

Shepp and Olkin [23] showed that, for fixed n ≥ 1, the Bernoulli sum bp which has maximal
entropy among all Bernoulli sums with mean λ, is Bin(n, λ/n), the binomial with parameters
n and λ/n,

H(Bin(n, λ/n)) = max
{

H(bp) : p ∈ Pn(λ)
}

, (2)
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where H(P ) = −
∑

x P (x) log P (x) denotes the discrete entropy function. Noting that the
binomial Bin(n, λ/n) converges to the Poisson distribution Po(λ) as n → ∞, and that the
classes of Bernoulli sums in (2) are nested, {bp : p ∈ Pn(λ)} ⊂ {bp : p ∈ Pn+1(λ)}, Harremoës
[9] noticed that a simple limiting argument gives the following maximum entropy property for
the Poisson distribution:

H(Po(λ)) = sup
{

H(bp) : p ∈ P∞(λ)
}

. (3)

Partly motivated by the desire to provide an information-theoretic foundation for compound
Poisson limit theorems and the more general problem of compound Poisson approximation, as
a first step we consider the problem of generalizing the maximum entropy properties (2) and
(3) to the case of compound Poisson distributions on Z+.1 We begin with some definitions:

Definition 1.2 Let P be an arbitrary distribution on Z+ = {0, 1, . . .}, and Q a distribution
on N = {1, 2, . . .}. The Q-compound distribution CQP is the distribution of the random sum,

Y∑

j=1

Xj , (4)

where Y has distribution P and the random variables {Xj} are independent and identically
distributed (i.i.d.) with common distribution Q and independent of Y . The distribution Q is
called a compounding distribution, and the map P 7→ CQP is the Q-compounding operation.
The Q-compound distribution CQP can be explicitly written as the mixture,

CQP (x) =
∞∑

y=0

P (y)Q∗y(x), x ≥ 0, (5)

where Q∗j(x) is the jth convolution power of Q and Q∗0 is the point mass at x = 0.

Above and throughout the paper, the empty sum
∑0

j=1(· · · ) is taken to be zero; all random
variables considered are supported on Z+ = {0, 1, . . .}; and all compounding distributions Q
are supported on N = {1, 2, . . .}.

Example 1.3 Let Q be an arbitrary distribution on N.

1. For any 0 ≤ p ≤ 1, the compound Bernoulli distribution CBern (p,Q) is the distribution
of the product BX, where B ∼ Bern(p) and X ∼ Q are independent. It has probability
mass function CQP , where P is the Bern (p) mass function, so that, CQP (0) = 1−p and
CQP (x) = pQ(x) for x ≥ 1.

1Recall that the compound Poisson distributions are the only infinitely divisible distributions on Z+, and also
they are (discrete) stable laws [24]. In the way of motivation we also recall Gnedenko and Korolev’s remark that
“there should be mathematical ... probabilistic models of the universal principle of non-decrease of uncertainty,”
and their proposal that we should “find conditions under which certain limit laws appearing in limit theorems of
probability theory possess extremal entropy properties. Immediate candidates to be subjected to such analysis
are, of course, stable laws . . . ”; see [8, pp. 211-215].
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2. A compound Bernoulli sum is a sum of independent compound Bernoulli random vari-
ables, all with respect to the same compounding distribution Q: Let X1,X2, . . . ,Xn be
i.i.d. with common distribution Q and B1, B2, . . . , Bn be independent Bern(pi). We call,

n∑

i=1

BiXi
D
=

Pn
i=1

Bi∑

j=1

Xj ,

a compound Bernoulli sum; in view of (4), its distribution is CQbp, where p = (p1, p2, . . . , pn).

3. In the special case of a compound Bernoulli sum with all its parameters pi = p for a fixed
p ∈ [0, 1], we say that it has a compound binomial distribution, denoted by CBin(n, p,Q).

4. Let Πλ(x) = e−λλx/x!, x ≥ 0, denote the Po(λ) mass function. Then, for any λ > 0, the
compound Poisson distribution CPo(λ,Q) is the distribution with mass function CQΠλ:

CQΠλ(x) =

∞∑

j=0

Πλ(j)Q∗j(x) =

∞∑

j=0

e−λλj

j!
Q∗j(x), x ≥ 0. (6)

In view of the Shepp-Olkin maximum entropy property (2) for the binomial distribution, a
first natural conjecture might be that the compound binomial has maximum entropy among
all compound Bernoulli sums CQbp with a fixed mean; that is,

H(CBin(n, λ/n,Q)) = max
{
H(CQbp) : p ∈ Pn(λ)

}
. (7)

But, perhaps somewhat surprisingly, as Chi [6] has noted, (7) fails in general. For example,
taking Q to be the uniform distribution on {1, 2}, p = (0.00125, 0.00875) and λ = p1 + p2 =
0.01, direct computation shows that,

H(CBin(2, λ/2, Q)) < 0.090798 < 0.090804 < H(CQbp). (8)

As the Shepp-Olkin result (2) was only seen as an intermediate step in proving the maximum
entropy property of the Poisson distribution (3), we may still hope that the corresponding
result remains true for compound Poisson measures, namely that,

H(CPo(λ,Q)) = sup
{
H(CQbp) : p ∈ P∞(λ)

}
. (9)

Again, (9) fails in general. For example, taking the same Q,λ and p as above, yields,

H(CPo(λ,Q)) < 0.090765 < 0.090804 < H(CQbp).

The main purpose of the present work is to show that, despite these negative results, it is
possible to provide natural, broad sufficient conditions, under which the compound binomial
and compound Poisson distributions can be shown to have maximal entropy in an appropriate
class of measures. Our first result, Theorem 1.4 below, states that (7) does hold, under certain
conditions on Q and CBin(n, λ,Q):

4



Theorem 1.4 If the distribution Q on N and the compound binomial distribution CBin(n, λ/n,Q)
are both log-concave, then,

H(CBin(n, λ/n,Q)) = max
{
H(CQbp) : p ∈ Pn(λ)

}
,

as long as the tail of Q satisfies either one of the following properties: (a) Q has finite support;

or (b) Q has tails heavy enough so that, for some ρ, β > 0 and N0 ≥ 1, we have, Q(x) ≥ ρxβ

,
for all x ≥ N0.

The proof of the theorem is given in Section 3. As can be seen there, conditions (a) and (b)
are introduced purely for technical reasons, and can probably be significantly relaxed. The
notion of log-concavity, on the other hand, is central in the development of the ideas in this
work. [In a different setting, log-concavity also appears as a natural condition for a different
maximum entropy problem considered by Cover and Zhang [7].] Recall that the distribution
P of a random variable X on Z+ is log-concave if its support is a (possibly infinite) interval of
successive integers in Z+, and,

P (x)2 ≥ P (x + 1)P (x − 1), for all x ≥ 1. (10)

We also recall that most of the commonly used distributions appearing in applications (e.g.,
the Poisson, binomial, geometric, negative binomial, hypergeometric logarithmic series, or
Polya-Eggenberger distribution) are log-concave.

Another key property is that of ultra log-concavity; cf. [22]. The distribution P of a random
variable X is ultra log-concave if P (x)/Πλ(x) is log-concave, that is, if,

xP (x)2 ≥ (x + 1)P (x + 1)P (x − 1), for all x ≥ 1. (11)

Note that the Poisson distribution as well as all Bernoulli sums are ultra log-concave.

Johnson [12] recently proved the following maximum entropy property for the Poisson distri-
bution, generalizing (3):

H(Po(λ)) = max
{
H(P ) : ultra log-concave P with mean λ

}
. (12)

Our next result (proved in Section 2) states that, as long as Q and the compound Poisson
measure CPo(λ,Q) are log-concave, the same maximum entropy statement as in (12) remains
valid in the compound Poisson case:

Theorem 1.5 If the distribution Q on N and and the compound Poisson distribution CPo(λ,Q)
are both log-concave, then,

H(CPo(λ,Q)) = max
{
H(CQP ) : ultra log-concave P with mean λ

}
.

In Section 4 we give conditions under which the compound Poisson and compound Bernoulli
distributions are log-concave. In particular, the results there imply the following explicit
maximum entropy statements.
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Example 1.6 1. Let Q be an arbitrary log-concave distribution on N. Then Lemma 4.1
combined with Theorem 1.4 implies that the maximum entropy property of the compound
binomial distribution in equation (7) holds, for all λ large enough. That is, the com-
pound binomial CBin(n, λ/n,Q) has maximal entropy among all compound Bernoulli

sums CQbp with p1 + p2 + · · · + pn = λ, as long as λ ≥ nQ(2)
Q(1)2+Q(2)

.

2. Suppose Q is supported on {1, 2}, with probabilities Q(1) = q,Q(2) = 1− q, and consider
the class of all Bernoulli sums bp with mean p1+p2+· · ·+pn = λ. Theorem 4.2 combined
with Theorem 1.5 implies that the compound Poisson maximum entropy property (9) holds
in this case, as long as λ is large enough. In other words, the distribution CPo(λ,Q) has
maximal entropy among all compound Bernoulli sums CQbp with p1 + p2 + · · · + pn =

λ ≥ 2(1−q)
q2 .

3. Suppose Q is geometric with parameter α ∈ (0, 1), i.e., Q(x) = α(1−α)x−1 for all x ≥ 1,
and again consider the class of a Bernoulli sums bp with mean λ. Then Theorem 4.4
combined with Theorem 1.5 implies that (9) holds for all large λ: The compound Poisson
distribution CPo(λ,Q) has maximal entropy among all compound Bernoulli sums CQbp

with p1 + p2 + · · · + pn = λ ≥ 2(1−α)
α .

Clearly, it remains an open question to give necessary and sufficient conditions on λ and Q
for the compound Poisson and compound binomial distributions to have maximal entropy
within an appropriately defined class, or even for the compound Poisson distribution to be log-
concave. Section 4 ends with a conjecture, together with some supporting evidence, stating
that CPo(λ,Q) is log-concave when Q is log-concave and λQ(1)2 ≥ 2Q(2).
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2 Maximum Entropy Property of the Compound Poisson Dis-

tribution

Here we show that, if Q and the compound Poisson distribution CPo(λ,Q) = CQΠλ are both
log-concave, then CPo(λ,Q) has maximum entropy among all distributions of the form CQP ,
when P has mean λ and is ultra log-concave. Our approach is an extension of the ‘semigroup’
arguments of [12].

We begin by recording some basic properties of log-concave and ultra log-concave distributions:

(i) If P is ultra log-concave, then from the definitions it is immediate that P is log-concave.

(ii) If Q is log-concave, then it has finite moments of all orders; see [16, Theorem 7].

(iii) If X is a random variable with ultra log-concave distribution P , then (by (i) and (ii))
it has finite moments of all orders. Moreover, considering the covariance between the
decreasing function P (x+1)(x+1)/P (x) and the increasing function x(x−1) · · · (x−n),
shows that the falling factorial moments of P satisfy,

E[(X)n] := E[X(X − 1) · · · (X − n + 1)] ≤ (E(X))n;

see [12] and [10] for details.

(iv) The Poisson distribution and all Bernoulli sums are ultra log-concave.

Recall the following definition from [12]:

Definition 2.1 Given α ∈ [0, 1] and a random variable X ∼ P on Z+ with mean λ ≥ 0, let
UαP denote the distribution of the random variable,

X∑

i=1

Bi + Zλ(1−α),

where the Bi are i.i.d. Bern (α), Zλ(1−α) has distribution Po(λ(1−α)), and all random variables
are independent of each other and of X.

Note that, if X ∼ P has mean λ, then UαP has the same mean. Also, recall the following
useful relation that was established in Proposition 3.6 of [12]: For all y ≥ 0,

∂

∂α
UαP (y) =

1

α
(λ(UαP (y) − UαP (y − 1) − ((y + 1)UαP (y + 1) − yUαP (y))) . (13)

Next we define another transformation of probability distributions P on Z+:
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Definition 2.2 Given α ∈ [0, 1], a distribution P on Z+ and a compounding distribution Q
on N, let UQ

α P denote the distribution CQUαP :

UQ
α P (x) := CQUαP (x) =

∞∑

y=0

UαP (y)Q∗y(x), x ≥ 0.

An important observation that will be at the heart of the proof of Theorem 1.5 below is
that, for α = 0, UQ

0 P is simply the compound Poisson measure CP(λ,Q), while for α = 1,

UQ
1 P = CQP . The following lemma, proved in the appendix, gives a rough bound on the third

moment of UQ
α P :

Lemma 2.3 Suppose P is an ultra log-concave distribution with mean λ > 0 on Z+, and
let Q be a log-concave compounding distribution on N. For each α ∈ [0, 1], let Wα, Vα be
random variables with distributions UQ

α P = CQUαP and CQ(UαP )#, respectively, where, for
any distribution R with mean ν, we write R#(y) = R(y+1)(y+1)/ν for its size-biased version.
Then the third moments E(W 3

α) and E(V 3
α ) are both bounded above by,

λq3 + 3λ2q1q2 + λ3q3
1,

where q1, q2, q3 denote the first, second and third moments of Q, respectively.

In [12], the characterization of the Poisson as a maximum entropy distribution was proved
through the decrease of its score function. In an analogous way, following [3], we define the
score function of a Q-compound random variable as follows.

Definition 2.4 Given a distribution P on Z+ with mean λ, the corresponding Q-compound
distribution CQP has score function defined by:

r1,CQP (x) =

∑∞
y=0(y + 1)P (y + 1)Q∗y(x)

λ
∑∞

y=0 P (y)Q∗y(x)
− 1 =

∑∞
y=0(y + 1)P (y + 1)Q∗y(x)

λCQP (x)
− 1. (14)

Notice that the mean of of r1,CQP with respect to CQP is zero, and that if P ∼ Po(λ) then
r1,CQP (x) ≡ 0. Further, when Q is the point mass at 1 this score function reduces to the “scaled
score function” introduced in [18]. But, unlike the scaled score function and the alternative
score function r2,CQP given in [3], this score function is not only a function of the compound
distribution CQP , but also explicitly depends on P . A projection identity and other properties
of r1,CQP are proved in [3].

Next we show that, if Q is log-concave and P is ultra log-concave, then the score function
r1,CQP (x) is decreasing in x.

Lemma 2.5 If P is ultra log-concave and the compounding distribution Q is log-concave, then
the score function r1,CQP (x) of CQP is decreasing in x.
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Proof First we recall Theorem 2.1 of Keilson and Sumita [17], which implies that, if Q is
log-concave, then for any m ≥ n, and for any x:

Q∗m(x + 1)Q∗n(x) − Q∗m(x)Q∗n(x + 1) ≥ 0. (15)

[This can be proved by considering Q∗m as the convolution of Q∗n and Q∗(m−n), and writing

Q∗m(x + 1)Q∗n(x) − Q∗m(x)Q∗n(x + 1)

=
∑

l

Q∗(m−n)(l)

(
Q∗n(x + 1 − l)Q∗n(x) − Q∗n(x − l)Q∗n(x + 1)

)
.

Since Q is log-concave, then so is Q∗n, cf. [15], so the ratio Q∗n(x + 1)/Q∗n(x) is decreasing in
x, and (15) follows.]

By definition, r1,CQP (x) ≥ r1,CQP (x + 1) if and only if,

0 ≤

(
∑

y

(y + 1)P (y + 1)Q∗y(x)

)(
∑

z

P (z)Q∗z(x + 1)

)

−

(
∑

y

(y + 1)P (y + 1)Q∗y(x + 1)

)(
∑

z

P (z)Q∗z(x)

)

=
∑

y,z

(y + 1)P (y + 1)P (z) [Q∗y(x)Q∗z(x + 1) − Q∗y(x + 1)Q∗z(x)] . (16)

Noting that for y = z the term in square brackets in the double sum becomes zero, and
swapping the values of y and z in the range y > z, the double sum in (16) becomes,

∑

y<z

[(y + 1)P (y + 1)P (z) − (z + 1)P (z + 1)P (y)] [Q∗y(x)Q∗z(x + 1) − Q∗y(x + 1)Q∗z(x)] .

By the ultra log-concavity of P , the first square bracket is positive for y ≤ z, and by equa-
tion (15) the second square bracket is also positive for y ≤ z.

We remark that, under the same assumptions, and using a very similar argument, an analogous
result holds for the score function r2,CQP recently introduced in [3].

Combining Lemmas 2.5 and 2.3 with equation (13) we deduce the following result, which is
the main technical step in the proof of Theorem 1.5 below.

Proposition 2.6 Let P be an ultra log-concave distribution on Z+ with mean λ > 0, and as-
sume that Q and CPo(λ,Q) are both log-concave. Let Wα be a random variable with distribution
UQ

α P , and define, for all α ∈ [0, 1], the function,

E(α) := E[− log CQΠλ(Wα)].

Then E(α) is continuous for all α ∈ [0, 1], it is differentiable for α ∈ (0, 1), and, moreover,
E′(α) ≤ 0 for α ∈ (0, 1). In particular, E(0) ≥ E(1).
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Proof Recall that,

UQ
α P (x) = CQUαP (x) =

∞∑

y=0

UαP (y)Q∗y(x) =

x∑

y=0

UαP (y)Q∗y(x),

where the last sum is restricted to the range 0 ≤ y ≤ x, because Q is supported on N. Therefore,
since UαP (x) is continuous in α [12], so is UQ

α P (x), and to show that E(α) is continuous it
suffices to show that the series,

E(α) := E[− log CQΠλ(Wα)] = −

∞∑

x=0

UQ
α P (x) log CQΠλ(x), (17)

converges uniformly. To that end, first observe that log-concavity of CQΠλ implies that Q(1) is
nonzero. [Otherwise, if i > 1 be the smallest integer i such that Q(i) 6= 0, then CQΠλ(i+1) = 0,
but CQΠλ(i) and CQΠλ(2i) are both strictly positive, contradicting the log-concavity of CQΠλ.]
Since Q(1) is nonzero, we can bound the compound Poisson probabilities as,

1 ≥ CQΠλ(x) =
∑

y

[e−λλy/y!]Q∗y(x) ≥ e−λ[λx/x!]Q(1)x, for all x ≥ 1,

so that the summands in (17) can be bounded,

0 ≤ − log CQΠλ(x) ≤ λ + log x! − x log(λQ(1)) ≤ Cx2, x ≥ 1, (18)

for a constant C > 0 that depends only on λ and Q(1). Therefore, for any N ≥ 1, the tail of
the series (17) can be bounded,

0 ≤ −

∞∑

x=N

UQ
α P (x) log CQΠλ(x) ≤ CE[W 2

αI{Wα≥N}] ≤
C

N
E[W 3

α],

and, in view of Lemma 2.3, it converges uniformly.

Therefore, E(α) is continuous in α, and, in particular, convergent for all α ∈ [0, 1]. To prove
that it is differentiable at each α ∈ (0, 1) we need to establish that: (i) the summands in
(17) are continuously differentiable in α for each x; and (ii) the series of derivatives converges
uniformly.

Since, as noted above, UQ
α P (x) is defined by a finite sum, we can differentiate with respect to

α under the sum, to obtain,

∂

∂α
UQ

α P (x) =
∂

∂α
CQUαP (x) =

x∑

y=0

∂

∂α
UαP (y)Q∗y(x). (19)

And since UαP is continuously differentiable in α ∈ (0, 1) for each x (cf. [12, Proposition 3.6] or
equation (13) above), so are the summands in (17), establishing (i); in fact, they are infinitely
differentiable, which can be seen by repeated applications of (13). To show that the series of
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derivatives converges uniformly, let α be restricted in an arbitrary open interval (ǫ, 1) for some
ǫ > 0. The relation (13) combined with (19) yields, for any x,

∂

∂α
UQ

α P (x)

=

x∑

y=0

(
λ(UαP (y) − UαP (y − 1) − ((y + 1)UαP (y + 1) − yUαP (y))

)
Q∗y(x)

= −
1

α

x∑

y=0

((y + 1)UαP (y + 1) − λUαP (y)) (Q∗y(x) − Q∗y+1(x))

= −
1

α

x∑

y=0

((y + 1)UαP (y + 1) − λUαP (y)) Q∗y(x)

+

x∑

v=0

Q(v)
1

α

x∑

y=0

((y + 1)UαP (y + 1) − λUαP (y)) Q∗y(x − v)

= −
λ

α
UQ

α P (x)

(∑x
y=0(y + 1)UαP (y + 1)Q∗y(x)

λUQ
α P (x)

− 1

)

+
λ

α

x∑

v=0

Q(v)UQ
α P (x − v)

(∑x
y=0(y + 1)UαP (y + 1)Q∗y(x − v)

λUQ
α P (x − v)

− 1

)

= −
λ

α

(
UQ

α P (x)r
1,UQ

α P
(x) −

x∑

v=0

Q(v)UQ
α P (x − v)r

1,UQ
α P

(x − v)

)
. (20)

Also, for any x, by definition,

|UQ
α P (x)r

1,UQ
α P

(x)| ≤ CQ(UαP )#(x) + UQ
α P (x),

where, for any distribution P , we write P#(y) = P (y + 1)(y + 1)/λ for its size-biased version.
Hence for any N ≥ 1, equations (20) and (18) yield the bound,
∣∣∣∣∣

∞∑

x=N

∂

∂α
UQ

α P (x) log CQΠλ(x)

∣∣∣∣∣

≤

∞∑

x=N

Cλx2

α

{
CQ(UαP )#(x) + UQ

α P (x) +

x∑

v=0

Q(v)[CQ(UαP )#(x − v) + UQ
α P (x − v)]

}

=
2C

α
E
[(

V 2
α + W 2

α + X2 + XVα + XWα

)
I{Vα≥N, Wα≥N, X≥N}

]

≤
C ′

α

{
E[V 2

α I{Vα≥N}] + E[W 2
αI{Wα≥N}] + E[X2

I{X≥N}]
}

≤
C ′

Nα

{
E[V 3

α ] + E[W 3
α] + E[X3]

}
,

where C,C ′ > 0 are appropriate finite constants, and the random variables Vα ∼ CQ(UαP )#,

Wα ∼ UQ
α P and X ∼ Q are independent. Lemma 2.3 implies that this bound converges to
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zero uniformly in α ∈ (ǫ, 1), as N → ∞. Since ǫ > 0 was arbitrary, this establishes that
E(α) is differentiable for all α ∈ (0, 1) and, in fact, that we can differentiate the series (17)
term-by-term, to obtain,

E′(α) = −

∞∑

x=0

∂

∂α
UQ

α P (x) log CQΠλ(x) (21)

=
λ

α

∞∑

x=0

(
UQ

α P (x)r
1,UQ

α P
(x) −

x∑

v=0

Q(v)UQ
α P (x − v)r

1,UQ
α P

(x − v)

)
log CQΠλ(x)

=
λ

α

∞∑

x=0

UQ
α P (x)r

1,UQ
α P

(x)

(
log CQΠλ(x) −

∞∑

v=0

Q(v) log CQΠλ(x + v)

)
,

where the second equality follows from using (20) above, and the rearrangement leading to the
third equality follows by interchanging the order of (second) double summation and replacing
x by x + v.

Now we note that, exactly as in [12], the last series above is the covariance between the (zero-
mean) function r

1,UQ
α P

(x) and the function (log CQΠλ(x) −
∑

v Q(v) log CQΠλ(x + v)), under

the measure UQ
α P . Since P is ultra log-concave, so is UαP [12], hence the score function

r
1,UQ

α P
(x) is decreasing in x, by Lemma 2.5. Also, the log-concavity of CQΠλ implies that

the second function is increasing, and Chebyshev’s rearrangement lemma implies that the
covariance is less than or equal to zero, proving that E′(α) ≤ 0, as claimed.

Finally, the fact that E(0) ≥ E(1) is an immediate consequence of the continuity of E(α) on
[0, 1] and the fact that E′(α) ≤ 0 for all α ∈ (0, 1).

Notice that, for the above proof to work, it is not necessary that CQΠλ be log-concave; the
weaker property that (log CQΠλ(x) −

∑
v Q(v) log CQΠλ(x + v)) be increasing is enough.

Proof of Theorem 1.5 As in Proposition 2.6, let Wα ∼ UQ
α P = CQUαP , and let D(P‖Q)

denote the relative entropy between P and Q,

D(P‖Q) :=
∑

x≥0

P (x) log
P (x)

Q(x)
.

Then, noting that W0 ∼ CQΠλ and W1 ∼ CQP , we have,

H(CQP ) ≤ H(CQP ) + D(CQP‖CQΠλ)

= −E[log CQΠλ(W1)]

≤ −E[log CQΠλ(W0)]

= H(CQΠλ),

where the first inequality is simply the nonnegativity of relative entropy, and the second in-
equality is exactly the statement that E(1) ≤ E(0), proved in Proposition 2.6.

12



3 Maximum Entropy Property of the Compound Binomial Dis-

tribution

Here we prove the maximum entropy result for compound binomial random variables, The-
orem 1.4. The proof, to some extent, parallels some of the arguments in [9][21][23], which
rely on differentiating the compound-sum probabilities bp(x) for a given parameter vector
p = (p1, p2, . . . , pn) (recall Definition 1.1 in the Introduction), with respect to an individual
pi. Using the representation,

CQbp(y) =

n∑

x=0

bp(x)Q∗x(y), y ≥ 0, (22)

differentiating CQbp(x) reduces to differentiating bp(x), and leads to an expression equivalent
to that derived earlier in (20) for the derivative of CQUαP with respect to α.

Lemma 3.1 Given a parameter vector p = (p1, p2, . . . , pn), with n ≥ 2 and each 0 ≤ pi ≤ 1,
let,

pt =

(
p1 + p2

2
+ t,

p1 + p2

2
− t, p3, . . . , pn

)
,

for t ∈ [−(p1 + p2)/2, (p1 + p2)/2]. Then,

∂

∂t
CQbpt

(x) = (−2t)
n∑

y=0

b
ep(y)

(
Q∗(y+2)(x) − 2Q∗(y+1)(x) + Q∗y(x)

)
, (23)

where p̃ = (p3, . . . , pn).

Proof Note that the sum of the entries of pt is constant as t varies, and that pt = p for
t = (p1 − p2)/2, while pt = ((p1 + p2)/2, (p1 + p2)/2, p3, . . . , pn) for t = 0. Writing k = p1 + p2,
bpt

can be expressed,

bpt
(y) =

(
k2

4
− t2

)
b

ep(y − 2) +

(
k

(
1 −

k

2

)
+ 2t2

)
b

ep(y − 1)

+

((
1 −

k

2

)2

− t2

)
b

ep(y),

and its derivative with respect to t is,

∂

∂t
bpt

(y) = −2t
(
b

ep(y − 2) − 2b
ep(y − 1) + b

ep(y)
)
.

13



The expression (22) for CQbpt
shows that it is a finite linear combination of compound-sum

probabilities bpt
(x), so we can differentiate inside the sum to obtain,

∂

∂t
CQbpt

(x) =
n∑

y=0

∂

∂t
bpt

(y)Q∗y(x)

= −2t

n∑

y=0

(
b

ep(y − 2) − 2b
ep(y − 1) + b

ep(y)
)
Q∗y(x)

= −2t

n−2∑

y=0

b
ep(y)

(
Q∗(y+2)(x) − 2Q∗(y+1)(x) + Q∗y(x)

)
,

since b
ep(y) = 0 for y ≤ −1 and y ≥ n − 1.

Next we state and prove the equivalent of Proposition 2.6 above:

Proposition 3.2 Suppose that the distribution Q on N and the compound binomial distribu-
tion CBin(n, λ/n,Q) are both log-concave; let p = (p1, p2, . . . , pn) be a given parameter vector
with n ≥ 2, p1 + p2 + . . . + pn = λ > 0, and p1 ≥ p2; let Wt be a random variable with
distribution CQbpt

; and define, for all t ∈ [0, (p1 − p2)/2], the function,

E(t) := E[− log CQbp(Wt)],

where p denotes the parameter vector with all entries equal to λ/n. If Q satisfies either of the
conditions: (a) Q finite support; or (b) Q has tails heavy enough so that, for some ρ, β > 0 and

N0 ≥ 1, we have, Q(x) ≥ ρxβ

, for all x ≥ N0, then E(t) is continuous for all t ∈ [0, (p1−p2)/2],
it is differentiable for t ∈ (0, (p1 − p2)/2), and, moreover, E′(t) ≤ 0 for t ∈ (0, (p1 − p2)/2). In
particular, E(0) ≥ E((p1 − p2)/2).

Proof The compound distribution CQbpt
is defined by the finite sum,

CQbpt
(x) =

n∑

y=0

bpt
(y)Q∗y(x),

and is, therefore, continuous in t. First, assume that Q has finite support. Then so does
CQbp for any parameter vector p, and the continuity and differentiability of E(t) are trivial.
In particular, the series defining E(t) is a finite sum, so we can differentiate term-by-term, to

14



obtain,

E′(t) = −

∞∑

x=0

∂

∂t
CQbpt

(x) log CQbp(x)

= 2t
∞∑

x=0

n−2∑

y=0

b
ep(y)

(
Q∗(y+2)(x) − 2Q∗(y+1)(x) + Q∗y(x)

)
log CQbp(x) (24)

= 2t

n−2∑

y=0

∞∑

z=0

b
ep(y)Q∗y(z)

∑

v,w

Q(v)Q(w)

[
log CQbp(z + v + w) − log CQbp(z + v)

− log CQbp(z + w) + log CQbp(z)

]
, (25)

where (24) follows by Lemma 3.1. By assumption, the distribution CQbp = CBin(n, λ/n,Q)
is log-concave, which implies that, for all z, v, w such that z + v + w is in the support of
CBin(n, λ/n,Q),

CQbp(z)

CQbp(z + v)
≤

CQbp(z + w)

CQbp(z + v + w)
.

Hence the term in square brackets in equation (25) is negative, and the result follows.

Now, suppose condition (b) holds on the tails of Q. First we note that the moments of Wt are
all uniformly bounded in t: Indeed, for any γ > 0,

E[W γ
t ] =

∞∑

x=0

CQbpt
(x)xγ =

∞∑

x=0

n∑

y=0

bpt
(y)Q∗y(x)xγ ≤

n∑

y=0

∞∑

x=0

Q∗y(x)xγ ≤ Cnqγ , (26)

where Cn is a constant depending only on n, and qγ is the γth moment of Q, which is of course
finite; recall property (ii) in the beginning of Section 2.

For the continuity of E(t), it suffices to show that the series,

E(t) := E[− log CQbp(Wt)] = −

∞∑

x=0

CQbpt
(x) log CQbp(x), (27)

converges uniformly. The tail assumption on Q implies that, for all x ≥ N0,

1 ≥ CQbp(x) =
n∑

y=0

bp(y)Q∗y(x) ≥ λ(1 − λ/n)n−1Q(x) ≥ λ(1 − λ/n)n−1ρxβ

,

so that,
0 ≤ − log CQbp(x) ≤ Cxβ, (28)

for an appropriate constant C > 0. Then, for N ≥ N0, the tail of the series (27) can be
bounded,

0 ≤ −

∞∑

x=N

CQbpt
(x) log CQbp(x) ≤ CE[W β

t I{Wt≥N}] ≤
C

N
E[W β+1

t ] ≤
C

N
Cnqβ+1,
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where the last inequality follows from (26). This obviously converges to zero, uniformly in t,
therefore E(t) is continuous.

For the differentiability of E(t), note that the summands in (17) are continuously differentiable
(by Lemma 3.1), and that the series of derivatives converges uniformly in t; to see that, for
N ≥ N0 we apply Lemma 3.1 together with the bound (28) to get,

∣∣∣∣∣

∞∑

x=N

∂

∂t
CQbpt

(x) log CQbp(x)

∣∣∣∣∣

≤ 2t
∞∑

x=N

n∑

y=0

b
ep(y)

(
Q∗(y+2)(x) + 2Q∗(y+1)(x) + Q∗y(x)

)
Cxβ

≤ 2Ct

n∑

y=0

∞∑

x=N

(
Q∗(y+2)(x) + 2Q∗(y+1)(x) + Q∗y(x)

)
xβ,

which is again easily seen to converge to zero uniformly in t as N → ∞, since Q has finite
moments of all orders. This establishes the differentiability of E(t) and justifies the term-by-
term differentiation of the series (17); the rest of the proof that E′(t) ≤ 0 is the same as in
case (a).

Note that, as with Proposition 2.6, the above proof only requires that the compound binomial
distribution CBin(n, λ/n,Q) = CQbp satisfies a property weaker than log-concavity, namely
that the function, log CQbp(x) −

∑
v Q(v) log CQbp(x + v), be increasing in x.

Proof of Theorem 1.4 Assume, without loss of generality, that n ≥ 2. If p1 > p2, then
Proposition 3.2 says that, E((p1 − p2)/2) ≤ E(0), that is,

−
∞∑

x=0

CQbp(x) log CQbp(x) ≤ −
∞∑

x=0

CQbp∗(x) log CQbp(x),

where p∗ = ((p1 + p2)/2, (p1 + p2)/2, p3, . . . pn) and p = (λ/n, . . . , λ/n). Since the expression∑∞
x=0 CQbpt

(x) log CQbp(x) is invariant under permutations of the elements of the parameter
vectors, we deduce that it is maximized by pt = p. Therefore, using, as before, the nonnega-
tivity of the relative entropy,

H(CQbp) ≤ H(CQbp) + D(CQbp‖CQbp)

= −

∞∑

x=0

CQbp(x) log CQbp(x)

≤ −

∞∑

x=0

CQbp(x) log CQbp(x)

= H(CQbp) = H(CBin(n, λ/n,Q)),

as claimed.
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4 Conditions for Log-Concavity

Theorems 1.5 and 1.4 state that log-concavity is a sufficient condition for compound binomial
and compound Poisson distributions to have maximal entropy within a natural class. Here we
give examples of when log-concavity holds; if the results in this section can be strengthened (in
particular, if Conjecture 4.5 can be proved), then the class of maximum entropy distributions
will be accordingly widened.

Below we show that a compound Bernoulli sum is log-concave if the parameters are sufficiently
large, and that compound Bernoulli sums and compound Poisson distributions are log-concave
if Q is either supported only on the set {1, 2} or is geometric.

Lemma 4.1 Suppose Q is a log-concave distribution on N.

(i) The compound Bernoulli distribution CBern (p,Q) is log-concave if and only if p ≥ 1
1+Q(1)2/Q(2)

.

(ii) The compound Bernoulli sum distribution CQbp is log-concave as along as all the elements
pi of the parameter vector p = (p1, p2, . . . , pn) satisfy pi ≥

1
1+Q(1)2/Q(2) .

Proof Let Y have distribution CBern (p,Q). Since Q is log-concave itself, the log-concavity
of CBern (p,Q) is equivalent to the inequality, Pr(Y = 1)2 ≥ Pr(Y = 2)Pr(Y = 0), which
states that, (pQ(1))2 ≥ (1 − p)pQ(2), and this is exactly the assumption of (i).

The assertion in (ii) follows from (i), since the sum of independent log-concave random variables
is log-concave; see, e.g., [15].

Next we examine conditions under which a compound Poisson measure is log-concave. Our
argument is based, in part, on the some of the ideas in Johnson and Goldschmidt [13], and
also in Wang and Yeh [26], where transformations that preserve log-concavity are studied.

Note that, unlike for the Poisson distribution, it is not the case that every compound Poisson
distribution CPo(λ,Q) is log-concave. Indeed, for any distribution P , considering the differ-
ence, CQP (1)2 −CQP (0)CQP (2), shows that a necessary condition for CQP to be log-concave
is that,

(P (1)2 − P (0)P (2))/P (0)P (1) ≥ Q(2)/Q(1)2. (29)

Taking P to be the Po(λ) distribution, a necessary condition for CPo(λ,Q) to be log-concave
is that,

λ ≥
2Q(2)

Q(1)2
, (30)

while for P = bp, a necessary condition for the compound Bernoulli sum CQbp to be log-concave
is,

∑

i

pi

1 − pi
+

(
∑

i

p2
i

(1 − pi)2

)(
∑

i

pi

1 − pi

)−1

≥
2Q(2)

Q(1)2
,

which, by Jensen’s inequality, will hold as long as,
∑

i pi ≥ 2Q(2)/Q(1)2 .
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Theorem 4.2 Let Q be a distribution supported on the set {1, 2}.

(i) The compound Poisson distribution CPo(λ,Q) is log-concave for all λ ≥ 2Q(2)
Q(1)2 .

(ii) The distribution CQP is log-concave for any ultra log-concave distribution P with support on
{0, 1, . . . , N} (where N may be infinite), which satisfies, (x+ 1)P (x+ 1)/P (x) ≥ 2Q(2)/Q(1)2

for all x = 0, 1, . . . , N .

Note that, the second condition in (ii) is equivalent to requiring that NP (N)/P (N − 1) ≥
2Q(2)/Q(1)2 if N is finite, or that limx→∞(x + 1)P (x + 1)/P (x) ≥ 2Q(2)/Q(1)2 if N is
infinite.

Proof Writing R(y) = y!P (y), we know that CQP (x) =
∑x

y=0 R(y) (Q∗y(x)/y!) . Hence, the
log-concavity of CQP (x) is equivalent to showing that,

∑

r

Q∗r(2x)

r!

∑

y+z=r

R(y)R(z)

(
r

y

)(
Q∗y(x)Q∗z(x)

Q∗r(2x)
−

Q∗y(x + 1)Q∗z(x − 1)

Q∗r(2x)

)
≥ 0, (31)

for all x ≥ 2, since the case of x = 1 was dealt with previously by equation (29). In particular,
for (i), taking P = Po(λ), it suffices to show that for all r and x, the function,

gr,x(k) :=
∑

y+z=r

(
r

y

)
Q∗y(k)Q∗z(2x − k)

Q∗r(2x)

is unimodal as a function of k (since gr,x(k) is symmetric about x).

In the general case (ii), writing Q(2) = p = 1−Q(1), we have, Q∗y(x) =
( y
x−y

)
px−y(1− p)2y−x,

so that, (
r

y

)
Q∗y(k)Q∗z(2x − k)

Q∗r(2x)
=

(
2x − r

k − y

)(
2r − 2x

2y − k

)
, (32)

for any p. Now, following [13, Lemma 2.4] and [26, Lemma 2.1], we use summation by parts
to show that the inner sum in (31) is positive for each r (except for r = x when x is odd), by
case-splitting according to the parity of r.

(a) For r = 2t, we rewrite the inner sum of equation (31) as,

t∑

s=0

(R(t + s)R(t − s) − R(t + s + 1)R(t − s − 1))×

(
t+s∑

y=t−s

((
2x − r

x − y

)(
2r − 2x

2y − x

)
−

(
2x − r

x + 1 − y

)(
2r − 2x

2y − x − 1

)))
,

where the first term in the above product is positive by the ultra log-concavity of P (and hence
log-concavity of R), and the second term is positive by Lemma 4.3 below.
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(b) Similarly, for x 6= r = 2t + 1, we rewrite the inner sum of equation (31) as,

t∑

s=0

(R(t + s + 1)R(t − s) − R(t + s + 2)R(t − s − 1))×

(
t+1+s∑

y=t−s

((
2x − r

x − y

)(
2r − 2x

2y − x

)
−

(
2x − r

x + 1 − y

)(
2r − 2x

2y − x − 1

)))
,

where the first term in the product is positive by the ultra log-concavity of P (and hence
log-concavity of R) and the second term is positive by Lemma 4.3 below.

(c) Finally, in the case of x = r = 2t + 1, substituting k = x and k = x + 1 in (32), combining
the resulting expression with (31), and noting that

(2r−2x
u

)
is 1 if and only if u = 0 (and is

zero, otherwise), we see that the inner sum becomes, −R(t + 1)R(t)
(2t+1

t

)
, and the summands

in (31) reduce to,

−
pxR(t)R(t + 1)

(t + 1)!t!
.

However, the next term in the outer sum of equation (31), r = x + 1, gives

px−1(1 − p)2

2(2t)!

[
R(t + 1)2

(
2

(
2t

t

)
−

(
2t

t + 1

))
− R(t)R(t + 2)

(
2t

t

)]

≥
px−1(1 − p)2

2(2t)!
R(t + 1)2

((
2t

t

)
−

(
2t

t + 1

))
=

px−1(1 − p)2

2(t + 1)!t!
R(t + 1)2.

Hence, the sum of the first two terms is positive (and hence the whole sum is positive) if
R(t + 1)(1 − p)2/(2p) ≥ R(t).

If P is Poisson(λ), this simply reduces to equation (30), otherwise we use the fact that R(x +
1)/R(x) is decreasing.

Lemma 4.3 (a) If r = 2t, for any 0 ≤ s ≤ t, the sum,

t+s∑

y=t−s

((
2x − r

x − y

)(
2r − 2x

2y − x

)
−

(
2x − r

x + 1 − y

)(
2r − 2x

2y − x − 1

))
≥ 0.

(b) If x 6= r = 2t + 1, for any 0 ≤ s ≤ t, the sum,

t+1+s∑

y=t−s

((
2x − r

x − y

)(
2r − 2x

2y − x

)
−

(
2x − r

x + 1 − y

)(
2r − 2x

2y − x − 1

))
≥ 0.

Proof The proof is in two stages; first we show that the sum is positive for s = t, then we
show that there exists some S such that, as s increases, the increments are positive for s ≤ S
and negative for s > S. The result then follows, as in [13] or [26].
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For both (a) and (b), note that for s = t, equation (32) implies that the sum is the difference
between the coefficients of T x and T x+1 in fr,x(T ) = (1 + T 2)2x−r(1 + T )2r−2x. Since fr,x(T )
has degree 2x and has coefficients which are symmetric about T x, it is enough to show that
the coefficients form a unimodal sequence. Now, (1 + T 2)2x−r(1 + T ) has coefficients which do
form a unimodal sequence. Statement S1 of Keilson and Gerber [16] states that any binomial
distribution is strongly unimodal, which means that it preserves unimodality on convolution.
This means that (1 + T 2)2x−r(1 + T )2r−2x is unimodal if r − x ≥ 1, and we need only check
the case r = x, when fr,x(T ) = (1 + T 2)r. Note that if r = 2t is even, the difference between
the coefficients of T x and T x+1 is

(2t
t

)
, which is positive.

In part (a), the increments are equal to
(2x−2t
x−t+s

)( 4t−2x
2t−2s−x

)
multiplied by the expression,

2 −
(x − t − s)(2t − 2s − x)

(x + 1 − t + s)(2t + 2s − x + 1)
−

(x − t + s)(2t + 2s − x)

(x + 1 − t − s)(2t − 2s − x + 1)
,

which is positive for s small and negative for s large, since placing the term in brackets over a
common denominator, the numerator is of the form (a − bs2).

Similarly, in part (b), the increments equal
(
2x−2t−1
x−t+s

)(
4t+2−2x
2t−2s−x

)
times the expression,

2 −
(x − t − s − 1)(2t − 2s − x)

(x + 1 − t + s)(2t + 2s − x + 3)
−

(x − t + s)(2t + 2 + 2s − x)

(x − t − s)(2t + 1 − 2s − x)
,

which is again positive for s small and negative for s large.

Theorem 4.4 Let Q be a geometric distribution on N. Then CQP is log-concave for any
distribution P which is log-concave and satisfies the condition (29).

Proof If Q is geometric with mean 1/α, then, Q∗y(x) = αy(1 − α)x−y
(x−1
y−1

)
, which implies

that,

CQP (x) =
x∑

y=0

P (y)αy(1 − α)x−y

(
x − 1

y − 1

)
.

Condition (29) ensures that CQP (1)2 − CQP (0)CQP (2) ≥ 0, so, taking z = y − 1, we need
only prove that the sequence,

C(x) := CQP (x + 1)/(1 − α)x =

x∑

z=0

P (z + 1)

(
α

1 − α

)z+1(x

z

)

is log-concave. However, this follows immediately from [15, Theorem 7.3], which proves that
if {ai} is a log-concave sequence, then so is {bi}, defined by bi =

∑i
j=0

(i
j

)
aj .

Finally, based on the discussion in the beginning of this section, the above results, and some
calculations of the quantities, CQΠλ(x)2 −CQΠλ(x− 1)CQΠλ(x + 1) for small x, we make the
following conjecture:

20



Conjecture 4.5 The compound Poisson measure CPo(λ,Q) is log-concave, as long as Q is
log-concave and λQ(1)2 ≥ 2Q(2).

The condition λQ(1)2 ≥ 2Q(2) is, of course, necessary; recall the argument leading to equa-
tion (30) above.

In closing, we list some known results that are related to this conjecture and may be useful in
proving (or disproving) it:

1. Theorem 2.3 of Steutel and van Harn [24] shows that, if {iQ(i)} is a decreasing sequence,
then CPo(λ,Q) is a unimodal distribution (recall that log-concavity implies unimodality).
Interestingly, the same condition provides a dichotomy of results in compound Poisson
approximation bounds as developed in [2]: If {iQ(i)} is decreasing the bounds are of the
same form and order as in the simple Poisson case, while if it is not the bounds are much
larger.

2. Theorem 3.2 of Cai and Willmot [5] shows that if {Q(i)} is decreasing then the distribu-
tion function of the compound Poisson distribution CPo(λ,Q) is log-concave.

3. A conjecture similar to Conjecture 4.5 is that, for log-concave Q, if CPo(λ,Q) is log-
concave, then so is CPo(µ,Q), for all µ ≥ λ. Theorem 4.9 of Keilson and Sumita [17]
proves the related result that, if Q is log-concave, then, for any n, the ratio,

CQΠλ(n)

CQΠλ(n + 1)
is decreasing in λ.
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Appendix

Proof of Lemma 2.3 Recall that, as stated in properties (ii) and (iii) in the beginning of
Section 2, Q has finite moments of all orders, and that the nth falling factorial moment of any
ultra log-concave random variable Y with distribution R on Z+ is bounded above by (E(Y ))n.
Now for an arbitrary ultra log-concave distribution R, define random variables Y ∼ R and
Z ∼ CQR. If r1, r2, r3 denote the first three moments of Y ∼ R, then,

E(Z3) = q3r1 + 3q1q2E[(Y )2] + q3
1E[(Y )3]

≤ q3r1 + 3q1q2r
2
1 + q3

1r
3
1. (33)

Since the map Uα preserves ultra log-concavity [12], if P is ultra log-concave then so is R =
UαP , so that (33) gives the required bound for the third moment of Wα, upon noting that the
mean of the distribution UαP is equal to λ.

Similarly, size-biasing preserves ultra log-concavity; that is, if R is ultra log-concave, then
so is R#, since R#(x + 1)(x + 1)/R#(x) = (R(x + 2)(x + 2)(x + 1))/(R(x + 1)(x + 1)) =
R(x+2)(x+2)/R(x+1) is also decreasing. Hence, R′ = (UαP )# is ultra log-concave, and (33)
applies in this case as well. In particular, noting that the mean of Y ′ ∼ R′ = (UαP )# = R#

can be bounded in terms of the mean of Y ∼ R as,

E(Y ′) =
∑

x

x
(x + 1)UαP (x + 1)

λ
=

E[(Y )2]

E(Y )
≤

λ2

λ
= λ,

the bound (33) yields the required bound for the third moment of Vα.
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