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Abstract—The Poisson distribution is known to have maximal also been examined under a similar light. An analogous
entropy among all distributions (on the nonnegative integers) program has been recently carried out in this case [7] [8]
within a natural class. Interestingly, straightforward attempts to [9][10][11][12]. The starting point is the identification of the

generalize this result to general compound Poisson distributions Poi distributi that which h imal ent ithi
fail because the analogous result is not true in general. However, - 0'SSON distribution as that which has maximal entropy within

we show that the compound Poisson does indeed have a natural@ natural class of probability measures. Perhaps the simplest
maximum entropy characterization when the distributions under way to state and prove this is along the following lines; first
consideration are log-concave. This complements the recentywe make some simple definitions:
development by the same authors of an information-theoretic Definition 1.1: For any parameter

foundation for compound Poisson approximation inequalities and . VeCt.or p ~
limit theorems (p1,p2,- .., pn) With eachp; € [0, 1], the sum of independent

Bernoulli random variable®; ~ Bern (p;),
. INTRODUCTION n
. . . Sn - Z Bia
A patrticularly appealing way to state the classical central —
1=

limit theorem is to say that, ik, X5, ... are independent and_ ) i N o
identically distributed, continuous random variables with zef§ called aBernoulli sum and its probability mass function is

mean and unit variance, then the entropy of their normaliz€§noted bybp () := Pr{S, =z}, forz =0, 1,.... Further,
partial sumssS, = izﬂil X; increases withn to the for each A > 0, we define the following sets of parameter
entropy of the standard normal distribution, which is maxim3€ctors:
among all randor_n variables with zero mean and unit variance. p () = (Pel0,1]" : pr4pot - +pn=A}
More precisely, if f,, denotes the density of,, and ¢ the
standard normal density, then, as— oo, and

h(f.) 1 h(e) =sup{h(f) : densitiesf 0 Poo(N) = | PulN).

n>1

with mean 0 and variance}1

_ . . hepp and Olkin [7] (see also Mateev [8]) showed that, for
whereh(f) = — [ flog f denot(_as the d|ﬁerent|al er?t.ropy anfxedn > 1, the Bernoulli surb, which has maximal entropy
log denotes the natural logarithm. Precise conditions un

er
which (1) holds are given in [1][2][3]; also see [4][5][6] and

arong all Bernoulli sums with meah, is Bin(n, A\/n), the
. binomial with parameters and \/n,
the references therein, where numerous related results are

stated, along with their history. H(Bin(n, \/n)) = max {H(bp) i pe pn()\)} )
Part of the appeal of this formalization of the central .
limit theorem comes from its analogy to the second lawhere H(P) = —3 P(z)log P(z) denotes the discrete

of thermodynamics: The “state” (meaning the distributior§ntropy function. Noting that the binomial Rim, A/n) con-

of the random variables,, evolves monotonically, until the Verges to the Poisson distribution (29 asn — oo, and that

maximum entropystate, the standard normal distribution, i$he classes of Bernoulli sums in (2) are nestfle}, : p €

reached. Moreover, the introduction of information-theoreti€n(A)} C {bp : P € Pny1(A)}, Harremes [10] noticed

ideas and techniques in connection with the entropy hHata simple limiting argument gives the following maximum

motivated numerous related results (and their proofs), gen@ftropy property for the Poisson distribution:

alizing and strengthening the central limit theorem in different _ .

directions; see the references mentioned above for details. H(PAA)) = sup {H(bp) " P€ POO(/\)}' 3)
The classical Poisson convergence limit theorems, of whichA key property in generalizing and understanding this max-

the binomial-to-Poisson is the prototypical example, hawmum entropy property further is that of ultra log-concavity;



cf. [13]. The distributionP of a random variableX is ultra a compound Bernoulli supin view of (6), its distribu-
log-concaveif P(x)/II\(x) is log-concave, that is, if, tion is Cqbp, wherep = (p1,p2,...,0n).
3) In the special case of a compound Bernoulli sum with
2> — > 1. ; :
vP(2)” 2 (@ +1)Pe+1)P(z 1), forallz>1. (4) all its parameters; = p for a fixedp € [0,1], we say
Note that the Poisson distribution as well as all Bernoullisums  that it has acompound binomial distributigndenoted

are ultra log-concave. by CBin(n, p, Q).
Johnson [12] recently proved the following maximum en- 4) Let IT\(z) = e *\/z!, 2 > 0, denote the PQ\)
tropy property for the Poisson distribution, generalizing (3): mass function. Then, for anyx > 0, the compound
H(Po(\) Poisson distributionCPq A, ) is the distribution with

mass functionCgIl,
= max {H(P) : ultra log-concaveP with mean)\}. (5)

> . eI .
Partly motivated by the desire to provide an information- Collx(z) = Y TL()Q"(x) =Y 7 Q™ (),
theoretic foundation focompound Poisson limit theoreraad J=0 j=0 ®)
the more general problem @ompound Poisson approxima- for all z > 0
tion, as a first step we consider the problem of generalizingIn view of the éhepp-OIkin maximum entropy property (2)
the maximum entropy properties (3) and (5) to the case %‘

: e L r the binomial distribution, a first natural conjecture might
compound Poissodistributions onZ.. We begin with some : . :
definitions: be that the compound binomial has maximum entropy among

Definition 1.2: Let P be an arbitrary distribution ol = ias” compound Bernoulli sums’qby, with a fixed mean; that
{0,1,...}, and @ a distribution onN = {1,2,...}. The Q- '
compound distributiorCq P is the distribution of the random H(CBin(n, \/n,Q)) = max {H(Cpr) i pe pn(/\)}.

sum, y .
ZX, (6) But, perhaps somewhat surprisingly, as Chi [14] has noted,
=1 ’ (9) fails in general. For example, taking to be the uniform

o ) distribution on{1, 2}, p = (0.00125,0.00875) and A = p; +
whereY has distributionP and the random variablgsY; } are ps = 0.01, direct computation shows that,

independent and identically distributed (i.i.d.) with common

distribution Q and independent of. The distributionQ is  H(CBin(2,1/2,Q)) < 0.090798 < 0.090804 < H(Cgby).
called acompounding distributionand the magP — Cg P is
the @-compounding operatioriThe Q-compound distribution
CoP can be explicitly written as the mixture,

As the Shepp-Olkin result (2) was only seen as an intermedi-
ate step in proving the maximum entropy property of the Pois-
son distribution (3), we may still hope that the corresponding

> . result remains true for compound Poisson measures, namely
CoP(x) =Y PW)Q™(z), = >0, ™) that,
y=0

where Q*/(z) is the jth convolution power of) and Q*° is H(CPA), Q) = sup {H(CQbP) " PE Pmo‘)}' (10)
the point mass at = 0. Again, (10) fails in general. For example, taking the sapne
Above and throughout the paper, the empty SE?]:l(' ) ar?dp a(s a)bove, yigm& P ? w

is taken to be zero; all random variables considered are sup-
ported onZ, = {0,1,...}; and all compounding distributions  #(CPdA, Q)) < 0.090765 < 0.090804 < H(Cqbp).

@ are supported ot = {1,2, .. .}. o The main purpose of the present work is to show that,
Example 1.3:Let ) be an arbitrary distribution ofl. - yeqpite these negative results, it is possible to provide nat-
1) Forany0 < p < 1, thecompound Bernoulli distribution 5|, proad sufficient conditions, under which the compound

CBern (p, Q) is the distribution of the producBX, pinomial and compound Poisson distributions can be shown

where B ~ Bern(p) and X' ~ Q are independent. It 15 haye maximal entropy in an appropriate class of measures.

has probability mass functiod'o P, where P is the  oyr main result (proved in Section II) states that, as long

Bern (p) mass function, so that/oP(0) = 1—p and a5 and the compound Poisson measure OP@) are

CqoP(x) =pQ(z) for z > 1. log-concave, the same maximum entropy statement as in (5)
2) A compound Bernoulli sunis a sum of independent remains valid in the compound Poisson case:

compound Bernoulli random variables, all with re- Thegrem 1.4:If the distributionQ on N and and the com-

spect to the same compounding distributih Let hoynd Poisson distribution CPh Q) are both log-concave,
Xy, X5,..., X, be ii.d. with common distributior® then,

and By, Bs, ..., B,, be independent Berpy). We call,
H(CPQ), Q)) = max {H(CQP) :

n ie1 Bi
D
dBX, = > X, ultra log-concave” with meanA}.
i=1 j=1



The notion of log-concavity is central in the development of Note that, if X ~ P has mean), then U, P has the
the ideas in this work. [In a different setting, log-concavity alssame mean. Also, recall the following useful relation that was
appears as a natural condition for a different maximum entropgtablished in Proposition 3.6 of [12]: For gli> 0,
problem considered by Cover and Zhang [15].] Recall that the

distribution P of a random variabl&X' onZ_ is log-concavef anP(y) _ 1 (A(UQP(y) —U,P(y—1)

its support is a (possibly infinite) interval of successive integers o @

inZ,, and, ~((y+ DUP(y +1) = yUaP)) )(12)
P(x)?> P(x+1)P(x —1), forallz>1 (11) Next we define another transformation of probability distrib-

We also recall that most of the commonly used distributiotdions P onZ.:
appearing in applications (e.g., the Poisson, binomial, geometPefinition 2.2: Given a € [0, 1], a distribution P on Z
ric, negative binomial, hypergeometric logarithmic series, @nd @ compounding distributio} on N, let U P denote the
Polya-Eggenberger distribution) are log-concave. distribution CqUo P
Note that the condition that a probability mass functi®be oo
ultra log-concave given in Equation (4) is more restrictive than UffP(x) = CqU,P(x) = Z UsP(y)Q™(z), x>0.
Equation (11), and equates to requiring that the r&tjal, y—=0
form a log-concave sequence for sote An important observation that will be at the heart of the
In [21] we discuss conditions under which the comproof of Theorem 1.4 below is that, for = 0, U(?P is simply
pound Poisson and compound Bernoulli distributions are lothe compound Poisson measure(&R)), while for o = 1,
concave. UIQP = CpP. The idea is thaU¢ interpolates between these
two distributions, and that we deduce the result by considering
monotonicity properties with respect ta
] ] In [12], the characterization of the Poisson as a maximum
Here we show that, if@Q and the compound PoissOngniropy distribution was proved through the decrease of its
distribution CP@A, Q) = Cqll are both log-concave, thengcare function. In an analogous way, following [18], we define
CPd\, Q) has maximum entropy among all distributions ofhe score function of aQ-compound random variable as
the formCq P, when P has mean\ and is ultra log-concave. fqjjows.
Our approach is an extension of the ‘semigroup’ arguments ofpyafinition 2.3: Given a distribution? on 7., with mean),

[12]. . . . . the corresponding)-compound distributionCy P has score
We begin by recording some basic properties of Iog-conca.r(ﬁmtiOn defined by:

and ultra log-concave distributions:
(i) If P is ultra log-concave, then from the definitions it is

II. MAXIMUM ENTROPY PROPERTY OF THECOMPOUND
POISSONDISTRIBUTION

Yoy + 1Py +1)Q*(2)

immediate thatP is log-concave. m.cqpP(T) = A% P(y)Q*v(x) -1
(#4) If @ is log-concave, then it has finite moments of all T i_;)P(y +1)Q(x) (13)
orders; see [16, Theorem 7]. y=0\Y d Y
ACoP(x)

(#7) If X is a random variable with ultra log-concave distri- Notice that the mean of of, ., » with respect toCoP

bution P, then (by(i) and (i7)) it has finite moments of , zero, and that i? ~ Po(X) then .o, p(x) = 0. Further,

all orders. Moreover, considering the covariance betweerg1 . . . .
. . When @ is the point mass at 1 this score function reduces to
the decreasing functio®(z + 1)(x 4+ 1)/P(x) and the

increasing functions(z — 1) - - (z — n), shows that the the “scaled score function” introduceq in [11]. But, u_nlike the
falling factorial moments of° satisfy ’ scaled score function and the alternative score funetien,
' given in [18], this score function is not only a function of the
E[(X)y] =EX(X-1)--- (X —n+1)] < (E(X))"; compound distributiolC’y P, but also explicitly depends af.
see [12] and [17] for details, A projection i_dentity and other propertiesnqup are proved
(iv) The Poisson distribution and all Bernoulli sums are ultrge%i]éﬂgvmg compound Poisson approximation results to
log-concave. ' o .
Recall the following definition from [12]: Next we show that, if) is Iog.—concave amP is ultra. Iog.—
Definition 2.1: Givena € [0, 1] and a random variablé ~ concave, then the score functien o, () is decreasing in

P on Z, with mean\ > 0, let U, P denote the distribution -

of the random variable, Lemma 2.4:If P is ultra log-concave and the compound-

ing distribution @ is log-concave, then the score function
X Bz r1,cop(x) Of CoP is decreasing in.
Z} i T 2x1-a) Proof: First we recall Theorem 2.1 of Keilson and Sumita

B o [19], which implies that, if@ is log-concave, then for any
where the B; are i.i.d. Bern (o), Z51—) has distribution ,,, > n, and for anyz:

PoA\(1 — «)), and all random variables are independent of
each other and oX. Q" (z+1)Q™(z) — Q" (x)Q™(x + 1) > 0. (14)



[This can be proved by considerin@*™ as the convolution where the last sum is restricted to the rarpe< y < z,

of Q*" andQ*(™—"), and writing because) is supported omN.
wm “n wm n By some technical arguments, we can prove thét) is
QM (@ +1)Q™(2) - Q™ (2)Q™ (z +1) differentiable for alla € (0,1) and, in fact, that we can
Z Q*m=m) () (Q*”(m +1-0)Q*"(z) — differentiate the series
E(a) := E[—1log ColIx(W,,)]

Q*’L(aj—l)Q*n(l‘+1)>~ = —iUgP(fL’) IOgCQHA(x)> (19
=0

Since( is log-concave, then so @*", cf. [20], so the ratio term-by-term, to obtain,

Q"™ (z +1)/Q*™(x) is decreasing i, and (14) follows.] -
By definition, 71 ¢, p(x) > r1,c,p(z + 1) if and only if, Fa) = -3 9 ya P(x)log Colly () (16)
8 «

0<<Z(y+1)P(y+1 ><ZP *21+1)>

A S o Cam () (VEP@)r, yople)  (07)

r= O
< Ply+1)Q™ x+1> <ZP ) _ZQ YWQP(x )T1,U§P($_U)>
Zerl (y+1)P(2)x

X [@W(2)Q (x +1) — Q7 (x + 1)Q™(x)].

Noting that fory = z the term in square brackets in the double log Colly (z Z Q(v)log Colly(z +v) |,
sum becomes zero, and swapping the valueg afid z in the

rangey > z, the double sum in (15) becomes, where the rearrangement Ieadmg to the third equality follows

Z[(y F1)P(y + 1)P(2) — (2 + 1)P(z + 1)P(y)] x by intgrchanging the order of (second) double summation and

replacingz by x + v.
X oz X vz Now we note that, exactly as in [12], the
X [QU@)QT(z+1) - Q™(x + 1)@ ()] last series above is the covariance between the

By the ultra log-concavity ofP, the first square bracket is(zero-mean) function rypep(x) and the function
positive fory < z, and by equation (14) the second squar@og CoIly(z) — >, Q(v )log Colly(z +v)), under the
bracket is also positive foy < z. B  measured/2P. SinceP is ultra log-concave, so &, P [12],

We remark that, under the same assumptions, and usingence the score function, vep(x) is decreasing inz, by
very similar argument, an analogous result holds for the scaremma 2.4. Also, the log- concav|ty 6foI1, implies that the
functionry ¢, p recently introduced in [18]. second function is increasing, and Chebyshev’s rearrangement

Combining Lemma 2.4 with equation (12) we deduce themma implies that the covariance is less than or equal to
following result, which is the main technical step in the proofero, proving that=’ (o) < 0, as claimed.

= = ZUQQP(x)rLUSP(:C) (18)
=0

y<z

of Theorem 1.4 below. Finally, the fact that'(0) > E(1) is an immediate conse-
Proposition 2.5:Let P be an ultra log-concave distributionquence of the continuity of2(«) on [0,1] and the fact that
on Z, with mean\ > 0, and assume tha and CPQ)\,Q)) FE’(«) <0 for all a € (0,1). [ ]

are both log-concave. Leil, be a random variable with Notice that, for the above proof to work, it is not nec-
distribution U@ P, and define, for alk € [0, 1], the function, essary thatCo1I, be log-concave; the weaker property that

. (log Collx(z) — >-, Q(v) log Colly(x + v)) be increasing is
E(a) = B[ log Colly(Wa)). enough, although this is not as simple to verify.

Then E(«) is continuous for alkv € [0,1], it is differentiable Proof: [of Theorem 1.JiAs in Proposition 2.5, letV,, ~
for a € (0,1), and, moreoverE’(a) < 0 for a € (0,1). In U2 P = CquU,P, and letD(P|Q) denote the relative entropy
particular, E(0) > E(1). betweenP and @,

Proof: We simply sketch the proof and refer to the full ()
paper for details. Recall that, D(P||Q): Z P(z (z)

x>0
Q —
U P(x) = CqUaP(z) Then, noting thatV, ~ Coll, andW; ~ Co P, we have,
= Z UaP(y)Q" (2) H(CoP) < H(CqP)+ D(CoP|Colly)

= —Ellog Coll\(W7)]
—Elog CoIl\(Wy)]
H(Colly),

IA

—ZUP Q™Y (x),



where the first inequality is simply the nonnegativity of relativeLo]

entropy, and the second inequality is exactly the statement that
EQ1

) < E(0), proved in Proposition 2.5. [

(11]

IIl. DISCUSSION

pound Poisson distributions have a natural maximum entrgﬁ%
property. Of course, to translate this general result into ¢ 3l
crete useful statements, one would like simple conditions guj
@ under which bothCylII, is log-concave. A conjecture [19]
regarding such a condition, as well as several cases in which
the conjecture is verified, is described in the full paper [21f6]
The conjecture states that QRoQ) is log-concave wherd)

is log-concave andQ(1)? > 2Q(2).

[17

In particular, the results there imply the following explicit
maximum entropy statements.

Example 3.1:

2)

1) Suppose) is supported oq1, 2}, with [18]

probabilities@(1) = ¢, Q(2) = 1 — ¢, and consider the
class of all Bernoulli sum$, with meanp; + p + [19]
-+ -+p, = A. The compound Poisson maximum entrop}éo
property holds in this case, as long.ass large enough.
More precisely, the distribution CPR(Q) has maximal [21]
entropy among all compound Bernoulli sufig b, with
pL+pet P =A> %

Suppose) is geometric with parameter € (0,1), i.e.,
Q(x) = a(l — «)*~ ! for all z > 1, and again consider
the class of a Bernoulli surrig, with meanA. Then the
compound Poisson distribution CRo) has maximal
entropy among all compound Bernoulli sudig b, with
PLAprt o4 p, = A > 20

[e3
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