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Abstract—Consider the entropy increase h(Y + Y ′) − h(Y )
of the sum of two continuous i.i.d. random variables Y, Y ′, and
the corresponding entropy increase h(Y − Y ′) − h(Y ) of their
difference. We show that the ratio between these two quantities
always lies between 1/2 and 2. This complements a recent result
of Lapidoth and Pete, showing that the difference h(Y + Y ′)−
h(Y − Y ′) may be arbitrarily large. Corresponding results are
discussed for the discrete entropy, and connections are drawn
with exciting recent mathematical work in the area of additive
combinatorics.

I. INTRODUCTION

Let Y and Y ′ be independent, identically distributed (i.i.d.)
Rd-valued random variables with common density function f
(with respect to Lebesgue measure). The differential entropy
is denoted by h(Y ) = E[− log f(Y )].1

This note is partly motivated by the following question:

Question: How different can h(Y + Y ′) and h(Y − Y ′) be?

Lapidoth and Pete [1] recently showed that, given any M >
0, there exist i.i.d. random variables Y, Y ′ of finite differential
entropy, such that,

h(Y + Y ′)− h(Y − Y ′) > M. (1)

In other words, the entropies of the sum and difference of
two i.i.d. random variables can differ by an arbitrarily large
amount. They also showed that this result holds in the discrete
setting (in fact, they use the discrete version to prove the
continuous version).

Our main result, stated next, gives a complementary result:

Theorem 1.1: For any two i.i.d. random variables Y, Y ′

with finite differential entropy:

1
2
≤ h(Y + Y ′)− h(Y )
h(Y − Y ′)− h(Y )

≤ 2.

1Throughout, log denotes the natural logarithm. Strictly speaking, we
should be referring to Y, Y ′ are random vectors; in the interest of simplicity,
and with a slight abuse of terminology, we still call any such Rd-valued Y a
random variable.

In this context, we find that the natural quantities to consider
are the differences,

∆+ = h(Y + Y ′)− h(Y )
∆− = h(Y − Y ′)− h(Y ).

Then (1) states that the difference ∆+−∆− can be arbitrarily
large, while Theorem 1.1 asserts that the ratio ∆+/∆− must
always lie between 1

2 and 2.
While the primary motivation for this note was to consider

continuous random variables, the main results are also valid in
the discrete setting, where they have interesting connections
to important problems in additive combinatorics. The field of
additive combinatorics (see, e.g., [2] for an introduction) is
the theory of additive structures in sets equipped with a group
structure. The prototypical example is the study of arithmetic
progressions in sets of integers, as distinct from the multi-
plicative structure that underlies prime factorization and much
of classical number theory. There have been several major
developments and a lot of high-profile mathematical activity in
additive combinatorics in recent years, with perhaps the most
famous example being the celebrated Green-Tao theorem on
the existence of arbitrarily long arithmetic progressions within
the primes.

An important collection of tools in the study of additive
combinatorics is a variety of sumset inequalities. Here, the
sumset A + B of two discrete subsets A and B of the
integers (or any other additive group) is defined as, A+B =
{a + b : a ∈ A, b ∈ B}, and a sumset inequality is an
inequality connecting the cardinality (the number of elements)
of A + B with the cardinalities of A and B. Examples of
sumset inequalities that have left a deep mark on the field
include the Cauchy-Davenport inequality, Freiman’s theorem,
the Balog-Szemerédi-Gowers theorem, and the Plünnecke-
Ruzsa inequalities.

A natural connection between entropy and set cardinalities
arises from the fact that the entropy of the uniform distribution
on a finite set A is just log |A|, and this is the maximum
entropy of any distribution supported on A. The connection
between sumset inequalities and analogous inequalities for the
entropy of discrete random variables appears to have first been



identified and explored by Imre Ruzsa. In the last couple of
years, this connection has also been fleshed out independently
and in different directions by Ruzsa [3], Madiman, Marcus
and Tetali [4] and Tao [5].

This note is organized as follows. First, in Section II, we
describe relevant inequalities from additive combinatorics that
may be seen as a set cardinality version of our main result,
and discuss inequalities for discrete entropy analogous to them.
Then, in Section III, the analogous inequalities for differential
entropy are discussed, including why they do not automatically
follow from the proof of the discrete case. Section IV contains
a brief discussion.

II. DISCRETE ENTROPY AND SUMSET INEQUALITIES

A. Set cardinalities

Throughout this section, A and B are taken to be arbitrary
discrete subsets of the integers (or any commutative group).

The following inequality relating sum and difference sets is
classical in additive combinatorics,

1
2

[
log |A−A| − log |A|

]
≤ log |A+A| − log |A|
≤ 2

[
log |A−A| − log |A|

]
,

where the difference set A − B is defined in the obvious
way as {a − b : a ∈ A, b ∈ B}. The above inequality can
be compactly written in terms of the doubling constant and
difference constant of a set. Define the doubling constant of
A by,

σ[A] =
|A+A|
|A|

,

and the difference constant of A by,

δ[A] =
|A−A|
|A|

.

Then the above inequality may be written,

δ[A] 1
2 ≤ σ[A] ≤ δ[A]2. (2)

B. Discrete entropy

As mentioned in the Introduction, a significant amount
of recent research effort has been devoted to exploring the
intriguing idea that any sumset inequality corresponds to an
analogous inequality for the entropies of sums of discrete
random variables; cf. [3][4][5]. Formally, this translation is
performed by replacing discrete sets by independent discrete
random variables, and also replacing the log-cardinality of a
set by the discrete entropy function.

Let us illustrate this analogy with an example. Let Y, Y ′

be i.i.d. discrete random variables, and define, the doubling
constant and the difference constant of Y by,

σ[Y ] = exp{H(Y + Y ′)−H(Y )},
δ[Y ] = exp{H(Y − Y ′)−H(Y )},

respectively, where H(·) denotes the discrete entropy function.
Then the entropy analog of the sumset inequality (2) is that,

δ[X] 1
2 ≤ σ[X] ≤ δ[X]2. (3)

Note that in this case, and in almost all cases of this
correspondence, despite the close analogy between a sumset
inequality like the one in (2) and the corresponding entropy
version like the one in (3), neither one is a simple consequence
of the other. Nevertheless, as emphasized by Tao in [5], there
are often deep similarities in their proofs.

The inequality in (3) is equivalently stated in terms of the
entropy in Theorem 2.1 below. Although this statement is
implicit in recent work (the upper bound was proved in [6]
and the lower bound was proved independently by Tao and Vu
[7] and by Ruzsa [3]), we find it instructive for our purposes
here to outline its proof.

Theorem 2.1: If Y, Y ′ are i.i.d. discrete random variables,
then:

1
2
≤ H(Y + Y ′)−H(Y )
H(Y − Y ′)−H(Y )

≤ 2.

The proof will be based on the following results.

Lemma 2.2 (SUBMODULARITY.): [6][5][4]
If X0 = F (X1) = G(X2) and X12 = R(X1, X2), then:

H(X12) +H(X0) ≤ H(X1) +H(X2).

Proof. By data processing for mutual information and en-
tropy, H(X1) + H(X2) − H(X12) ≥ H(X1) + H(X2) −
H(X1, X2) = I(X1;X2) ≥ I(X0;X0) = H(X0). �

C. Ruzsa triangle inequality
Proposition 2.3 (RUZSA TRIANGLE INEQUALITY.): [5]

If X,Y, Z are independent, then:

H(X − Z) ≤ H(X − Y ) +H(Y − Z)−H(Y ).

Before giving the proof of the proposition, we recall from
[5] that, for any pair X,Y of discrete random variables, the
Ruzsa distance between X and Y is defined by,

distR(X,Y ) = H(X ′ − Y ′)− 1
2
H(X ′)− 1

2
H(Y ′),

where X ′ ∼ X and Y ′ ∼ Y are independent. Then, for
arbitrary discrete random variables X,Y, Z, the proposition
implies that,

H(X ′ − Z ′) ≤ H(X ′ − Y ′) +H(Y ′ − Z ′)−H(Y ′),

where (X ′, Y ′, Z ′) are independent, with the same marginals
as (X,Y, Z). Rearranging, this yields,

distR(X,Z) ≤ distR(X,Y ) + distR(Y, Z),

which explains the name in the proposition.

Proof of Proposition 2.3. By submodularity,

H(X,Y, Z) +H(X − Z) ≤ H(X − Y, Y − Z) +H(X,Z). (4)

Rearranging and using independence,

H(X − Z) ≤ H(X − Y, Y − Z)−H(Y )
≤ H(X − Y ) +H(Y − Z)−H(Y ),

as claimed. �



Replacing Y by −Y and noting that H(W ) = H(−W ) for
any random variable W , this triangle inequality yields:

Corollary 2.4: [7][5] If X,Y, Z are independent, then:

H(X − Z) +H(Y ) ≤ H(X + Y ) +H(Y + Z).

D. Submodularity of entropy of sums

In a similar vein we also have:

Proposition 2.5: [6][4] If X,Y, Z are independent, then:

H(X + Y + Z) +H(Y ) ≤ H(X + Y ) +H(Y + Z).

Proof. Again using independence and data processing for
mutual information, the difference, H(X+Y +Z)−H(Y +Z)
equals,

H(X + Y + Z)−H(X + Y + Z|X)
= I(X + Y + Z;X)
≤ I(X + Y ;X)
= H(X + Y )−H(X + Y |X)
= H(X + Y )−H(Y ),

as required. �

E. Proof of Theorem 2.1

For the upper bound, taking X,−Y and Z i.i.d. in Propo-
sition 2.5, we have,

H(X + Z) +H(Y ) ≤ H(X + Y + Z) +H(Y )
≤ H(X + Y ) +H(Z + Y ),

so that,
H(X + Z) +H(X) ≤ 2H(X − Z),

or,

H(X + Z)−H(X) ≤ 2[H(X − Z)−H(X)],

which gives the required upper bound. For the lower bound,
Corollary 2.4 with X,Y, Z i.i.d. yields,

H(X − Y ) +H(X) ≤ 2H(X + Y ),

i.e.,

H(X − Y )−H(X) ≤ 2[H(X + Y )−H(X)],

completing the proof. �

III. DIFFERENTIAL ENTROPY

A. The difficulty

Statements or inequalities that hold for discrete entropy fre-
quently fail for differential entropy. Simple examples include
the falsity of h(X) ≥ 0 and of I(X;X) = h(X). Deeper
manifestations of such differences are explored in [6]. For in-
stance, while it is trivial that H(X1+X2) ≤ H(X1)+H(X2),
the differential entropy of a sum does not satisfy this simple
subadditivity. Nevertheless, as we will see below, despite this
difference between the discrete and continuous settings, a

certain version of the submodularity property of entropy of
sums continues to hold in the continuous setting.

Many of the above arguments and results leading to the
derivation of Theorem 2.1 hold for differential entropy h
in place of the discrete entropy H . The main obstacle in
generalizing Theorem 2.1 to continuous random variables as
in Theorem 1.1 is the use of data processing for entropy
“H(f(X)) ≤ H(X),” in the proof of the generalized submod-
ularity of Lemma 2.2. Therefore, in order to prove the natural
analog of the Rusza triangle inequality (Proposition 2.3) for
continuous random variables, we need an alternative proof the
continuous version of the bound in (4).

B. Continuous analogue of Ruzsa triangle inequality

To prove the analog of (4) we first note that,

h(X,Y, Z) = h(X − Y, Y − Z,X)
= h(X − Y, Y − Z) + h(X|X − Y, Y − Z).

Therefore, the expression,

h(X − Y, Y − Z) + h(X,Z)− h(X,Y, Z),

equals,

h(X,Z)− h(X|X − Y, Y − Z)
= h(X)− h(X|X − Y, Y − Z) + h(Z)
= I(X; (X − Y, Y − Z)) + h(Z)
≥ I(X;X − Z) + h(Z)
= h(X − Z)− h(X − Z|X) + h(Z)
= h(X − Z)− h(−Z|X) + h(Z)
= h(X − Z),

as required, where the inequality holds by data processing for
mutual information. Therefore:

Proposition 3.1: The Ruzsa triangle inequality (Proposi-
tion 2.3) and the result of Corollary 2.4 remain valid as stated,
with the discrete entropy replaced by differential entropy.

C. Proof of the upper bound in Theorem 2.1

The following lemma on the submodularity of differential
entropy is not hard to prove along the lines of the proof
of Proposition 2.5 above, although the justification changes
(one needs to use translation-invariance of Lebesgue measure
instead of invariance of discrete entropy to bijective transfor-
mations). To the best of our knowledge, it first appeared in
[6].

Lemma 3.2: [6] If X,Y, Y ′ are independent random vari-
ables, then:

h(X + Y + Y ′) + h(X) ≤ h(X + Y ) + h(X + Y ′).

Since the entropy of a sum is no smaller than entropy of
each summand, Lemma 3.2 gives,

h(Y + Y ′) + h(X) ≤ h(X + Y ) + h(X + Y ′).



In the case where Y
(d)
= Y ′,

h(Y + Y ′) + h(X) ≤ 2h(X + Y ),
or h(Y + Y ′)− h(X) ≤ 2[h(X + Y )− h(X)].

Taking X
(d)
= − Y now gives,

h(Y + Y ′)− h(Y ) ≤ 2[h(Y − Y ′)− h(Y )],

which is the desired upper bound.

D. Proof of the lower bound in Theorem 2.1

As stated in Proposition 3.1, the analog of Corollary 2.4
also holds for continuous random variables; that is:

Proposition 3.3: If X,Y, Y ′ are independent random vari-
ables, then:

h(Y − Y ′) + h(X) ≤ h(X + Y ) + h(X + Y ′).

The result of the proposition can equivalently be stated as:

h(Y − Y ′) + h(Z) ≤ h(Y − Z) + h(Y ′ − Z). (5)

This is true for general independent random variables, but in
our case becomes,

h(Y − Y ′)− h(Z) ≤ 2[h(Y − Z)− h(Z)].

Now taking Z
(d)
= −X gives,

h(Y − Y ′)− h(X) ≤ 2[h(Y +X)− h(X)],

as required.

IV. DISCUSSION

While Theorem 1.1 was stated for continuous Rd-valued
random variables, it holds for continuous random variables
taking values in any locally compact topological group (G,+),
provided the random variables are independent, and are abso-
lutely continuous with respect to Haar measure on G. In this
case, Y − Y ′ refers to the group addition of Y and −Y ′, the
latter being the additive inverse of Y . Note that the entropy in
this setting would still be defined by h(Y ) = E[− log f(Y )],
with f being the density of the probability measure on G
describing the distribution of Y with respect to Haar measure.

There are several directions in which the simple observation
described in this note may be extended; as a first step, it
would be interesting to develop an analog when Y and Y ′

are independent but not necessarily identically distributed.
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