
A model for pricing data bundles based on minimax
risks for estimation of a location parameter

Mokshay Madiman and Andrew Barron
Department of Statistics, Yale University,

24 Hillhouse Avenue, New Haven, CT 06511, USA
Email: mokshay.madiman@yale.edu, andrew.barron@yale.edu

Abram Kagan and Tinghui Yu
Department of Mathematics, University of Maryland,

College Park, MD 20742, USA
Email: amk@math.umd.edu, yuth@math.umd.edu

Abstract—Consider a situation involving many sources of
finite-length data, with buyers potentially interested in purchas-
ing data from any bundle (subset) of the sources. A principled
way is presented to assign a price to each source, when the value
of the data is measured in terms of how much information about
an underlying location parameter can be extracted from it. Apart
from the operational relevance to data pricing, these results also
have relevance to sensor network theory.

I. INTRODUCTION

The collection, storage, sale, communication, interpretation,
and use of massive amounts of data is a distinguishing feature
of today’s world. This gives rise to many new problems, that
relate to the modeling and optimization of performance in
dealing with all of these data-related tasks. Indeed, whole
new fields of scientific investigation have developed under
the impetus of the dominance of data in modern culture–
including communication and information theory, machine
learning, and so on. Now, after several decades of progress
on the fundamental conceptual issues of the mathematical
modeling of data, increasingly attention is also being paid
to the “soft” aspects of data. For example, in recent years,
there have been efforts by economists, computer scientists
and engineers to develop better mechanisms for the numerous
kinds of transactions involving data that are possible (and
necessary). In this note, we discuss a specific contribution
to this line of work; in particular, we propose and analyze a
model for the pricing of data when the value of the data derives
from its ability to shed light on an underlying parameter.

First we discuss the rationale for considering this kind of
model. The value of data may derive from many different con-
siderations (for instance, their confidentiality) that has nothing
to do with traditional statistical considerations. However, for
many applications, the value of the data derives from its
ability to shed light on some distributional characteristics
underlying the data. For instance, in the context of democratic
elections, the purchase of data (either by political campaigns
or by newspapers and media outlets) from “pollsters” in order
to gauge voter sentiment on various issues is now common
in many countries. Clearly, what is of interest here is the
underlying distribution of voter sentiment, and it would be
natural to model the data as a finite sample drawn from this
distribution. Furthermore, a typical poll would only examine
one particular set of issues or explore one particular state or

demographic; so in order to develop a more complete picture,
the customer may wish to purchase data from several different
polls. An important question for the data vendor that arises is
how to price the data from different polls.

Any rational pricing mechanism for the data would take into
account the value of the data for the customer (and therefore
how much they would potentially be willing to pay for it). We
will consider a simplified model for the quantification of value,
and for exploring the pricing of data. Our model rests on the
assumption that all distributional characteristics of the data are
known, except for a location parameter, and this is what is of
interest to the customer. In the polling example, one may think
of this in terms of the common (albeit possibly naive) mapping
of the political spectrum as a one-dimensional range spanning
“right” and “left”. The data from each poll may be thought
of reflecting some underlying “leftistness” or “rightistness”
parameter of the population at large. Having access to several
polls relating to different issues can improve the customer’s
ability to estimate this parameter, and hence what the customer
is willing to pay. The data vendor wishes to assign prices for
the sale of data from each source, keeping in mind the value
to the customer of arbitrary bundles of data. For a model of
the type outlined above, we discuss a pricing mechanism and
its properties.

This note is organized as follows. Section II describes our
main results, which focus on developing a rational pricing
model. Section III develops some preliminary facts about the
Pitman estimator that are used to strong effect in our proofs.
Sections IV–VI contain the proofs, which are rather elemen-
tary. Section VII discusses various related issues, including
connections to sensor network theory.

II. MAIN RESULTS

First we describe a model for quantifying the value of data,
based on which we build a pricing mechanism.

Let [N ] denote the index set {1, 2, . . . , N}. A precise
description of the components of the model is as follows:

1) There are N sources, indexed by the set [N ], and these
sources are independent of each other (i.e., the data
streams produced by the sources are independent of each
other).

2) For each i ∈ [N ], source i produces the data stream
Xi = (Xi,1, . . . , Xi,ni) of length ni from some known



joint distribution Fi(· − θ) on Rni . The distribution Fi
is arbitrary, except for the reasonable assumption that its
covariance matrix is finite.

3) The parameter θ is some unknown real number, whose
determination is the goal of all customers.

4) For any subset s ⊂ [N ], a customer may choose to
purchase the “s-bundle”. This refers to the data bundle
Ys = (Xi : i ∈ s).

Any customer uses the data she has purchased, say the s-
bundle Ys, to construct an estimate θ̃s(Ys) of the parameter
θ. One may measure the goodness of an estimator by com-
paring to the “best possible estimator in the worst case”, i.e.,
by comparing the risk (or mean square error) of the given
estimator with the minimax risk. The minimax risk achievable
by the s-user is

R(s) = min
all estimators θ̃s

max
θ

E[(θ̃s(Ys)− θ)2].

For location problems, assuming that there exists an estimator
with finite risk, this risk is achievable (see Section III).

The greater the minimax risk associated with estimating θ
from a particular set of data, the less valuable that data is to
the customer. In particular, if the minimax risk is infinity, the
data has no value, while if the minimax risk is 0 and θ can be
exactly determined, the data may be considered to be infinitely
valuable. It is thus plausible to consider the intrinsic value of
the data bundle Ys as being quantified by 1

R(s) (including a
scale factor makes no difference to what follows).

The goal for the seller is to set a price for the data
corresponding to each source. Let us say that the i-th source
is assigned a price of Pi, so that the price associated with the
data bundle Ys is

Ps =
∑
i∈s

Pi. (1)

We will explore the possibility of assigning these prices in line
with the following principles:
• As an incentive to a customer who decides to buy all of

the data, the seller would like to price the “grand bundle”
consisting of all the data at precisely its intrinsic value:

P[N ] =
1

R([N ])
. (2)

• In setting prices for the data, the seller may justifiably
charge at least the intrinsic value of the data. Thus, for
the data bundle Ys, the seller wishes to charge

Ps ≥
1

R(s)
. (3)

Our main result is an existence result.

Theorem 1: [Price Allocation] There exists a price alloca-
tion (P1, . . . , PN ) that satisfies (1), (2) and (3).

This result is based on the following fundamental relation-
ship between the minimax risks of estimating θ using different
data bundles.

Let C be an arbitrary collection of subsets of [N ]. A
fractional partition using the collection C is a set β = {β(s) :
s ∈ C} of non-negative real numbers satisfying∑

s3i,s∈C
β(s) = 1 (4)

for each i in [N ]. We say a collection is r-regular if each index
i ∈ [N ] appears in the same number r of sets in C. For an
r-regular collection, a canonical choice of fractional partition
is β(s) = 1

r .

Theorem 2: Suppose F1, . . . , FN have finite covariance
matrices. Then, for any fractional partition β using any col-
lection C,

1
R([N ])

≥
∑
s∈C

β(s)
R(s)

.

Finally we show that in the special case when all the
samples have the same size, i.e., nk = n for each k ∈ [N ],
the inequality of Theorem 2 behaves gracefully as n becomes
large in the sense that it cannot grow large compared with n.

Theorem 3: Suppose F1, . . . , FN have finite covariance
matrices, and nk = n for each k ∈ [N ]. Then, for any
fractional partition β using any collection C, the gap

1
R([N ])

−
∑
s∈C

β(s)
R(s)

is o(n) as n→∞.

Let us conclude this introduction with a critique of the
simplistic model described above on economic grounds. A
reviewer suggested that the value of information suggested
in (2) is the “choke-up price”, and the word “price” should
be reserved for a representation of marginal utility. Also it is
possible in some situations that one may not want to treat data
as having no value even if the risk is infinite. At present, we
are unable to provide a more nuanced set of results that would
take these criticisms into account. However, inspite of these
possible criticisms, we believe the results described highlight
phenomena of theoretical interest, as well as the breadth of
application of information theory and statistics.

III. PRELIMINARIES ON THE PITMAN ESTIMATOR

The Pitman estimator is the estimator with minimum mean
square error among all equivariant estimators of location (see,
eg., [1], for definitions and details). Girshick and Savage [2]
proved that the Pitman estimator is minimax.

We first recall some basic properties of the Pitman estimator
for a location parameter, which is the best equivariant estima-
tor with respect to squared error loss. The Pitman estimator for
θ based on observations Z1, . . . , Zn from F (x1−θ, . . . , xn−θ)
is defined by

t(n) = Z̄ − E(Z̄|G), (5)



where

Z̄ =
1
n

n∑
i=1

Zi (6)

is the sample mean,

G = σ(Z1 − Z̄, . . . , Zn − Z̄) (7)

is the σ-algebra generated by the residuals, and E stands for
the expectation taken at θ = 0. This expression for the Pitman
estimator is based on the fact that if θ̂ is any equivariant
estimator with finite risk (using the strictly convex squared
error loss), then the unique location equivariant estimator with
minimum risk is given by

t = θ̂ − E[θ̂|G], (8)

see, e.g., [1][Chapter 3.1]. Since the sample mean Ȳs is
equivariant, the expression (5) follows.

The Pitman estimator is also unbiased, and in fact is almost
surely equal to the uniformly minimum variance unbiased
estimator when the latter exists, as shown by Romano [3].
Since the Pitman estimator is unbiased, its risk based on
squared error loss is simply its variance.

As mentioned above, Girshick and Savage [2] showed the
minimaxity of the Pitman estimator, namely, the fact that

var(t(n)) = Rn, (9)

where Rn is the minimax risk for estimating θ from
Z1, . . . , Zn.

IV. COMPARING MINIMAX RISKS

Suppose (X(k)) is the sample, of size nk, from Fk(·−θ). Let
t(s) be the Pitman estimator of θ from the combined sample
(X(k) : k ∈ s) of size ns =

∑
k∈s nk. In particular, each t(s)

is equivariant. Thus, for any collection of C of subsets, and
for any weights ws with

ws ≥ 0,
∑
s∈C

ws = 1,

the estimator ∑
s∈C

wst(s)

is equivariant. Since t([N ]) is the MRE estimator from all of
the data, we have

var(t([N ])) ≤ var
(∑

s∈C
wst(s)

)
.

To bound the variance of this sum, we need the variance drop
lemma of Madiman and Barron [4].

Lemma 1: [4] For any s ⊂ [n], let Xs denote the . Suppose
{ψs : s ∈ C} is a collection of functions ψs : R|s| → R, with
Eψ2

s(Xs) <∞ and Eψs(Xs) = 0 for each s ∈ C. Let

U(X1, . . . , Xn) =
∑
s∈C

ψs(Xs), (10)

Then

EU2 ≤
∑
s∈C

1
β(s)

E
(
ψs(Xs)

)2
, (11)

for any fractional partition {β(s) : s ∈ C}.

By Lemma 1,

var
(∑

s∈C
wst(s)

)
≤
∑
s∈C

w2
s

β(s)
var(t(s)).

Thus we have

var(t([N ])) ≤
∑
s∈C

w2
s

β(s)
var(t(s)).

Picking ws to optimize the upper bound leads to the desired
result (Theorem 2), after noting that var(t(s)) is just the
minimax risk R(s).

V. THE GRAND BUYER NEED NOT BE UNFAIRLY
PENALIZED

We now prove Theorem 1; in fact, let us show that Theorem
2 and Theorem 1 are equivalent by linear programming duality.
Consider the linear program

Maximize
∑

s∈C
β(s)
R(s)

subject to β(s) ≥ 0 for each s ⊂ [n]
and

∑
s∈C,s3j β(s) = 1 for each j ∈ [n].

The dual problem is easily obtained:

Minimize
∑
j∈[n] Pj

subject to
∑
j∈s Pj ≥ v(s) for each s ⊂ [n].

If r∗ and p∗ denote the primal and dual optimal values,
Theorem 2 tells us that r∗ ≤ 1/R([n]), while duality theory
tells us that p∗ = r∗. Thus

p∗ ≤ 1/R([n]),

but we already know the reverse inequality is true from the
constraints of the dual problem. Hence there exists a point in
the rate region such that the sum rate P1+. . .+Pn = 1/R([n]).

Alternatively, once Theorem 2 is proved, Theorem 1 simply
follows from the Bondareva-Shapley theorem in cooperative
game theory (see [5]).

VI. CONNECTION TO FISHER INFORMATION

Port and Stone [6], [7] showed that the Pitman estimator is
asymptotically efficient under minimal regularity assumptions.
Specifically, if F has a density function f that is differentiable,
then

lim
n→∞

n var(t(n)) =
1

I(X)
. (12)

Here I(X) is the Fisher information on θ in X + θ, where X
is distributed according to F ; note that

I(X) =
∫

R

[
∂

∂θ
log f(x− θ)

]2
f(x− θ)dx

=
∫

R

[
∂

∂x
log f(x)

]2
f(x)dx



does not depend on θ.
Now let us restrict attention to the setting of Theorem 3,

where all the samples have the same size, i.e., nk = n for
each k ∈ [N ]. From the preceding paragraph, it is clear that the
scaled minimax risk nR(s) converges to I−1(Ys). (One could
write, for clarity, n var(t(n)

s ) instead of nR(s) to highlight
the fact that the sample size is implicit in the minimax risk
as well.) Thus by multiplying Theorem 2 by n and letting
n→∞, one obtains for any fractional partition β,

I(Y[N ]) ≥
∑
s∈C

β(s)I(Ys).

In particular, when N = 2 and one considers the actual
partition {{1}, {2}}, one obtains

I(Y{1,2}) ≥ I(Y{1}) + I(Y{2}). (13)

In fact, the inequality (13) is true not just for indepen-
dent samples Y{1},Y{2}, but for samples with arbitrary
dependence. This is Carlen’s [8] so-called “superadditivity of
Fisher information”; see also Kagan and Landsman [9] for
its statistical meaning. It is easy to see that for independent
samples, one must have equality in (13).

Thus one must have the gap in Theorem 2 is o(n), since
only then would the gap divided by n go to 0 as n → ∞.
This proves Theorem 3.

Remark: In the proof of Theorem 2, the only place where
independence of sources was used was in order to apply the
variance drop inequality, but it is essential there. If not for
the independence requirement, an inequality such as that in
Theorem 2 would have given an alternative proof of Carlen’s
superadditivity.

VII. DISCUSSION

We now discuss other implications and interpretations of
these results, as well as related work.

Theorem 2 is of intrinsic interest in the theory of Pitman
estimation, and a version of it is discussed in [10] in this
context. Indeed, Theorem 2 implies that the convergence of the
sequence n var(t(n)) to its limit is, in fact, monotonic. To see
this, assume that all the N sources each produce a sample of
size 1 from the same distribution F , and consider the collection
of leave-one-out subsets CN−1 = {s : |s| = N − 1} with its
canonical fractional partition β(s) = 1/(N − 1); Theorem 2
now reads

1
R([N ])

≥ N

N − 1
1

R([N − 1])
,

whence NR([N ]) ≤ (N −1)R([N −1]). Since R([N ]) is just
the variance of the Pitman estimator from N samples of size
1 from F , and hence from a single sample of size N from F ,
the result follows.

For completeness, let us first mention here some other
works that have looked at cooperative games in the context of
statistical questions. For instance, Bapat [11] discusses a linear
regression game, while Grömping [12] treats the problem of
allocating relative importance to predictor variables in linear

regression. Madiman [5] reviews the relevance of cooperative
games to several settings that arise in information theory,
including the theory of robust hypothesis testing.

One may also interpret Theorems 1 and 2 as results about
sensor networks. Indeed, one may consider a system of sensors
embedded in a space of sources, such that any given sensor
is associated to the subset of sources that it sees. In other
words, the data bundle Ys is what the sensor associated
with the set s of sources sees. In this setting, R(s) is the
minimax risk incurred by the s-sensor when trying to estimate
θ locally, i.e., based only on data to which it has direct access.
Then, for instance, Theorem 2 can be seen as relating the
fundamental limits of such local estimation by sensors. Clearly
understanding such relationships is an important first step to
building a rigorous theory of fundamental limits of sensor
networks in more real-life settings where one introduces global
objectives as well as local communication and computation
constraints. More details will be forthcoming in [13].
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[12] U. Grömping, “Estimators of relative importance in linear regression
based on variance decomposition,” Amer. Statist., vol. 61, no. 2, pp.
139–147, 2007.

[13] M. Madiman, A. R. Barron, A. M. Kagan, and T. Yu, “Fundamental
limits for distributed estimation: the case of a location parameter,”
Preprint, 2009.


