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I. INTRODUCTION

Additive combinatorics (see, e.g., [1]) is the theory of
additive structures in sets equipped with a group structure (and
possibly other structure that interacts with the group structure).
The prototypical example is the study of additive structure in
the integers, as distinct from the multiplicative structure that
underlies prime factorization and much of classical number
theory. There have been several major developments and a lot
of high-profile mathematical activity in additive combinatorics
in recent years, with the most famous example being the
celebrated Green-Tao theorem on the existence of arbitrarily
long arithmetic progressions within the primes.

An important collection of tools in the study of additive
combinatorics is a variety of sumset inequalities. Here, by
“sumset” is meant sets such as A + B = {a + b : a ∈
A, b ∈ B}, where A,B are finite sets in some group G, and by
“sumset inequality” is meant inequalities for the cardinalities
of sumsets under a variety of conditions. Examples of sumset
inequalities that have left a deep mark on the field include the
Cauchy-Davenport inequality, Freiman’s theorem, the Balog-
Szemerédi-Gowers theorem, and the Plünnecke-Ruzsa inequal-
ities.

A natural connection between entropy and set cardinalities
arises from the fact that the entropy of the uniform distribution
on a finite set A is just log |A|, and this is the maximum
entropy of any distribution supported on A. The idea that this
observation may be useful for formulating entropy inequalities
for sums that are analogous to sumset inequalities appears to
have been first explored by Imre Ruzsa, and has in the last
couple of years been fleshed out independently and in different
directions by Ruzsa [2], the authors of this note [3] and Tao
[4]. In particular, in [3], we both present new inequalities for
entropies of sums of independent random variables, and prove
a number of (some old and some new) sumset inequalities.

Among the results we prove are two conjectures of Ruzsa– one
partially and one fully. The goal of this note is to summarize
the contributions of [3], with discussion of other related work
when relevant.

Without further ado, let us state two illustrative results, one
each for entropy and set cardinality (for definitions used in the
statements, see the beginning of Section II).

Theorem 1. Let Z1, . . . , Zn be independent discrete random
variables taking values in the Abelian group (G,+), and let
C be an r–regular hypergraph on [n]. Then

H(Z1 + · · ·+ Zn) ≤
1

r

∑
s∈C

H

(∑
i∈s

Zi

)
.

Theorem 2. Let X1, . . . , Xn be finite subsets of the Abelian
group (G,+), and let C be an r–regular hypergraph on [n].
Then

|X1 + · · ·+Xn| ≤
∏
s∈C

∣∣∣∣∑
i∈s

Xi

∣∣∣∣ 1r .
This set inequality (and others for sums in non-Abelian

groups, projections, and polynomial functions) are obtained in
[3] as a corollary of inequalities for cardinalities of compound
sets. Here a compound set means a set obtained by varying
each argument of a function of several variables over a set
associated with that argument, where all the sets are subsets
of an appropriate algebraic structure so that the function is
well defined. In other words, for subsets X1, . . . , Xk of some
ambient space X , consider

f(X1, . . . , Xk) = {f(x1, . . . , xk) : x1 ∈ X1, . . . , xk ∈ Xk}.

When the ambient space is a group, the only operation
available is the sum, and all compound sets are sumsets. When
the ambient space is a ring, one may consider compound sets
built from polynomials. For particular ambient spaces, such as
Euclidean space, the class of functions available is extremely
broad and therefore so is the class of compound sets that can
be considered.

In proving cardinality inequalities for compound sets, [3]
introduces a framework of “partition-determined functions”,



and develop general results for that framework that yield the
above results as corollaries. Since developing the necessary
terminology and notation for partition-determined functions
will take us too far afield for our present purposes, we only
discuss in this note the specializations of our results to sums.
The sumset inequalities we obtain in this fashion generalize
some of the results of Gyarmati, Matolcsi, and Ruzsa [5], by
combining an idea of “representative elements” used in [5]
with entropy inequalities developed in [6]. Independently of
our work, recent papers by by Balister and Bollobás [7] and
Gyarmati, Matolcsi, and Ruzsa [8] have proved results that
overlap with ours using different techniques.

Section II discusses entropy inequalities for sums of inde-
pendent discrete random variables taking values in an Abelian
group. Section III discusses analogous sumset inequalities.
Interestingly, the proof of the latter do not directly follow from
the former, and the reason for this is explained in Section IV.
Section V describes inequalities for sumsets in non-Abelian
groups, motivated by (and partially resolving) a conjecture of
Ruzsa [9]. We conclude with some discussion in Section VI.

II. ENTROPY INEQUALITIES FOR SUMS IN ABELIAN
GROUPS

Let [n] be the index set {1, 2, . . . , n}. Let C be a collection
of subsets of [n]. For any index i in [n], define the degree of
i in C as r(i) = |{t ∈ C : i ∈ t}|. A function α : C → R+,
is called a fractional covering, if for each i ∈ [n], we have∑
s∈C:i∈s αs ≥ 1. If α satisfies the equalities

∑
s∈C:i∈s αs =

1 for each i ∈ [n], it is called a fractional partition. If the
degree of every index i in C is exactly r, C is called an r-
regular hypergraph, and αs = 1/r for every s ∈ C constitutes
a fractional partition using C.

Then a general result for partition-determined functions in
[3] yields the following corollary for sums, recovering a result
of [10].

Theorem 3. [ENTROPY OF SUMS IN ABELIAN GROUPS] Let
Z1, . . . , Zn be independent discrete random variables taking
values in the Abelian group G, and let

Z+
s =

∑
i∈s

Zi.

Then:
1) The set function f(s) = H(Z+

s ) is submodular.
2) For any fractional covering α using any collection C of

subsets of [n],

H(Z1 + · · ·+ Zn) ≤
∑
s∈C

αsH
(
Z+
s

)
.

Note that Theorem 1 is just the second part of Theorem 3
written for the special case of regular hypergraphs.

In addition, the first part of Theorem 3 resolves affirmatively
(and in fact strengthens) “Entropy Conjecture 3” in the recent
paper of Ruzsa [2]. Indeed, the latter conjecture stated that

H(X) +H(Y + Z) ≤ H(X + Y ) +H(X + Z),

whereas the submodularity assertion of Theorem 3 combined
with the fact that entropy can only increase on summation
implies that

H(X) +H(Y + Z) ≤ H(X) +H(X + Y + Z)

≤ H(X + Y ) +H(X + Z).

III. SUMSET INEQUALITIES FOR ABELIAN GROUPS

Theorem 2 is a special case of the following inequality.

Theorem 4. Let X1, . . . , Xn be finite subsets of the Abelian
group (G,+), and let C be an r–regular hypergraph on [n].
Then

|X1 + · · ·+Xn| ≤
∏
s∈C
|X+

s |αs ,

where

X+
s =

∑
i∈s

Xi

is well defined by commutativity of addition.

This may be paraphrased as saying that the logarithms of
sumset cardinalities are fractionally subadditive. It is classical
(and recently reviewed in [6]) that fractional subadditivity is
weaker than submodularity. Thus it is natural to ask if the
logarithms of sumset cardinalities are submodular. However,
this is not true in general, as observed by Ruzsa. Indeed, log-
submodularity of sumset cardinality would imply that |kA| is
a log concave function of k, which is not the case. In fact, if
|A| = n and |2A| = m, then |3A| can be anywhere between
cm and Cmin(m3/2,m3/n2).

By a slightly more elaborate deployment of the general
framework used in [3] to prove Theorem 4, one can also obtain
the following result.

Theorem 5. Let A,X1, X2, . . . , Xn ⊂ G, where (G,+) is an
Abelian group. Let α be any fractional partition on [n] using
the collection C of subsets of [n]. Then, for any D ⊆ X+

[n],

|A+D|c ≤ |D|c−1
∏
s∈C
|A+X+

s |αs ,

where c =
∑
s∈C αs.

By applying Theorem 5 to an r-regular hypergraph C, for
which αs = 1

r gives a fractional partition, we obtain that for
any D ⊆ X1 + . . .+Xn,

|A+D||C| ≤ |D||C|−r
∏
s∈C

∣∣A+X+
s

∣∣. (1)

Note that when C = C1 is the collection of singleton sets, (1)
reduces to Theorem 1.5 of Gyarmati, Matolcsi, and Ruzsa [5],
namely

|A+D|k ≤ |D|k−1
k∏
i=1

|A+Xi|.



When C = Ck−1 is the collection of leave-one-out sets, (1)
resolves a conjecture stated in [5], namely if Xi = X1+ · · ·+
Xi−1 +Xi+1 + · · ·+Xk for i = 1, . . . , k,

|A+D|k ≤ |D|
k∏
i=1

|A+Xi|.

Some of these corollaries are also discussed by Balister and
Bollobás [7], but our methods are independent of theirs.

IV. REMARKS ON THE CONNECTION BETWEEN THE
ENTROPY AND SET INEQUALITIES

Suppose X1, . . . , Xn are finite sets in some ambient Abelian
group G. Let Z1, . . . , Zn be random variables supported by the
sets X1, . . . , Xn respectively, and note that for any subset s ⊂
[n], the random variable Z+

s is supported on the compound set
X+
s . Thus the left hand side of Theorem 1 has the bound

H(Z+
s ) ≤ log |X+

s |, (2)

while its right hand side has the bound∑
s∈C

αsH
(
Z+
s

)
≤
∑
s∈C

αs log
∣∣X+

s

∣∣.
Theorem 2 says that these bounds themselves are ordered. This
would be implied by Theorem 1 if we could find a product
distribution on (X1× . . .×Xn) that made the sum uniformly
distributed on its range, since then (2) would simply hold with
equality.

Interestingly, while it is in general not possible to find
such product distributions, it is always possible to find a joint
distribution (with dependence) that makes the sum uniformly
distributed on its range.

Lemma 6. There exists a joint distribution for (Z1, . . . , Zk)
on X1 × . . . × Xk that makes Z+

[k] uniformly distributed on
X+

[k].

As a result, the simple proof of Theorem 2 from Theorem 1
as outlined above (that one may hope for) fails because of
the independence requirement of Theorem 1. Our method of
proof of Theorem 2 in [3] instead uses, following Gyarmati,
Matolcsi and Ruzsa [5], the uniform distribution on a set of
“representatives” combined with joint entropy inequalities to
address this problem.

V. SUMSET INEQUALITIES FOR NON-ABELIAN GROUPS

A particularly interesting thrust of recent research in addi-
tive combinatorics is to generalize many of the known results
to non-Abelian groups. For instance, given X1, . . . , Xk subsets
of a non-Abelian group (G, ◦), can we find similar bounds on
|X1 ◦ . . . ◦ Xk| as we did when the underlying group was
Abelian? To see that, in fact, the same bounds cannot hold,
consider the following example.

Example 1. Let G = {e,R,R2, F,RF,R2F} be the dihedral
group on 6 elements, S = {e, F}, T = {R}, and U = {e, F}.
Then it is not the case that |S ◦T ◦U |2 ≤ |S ◦T ||T ◦U ||S ◦U |.

Proof: On one hand, we have that S ◦T = {R,FR}, S ◦
U = {e, F}, and T ◦U = {R,RF}, and so |S ◦T ||T ◦U ||S ◦
U | = 8. On the other hand, S ◦ T ◦ U = {R,FR,RF,R2}
and so |S ◦ T ◦ U |2 = 16.

The underlying reason that non-Abelian groups cannot be
bounded in such a way is that, as in the example above,
|S ◦ U | need not have any relation to |S ◦ T ◦ U |. So any
bound will need to find some way to link the two. To do
so, we use in [3] as a key ingredient a new joint entropy
inequality. The idea is to compare the entropy of a collection
of random variables to the sum of the entropies of pairs of
random variables conditioned on all of the random variables
falling in between the pair.

Lemma 7. Let Z = Z1, Z2, . . . , Zk be random variables, and
define

Z(i,j) = {Zt : i < t < j}

for all 1 ≤ i < j ≤ k. Then, for k ≥ 2,

(k − 1)H(Z1, Z2, . . . , Zk) ≤
k∑
i=1

k∑
j>i

H(Zi, Zj | Z(i,j))

Proof: We prove this by induction on k. The base case
(when k = 2) is trivial, so assume the hypothesis to be true
for k − 1 random variables and consider a collection of k
random variables. The idea is to peel off all of the pairs
that contain the random variable Zk and then appeal to the
induction hypothesis for the other

(
k−1
2

)
pairs.

Fix the usual notation for open and closed intervals (even
though we are only concerned about integers) and the conven-
tion that the interval [1, 0] is the empty set. Using Shannon’s
chain rule for entropy, one can write

H(Z[1,k]) = H(Z[1,i] | Z(i,k]) +H(Zi+1, Zk | Z(i+1,k))

+H(Z(i+1,k))

≤ H(Z[1,i] | Z(i,k)) +H(Zi+1, Zk | Z(i+1,k))

+H(Z(i+1,k))

for any 0 ≤ i ≤ k− 2, where the inequality is because condi-
tioning decreases entropy. Summing all of these inequalities,
we get by relabeling the last sum

(k − 1)H(Z[1,k]) ≤
k−2∑
i=0

H(Zi+1, Zk | Z(i+1,k))+

k−2∑
i=1

H(Z[1,i] | Z(i,k)) +

k−1∑
i=1

H(Z(i,k))

=

k−2∑
i=0

H(Zi+1, Zk | Z(i+1,k)) +

k−2∑
i=1

H(Z[1,k)),

where in the last step we used the fact that (k − 1, k) is the
empty set, and the chain rule. Thus

(k − 1)H(Z[1,k]) ≤
k−1∑
i=1

H(Zi, Zk | Z(i,k))

+ (k − 2)H(Z[1,k−1]),



and the rest of the inequality follows from the induction
hypothesis.

This proof is on similar lines to the simplified proof of
Shearer’s Lemma due to Llewellyn and Radhakrishnan (see
[11]). Similar ideas have also been used to find extended
Shearer-type bounds (the most general of these appearing in
[6]). However, Lemma 7 seems to be new (and is a consider-
able strengthening of the similar-looking Han’s inequality for
pairs).

Using Lemma 7 and some other non-trivial constructions,
we can give some sumset inequalities for non-Abelian groups.

Theorem 8. Let X1, X2, . . . , Xk be subsets of a non-Abelian
group, and define

A(i, j) = max{|Xi ◦ xi+1 ◦ . . . ◦ xj−1 ◦Xj | :
xi+1 ∈ Xi+1, . . . , xj−1 ∈ Xj−1}

for all 1 ≤ i < j ≤ k. Then, for k ≥ 2,

|X1 ◦X2 ◦ . . . ◦Xk|k−1 ≤
∏

1≤i<j≤k

A(i, j)

The following corollary, which inspired Theorem 8, was
originally proved by Ruzsa [9].

Corollary 9. Let S, T, U be subsets of a non-Abelian group.
Then

|S ◦ T ◦ U |2 ≤ max
t∈T
|S ◦ T ||T ◦ U ||S ◦ t ◦ U | .

Curiously, the method seems to break down in other cases.
For example, the following problem posed in [9] remains open.

Problem 1. Let S, T, U, V be subsets of a non-Abelian group.
Is it true that
|S ◦ T ◦ U ◦ V |3 ≤ max

t,u
|S ◦ T ◦ U ||S ◦ T ◦ u ◦ V |

|S ◦ t ◦ U ◦ V ||T ◦ U ◦ V |?
Observe that the corresponding entropy inequality is not

true; indeed, if one chooses Z2 = Z3 and Z1 = Z4 = 0, then

H(Z2) = H(Z1, Z2, Z3, Z4)

>
1

3

[
H(Z1, Z2, Z3) +H(Z2, Z3, Z4)+

H(Z1, Z3, Z4 | Z2) +H(Z1, Z2, Z4 | Z3)
]

=
2

3
H(Z2).

VI. DISCUSSION

Entropies of sums of random variables, even in the setting
of independent summands, are not as well understood as
joint entropies. In this note, we have reviewed some new
developments in the understanding of the entropy of sums,
for discrete random variables taking values in general groups.
From the point of view of additive combinatorics, these
inequalities are not only interesting in their own right, but the
techniques they call on can be used to prove several interesting
sumset inequalities. Although few proofs have been given in
this note, they can be found in [3] and are rather elementary
for anyone even slightly familiar with information theory.

While this note has focused on discrete random variables
and finite sets, it is possible at least partially to develop ana-
logues for continuous random variables and measurable sets
(in the context of finite-dimensional linear spaces). However,
these analogues cannot quite be of the same form because
of the non-trivial differences between discrete and differential
entropy. Some valid analogues of the results in this note are
developed in [10], [12]; these have recently found interesting
applications in convex geometry [13]. In a different direction,
entropy power inequalities provide other ways to quantify
using entropy the behavior of sums– the most general such
inequalities known for sums of independent random vectors
may be found in [14], [15].

ACKNOWLEDGMENTS

We thank Imre Ruzsa for sharing the preprint [5], for helpful
discussions, and for informing us of the independent and
recent work of Balister–Bollobás. We also thank Béla Bollobás
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