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Abstract—In distributed statistical inference, it is of interest
to relate the statistical properties of different estimates of a
parameter obtained by users who have access to different sets of
observations. Suppose there are a number of sources of interest,
and each user has access to observations that are a combination of
data emerging from a particular subset of sources. For a given
class of users, the minimax risks achievable by the users are
related to each other, in the special case when the observations
may be thought of as coming from a location family. Applications
are given to design and resource allocation problems in sensor
networks.

I. INTRODUCTION

Ageneral problem of great current interest is the problem
of distributed statistical inference. This problem has gained
tremendous relevance in the last 2 decades because of the
rapid developments in sensor technologies, and a proliferation
of applications for which various kinds of sensor networks
can be deployed. In particular, cheap, small sensors that can
be produced en masse are now available. Such sensors are
typically, due to their relatively low cost, constrained by power,
communication and computation ability, sensitivity and other
factors. Whatever the goal of the sensor network, this calls
for the development of algorithms that work well under the
relevant constraints, and for a better theory for understanding
collections of sensors that have access to differing pieces of
information. In many cases, the goal of a sensor networks is
statistical in nature, i.e., it is deployed in order to sense large
amounts of data (not amenable to centralized data collection
techniques), and this data is to be used to perform statistical
inference. Henceforth our discussion focuses exclusively on
such sensor networks. Furthermore, we ignore, or make sim-
plifying assumptions about, the lower network layers, so that
we can focus on theoretical issues at the higher levels. While
many ingenious algorithms have been developed to perform
statistical inference using sensor networks, these are typically
based on a pre-selected methodology (e.g., least squares esti-
mation). Much less is known about the fundamental limits of
inference using sensor networks.

The most well studied example of a distributed inference
problem is distributed detection (see, e.g., the surveys [1], [2],
[3], [4], [5]). The goal here is for the sensor network to decide
between two (global) hypotheses based on the data. Both
frequentist (Neyman-Pearson type) and Bayesian approaches
have been adopted in distributed detection, as outlined for
instance in [1]. The field continues to be very active [6], [7],
[8], [9], [10], [11], [12], [13]. More generally, however, one
can consider a broader class of distributed inference problems–
of which distributed detection, distributed estimation of a
parameter (or distributed system identification), and distributed
prediction are subclasses.

There are two major paradigms in distributed inference
that find broad application– what one may call the partially
decentralized detection and the fully decentralized detection
frameworks. (It is well known that the third alternative– a
centralized framework in which all sensors send all the data
they receive noiselessly to a fusion center– is not realistic
for most applications.) The partially decentralized detection
framework relies on a fusion center with which the sensors can
communicate. There are two variants of partially decentralized
detection– either the communication is assumed to be noiseless
with constraints on the number of bits that each sensor
can send in a transmission, or wireless communication is
assumed and one has to deal with both power constraints and
interference.

Although there is a rich and growing literature on sensor
networks designed for statistical tasks, most of it focuses
on clever algorithms that can be used to achieve the stated
goals in a reasonably good manner rather than on fundamental
limits on achieving these goals. For instance, most papers
that use distributed optimization ideas to explore the fully
decentralized detection framework (e.g., [15], [16]) consider
specific methodological choices like least squares estimation
or maximum likelihood estimation, and then try to quantify
how well these procedures perform. There appears to be
very little literature on the fundamental statistical limits of
distributed inference, even though much attention has been



paid to fundamental communication limits.

Our goal is to study parameter estimation via a sensor
network using a robust decision-theoretic framework that im-
plicitly focuses on fundamental limits. In addition to providing
theoretical benchmarks for algorithms designed to carry out
these tasks, we hope to also extract insights about sensor
network design and resource allocation as a consequence. For
tractability, we study a model of estimation of a location
parameter.

The central results of our work are inequalities relating how
well different sensors, that have access to different portions
of the data, can do in terms of estimating an underlying,
common location parameter. Let us motivate this problem
of distributed estimation (of, for instance, a mean) with an
example. Suppose one is interested in measuring temperature,
chemical concentration, or other random variables that are
geographically distributed. In some scenarios, it is the ge-
ographical variation of the distributions that are of interest;
in others, it is common parameters underlying the entire
distribution. An example of the latter is when one wants to
detect an emergency created by deviations of the common
parameter from an allowed parameter range. Typically these
kinds of deviations happen slowly by drift of the underlying
parameter over time. It is therefore fair to assume for purposes
of analysis that the underlying parameter remains constant over
short periods of time (and therefore over a certain sample size
for observations); however, it is rather unrealistic to assume
that these sample sizes can be taken to be infinitely large. Thus
one is interested in the accuracy of estimates that can be made
of the parameter by sensors using finite (and possibly small)
samples of measurements.

Our goal is not to come up with heuristically motivated
algorithms for optimal distributed estimation. Instead it is to
first understand the fundamental local limits of distributed
estimation, before we augment the model with communication
and computation constraints as well as global objectives that
are also crucial considerations for real-life sensor networks.
(It is this fact, namely our ignoring the “network” aspect of
the sensor field, that is the reason for the particular wording of
the title of this paper.) We present the first (to our knowledge)
rigorous analysis of the fundamental limits of arbitrary sensor
field configurations by using a decision-theoretic framework
based on minimax risks. Although the practical applicability
of our analysis is limited because we ignore communication
and computation constraints, it is a first step to the rigorous
analysis of fundamental limits of distributed estimation in
more complex settings.

Details of preliminary work appear in [17]; further devel-
opments will appear elsewhere.
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