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Abstract—It is shown that the entropy power of a sum of
independent random vectors, seen as a set function, is fractionally
superadditive. This resolves a conjecture of the first author and
A. R. Barron, and implies in particular all previously known
entropy power inequalities for independent random variables. It
is also shown that, for general dimension, the entropy power of
a sum of independent random vectors is not supermodular.

I. INTRODUCTION

For a Rd-valued random vector X with density f with
respect to the Lebesgue measure on Rd, the differential entropy
is

h(X) = −
∫
f(x) log f(x)dx.

The entropy power of X isN (X) = e2h(X)/d. By a limiting
argument, one may check that when X is supported on a
strictly lower-dimensional set than Rd (and hence does not
have a density with respect to the d-dimensional Lebesgue
measure), h(X) = −∞. Throughout this note, we limit
ourselves to random vectors X with h(X) < +∞; in this
case, N (X) ∈ R+ := [0,∞) is a non-negative real number.

It is sometimes enough to consider a smaller collection of
probability measures on Rd. Consider any random vector X
such that the variance of each of the d components is finite;
clearly X has a well-defined, finite covariance matrix KX . For
a given covariance matrix, it is well known that the maximum
entropy distribution is the normal with that covariance matrix.
Thus

h(X) ≤ h(N(0,KX)) = 1
2 log[(2πe)ddet(KX)] < +∞.

Thus looking at the class of component-wise finite variance
random vectors is sufficient to ensure that N (X) ∈ R+.

There are two main motivations for considering entropy
power inequalities: the first comes from the fact that it is
related to probabilistic isoperimetric phenomena including the
entropic central limit theorem (see, e.g., Barron [1]), and the
second comes from the fact that it can be extremely useful in
the study of rate and capacity regions in multi-user information
theory (see, e.g., Shannon [2], Bergmans [3], Ozarow [4],
Costa [5] and Oohama [6]).

Let X1, X2, . . . , Xn be independent random vectors. We
write [n] for the index set {1, 2, . . . , n}. Define the subset

sums

Ys =
∑
i∈s

Xi.

One is interested in the entropy powers N (Ys) of the subset
sums. Specifically, we are interested in the following subset
of R2n

:

Γ(n) = {[N (Ys)]s⊂[n] : X1, X2, . . . , Xn

are independent Rd-valued random vectors}
= {[ν(s)]s⊂[n] : X1, X2, . . . , Xn

are independent Rd-valued random vectors},

(1)

where the set function ν : 2[n] → R+ is defined for any given
collection of independent Rd-valued random vectors by

ν(s) = N
(∑
i∈s

Xi

)
. (2)

We call the region Γ(n) the d-dimensional Stam region in
honor of Stam’s pioneering role [7] in the study of entropy
power and its applications.

Any inequality that relates entropy powers of different
subset sums (usually called an “entropy power inequality” or
EPI) gives a bound on the Stam region. Conversely, knowing
the Stam region means knowing exactly all EPI’s that hold
and all that do not.

The objective of this note is to give inner and outer bounds
on the Stam region. In particular, we show that for general
dimension d, the entropy power is fractionally superadditive
but not supermodular.

First, let us describe progress on a conjecture of Madiman
and Barron relating to an outer bound for the Stam region.
Specifically, the following conjecture, which was stated im-
plicitly by Madiman and Barron [8] and explicitly in [9], is
proved here.

Theorem 1. [FRACTIONAL SUPERADDITIVITY OF ENTROPY
POWER] Let X1, . . . , Xn be independent Rd-valued random
vectors with densities and finite covariance matrices. Then the
set function ν : 2[n] → [0,∞) defined by (2) is fractionally
superadditive, i.e., for any fractional partition β using a



collection C of subsets of [n],

N (X1 + . . .+Xn) ≥
∑
s∈C

βsN
(∑
j∈s

Xj

)
.

The first author also asked in [9] whether in fact the entropy
power is supermodular (which is known to be a stronger
property than fractional superadditivity). Our second result is
to show that the answer to this question is no.

Theorem 2. Let X1, . . . , Xn be independent Rd-valued ran-
dom vectors with densities and finite covariance matrices.
The set function ν : 2[n] → [0,∞) defined by (2) is not
supermodular for general d, i.e., it is not true that

ν(s ∪ t) + ν(s ∩ t) ≥ ν(s) + ν(t)

for all sets s, t ⊂ [n].

In other words, to use the language of cooperative game
theory (see, e.g., [9]), the Stam region is a subset of the re-
gion representing all balanced transferable-utility cooperative
games, and a superset of the region representing all convex
transferable-utility cooperative games.

This note is organized as follows. In Section II, we prove
Theorem 1 and hence an outer bound to the Stam region.
Section III proves Theorem 2 and hence an inner bound.
Section IV contains some discussion.

II. COMBINATORIAL ENTROPY POWER INEQUALITIES

The classical entropy power inequality (EPI) of Shannon
[2] and Stam [7] states

N (X1 + . . .+Xn) ≥
n∑
j=1

N (Xj). (3)

Recently, Artstein, Ball, Barthe and Naor [10] proved a new
EPI

N (X1 + . . .+Xn) ≥ 1
n− 1

n∑
i=1

N
(∑
j 6=i

Xj

)
, (4)

where each term involves the entropy of the sum of n− 1 of
the variables excluding the i-th. Madiman and Barron [11] and
Tulino and Verdú[12] independently gave simplified proofs
of this inequality. Note that the original development of (4)
was motivated by the study of monotonicity properties in
central limit theorems– Artstein et al. [10] resolved the long-
standing monotonicity conjecture for i.i.d. summands. In [8],
Madiman and Barron showed the following generalized EPI
for an arbitrary collection C of (possibly repeated) subsets of
the index set, namely [n] = {1, . . . , n}. If r is the maximum
number of subsets in C in which any one index i can appear,
for i = 1, . . . , n, then

N (X1 + . . .+Xn) ≥ 1
r

∑
s∈C
N
(∑
j∈s

Xj

)
. (5)

For example, if C consists of subsets s whose elements are m
consecutive indices in [n], then r = m. On the other hand,

if C = Cm, namely the collection of all subsets of indices of
size m, then r =

(
n−1
m−1

)
. Thus (5) extends (4) and (3).

In this paper, we prove Theorem 1, which subsumes and
extends the inequalities discussed above. Recall that given C,
a function β : C → R+ is a fractional partition, if for each
i ∈ [n], we have

∑
s∈C:i∈s βs = 1. If there exists a fractional

partition β for C that is {0, 1}-valued, then β is the indicator
function for a partition of the set [n] using a subset of C; hence
the terminology.

The proof of Theorem 1 follows from the following propo-
sition, combined with inequality (5).

Proposition 1. [A SUFFICIENT CONDITION FOR FRAC-
TIONAL SUPERADDITIVITY] Consider a set function v :
2[n] → R+. Let C be a r-regular multihypergraph on [n],
i.e., let C be a collection of subsets of [n] (possibly repeated),
such that every index i lies in exactly r of the elements of C.
Suppose v satisfies, for any r ∈ N,

v([n]) ≥ 1
r

∑
s∈C

v(s)

where C is any r-regular multihypergraph on [n]. Then,

v([n]) ≥
∑
s∈C

βsv(s) (6)

holds for every fractional partition β using any multihyper-
graph C on [n].

Proof: Consider the space of all fractional partitions on
[n], i.e.,

B =
{
β : 2[n] \ φ→ R+

∣∣∣∣ ∑
s⊂[n]\φ

βs1s = 1[n]

}
.

Clearly, B can be viewed as a subset of the Euclidean space of
dimension 2n − 1 (since each point of it is defined by 2n − 1
real numbers). Furthermore, B = B′ ∩ O+, where

B′ =
{
β : 2[n] \ φ→ R

∣∣∣∣ ∑
s⊂[n]\φ

βs1s = 1[n]

}
is an affine subspace of dimension 2n − 1 − n and O+ =
{β|βs ≥ 0 ∀s ∈ 2[n] \ φ} is the closed positive orthant. In
particular, B is a non-empty, compact, convex set (in fact, a
closed polytope), so that by the Krein-Milman theorem, B is
the convex hull of its extreme points. Thus to prove (6) for
every β ∈ B, it is sufficient to prove (6) for every β ∈ Ex(B),
where Ex(B) denotes the set of extreme points of B.

Now we follow an argument sketched by Gill and Grünwald
[13] to characterize the set Ex(B); a similar observation seems
to be implicit in Friedgut and Kahn [14], and has perhaps
been made even before, although we were unable to find early
references. Every face of the polytope B corresponds to one
of the inequality constraints being tight (i.e., βs = 0 for some
set s). Now each extreme point or vertex β of the polytope B
is the unique meeting point of several faces. Let these faces
correspond to setting βs = 0 for s lying in the collection of
sets C′. The complement C of C′ is called the support of the



fractional partition β. The set of fractional partitions supported
by C has non-zero coefficients βC = {βs : s ∈ C} given by
the solutions to the linear equation

MβC = 1, (7)

where M is the n×|C| 0-1 matrix defined by Mi,s = 1i∈s for
i ∈ [n], s ∈ C, and 1 is the column vector in Rn consisting
of all ones. Since β is the unique such fractional partition, it
corresponds to (7) having a unique, strictly positive solution.
Consequently one must have βC = M+1, where M+ is the
Moore-Penrose pseudoinverse of M . Recall that since M has
rational entries, so does M+, and hence β is rational-valued.

By writing all the coefficients of β with a common denom-
inator, one sees that (6) may be written as

vn([n]) ≥ 1
R

∑
s∈C

csvn(s),

where cs is a positive integer. One may write this as

vn([n]) ≥ 1
R

∑
s∈C′′

vn(s),

where C′′ is the multihypergraph with cs copies of the set s.
Note that C′′ is clearly R-regular.

Remark 1. Theorem 1 is a considerably more informative
statement than its predecessors such as (5), as pointed out
in [9]. Recall that entropy power inequalities have been key
to the determination of some capacity and rate regions, and
that rate regions for several multi-user problems (such as the
m-user Slepian-Wolf problem) involve subset sum constraints.
Vaguely motivated by this, one may consider the “rate” region
of all (R1, . . . , Rn) ∈ Rn+ satisfying

∑
j∈sRj ≥ N (T s)

for each s ⊂ [n]. Then Theorem 1 is equivalent to the
existence of a point in this region such that the total sum∑
j∈[n]Rj = N (T [n]). Although we are not yet aware of a

specific multiuser capacity problem with precisely this rate
region, this fact appears intriguing.

III. ENTROPY POWER IS NOT SUPERMODULAR

Observe that if the function ν defined in (2) were supermod-
ular, then specializing to multivariate Gaussians would imply
a similar supermodularity for the d-th root of the determinant
of sums of positive definite matrices. To be precise, consider
the set function

νG(s) = det
(∑
k∈s

Sk

) 1
d

, s ⊂ [n],

where S1,S2, · · · ,Sn are d × d positive definite matrices.
(Here we use νG to indicate that this is the function ν
specialized to Gaussians.)

One may simply prove that νG is not supermodular by
constructing numerical counterexamples. However we attempt
to give some additional insight into why supermodularity
fails by the following reasoning. To prove that νG is not
supermodular, we first show that its continuous analogue is

not supermodular (in the continuous sense). In other words,
let v : Rn+ → R+ be defined by

v(x) = det
( ∑
k∈[n]

xkSk

) 1
d

,

where S1,S2, · · · ,Sn are d×d positive definite matrices. We
will show that the function v is not supermodular, i.e., there
are x,x′ ∈ Rn+ such that the following inequality is violated

v(x) + v(x′) ≤ v(x ∨ x′) + v(x ∧ x′) (8)

where x∨x′ denotes the componentwise maximum and x∧x′

denotes the componentwise minimum of x and x′.
To show that (8) is violated, it suffices to show that

∂2v(x)
∂xj∂xi

< 0 (9)

for some x ∈ Rn+ (see. e.g., Topkis [15], Page 42). We note
that

∂2v(x)
∂xj∂xi

=
1
d

det
( ∑
k∈[n]

xkSk

) 1
d

×

[
1
d

tr
{( ∑

k∈[n]

xkSk

)−1

Si

}
tr
{( ∑

k∈[n]

xkSk

)−1

Sj

}

− tr
{( ∑

k∈[n]

xkSk

)−2

SiSj

}]
.

(10)

However, it is easy to show (see, e.g., Zhang [16], page 166)
that there are d × d positive definite matrices A and B for
which

1
d

tr (A)tr (B) < tr (AB).

Hence, the last term in (10) can be negative. As a numerical
example, consider d = 2 and

A =
[

3 1
1 1

]
, B =

[
2 3
3 7

]
.

It then holds that 1
d tr (A)tr (B) = 18 whereas tr (AB) = 19.

Finally, note that the violation of supermodularity in the
discrete domain follows from this result of violation of super-
modularity in continuous domain. Indeed, we have shown that
there is x ∈ Rn+ such that (9) is true. It then follows that there
are 4i,4j > 0 such that

v([x1, ·, xi +4i, ·, xj , ·, xN]) + v([x1, ·, xi, ·, xj +4j , ·, xN])
> v([x1, ·, xi +4i, ·, xj +4j , ·, xN]) + v(x).

Consider A = 4iSi, B = 4jSj , C =
∑
k∈[n] xkSk.

Evidently, A,B,C are positive definite. However, according
to the above inequality and the definition of the function v,
we have shown that

det (A + C)
1
d + det (B + C)

1
d

> det (A + B + C)
1
d + det (C)

1
d ,

so that neither νG nor ν is supermodular.



IV. DISCUSSION

The study of the Stam region is analogous in some sense to
the study of the entropic region defined using the joint entropy
of subsets of random variables, on which there has been much
progress in recent decades. Let us briefly reveal the analogy.
Let Xs denote (Xi : i ∈ s) and H denote the discrete entropy,
where (Xi : i ∈ [n]) is a collection of dependent random
variables taking values in some discrete space.
• Major contributions were made by Han and Fujishige in

the 1970’s. In particular, the fact that g(s) = H(Xs) is
a submodular set function goes back at least to Fujishige
[17].

• Madiman and Tetali [18] clarified the relationship be-
tween submodularity and fractional subadditivity inequal-
ities. In particular, they obtained (as a special case of
their main result) the following lower and upper bounds
for joint entropy of a collection of random variables: for
any fractional partition β using any collection of sets C,∑

s∈C
βsH(Xs|Xsc) ≤ g([n]) ≤

∑
s∈C

βsg(s). (11)

Inequality (11) generalized earlier inequalities of Han
[19], Fujishige [17] and Shearer [20].

• Motivated by the problem of characterizing the class
of all entropy inequalities for the joint distributions of
a collection of dependent random variables, Yeung and
collaborators [21] observed in the 1990’s that there exist
so-called non-Shannon inequalities that do not follow
from submodularity of entropy.

As noted in [22], it does not seem to be easy to derive
entropy lower bounds for sums and inequalities for joint distri-
butions using a common framework; even the recent innovative
treatment of entropy power inequalities by Rioul [23], which
partially addresses this issue, requires some delicate analysis
in the end to justify the vanishing of higher-order terms in a
Taylor expansion. However, upper bounds for entropy of sums
tend to be provable by elementary means; see [22] for a study
of the continuous case, and [24] for a study of the discrete
case.

To conclude, let us observe that the Stam region is in a sense
simpler than the entropic region studied by Yeung et al. While
Theorem 1 is analogous in some sense to the upper bound
in (11), Theorem 2 shows that the analogue of Fujishige’s
submodularity is not true.
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