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Abstract—Consider a scenario where some background quan-
tity is to be measured, but the only access to its measurement
is through a collection of sensors that observe finite samples
of this quantity corrupted by the field of noisy sources in
which the sensors are embedded. A model for such a scenario
is presented, and the fundamentally best achievable statistical
performance for the sensors is studied in terms of minimax risks.
Applications are given to design and resource allocation problems
in sensor networks whose goal is the distributed estimation of a
background.

Index Terms—Distributed background estimation, location pa-
rameter, minimax risk.

I. INTRODUCTION

AVERY important problem in astronomy with significant
implications for cosmology is the measurement of the

cosmic microwave background radiation. This is, in physical
parlance, radiation left over from the very hot gases that
pervaded the universe soon after the Big Bang, and its precise
measurement can help to test various key hypotheses about
cosmological constants and origins. A feature of the measure-
ments that are made, however, is that they include not just
measurement noise, but also the effects of other sources of
similar radiation in the universe, such as intergalactic clouds,
whose distribution in different directions is uneven. This kind
of situation, where there is a background parameter to be
estimated in the presence of a bunch of sources that may be
considered noise for our purposes, arises in other applications
as well. We present a simplified model for such a scenario,
discuss the measurement of the background parameters using
a collection of sensors, and then perform a theoretical analysis
of the best distributed estimation performance achievable for
this model.

The central results of our work are inequalities relating how
well different sensors, that have access to different portions of
the data, can do in terms of estimating an underlying, common
location parameter. Let us motivate this problem of distributed
estimation (of, for instance, a mean) with an example different
from the one already discussed. Suppose one is interested
in measuring temperature, chemical concentration, or other
random variables that are geographically distributed. In some
scenarios, it is the geographical variation of the distributions
that are of interest; in others, it is common parameters un-
derlying the entire distribution. An example of the latter is
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when one wants to detect deviations of the common parameter
from an allowed parameter range. Typically these kinds of
deviations happen slowly by drift of the underlying parameter
over time. It is therefore fair to assume for purposes of analysis
that the underlying parameter remains constant over short
periods of time (and therefore over a certain sample size for
observations); however, it is rather unrealistic to assume that
these sample sizes can be taken to be infinitely large. Thus
one is interested in the accuracy of estimates that can be made
of the parameter by sensors using finite (and possibly small)
samples of measurements.

Our model for sensor networks thus consists of the follow-
ing components:

• A field of N “sources”, that produce data streams of
size T . We assume there is spatial independence, that
is, the data streams produced by different sources are
independent of each other. However, arbitrary temporal
dependence is allowed, so that the sample produced by a
single source can come from any joint distribution.

• A network of sensors, each corresponding to a subset
s ∈ C, where C is a collection of subsets of [N ] =
{1, 2, . . . , N}. Thus each choice of a collection C cor-
responds to a particular sensor network configuration.

• The s-sensor has access to a combination of the data
coming from the sources in s. For the purposes of this
paper, we assume that what is measured is the background
parameter corrupted additively by the simplest non-trivial
combination of the data from the sources– namely, the
sum. It is also convenient to assume that there is no
additional noise from the process of measurement. (Note
that if there is such additional noise, and if its probability
distribution is known, we can treat it just as another
source in the field of sources).

Our goal is not to come up with heuristically motivated
algorithms for optimal distributed estimation. Instead it is to
first understand the fundamental limits of distributed estima-
tion, before we augment the model with communication and
computation constraints that are important considerations for
real-life sensor networks. Indeed, we present the first rigorous
analysis of the best possible performance of arbitrary sensor
network configurations based on finite sets of observations
by using a decision-theoretic framework based on minimax
risks. Although our model is a toy model because we ignore
communication and computation constraints, it is a first step
to the rigorous analysis of fundamentally optimal distributed
estimation in more complex settings.

This note is organized as follows. For any sensor (cor-



responding to a set of sources) and any sample size, there
is an associated number– the minimax risk– which captures
the smallest mean squared error of estimation that can be
achieved uniformly over all possible parameter values. Sec-
tion II describes our main results, which focus on the minimax
risks associated with distributed estimation of a background
parameter. Section III contains a proof of the main technical
inequality, which provides a comparison between the minimax
risks achieved by the sensors in an arbitrary sensor network
configuration, and the minimax risk achieved by a single sen-
sor that is exposed to all noise sources combined. Section IV
uses this inequality to prove some results on sensor network
design and resource allocation.

II. MAIN RESULTS

First we describe a model for distributed estimation of a
background based on the considerations discussed in Section I.
Recall that [N ] denotes the index set {1, 2, . . . , N}.

A precise description of the components of the model is as
follows:

1) There are N sources, indexed by the set [N ], and these
sources are independent of each other (i.e., the data
streams produced by the sources are independent of each
other).

2) For each i ∈ [N ], source i produces the data stream
Xi = (Xi,1, . . . , Xi,T ) from some known joint distri-
bution Fi on RT . The distribution Fi is arbitrary, except
for the reasonable assumption that its covariance matrix
is finite. It is convenient to think of the data stream Xi

as data produced over time, and T as the number of time
periods for which data is available.

3) The background quantity θ is some unknown real num-
ber. From a statistical point of view, we treat it as a
parameter.

4) The s-sensor observes the subset sums Ys =
(Ys,1, Ys,2, . . . , Ys,T ), where

Ys,t = θ +
∑
i∈s

Xi,t.

Note that for any subset s ⊂ [N ], the subset sum
distribution Fs is obtained by the convolution of the
distributions indexed by the elements of s, thus we write
Fs = ∗i∈sFi. Then, in statistical language, Ys is a
sample from the location family Fs(x1−θ, . . . , xT −θ)
generated by the subset sum distribution Fs.

5) From the T observations in Ys, the s-sensor constructs
an estimate θ̃s(Ys) of the parameter θ.

Our goal is to relate the statistical properties of different
estimates of a parameter obtained by users who have access
to different sets of observations, in accordance with this model.
The goodness of an estimator is measured by comparing to the
“best possible estimator in the worst case”, i.e., by comparing
the risk (or mean square error) of the given estimator with the
minimax risk. The minimax risk achievable by the s-user is

RT (s) = min
all estimators θ̃s

max
θ

E[(θ̃s(Ys)− θ)2].

For location problems, assuming that there exists an estimator
with finite risk, this risk is achievable, since Girshick and
Savage [1] proved that the Pitman estimator is minimax. Here
by Pitman estimator we mean the estimator with minimum
mean square error among all equivariant estimators of location
(see, eg., [3], for definitions and details).

A main result of this note is the following inequality relating
the minimax risks achievable by the s-users from the class C
to the minimax risk achievable by the [N ]-user, i.e, one who
only sees observations from the location family generated by
the total sum.

Theorem 1: Suppose F1, . . . , FN have finite covariance
matrices. Let C be a regular collection in the sense that each
index i ∈ [N ] appears in exactly r sets in C. Then, for any
sample size T ≥ 1,

RT ([N ]) ≥ 1
r

∑
s∈C

RT (s).

Our approach to minimax risks for location families is based
on the fact that the Pitman estimator mentioned above is
minimax in this setting. In the case where C is simply the
collection of singleton sets {1}, . . . , {N}, and each source is
producing a data stream of T i.i.d. observations, Theorem 1
states that

var(θ̂(T )
[N ] ) ≥

∑
i∈[N ]

var(θ̂(T )
i ),

where θ̂(T )
i is the Pitman estimator based on i.i.d. observations

from source i, and θ̂(T )
[N ] is the Pitman estimator based on i.i.d.

observations from the location family generated by F[N ]. This
special case was proved by Kagan [2], although not interpreted
there in this way.

We now discuss a result comparing several different sensor
network configurations. Note that for the sensor network
configuration corresponding to a collection C of subsets of
[N ], a reasonable figure of merit is the average minimax risk
per element observed, i.e., the quantity

1
|C|
∑
s∈C

RT (s)
|s|

.

This is more appropriate than simply the average minimax
risk (without the normalization by |s| inside the summation),
which does not take into account the advantage of sensitive
measurements corresponding to smaller set sizes.

Theorem 2: [Hierarchy for symmetric collections] For the
collection Ck of all subsets of size k, let

Ak =
1(
N
k

) ∑
s∈Ck

RT (s)
k

be the average minimax risk per element observed. Then

A1 ≤ A2 ≤ . . . ≤ AN−1 ≤ AN .

What Theorem 2 says is that even taking into account the
advantage of sensitive sensors, using N sensitive sensors that



pick up the individual sources is still better than using
(
N
2

)
rough sensors picking up all pairwise sums. Although the
usefulness of this statement is limited because we have ignored
communication and data fusion aspects, it still gives some
insight into the design question for sensor networks, and in
particular tells us something about the tradeoff between the
sensitivity and the number of sensors. As far as we are aware,
this is the first such rigorous result in sensor network theory
in the robust framework of minimax risks.

Theorem 2 is particularly striking in the case where all the
sources have the same distribution, i.e., F1 = F2 = . . . = FN .
In this case, it implies for instance that

RT ([N ])
N

≥ RT ([N − 1])
N − 1

.

Thus we have a direct relationship between the efficacy of
different individual sensors; indeed, under the assumption that
all sources are probabilistically identical, sensors exposed to
fewer sources are always better (in the sense of minimax risk
per element observed) than sensors exposed to more of them.

We now move on to a question of resource allocation.
Suppose we can give variance permissions Vi for each source,
i.e., the s-sensor is only allowed an estimator with variance
less than or equal to

∑
i∈s Vi. Clearly for the [N ]-sensor to

be feasible under the given variance permissions, it needs to
be able to estimate the location parameter with mean square
error uniformly not more than

∑
i∈[N ] Vi. So the smallest total

variance we can hope to allot is this sum of all the Vi’s.
However it is not at all obvious that one can find such a
variance allotment (with no total wasted variance) for which
any other sensor network configuration is also feasible. This
question is solved in the next result.

Theorem 3: [Resource Allocation] Let Vi be the variance
permission associated with source i. In other words, the s-
sensor is allowed a worst-case mean squared error of estima-
tion of at most

∑
i∈s Vi. For an arbitrary sensor configuration

to be feasible, the definition of minimax risks means that one
needs ∑

i∈s
Vi ≥ RT (s) for each s ⊂ [N ].

Under this constraint, it is possible to allot variance permis-
sions to all sources in such a way that there is no wasted total
variance, i.e.,

∑
i∈[N ] Vi = RT ([N ]).

These results are proved in the following sections.

III. RELATIONS BETWEEN MINIMAX RISKS

We need to define the notion of a fractional partition for a
collection C of subsets of [N ]. A set β = {β(s) : s ∈ C} of
non-negative real numbers is called a fractional partition for
C if ∑

s3i,s∈C
β(s) = 1 (1)

for each i in [N ].
If the numbers β(s) are constrained to only take the values

0 and 1, then the condition above entails that exactly one set

in C contains i, so that the sets s ∈ C are pairwise disjoint
and fill out the set [N ], forming a partition of [N ]. We may
interpret a fractional partition as a “partition” of [N ] using sets
in C, each of which contains only a fractional piece (namely,
βs) of the elements in that set. Another way of saying this is
to note that for any real numbers ai,∑

s∈C
β(s)

∑
i∈s

ai =
∑
i∈[N ]

ai
∑
s∈C

β(s)1{i∈s}

=
∑
i∈[N ]

ai.
(2)

We now present a generalization of Theorem 1, and sketch
its proof.

Theorem 4: Suppose all the sources have finite covariance
matrices. Then for any sample size T ≥ 1, and for any
fractional partition β,

RT ([N ]) ≥
∑
s∈C

β(s)RT (s).

Proof: Since the sample size T is fixed for the rest of
the paper, we simply use θ̂ rather than θ̂(T ) to denote Pitman
estimators. For any s, the Pitman estimator for θ based on the
observations Ys can be written as

θ̂s(Ys) = Ȳs − E(Ȳs|Gs), (3)

where

Ȳs =
1
T

T∑
i=1

Ys,t (4)

is the sample mean,

Gs = σ(Ys,1 − Ȳs, . . . , Ys,T − Ȳs) (5)

is the σ-algebra generated by the residuals, and E stands for
the expectation taken at θ = 0. This expression for the Pitman
estimator is based on the theory of equivariant estimation, as
described, eg., in [3].

By the finite variance assumption, the sample mean is
a square-integrable function, so that one may interpret (3)
in terms of an orthogonal projection. Associated with the
projection is a Pythagorean identity, namely,

var(θ̂s) = var(Ȳs)− var
(
E(Ȳs|Gs)

)
, (6)

which follows from the uncorrelatedness of the projection
E(Ȳs|Gs) and θ̂s. First we note that∑

s∈C
β(s)var(Ȳs) =

∑
s∈C

β(s)
∑
j∈s

var(Ȳ{j})

=
∑
j∈[N ]

var(Ȳ{j})

= var(Ȳ[N ]),

(7)

where we used the identity (2) for a fractional partition. We
will now show that

E
[
E[Ȳ[N ]|G[N ]]

]2
≤
∑
s∈C

β(s)E
[
E[Ȳs|Gs]

]2
. (8)



Combining (7) and (8), and keeping in mind that variances
and second moments coincide because the expectation is taken
with respect to θ = 0, one obtains

var(Ȳ[N ])− var
(
E(Ȳ[N ]|G[N ])

)
≥∑

s∈C
β(s)

[
var(Ȳs)− var

(
E(Ȳs|Gs)

)]
.

(9)

Then the variance decomposition (6) gives

var(t[N ]) ≥
∑
s∈C

β(s)var(ts), (10)

which proves the inequality of Theorem 4 due to the mini-
maxity of the Pitman estimator.

To demonstrate (8), we observe that∑
s∈C

β(s)E
[
E[Ȳs|Gs]

]2 (a)

≥ E
[∑
s∈C

β(s)E[Ȳs|Gs]
]2

= EE
[{∑

s∈C
β(s)E[Ȳs|Gs]

}2∣∣∣∣G[N ]

]
(b)

≥ E
[
E
{∑

s∈C
β(s)E[Ȳs|Gs]

∣∣∣∣G[N ]

}]2
,

(11)

where (a) follows by the variance drop lemma of Madiman
and Barron [4], and (b) from the Cauchy-Schwarz inequality.
Also, the independence of the random variables implies that
E[Ȳs|Gs] = E[Ȳs|Gs,Gsc ], so that

E
{∑

s∈C
β(s)E[Ȳs|Gs]

∣∣∣∣G[N ]

}
=
∑
s∈C

β(s)E
{

E[Ȳs|Gs,Gsc ]
∣∣∣∣G[N ]

}
(c)
=
∑
s∈C

β(s)E[Ȳs|G[N ]]

= E
{∑

s∈C
β(s)Ȳs

∣∣∣∣G[N ]]
}

(d)
= E

{
Ȳ[N ]

∣∣∣∣G[N ]]
}
,

(12)

where (c) follows from the fact that the coarser σ-algebra wins,
and (d) follows by applying the identity (2) to the numbers
Ȳ{j}. Thus

E
[
E
{∑

s∈C
β(s)E[Ȳs|Gs]

∣∣∣∣G[N ]

}]2
= E

[
E
{
Ȳ[N ]

∣∣G[N ]]
}]2

,

which completes the proof.

Remark 1: It is easy to see that Theorem 1 follows from
Theorem 4. Indeed, if r(i) = |{s ∈ C : i ∈ s}| is the degree of
i, the regularity condition on C means that r(i) = r for each
i ∈ [N ], so that

∑
s3i,s∈C 1 = r and the coefficients β(s) = 1

r
form a fractional partition.

Remark 2: Although it is not relevant to the focus of this
paper, it is worth mentioning that Theorems 1 and 4 are gen-
eralizations of the subset sum Fisher information inequalities
of [4].

IV. DESIGN AND RESOURCE ALLOCATION ISSUES

Consider the special case of Theorem 1 corresponding to
the collection of leave-one-out subsets, i.e., to the collection

CN−1 = {s : |s| = N − 1}.

Then Theorem 1 reads

RT ([N ]) ≥ 1
N − 1

∑
s∈CN−1

RT (s)

so that
RT ([N ])

N
≥ 1
N

∑
s∈CN−1

RT (s)
N − 1

. (13)

This proves the inequality AN ≥ AN−1, which is part of The-
orem 2. The rest is proved recursively by repeated application
of inequality (13) to each of the summands appearing in the
right side of (13).

To prove Theorem 3, consider the linear program

Maximize
∑

s⊂[N ] β(s)RT (s)
subject to β(s) ≥ 0 for each s ⊂ [N ]

and
∑

s⊂[N ],s3j β(s) = 1 for each j ∈ [N ].

The dual problem is easily obtained:

Minimize
∑
j∈[N ] Vj

subject to
∑
j∈s Vj ≥ RT (s) for each s ⊂ [N ].

If p∗ and d∗ denote the primal and dual optimal values, duality
theory tells us that p∗ = d∗. But Theorem 4 implies that p∗ ≤
RT ([N ]), since by setting β(s) = 0 for some subsets s ⊂ [N ],
fractional partitions using arbitrary collections of sets can be
thought of as fractional partitions using the full power set 2[N ].
Hence it must be true that d∗ ≤ RT ([N ]). Thus there exists a
point (V1, . . . , VN ) in the feasible region of the dual problem
such that the sum V1 + . . .+ VN = RT ([N ]).
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