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Abstract— The Poisson distribution is known to have maximal
entropy among all distributions (on the nonnegative integers)
within a natural class. Interestingly, straightforward attempts to
generalize this result to general compound Poisson distributions
fail because the analogous result is not true in general. However,
we show that the compound Poisson does indeed have a natural
maximum entropy characterization when the distributions under
consideration are log-concave. This complements the recent
development by the same authors of an information-theoretic
foundation for compound Poisson approximation inequalities and
limit theorems.

I. I NTRODUCTION

A particularly appealing way to state the classical central
limit theorem is to say that, ifX1, X2, . . . are independent and
identically distributed, continuous random variables with zero
mean and unit variance, then the entropy of their normalized
partial sumsSn = 1√

n

∑n
i=1 Xi increases withn to the

entropy of the standard normal distribution, which is maximal
among all random variables with zero mean and unit variance.
More precisely, iffn denotes the density ofSn and φ the
standard normal density, then, asn →∞,

h(fn) ↑ h(φ) = sup{h(f) : densitiesf

with mean 0 and variance 1},
(1)

whereh(f) = −
∫

f log f denotes the differential entropy and
log denotes the natural logarithm. Precise conditions under
which (1) holds are given in [1][2][3]; also see [4][5][6] and
the references therein, where numerous related results are
stated, along with their history.

Part of the appeal of this formalization of the central
limit theorem comes from its analogy to the second law
of thermodynamics: The “state” (meaning the distribution)
of the random variablesSn evolves monotonically, until the
maximum entropystate, the standard normal distribution, is
reached. Moreover, the introduction of information-theoretic
ideas and techniques in connection with the entropy has
motivated numerous related results (and their proofs), gener-
alizing and strengthening the central limit theorem in different
directions; see the references mentioned above for details.

The classical Poisson convergence limit theorems, of which
the binomial-to-Poisson is the prototypical example, have

also been examined under a similar light. An analogous
program has been recently carried out in this case [7] [8]
[9][10][11][12]. The starting point is the identification of the
Poisson distribution as that which has maximal entropy within
a natural class of probability measures. Perhaps the simplest
way to state and prove this is along the following lines; first
we make some simple definitions:

Definition 1.1: For any parameter vector p =
(p1, p2, . . . , pn) with eachpi ∈ [0, 1], the sum of independent
Bernoulli random variablesBi ∼ Bern (pi),

Sn =
n∑

i=1

Bi,

is called aBernoulli sum, and its probability mass function is
denoted bybp(x) := Pr{Sn = x}, for x = 0, 1, . . .. Further,
for eachλ > 0, we define the following sets of parameter
vectors:

Pn(λ) =
{
p ∈ [0, 1]n : p1 + p2 + · · ·+ pn = λ

}
and

P∞(λ) =
⋃
n≥1

Pn(λ).

Shepp and Olkin [7] (see also Mateev [8]) showed that, for
fixed n ≥ 1, the Bernoulli sumbp which has maximal entropy
among all Bernoulli sums with meanλ, is Bin(n, λ/n), the
binomial with parametersn andλ/n,

H(Bin(n, λ/n)) = max
{

H(bp) : p ∈ Pn(λ)
}

, (2)

where H(P ) = −
∑

x P (x) log P (x) denotes the discrete
entropy function. Noting that the binomial Bin(n, λ/n) con-
verges to the Poisson distribution Po(λ) asn → ∞, and that
the classes of Bernoulli sums in (2) are nested,{bp : p ∈
Pn(λ)} ⊂ {bp : p ∈ Pn+1(λ)}, Harremöes [10] noticed
that a simple limiting argument gives the following maximum
entropy property for the Poisson distribution:

H(Po(λ)) = sup
{

H(bp) : p ∈ P∞(λ)
}

. (3)

A key property in generalizing and understanding this max-
imum entropy property further is that of ultra log-concavity;



cf. [13]. The distributionP of a random variableX is ultra
log-concaveif P (x)/Πλ(x) is log-concave, that is, if,

xP (x)2 ≥ (x + 1)P (x + 1)P (x− 1), for all x ≥ 1. (4)

Note that the Poisson distribution as well as all Bernoulli sums
are ultra log-concave.

Johnson [12] recently proved the following maximum en-
tropy property for the Poisson distribution, generalizing (3):

H(Po(λ))

= max
{

H(P ) : ultra log-concaveP with meanλ
}

. (5)

Partly motivated by the desire to provide an information-
theoretic foundation forcompound Poisson limit theoremsand
the more general problem ofcompound Poisson approxima-
tion, as a first step we consider the problem of generalizing
the maximum entropy properties (3) and (5) to the case of
compound Poissondistributions onZ+. We begin with some
definitions:

Definition 1.2: Let P be an arbitrary distribution onZ+ =
{0, 1, . . .}, and Q a distribution onN = {1, 2, . . .}. The Q-
compound distributionCQP is the distribution of the random
sum,

Y∑
j=1

Xj , (6)

whereY has distributionP and the random variables{Xj} are
independent and identically distributed (i.i.d.) with common
distribution Q and independent ofY . The distributionQ is
called acompounding distribution, and the mapP 7→ CQP is
the Q-compounding operation. The Q-compound distribution
CQP can be explicitly written as the mixture,

CQP (x) =
∞∑

y=0

P (y)Q∗y(x), x ≥ 0, (7)

whereQ∗j(x) is the jth convolution power ofQ andQ∗0 is
the point mass atx = 0.

Above and throughout the paper, the empty sum
∑0

j=1(· · · )
is taken to be zero; all random variables considered are sup-
ported onZ+ = {0, 1, . . .}; and all compounding distributions
Q are supported onN = {1, 2, . . .}.

Example 1.3:Let Q be an arbitrary distribution onN.
1) For any0 ≤ p ≤ 1, thecompound Bernoulli distribution

CBern (p, Q) is the distribution of the productBX,
where B ∼ Bern(p) and X ∼ Q are independent. It
has probability mass functionCQP , where P is the
Bern (p) mass function, so that,CQP (0) = 1 − p and
CQP (x) = pQ(x) for x ≥ 1.

2) A compound Bernoulli sumis a sum of independent
compound Bernoulli random variables, all with re-
spect to the same compounding distributionQ: Let
X1, X2, . . . , Xn be i.i.d. with common distributionQ
andB1, B2, . . . , Bn be independent Bern(pi). We call,

n∑
i=1

BiXi
D=

Pn
i=1 Bi∑
j=1

Xj ,

a compound Bernoulli sum; in view of (6), its distribu-
tion is CQbp, wherep = (p1, p2, . . . , pn).

3) In the special case of a compound Bernoulli sum with
all its parameterspi = p for a fixed p ∈ [0, 1], we say
that it has acompound binomial distribution, denoted
by CBin(n, p,Q).

4) Let Πλ(x) = e−λλx/x!, x ≥ 0, denote the Po(λ)
mass function. Then, for anyλ > 0, the compound
Poisson distributionCPo(λ, Q) is the distribution with
mass functionCQΠλ,

CQΠλ(x) =
∞∑

j=0

Πλ(j)Q∗j(x) =
∞∑

j=0

e−λλj

j!
Q∗j(x),

(8)
for all x ≥ 0.

In view of the Shepp-Olkin maximum entropy property (2)
for the binomial distribution, a first natural conjecture might
be that the compound binomial has maximum entropy among
all compound Bernoulli sumsCQbp with a fixed mean; that
is,

H(CBin(n, λ/n, Q)) = max
{

H(CQbp) : p ∈ Pn(λ)
}

.

(9)
But, perhaps somewhat surprisingly, as Chi [14] has noted,
(9) fails in general. For example, takingQ to be the uniform
distribution on{1, 2}, p = (0.00125, 0.00875) andλ = p1 +
p2 = 0.01, direct computation shows that,

H(CBin(2, λ/2, Q)) < 0.090798 < 0.090804 < H(CQbp).

As the Shepp-Olkin result (2) was only seen as an intermedi-
ate step in proving the maximum entropy property of the Pois-
son distribution (3), we may still hope that the corresponding
result remains true for compound Poisson measures, namely
that,

H(CPo(λ, Q)) = sup
{

H(CQbp) : p ∈ P∞(λ)
}

. (10)

Again, (10) fails in general. For example, taking the sameQ,λ
andp as above, yields,

H(CPo(λ, Q)) < 0.090765 < 0.090804 < H(CQbp).

The main purpose of the present work is to show that,
despite these negative results, it is possible to provide nat-
ural, broad sufficient conditions, under which the compound
binomial and compound Poisson distributions can be shown
to have maximal entropy in an appropriate class of measures.

Our main result (proved in Section II) states that, as long
as Q and the compound Poisson measure CPo(λ, Q) are
log-concave, the same maximum entropy statement as in (5)
remains valid in the compound Poisson case:

Theorem 1.4:If the distributionQ on N and and the com-
pound Poisson distribution CPo(λ, Q) are both log-concave,
then,

H(CPo(λ, Q)) =max
{

H(CQP ) :

ultra log-concaveP with meanλ
}

.



The notion of log-concavity is central in the development of
the ideas in this work. [In a different setting, log-concavity also
appears as a natural condition for a different maximum entropy
problem considered by Cover and Zhang [15].] Recall that the
distributionP of a random variableX on Z+ is log-concaveif
its support is a (possibly infinite) interval of successive integers
in Z+, and,

P (x)2 ≥ P (x + 1)P (x− 1), for all x ≥ 1. (11)

We also recall that most of the commonly used distributions
appearing in applications (e.g., the Poisson, binomial, geomet-
ric, negative binomial, hypergeometric logarithmic series, or
Polya-Eggenberger distribution) are log-concave.

Note that the condition that a probability mass functionP be
ultra log-concave given in Equation (4) is more restrictive than
Equation (11), and equates to requiring that the ratioP/Πλ

form a log-concave sequence for someλ.
In [21] we discuss conditions under which the com-

pound Poisson and compound Bernoulli distributions are log-
concave.

II. M AXIMUM ENTROPY PROPERTY OF THECOMPOUND

POISSONDISTRIBUTION

Here we show that, ifQ and the compound Poisson
distribution CPo(λ, Q) = CQΠλ are both log-concave, then
CPo(λ, Q) has maximum entropy among all distributions of
the formCQP , whenP has meanλ and is ultra log-concave.
Our approach is an extension of the ‘semigroup’ arguments of
[12].

We begin by recording some basic properties of log-concave
and ultra log-concave distributions:
(i) If P is ultra log-concave, then from the definitions it is

immediate thatP is log-concave.
(ii) If Q is log-concave, then it has finite moments of all

orders; see [16, Theorem 7].
(iii) If X is a random variable with ultra log-concave distri-

bution P , then (by(i) and (ii)) it has finite moments of
all orders. Moreover, considering the covariance between
the decreasing functionP (x + 1)(x + 1)/P (x) and the
increasing functionx(x − 1) · · · (x − n), shows that the
falling factorial moments ofP satisfy,

E[(X)n] := E[X(X − 1) · · · (X − n + 1)] ≤ (E(X))n;

see [12] and [17] for details.
(iv) The Poisson distribution and all Bernoulli sums are ultra

log-concave.
Recall the following definition from [12]:
Definition 2.1: Givenα ∈ [0, 1] and a random variableX ∼

P on Z+ with meanλ ≥ 0, let UαP denote the distribution
of the random variable,

X∑
i=1

Bi + Zλ(1−α),

where theBi are i.i.d. Bern (α), Zλ(1−α) has distribution
Po(λ(1 − α)), and all random variables are independent of
each other and ofX.

Note that, if X ∼ P has meanλ, then UαP has the
same mean. Also, recall the following useful relation that was
established in Proposition 3.6 of [12]: For ally ≥ 0,

∂

∂α
UαP (y) =

1
α

(
λ(UαP (y)− UαP (y − 1)

−((y + 1)UαP (y + 1)− yUαP (y))
)
.(12)

Next we define another transformation of probability distrib-
utionsP on Z+:

Definition 2.2: Given α ∈ [0, 1], a distributionP on Z+

and a compounding distributionQ on N, let UQ
α P denote the

distributionCQUαP :

UQ
α P (x) := CQUαP (x) =

∞∑
y=0

UαP (y)Q∗y(x), x ≥ 0.

An important observation that will be at the heart of the
proof of Theorem 1.4 below is that, forα = 0, UQ

0 P is simply
the compound Poisson measure CP(λ, Q), while for α = 1,
UQ

1 P = CQP . The idea is thatUQ
α interpolates between these

two distributions, and that we deduce the result by considering
monotonicity properties with respect toα.

In [12], the characterization of the Poisson as a maximum
entropy distribution was proved through the decrease of its
score function. In an analogous way, following [18], we define
the score function of aQ-compound random variable as
follows.

Definition 2.3: Given a distributionP on Z+ with meanλ,
the correspondingQ-compound distributionCQP has score
function defined by:

r1,CQP (x) =

∑∞
y=0(y + 1)P (y + 1)Q∗y(x)

λ
∑∞

y=0 P (y)Q∗y(x)
− 1

=

∑∞
y=0(y + 1)P (y + 1)Q∗y(x)

λCQP (x)
− 1.

(13)

Notice that the mean of ofr1,CQP with respect toCQP
is zero, and that ifP ∼ Po(λ) then r1,CQP (x) ≡ 0. Further,
whenQ is the point mass at 1 this score function reduces to
the “scaled score function” introduced in [11]. But, unlike the
scaled score function and the alternative score functionr2,CQP

given in [18], this score function is not only a function of the
compound distributionCQP , but also explicitly depends onP .
A projection identity and other properties ofr1,CQP are proved
in [18], allowing compound Poisson approximation results to
be deduced.

Next we show that, ifQ is log-concave andP is ultra log-
concave, then the score functionr1,CQP (x) is decreasing in
x.

Lemma 2.4:If P is ultra log-concave and the compound-
ing distribution Q is log-concave, then the score function
r1,CQP (x) of CQP is decreasing inx.

Proof: First we recall Theorem 2.1 of Keilson and Sumita
[19], which implies that, ifQ is log-concave, then for any
m ≥ n, and for anyx:

Q∗m(x + 1)Q∗n(x)−Q∗m(x)Q∗n(x + 1) ≥ 0. (14)



[This can be proved by consideringQ∗m as the convolution
of Q∗n andQ∗(m−n), and writing

Q∗m(x + 1)Q∗n(x)−Q∗m(x)Q∗n(x + 1)

=
∑

l

Q∗(m−n)(l)
(

Q∗n(x + 1− l)Q∗n(x)−

Q∗n(x− l)Q∗n(x + 1)
)

.

SinceQ is log-concave, then so isQ∗n, cf. [20], so the ratio
Q∗n(x + 1)/Q∗n(x) is decreasing inx, and (14) follows.]

By definition, r1,CQP (x) ≥ r1,CQP (x + 1) if and only if,

0 ≤

(∑
y

(y + 1)P (y + 1)Q∗y(x)

)(∑
z

P (z)Q∗z(x + 1)

)

−

(∑
y

(y + 1)P (y + 1)Q∗y(x + 1)

)(∑
z

P (z)Q∗z(x)

)
=
∑
y,z

(y + 1)P (y + 1)P (z)×

× [Q∗y(x)Q∗z(x + 1)−Q∗y(x + 1)Q∗z(x)] .

Noting that fory = z the term in square brackets in the double
sum becomes zero, and swapping the values ofy andz in the
rangey > z, the double sum in (15) becomes,∑

y<z

[(y + 1)P (y + 1)P (z)− (z + 1)P (z + 1)P (y)]×

× [Q∗y(x)Q∗z(x + 1)−Q∗y(x + 1)Q∗z(x)] .

By the ultra log-concavity ofP , the first square bracket is
positive for y ≤ z, and by equation (14) the second square
bracket is also positive fory ≤ z.

We remark that, under the same assumptions, and using a
very similar argument, an analogous result holds for the score
function r2,CQP recently introduced in [18].

Combining Lemma 2.4 with equation (12) we deduce the
following result, which is the main technical step in the proof
of Theorem 1.4 below.

Proposition 2.5:Let P be an ultra log-concave distribution
on Z+ with meanλ > 0, and assume thatQ and CPo(λ, Q)
are both log-concave. LetWα be a random variable with
distributionUQ

α P , and define, for allα ∈ [0, 1], the function,

E(α) := E[− log CQΠλ(Wα)].

ThenE(α) is continuous for allα ∈ [0, 1], it is differentiable
for α ∈ (0, 1), and, moreover,E′(α) ≤ 0 for α ∈ (0, 1). In
particular,E(0) ≥ E(1).

Proof: We simply sketch the proof and refer to the full
paper for details. Recall that,

UQ
α P (x) = CQUαP (x)

=
∞∑

y=0

UαP (y)Q∗y(x)

=
x∑

y=0

UαP (y)Q∗y(x),

where the last sum is restricted to the range0 ≤ y ≤ x,
becauseQ is supported onN.

By some technical arguments, we can prove thatE(α) is
differentiable for all α ∈ (0, 1) and, in fact, that we can
differentiate the series

E(α) := E[− log CQΠλ(Wα)]

= −
∞∑

x=0

UQ
α P (x) log CQΠλ(x),

(15)

term-by-term, to obtain,

E′(α) = −
∞∑

x=0

∂

∂α
UQ

α P (x) log CQΠλ(x) (16)

=
λ

α

∞∑
x=0

log CQΠλ(x)
(
UQ

α P (x)r1,UQ
α P (x) (17)

−
x∑

v=0

Q(v)UQ
α P (x− v)r1,UQ

α P (x− v)
)

=
λ

α

∞∑
x=0

UQ
α P (x)r1,UQ

α P (x) (18)(
log CQΠλ(x)−

∞∑
v=0

Q(v) log CQΠλ(x + v)

)
,

where the rearrangement leading to the third equality follows
by interchanging the order of (second) double summation and
replacingx by x + v.

Now we note that, exactly as in [12], the
last series above is the covariance between the
(zero-mean) function r1,UQ

α P (x) and the function
(log CQΠλ(x)−

∑
v Q(v) log CQΠλ(x + v)), under the

measureUQ
α P . SinceP is ultra log-concave, so isUαP [12],

hence the score functionr1,UQ
α P (x) is decreasing inx, by

Lemma 2.4. Also, the log-concavity ofCQΠλ implies that the
second function is increasing, and Chebyshev’s rearrangement
lemma implies that the covariance is less than or equal to
zero, proving thatE′(α) ≤ 0, as claimed.

Finally, the fact thatE(0) ≥ E(1) is an immediate conse-
quence of the continuity ofE(α) on [0, 1] and the fact that
E′(α) ≤ 0 for all α ∈ (0, 1).

Notice that, for the above proof to work, it is not nec-
essary thatCQΠλ be log-concave; the weaker property that
(log CQΠλ(x)−

∑
v Q(v) log CQΠλ(x + v)) be increasing is

enough, although this is not as simple to verify.
Proof: [of Theorem 1.4] As in Proposition 2.5, letWα ∼

UQ
α P = CQUαP , and letD(P‖Q) denote the relative entropy

betweenP andQ,

D(P‖Q) :=
∑
x≥0

P (x) log
P (x)
Q(x)

.

Then, noting thatW0 ∼ CQΠλ andW1 ∼ CQP , we have,

H(CQP ) ≤ H(CQP ) + D(CQP‖CQΠλ)
= −E[log CQΠλ(W1)]
≤ −E[log CQΠλ(W0)]
= H(CQΠλ),



where the first inequality is simply the nonnegativity of relative
entropy, and the second inequality is exactly the statement that
E(1) ≤ E(0), proved in Proposition 2.5.

III. D ISCUSSION

We have given log-concavity conditions under which com-
pound Poisson distributions have a natural maximum entropy
property. Of course, to translate this general result into con-
crete useful statements, one would like simple conditions on
Q under which bothCQΠλ is log-concave. A conjecture
regarding such a condition, as well as several cases in which
the conjecture is verified, is described in the full paper [21].
The conjecture states that CPo(λ, Q) is log-concave whenQ
is log-concave andλQ(1)2 ≥ 2Q(2).

In particular, the results there imply the following explicit
maximum entropy statements.

Example 3.1: 1) SupposeQ is supported on{1, 2}, with
probabilitiesQ(1) = q, Q(2) = 1− q, and consider the
class of all Bernoulli sumsbp with meanp1 + p2 +
· · ·+pn = λ. The compound Poisson maximum entropy
property holds in this case, as long asλ is large enough.
More precisely, the distribution CPo(λ, Q) has maximal
entropy among all compound Bernoulli sumsCQbp with
p1 + p2 + · · ·+ pn = λ ≥ 2(1−q)

q2 .
2) SupposeQ is geometric with parameterα ∈ (0, 1), i.e.,

Q(x) = α(1− α)x−1 for all x ≥ 1, and again consider
the class of a Bernoulli sumsbp with meanλ. Then the
compound Poisson distribution CPo(λ, Q) has maximal
entropy among all compound Bernoulli sumsCQbp with
p1 + p2 + · · ·+ pn = λ ≥ 2(1−α)

α .
.
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