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Information Inequalities for Joint Distributions,
With Interpretations and Applications

Mokshay Madiman, Member, IEEE, and Prasad Tetali

Abstract—Upper and lower bounds are obtained for the joint
entropy of a collection of random variables in terms of an arbi-
trary collection of subset joint entropies. These inequalities gen-
eralize Shannon’s chain rule for entropy as well as inequalities
of Han, Fujishige, and Shearer. A duality between the upper and
lower bounds for joint entropy is developed. All of these results
are shown to be special cases of general, new results for submod-
ular functions—thus, the inequalities presented constitute a richly
structured class of Shannon-type inequalities. The new inequal-
ities are applied to obtain new results in combinatorics, such as
bounds on the number of independent sets in an arbitrary graph
and the number of zero-error source-channel codes, as well as de-
terminantal inequalities in matrix theory. A general inequality for
relative entropies is also developed. Finally, revealing connections
of the results to literature in economics, computer science, and
physics are explored.

Index Terms—Entropy-based counting, entropy inequality, in-
equality for minors, submodularity.

I. INTRODUCTION

L ET be a collection of random vari-
ables. There are the familiar two canonical cases: (a) the

random variables are real-valued and possess a probability
density function, in which case represents the differential
entropy, or (b) they are discrete, in which case represents the
discrete entropy. More generally, if the joint distribution has a
density with respect to some reference product measure, the
joint entropy may be defined by ;
with this definition, corresponds to counting measure and
to Lebesgue measure. The only assumption we will implicitly
make throughout is that the joint entropy is finite, i.e., neither

nor .
We wish to discuss the relationship between the joint

entropies of various subsets of the random variables
. Thus we are motivated to consider an ar-

bitrary collection of subsets of . The following
conventions are useful:
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• is the index set . We equip this set with
its natural (increasing) order, so that .
(Any other total order would do equally well, and indeed
we use this flexibility later, but it is convenient to fix a
default order).

• For any set , stands for the collection of random
variables , with the indices taken in their
increasing order.

• For any index in , define the degree of in as
. Let denote the

minimal degree in , and denote the
maximal degree in .

First, we present a weak form of our main inequality.

Proposition I: (WEAK DEGREE FORM): Let be
arbitrary random variables jointly distributed on some discrete
sets. For any collection such that each index has nonzero
degree

(1)

where and are the maximal and minimal degrees
in . If satisfies for each in , then (1) also
holds for in the setting of continuous random variables.

Proposition I unifies a large number of inequalities in the lit-
erature. Indeed,

1) Applying to the class of singletons

(2)

The upper bound represents the subadditivity of entropy
noticed by Shannon. The lower bound may be interpreted
as the fact that the erasure entropy of a collection of random
variables is not greater than their entropy; see Section VI
for further comments.

2) Applying to the class of all sets of elements

(3)

This is Han’s inequality [23], [10], in its prototypical form.
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3) Let and be the
minimal and maximal degrees with respect to . Using

and , we have

The upper bound is Shearer’s lemma [9], known in the com-
binatorics literature [43]. The lower bound is new.

The paper is organized as follows. First, in Section II, the
notions of fractional coverings and packings using hyper-
graphs, which provide a useful language for the information
inequalities we present, are developed. In Section III, we
present the main technical result of this paper, which is a
new inequality for submodular (not necessarily monotone) set
functions. Section IV presents the main entropy inequality of
this paper, which strengthens Proposition I, and gives a very
simple proof as a corollary of the general result for submodular
functions. This entropy inequality is developed in two forms,
which we call the strong fractional form and the strong degree
form; Proposition I may then be thought of as the weak degree
form. A different manifestation of the upper bound in this
weak degree form of the inequality was recently proved (in
a more involved manner) by Friedgut [15]; the relationship
with his result is also further discussed in Section IV using the
preliminary concepts developed in Section II.

While independent sets in graphs have always been of
combinatorial and graph-theoretical interest, counting inde-
pendent sets in bipartite graphs received renewed attention
due to Kahn’s entropy approach [26] to Dedekind’s problem.
Dedekind’s problem involves counting the number of antichains
in the Boolean lattice, or equivalently, counting the number of
Boolean functions on variables that can be constructed using
only AND and OR (and no NOT) gates. To handle this problem
by induction on the number of levels in the lattice, Kahn first
derived a tight bound on the (logarithm of the) number of inde-
pendent sets in a regular bipartite graph. In Section V, we build
on Kahn’s work to obtain a bound on number of independent
sets in an arbitrary graph. We also generalize this to counting
graph homomorphisms, with applications to graph coloring and
zero-error source-channel codes.

In Section VI, we use our entropy inequalities for continuous
random variables to prove a new family of determinantal in-
equalities that provide generalizations of the classical determi-
nantal inequalities of Hadamard, Szasz, and Fischer.

Having presented two applications of our main inequalities,
we move on to studying the structure of the inequalities more
closely. In Section VII, we present a duality between our upper
and lower bounds that generalizes a theorem of Fujishige [17].
In particular, we show that the collection of upper bounds on

for all collections is equivalent to the collection of
lower bounds. There we also discuss interpretations of the in-
equality relating to sensor networks and erasure entropy, and
generalize the monotonicity property for special collections of
subsets discovered by Han [23].

Section VIII presents some new entropy power inequalities
for joint distributions, and points out an intriguing analogy be-
tween them and the recent subset sum entropy power inequali-

ties of [33]. In Section IX, we prove inequalities for relative en-
tropy between joint distributions. Interpretations of the relative
entropy inequality through hypothesis testing and concentration
of measure are also given there.

In Section X, we note that weaker versions of our main in-
equality for submodular functions follow from results devel-
oped in various communities (economics, computer science,
physics); this history and the consequent connections do not
seem to be well known or much tapped in information theory.
Finally in Section XI, we conclude with some final remarks and
brief discussion of other applications, including to multiuser in-
formation theory.

II. ON HYPERGRAPHS AND RELATED CONCEPTS

It is appropriate here to recall some terminology from discrete
mathematics. A collection of subsets of is called a hyper-
graph, and each set in is called a hyperedge. When each
hyperedge has cardinality 2, then can be thought of as the set
of edges of an undirected graph on labelled vertices. Thus all
the statements made above can be translated into the language
of hypergraphs. In the rest of this paper, we interchangeably use
“hypergraph” and “collection” for , “hyperedge” and “set” for

in , and “vertex” and “index” for in .
We have the following standard definitions.

Definition I: The collection is said to be -regular if each
index in has the same degree , i.e., if each vertex appears
in exactly hyperedges of .

The following definitions extend the familiar notion of pack-
ings, coverings, and partitions of sets by allowing fractional
counts. The history of these notions is unclear to us, but some
references can be found in [44].

Definition II: Given a collection of subsets of , a function
, is called a fractional covering, if for each ,

we have .
Given , a function is a fractional packing, if

for each , we have .
If is both a fractional covering and a fractional

packing, we call a fractional partition.
Note that the standard definition of a fractional packing of

using (as in [44]), would assign weights to the elements,
(rather than sets) , and require that, for each ,
we have . Our terminology can be justified, if one
considers the “dual hypergraph,” obtained by interchanging the
role of elements and sets—consider the 0–1 incidence matrix
(with rows indexed by the elements and columns by the sets) of
the set system, and simply switch the roles of the elements and
the sets.

The following simple lemmas are useful.

Lemma I: (FRACTIONAL ADDITIVITY): Let
be an arbitrary collection of real numbers. For any ,
define . For any fractional partition using any
hypergraph , . Furthermore, if each

, then

(4)
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for any fractional packing and any fractional covering using
.

Proof: Interchanging sums implies

using the definition of a fractional covering. The other state-
ments are similarly obvious.

We introduce the notion of quasi-regular hypergraphs.

Definition III: The hypergraph is quasi-regular if the de-
gree function defined by
is constant on , for each in .

Example: One can construct simple examples of quasi-reg-
ular hypergraphs using what are called biregular graphs in the
graph theory literature. Consider a bipartite graph on vertex sets

and (i.e., all edges go between and ), such that every
vertex in has degree and every vertex in has degree .
Such a graph always exists if . Now consider
the hypergraph on with hyperedges being the neigh-
borhoods of vertices in the bipartite graph. This hypergraph is
quasi-regular (with degrees being and ), and it is not reg-
ular if is different from .

There is a sense in which all quasi-regular hypergraphs are
similar to the example above; specifically, any quasi-regular hy-
pergraph has a canonical decomposition as a disjoint union of
regular subhypergraphs.

Lemma II: Suppose the hypergraph on the vertex set
is quasi-regular. Then one can partition into disjoint subsets

, and into disjoint subhypergraphs such that each
is a regular hypergraph on vertex set .
Proof: Consider the equivalence relation on induced by

the degree, i.e., and are related if . This relation
decomposes into disjoint equivalence classes . Since
is quasi-regular, all indices in have the same degree for each
set , and hence each is a subset of exactly one
equivalence class . Q.E.D.

The notion of quasi-regularity is related to a useful fractional
covering/packing pair. As long as there is at least one set in
the hypergraph that contains , we have

so that provide a fractional covering. Similarly,
the numbers provide a fractional packing.

Definition IV: Let be any hypergraph on such that every
index appears in at least one hyperedge. The fractional covering
given by is called the degree covering, and the
fractional packing given by is called the degree
packing.

The following lemma is a trivial consequence of the
definitions.

Lemma III: If is quasi-regular, the degree packing and de-
gree covering coincide and provide a fractional partition of
using . In particular, .

One may define the weight of a fractional partition as follows.

Definition V: Let be a fractional partition (or a frac-
tional covering or packing). Then the weight of is

.

There are natural optimization problems associated with the
weight function. The problem of minimizing the weight of
over all fractional coverings is the called the optimal frac-
tional covering problem, and that of maximizing the weight of
over all fractional packings is the called the optimal fractional
packing problem. These are linear programming relaxations of
the integer programs associated with optimal covering and op-
timal packing, which are of course important in many applica-
tions. Much work has been done on these problems, including
studies of the integrality gap (see, e.g., [44]).

One may also define a notion of duality for fractional
partitions.

Definition VI: For any hypergraph , define the complimen-
tary hypergraph as . If is a fractional cov-
ering (or packing) using , the dual fractional packing (respec-
tively, covering) using is defined by

To see that this definition makes sense (say for the case of a
fractional covering ), note that for each

III. NEW INEQUALITY FOR SUBMODULAR FUNCTIONS

The following definitions are necessary in order to state the
main technical result of this paper.

Definition VII: The set function is submodular
if

for every . If is submodular, we say that is
supermodular.

Definition VIII: For any disjoint subsets and of , de-
fine . For a fixed subset , the
function defined by is called
conditional on .

For any , denote by the set of indices less than
every index in . Similarly, is the set of indices greater than
every index in . Also, the index is identified with the set ;
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thus, for instance, is well-defined. We also write
for . Note that .

Lemma IV: Let be any submodular function
with .

1) If , , are disjoint sets

(5)

2) The following “chain rule” expression holds for :

Proof: First note that if , , are disjoint sets, then sub-
modularity implies

which is equivalent to .
The “chain rule” expression for is obtained by induc-

tion. Note that since
. Now assume the chain rule holds for , and observe

that

where we used the induction hypothesis for the second equality.

Theorem I: Let be any submodular function
with . Let be any fractional partition with respect to
any collection of subsets of . Then

Proof: The chain rule (actually a slightly extended version
of it with additional conditioning in all terms that can be proved
in exactly the same way) implies

(6)

Thus

where (a) follows by the chain rule (6), (b) follows from(5), (c)
follows by interchanging sums, and (d) follows by the definition
of a fractional partition.

The lower bound may be proved in a similar fashion by a
chain of inequalities. Indeed

where , , , and follow as above.

Remark 1: The key new element in this result is the fact that
one can use, for any ordering on the ground set , the con-
ditional values of that appear in the upper and lower bounds
for . Because of (5), this is an improvement over simply
using “unconditional” values of . The latter weaker inequality
has been implicit in the cooperative game theory literature; var-
ious historical remarks explicating these connections are given
in Section X.

The fact that Theorem I does not require to be monotone is
important for many applications (including for differential en-
tropy). However, if indeed the set function of interest is mono-
tone, then more can be said—specifically, Theorem I can be ex-
tended to allow fractional coverings and packings as coefficients
in the bounds.

Corollary I: Let be any submodular function
with , such that is nondecreasing in for

. Then, for any collection of subsets of

where is any fractional packing and is any fractional cov-
ering of .

Proof: The proof is almost exactly the same as that of The-
orem I. The only difference is that the equalities there in the
upper and lower bounds are replaced by appropriate inequali-
ties, using Definition II and the nonnegativity of .

Observe that if defines a polymatroid (i.e., is not only
submodular but also nondecreasing in the sense that

if ), then the condition of Corollary I is automatically
satisfied.

IV. ENTROPY INEQUALITIES

A. Strong Fractional Form

The main entropy inequality introduced in this work is the
following generalization of Shannon’s chain rule.
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Theorem I’: (STRONG FRACTIONAL FORM):
For any collection of subsets of

and

where is any fractional packing, is any fractional covering,
and is any fractional partition of .

To see that Theorem I’ follows from Theorem I, we need to
check that the joint entropy set function is a
submodular function with . The submodularity of
is a well known result that to our knowledge was first explic-
itly mentioned by Fujishige [17], although he appears to par-
tially attribute the result to a 1960 paper of Watanabe that we
have been unable to find. It follows from the fact that

is a con-
ditional mutual information (see, e.g., [10]), which is guaran-
teed to be nonnegative by Jensen’s inequality. To see that the
“correct” definition of , note that the “unconditional”
entropy should be equal to , but the latter is

by definition, which suggests that
.
There are two points deserving of emphasis here. First, al-

though the statements of Theorem I’ (or of Theorem I) above
appear to be new, we do not claim that the proof of it is par-
ticularly novel; indeed, it is a careful refinement of the proof
given by Llewellyn and Radhakrishnan for Shearer’s lemma in
the discrete setting (see [43]). Also, fractional partitions have
been well known in combinatorics, and an anonymous referee
mentioned that he or she had known of (but not published) the
fractional version of Shearer’s lemma for polymatroids. In this
sense, our main technical contribution is to isolate the elements
actually needed in the proof, observing for instance that the re-
sult is not particular to entropy and furthermore, even the full
strength of the polymatroid structure is not needed. Second, we
would again like to stress the freedom given by Theorem I’ in
terms of choice of ordering, as this can be useful in applica-
tions. For convenience of notation, we simply labelled the in-
dices using the natural numbers in Theorem I’ and used the or-
dering , but one may equally well use another
labeling or ordering.

Remark 2: It is natural to ask what choices of fractional
packing and covering optimize the lower and upper bounds re-
spectively. For a given collection of subset entropies, the op-
timal choices are clearly the solution of a linear program. In-
deed, the best upper bound is obtained, for ,
by solving

Minimize

subject to and

When the subset entropies are all equal, this is just the problem
of optimal fractional covering discussed in Section II.

B. Strong Degree Form

The choice of as the degree covering and as the degree
packing in Theorem I’ gives the strong degree form of the in-
equality.

Theorem II: (STRONG DEGREE FORM): Let be any collec-
tion of subsets of , such that every index appears in at least
one element of . Then

If is quasi-regular, then the above inequality also holds for
in place of .

Remark 3: This also proves Proposition I. Indeed, since con-
ditioning reduces entropy, Proposition I is just the loose form
of Theorem II obtained by dropping the conditioning on in
the upper bound, and including conditioning on in the lower
bound.

Remark 4: The collections for which the results in this
paper hold need not consist of distinct sets. That is, one may
have multiple copies of a particular contained in , and
as long as this is taken into account in counting the degrees of the
indices (or checking that a set of coefficients forms a fractional
packing or covering), the statements extend. We will make use
of this feature when developing applications to combinatorics
in Section V.

Remark 5: Using the previous remark, one may write down
Theorem II with arbitrary numbers of repetitions of each set in

. This gives a version of Theorem I’ with rational coefficients,
following which an approximation argument can be used to ob-
tain Theorem I’. This proof is similar to the one alluded to by
Friedgut [15] for the version without ordering. Thus Theorem II
is actually equivalent to Theorem I’.

The strong degree form of the inequality generalizes
Shannon’s chain rule. In order to see this, simply choose the
collection to be , the collection of all singletons. For this
collection, Theorem II says

which is precisely Shannon’s chain rule (see, e.g., Shannon [45]
and Cover and Thomas [10]), since the upper and lower bounds
are identical. Note in contrast the looseness of the upper and
lower bounds in (2), which are tight if and only if the random
variables are independent.

Application of Theorem II to nonsymmetric collections is
also of interest. For instance, choosing to be the class of all
sets of consecutive integers yields and . Thus

(7)

where .

C. Weak Fractional Form

Theorems I’ and II can be weakened by removing the con-
ditioning in the upper bound, and adding conditioning in the
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lower bound; from the latter, one obtains the weak degree form
of Proposition I, and from the former, one obtains the weak frac-
tional form of our main inequality.

Proposition II: (WEAK FRACTIONAL FORM): For any hyper-
graph on

(8)

and

(9)

where is any fractional packing, is any fractional covering,
and is any fractional partition of .

Remark 6: While the main inequality as stated in both its
degree form (Theorem II) and its fractional form (Theorem I’)
seems novel, the bounds have been known to various levels of
generality, as pointed out in the Introduction. In the discrete
mathematics community, particular forms of the upper bound
have been well known ever since the introduction of Shearer’s
lemma by Chung, Graham, Frankl, and Shearer [9] (see also
[43] and [25]). In the level of generality of Proposition II, the
fractional form was demonstrated by Friedgut [15] in terms of
hypergraph projections. Friedgut’s proof of the upper bound is
perhaps not as transparent as the one we give. In the information
theory community, both the upper and lower bounds of Proposi-
tion II have been known for the special case of the hypergraphs

(consisting of all sets of elements out of ), since the work
of Han [23] and Fujishige [17].

Remark 7: In the case of independent random variables, the
joint entropy is ad-
ditive. Thus in that case, for any quasi-regular hypergraph ,
Proposition I holds with equality, and this is just Lemma III with

. Similarly, thanks to Lemma I, Proposition II holds
with equality for independent random variables when is
a fractional partition.

We believe that both the degree formulations of Proposition
I and Theorem II, and the fractional formulations of Theorem
I’ and Proposition II are useful ways to think about these in-
equalities, and that they pave the way to the discovery of new
applications. We illustrate this by using the degree formulation
to count independent sets in graphs in Section V, and by using
the fractional formulation to obtain new determinantal inequal-
ities in Section VI.

V. AN APPLICATION TO COUNTING

A. Entropy and Counting

It is necessary to recall some terminology from graph theory.
For our purposes, a graph consists of a finite vertex
set and a collection of two-element subsets of called
edges (allowing repetition, i.e., self-loops). Thus is a special
case of a hypergraph, each hyperedge having cardinality 2. Two
vertices are said to be adjacent, if there is an edge containing
both of them. An independent set of is a subset of such
that no two vertices in are adjacent.

Given a graph , the set of
homomorphisms from to is defined as

Let denote the complete bipartite graph between parts of
sizes and , respectively.

Shearer’s lemma, and more generally, entropy-based argu-
ments, have proved very useful in combinatorics. Shearer’s
lemma was (implicitly) introduced by Chung, Graham, Frankl
and Shearer [9], and Kahn [25] stated an extension using
the more familiar entropy notation. Recent applications of
Shearer’s lemma to difficult problems (where counting bounds
are a key step in obtaining the results) include [19], [16], [26],
[25], [6], and [21]. Radhakrishnan [43] provides a nice survey
of entropy ideas used for counting and various applications; see
also [1].

The general strategy of entropy-based proofs in counting is
as follows:

• To count the number of objects in a certain class of ob-
jects, consider a randomly drawn object from the class
and note that its entropy is .

• Represent using a collection of discrete random vari-
ables, and apply a Shearer-type lemma to bound
using certain subset entropies for a clever choice of hyper-
graph dictated by the problem.

• Perform an estimation of the resulting bound, using
Jensen’s inequality if necessary.

Below, we follow this direction of work and demonstrate a
counting application of the new inequality. In particular, we use
Theorem I’ to bound the number of independent sets of an arbi-
trary graph, the number of proper graph colorings with a fixed
number of colors, and more generally the number of graph ho-
momorphisms.

B. Counting Graph Homomorphisms

Using Shearer’s entropy inequality as a key ingredient, Kahn
[27] recently showed a bound on the number of independent
sets of a regular graph, building on his earlier result [25] for
bipartite, regular graphs. Kahn’s proof extends in a straightfor-
ward way, as observed by Galvin [20], to also bound from above
the number of homomorphisms from a -regular graph to an ar-
bitrary graph . Theorem IV below extends the observations
of Kahn and Galvin to bound the number of graph homomor-
phisms from an arbitrary graph to an arbitrary graph .

Theorem III: (GRAPH HOMOMORPHISMS): For any -vertex
graph and any graph

(10)

where denotes the number of vertices preceding in any
ordering induced by decreasing degrees.

Proof: Let be chosen uniformly at random from
. The random homomorphism can be rep-

resented by the values it assigns to each , i.e.,
, where
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. By definition, and are connected in if and
are connected in . We aim to bound from above.
Let denote an ordering on vertices according to the de-

creasing order of their degrees (ties may be broken, for instance,
by using an underlying lexicographic ordering of ). For each

, let

and

and define . Consider the collection to be the
collection of , and in addition, copies of singleton sets

, for each . Then observe that each is covered by sets
in , i.e., that the degree of in the collection is .
Indeed, each appears in sets of the form, ,
corresponding to each such that and , and
once in each of the singleton sets .

By the upper bound in Theorem II applied to this collection
, we have

by relaxing the conditioning and by the fact that the chosen or-
dering makes imply .

Let denote the probability mass function of , which
takes its values in . In other
words, is the probability that , under the
uniform distribution on . Finally, let be the number
of values that can take given that , i.e., the
support size of the conditional distribution of given

. Note that this is also the number of possible extensions of
the partial homomorphism on to a partial homomorphism
on .

Then

where is the cardinality of the range of given that
, and we have bounded

by , and the last inequality follows by Jensen’s in-
equality. Thus

The proof is completed by observing that, for any

(11)

Indeed, first note that every (partial) homomorphism of
for any graph (regardless of the ordering ) is triv-

ially a valid (partial) homomorphism of one side of ,
since each side of this bipartite graph has no edges and

. Furthermore, for a valid , the number of extensions
to is the same whether the graph is or ,

since it only depends on . This proves (11). Note that the in-
equality(11) can be strict, since there can be partial homomor-
phisms of one side of to a given which are not nec-
essarily valid while considering (partial) homomorphisms from

to , since the induced graph on , for a given , might
have some edges. (This corrects the claim in [21] that(11) holds
with equality.)

Nayak, Tuncel, and Rose [42] note that zero-error
source-channel codes are precisely graph homomorphisms
from a “source confusability graph” to a “channel charac-
teristic graph” . Thus, Theorem IV may also be interpreted
as giving a bound on the number of zero-error source channel
codes that exist for a given source-channel pair.

C. Counting Independent Sets

By choosing appropriate graphs , various corollaries can
be obtained. In particular, it is well known that the problem of
counting independent sets in a graph can be cast in the language
of graph homomorphisms. Choose to be the graph on two
vertices joined by an edge, and with a self-loop on one of the
vertices. Then, by considering the set of vertices of that are
mapped to the unlooped vertex in , it is easy to see that each
homomorphism from to corresponds to an independent set
of . This yields the following corollary.

Corollary II:(INDEPENDENT SETS): Let be an
arbitrary graph on vertices, and let denote the set of in-
dependent sets of . Let denote an ordering on according
to decreasing order of degrees of the vertices, breaking ties ar-
bitrarily. Let denote the number of neighbors of which
precede , under the ordering. Then

Specializing to the case of -regular graphs on
vertices, it is clear that

where is an arbitrary total order on , and is the
number of vertices preceding in this order, which are neigh-
bors of . This recovers Kahn’s unpublished result [27] for

-regular graphs, which generalized his earlier result [25]
for the -regular, bipartite case. Note that we removed the
assumption of regularity in Kahn’s result by making a choice
of ordering.
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There is another way to view this result that is useful in com-
putational geometry. Namely, if one considers a region (of, say,
Euclidean space) and a finite family of subsets

of this region, then one can define the intersection graph
of this family by connecting and in if and only if

. Then the independent sets of are in one-to-one
correspondence with packings of the region using sets in the
family . Thus Corollary II also gives a bound on the number
of packings of a region using a given family of sets.

Another easy corollary of Theorem III is to graph colorings.
Recall that a (proper) -coloring of the vertices of is a map-
ping so that and implies
that . Consider the constraint graph the
complete graph on vertices, for . Then
corresponds to the number of (proper) -colorings of the ver-
tices of . Thus the above theorem yields a corresponding upper
bound on the number of -colorings of a graph , by replacing

in (10) with the number of -colorings of
the complete bipartite graph .

VI. APPLICATION TO DETERMINANTAL INEQUALITIES

The connection between determinants of positive definite ma-
trices and multivariate normal distributions is classical. For ex-
ample, Bellman’s text [3] on matrix analysis makes extensive
use of an “integral representation” of determinants in terms of
an integrand of the form , which is essentially the
Gaussian density. The classical determinantal inequalities of
Hadamard and Fischer then follow from the subadditivity of
entropy. This approach seems to have been first cast in proba-
bilistic language by Dembo, Cover, and Thomas [11], who fur-
ther showed that an inequality of Szasz can be derived (and gen-
eralized) using Han’s inequality. Following this well-trodden
path, Proposition II yields the following general determinantal
inequality.

Corollary III: (DETERMINANTAL INEQUALITIES): Let be a
positive definite matrix and let be a hypergraph on .
Let denote the submatrix corresponding to the rows and
columns indexed by elements of . Then, using denote the
determinant of , we have for any fractional partition

The proof follows from Proposition II via the fact that any
positive definite matrix can be realized as the covariance
matrix of a multivariate normal distribution , whose
entropy is

and furthermore, that if , then
. Note that an alternative approach to proving

Corollary III would be to directly apply Theorem I to the known
fact (called the Koteljanskii or sometimes the Hadamard-Fis-
cher inequality) that the set function is
submodular.

For an -regular hypergraph , using the degree partition in
Corollary III implies that

Considering the hypergraphs and then yields the
Hadamard and prototypical Szasz inequality, while the Fischer
inequality follows by considering , for an arbitrary

.
We remark that one can interpret Corollary III using the all-

minors matrix-tree theorem (see, e.g., Chaiken [7] or Lewin
[32]). This is a generalization of the matrix tree theorem of
Kirchhoff [29], which states that the determinant of any cofactor
of the Laplacian matrix of a graph is the total number of distinct
spanning trees in the graph, and interprets all minors of this ma-
trix in terms of combinatorial properties of the graph.

VII. DUALITY AND MONOTONICITY OF GAPS

Consider the weak fractional form of Theorem I, namely

We observe that there is a duality between the upper and lower
bounds, relating the gaps in this inequality.

Theorem IV: (DUALITY OF GAPS): Let be
a submodular function with . Let be an arbitrary
fractional partition using some hypergraph on . Define the
lower and upper gaps by

Gap

and

Gap (12)

Then

Gap
(13)

where is the weight function and is the dual fractional par-
tition defined in Section II.

Proof: This follows easily from the definitions. Indeed

and

Dividing the first expression by the second yields the result.

Authorized licensed use limited to: Mokshay Madiman. Downloaded on May 24,2010 at 15:43:22 UTC from IEEE Xplore.  Restrictions apply. 



MADIMAN AND TETALI: INFORMATION INEQUALITIES FOR JOINT DISTRIBUTIONS 2707

Note that the upper bound for with respect to
is equivalent to the lower bound for with respect to the
dual , implying that the collection of upper bounds for all
hypergraphs and all fractional coverings is equivalent to the col-
lection of lower bounds for all hypergraphs and all fractional
packings. Also, it is clear that under the assumptions of Corol-
lary I, one can state a duality result extending Theorem IV by
replacing by any fractional covering , and by the dual frac-
tional packing . From Theorem IV, it is clear by symmetry that
also

(14)

However, (13) and(14) do not imply any relation between
and .

The gaps in the inequalities have especially nice structure
when they are considered in the weak degree form, i.e., for the
fractional partition using a -regular hypergraph , all of whose
coefficients are . The associated gaps are

and (15)

Corollary IV: (DUALITY FOR REGULAR COLLECTIONS): Let
be a submodular function with . For a

-regular collection

Let us now specialize to the entropy set function —we
use this to mean either (if the random variables are
discrete) or (if the random variables are continuous).
The special hypergraphs , , consisting of all

-sets or sets of size , are of particular interest, and a lot is al-
ready known about the gaps for these collections. For instance,
Han’s inequality [23] already implies Proposition I for these hy-
pergraphs, and Corollary IV applied to these hypergraphs im-
plies that

recovering an observation made by Fujishige [17]. Indeed, The-
orem IV and Corollary IV generalize what [17] interpreted using
the duality of polymatroids, since our assumptions are weaker
and the assertions broader. Fujishige [17] considered these gaps
important enough to merit a name: building on terminology of
Han [23], he called the quantity a “total correlation,”
and a “dual total correlation.”

In two particular cases, the gaps have simple expressions as
relative entropies (see Section IX for definitions). First, note that
the lower gap in Han’s inequality (3) is related to the dependence
measure that generalizes the mutual information

(16)

It is trivial to see that the gap is zero if and only if the random
variables are independent.

Second, the lower gap in Proposition I with respect to the
singleton class is related to the upper gap in the prototypical
form (3) of Han’s inequality

(17)

(Here, the last equality comes from simple manipulation of the
pointwise log likelihoods.) Note that for the gap to be zero, each
of the relative entropies on the right must be zero. In particular,

, which implies that is independent
of the remaining random variables. By applying the same fact
to the collection of random variables under different orderings,
one sees that must be an independent collection of random
variables.

The latter observation is relevant to the study of the erasure
entropy of a collection of random variables, defined by Verdú
and Weissman [50] to be

They give several motivations for defining these quantities; most
significantly, the erasure entropy has an operational significance
as the number of bits required to reconstruct a symbol erased by
an erasure channel. Theorem 1 in [50] states that

with equality if and only if the are independent.
The inequality here is simply the lower bound of Proposition
I applied to the singleton class , and is thus a special case
of our results. The difference between the joint entropy of
and its erasure entropy is just , and the characterization
of equality in terms of independence follows from the remarks
above. It would be interesting to see if the more general bounds
on joint entropy developed here can also be given an operational
meaning using appropriate erasure-type channels.

Apart from the eponymous duality between the total and dual
total correlations discussed above, these quantities also satisfy
a monotonicity property, sometimes called Han’s theorem (cf.,
[23]). Since this complements the duality result, we state it
below in the more general submodular function setting.

Corollary V: (MONOTONICITY OF GAPS): Let
be a submodular function with , and let
and be defined by (15). Then both and

are monotonically decreasing in .
Proof: Proposition I, applied to the collection , imme-

diately implies that , for ,
on observing that . To obtain the full
chain of inequalities, first note that for any in

Thus
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To complete the proof, note that

Again specializing to the joint entropy function, let

denote the joint entropy per element for subsets of size aver-
aged over all -element subsets, and

denote the corresponding average of conditional entropy per el-
ement. Since and

, Corollary V asserts that is decreasing in ,
while is increasing in . Dembo, Cover and Thomas [11]
give a nice interpretation of this fact, briefly outlined below.

Suppose we have sensors collecting data relevant to the
task at hand. For instance, the sensors might be measuring the
temperature of the ocean at various points, or they might be
evaluating the probability that a human face is in a collection of
camera images taken along the boundary of a high-security site,
or they might be taking measurements of neurons in a monkey’s
brain. Suppose due to experimental conditions, at any time, we
only have access to a random subset of sensor measurements
out of . Then Han’s monotonicity theorem implies that, on
average, we are getting more information as increases, etc.

VIII. ENTROPY POWER INEQUALITIES

Theorem I’ implies similar inequalities for entropy powers.
Recall that the entropy power of the random vector is

This is sometimes standardized by a constant ( ), which is
convenient in the continuous case as it allows for a comparison
with a multivariate normal distribution. For discrete random
variables, one can replace by in the above definition.

Corollary VI: Let be any fractional partition of using
the hypergraph . Then

where are weights that sum to 1 over .
Proof: First note that

since is a fractional partition. Thus

where the first inequality follows from Proposition II, and the
last inequality follows by Jensen’s inequality.

Remark 8: Corollary VI generalizes an implication of [10,
Th. 16.5.2], which looks at the collections of -sets. Note that,
as in the special case covered in [10], Corollary VI continues to
hold with the entropy power replaced throughout by
any of the quantities for any

. As in the case of entropy, the bounds on the entropy powers
associated with the hypergraphs and the degree covering
satisfy a monotonicity property. Indeed, by [10, Th. 16.5.2]

is a decreasing sequence in . More interesting than entropy
power inequalities for joint distributions, however, are entropy
power inequalities for sums of independent random variables
with densities. Introduced by [45] and [48] in seminal contribu-
tions, they have proved to be extremely useful and surprisingly
deep—with connections to functional analysis, central limit the-
orems, and to the determination of capacity and rate regions
for problems in information theory. Recently the first author
showed (building on work in [2] and [33]) the following gen-
eralized entropy power inequality. For independent real-valued
random variables with densities and finite variances

(18)

for any fractional partition with respect to any hypergraph
on . Inequality (18) shares an intriguing similarity of form
to the inequalities of this paper, although it is much harder to
prove.

The formal similarity between results for joint entropy and
for entropy power of sums extends further. For instance, the fact
that

is an increasing sequence in , can be thought of as a formal
dual of Han’s theorem. It is an open question whether upper
bounds for entropy power of sums can be obtained that are anal-
ogous to the lower bound in Theorem I’.

IX. INEQUALITY FOR RELATIVE ENTROPY, AND

INTERPRETATIONS

Let be either a countable set, or a Polish (i.e., complete sep-
arable metric) space equipped as usual with its Borel -algebra
of measurable sets. Let and be probability measures on
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the Polish product space . For any nonempty subset of ,
write for the marginal probability measure corresponding to
the coordinates in . Recall the definition of the relative entropy:

when is absolutely continuous with respect to , and
otherwise.

One may also define the conditional relative entropy by

(19)

where is understood to mean the conditional distribution
(under ) of the random variables corresponding to given par-
ticular values of the random variables corresponding to ; then

denotes the averaging using over the values that are con-
ditioned on. We have freely used (regular) conditional distribu-
tions in these definitions; the existence of these is justified by
the fact that we are working with Polish spaces.

For compactness of notation, let us set

From the definitions above, it is easy to verify the chain rule

for disjoint and , so that following the terminology developed
in Section III, one should set

Theorem V: Let be a product probability measure on ,
where is a Polish space as above. Suppose is a probability
measure on such that the set function
given by

does not take the value for any . Then is
supermodular.

Proof: For any nonempty , we have

Since , it would suffice to prove for disjoint
sets and that

(20)

for any .
However observe that, since is a product probability

measure

so that (20) is an immediate consequence of the convexity of
relative entropy (see, e.g., [10]).

Based on the supermodularity proved in Theorem V,
Theorem I applied to immediately implies the following
corollary.

Corollary VII: Under the assumptions of Theorem V

(21)

where is any fractional partition using any hypergraph on
.

Remark 9: We mention a hypothesis testing interpretation
for the following easier-to-parse corollary of Corollary VII: for
-regular hypergraphs on

(22)

Suppose and are two competing hypotheses for the joint
distribution of . Then it is a classical fact due to Chernoff
(see, e.g., Cover and Thomas [10], where it is called Stein’s
lemma) that the best error exponent for a hypothesis test be-
tween and based on a large number of i.i.d. observations
of the random vector is given by . One may
ask the following question: If one has partial access to all obser-
vations (for instance, one observes only out of each ),
then how much is our capacity to distinguish between the two
hypotheses and worsened? Corollary VII can be interpreted
as giving us estimates that relate our capacity to distinguish be-
tween the two hypotheses given all the data to our capacity to
distinguish between the two hypotheses given various subsets
of the data.

Interestingly, Corollary VII implies a tensorization prop-
erty of the entropy functional

, defined for positive functions . From the
special case of Corollary VII corresponding to Han’s inequality
(i.e., the hypergraph of all subsets of size ), one ob-
tains the classical tensorization property, as noticed in [38]. We
present a generalized tensorization inequality for the entropy
functional with respect to a product measure by utilizing the
power of Corollary VII more fully.

Corollary VIII: Let be an -regular hypergraph on . Then

We omit the proof, which is based on the observation that
, where is the probability mea-

sure such that , and follows the same line of argu-
ment as in [38].

The tensorization property of the entropy functional is
of enormous utility in functional analysis, and the study of
isoperimetry, concentration of measure, and convergence of
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Markov processes to stationarity. For instance, see [22], [4],
and [30], where the classical tensorization property is used to
prove logarithmic Sobolev inequalities for Gaussian, Poisson,
and compound Poisson distributions, respectively.

X. HISTORICAL REMARKS

It turns out that the main technical result of this paper, The-
orem I, is related to a wide body of work in a number of fields,
including the study of combinatorial optimization of set func-
tions in computer science, the study of cooperative games in
economics, the study of capacities in probability theory, and of
course the study of structural properties of entropy in informa-
tion theory, which has been our present focus. In this section,
we sketch these connections and place our work in context.

The following terminology is useful.

Definition IX: The set function is fractionally subadditive
if

(23)

for any , and for any fractional partition
of . If the inequality is reversed, we say is fractionally

superadditive.
Note that Theorem I has the following corollary (basically

Proposition II for general submodular functions), obtained by
using(5) to weaken the upper bound in Theorem I.

Corollary IX: If is submodular and ,
then it is fractionally subadditive.

It is pertinent to observe that there is no monotonicity as-
sumption needed for Corollary IX. This result has a long history,
and has rarely been explicitly stated in the literature although
aspects of it have been rediscovered on multiple occasions in
various fields. First we describe how it is implicit in the clas-
sical theory of cooperative games.

In cooperative game theory, a set function is
called a value function; it can be thought of as describing the
payoff that can be obtained by arbitrary coalitions of players,
and it is canonical to take . Different assumptions on
the value function correspond to different kinds of games. For
instance, a balanced game is one for which the value function
is fractionally superadditive, i.e.

(24)

holds for every fractional partition . If the value function is
supermodular, the corresponding game is said to be a convex
game.

One solution concept for cooperative games is the core, a
subset of Euclidean space representing possible allocations of
the payoff to players. (We do not bother to define it here; it
suffices for our brief remarks here to know that such a notion
exists.) The fundamental Bondareva–Shapley theorem [5], [46]
states that the game with transferable utility associated with the
value function has a nonempty core if and only if it is bal-
anced. Separately, it is known from even earlier work of Kelley

Fig. 1. Graphs � relevant for counting independent sets and number of
5-colorings.

[28] (see also Shapley [47] who rediscovered it in the language
of games) that a convex game has a nonempty core. Putting these
together, one sees that a convex game must be balanced. This
yields a statement very similar to that of Corollary IX.

Much more recently, yet another related approach to the re-
lationship between submodularity and fractional subadditivity
has come from the theory of combinatorial auctions. Lehmann
et al. [31] showed that every submodular function is “XOS” (ter-
minology that again we do not bother to explain here). Feige
[14] showed that XOS and fractionally subadditive are identical.
We refer the reader to the mentioned papers for definitions and
details.

To summarize, the literature from cooperative game theory
and combinatorial auction theory imply Corollary IX.

While we had expected direct proofs of Corollary IX to exist
in the literature, we had initially been unable to find a reference.
After the first version of this paper was written and presented
at various venues, we were informed by Alan Sokal that it has
indeed been explicitly stated and proved in the French statistical
physics literature [40] (see also [49], where it is applied to en-
tropy in a statistical physics context).

The above discussion is also related to the theory of polyma-
troids. A nondecreasing and submodular set function

with is sometimes called a -function. This class
of functions has been intensely studied ever since the pioneering
work of Edmonds [13], who used them to define polymatroids.
Note that the nondecreasing property (i.e., when-
ever ) implies that is nonnegative. It is pertinent to
note that the extra properties inherent in polymatroid theory are
not required for Corollary IX and Theorem I (for instance, ei-
ther a monotonicity or a nonnegativity requirement for would
rule out an application to the differential entropy); so Theorem
I is really just a basic fact about submodular functions.

XI. DISCUSSION

The inequalities presented in this note are contributions to a
large body of work on the structural properties of the entropy
function for joint distributions. While the origins of such work
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lie in Shannon’s foundational paper, let us again mention (see
also the discussion after Theorem I’) that the important ob-
servation of submodularity of the joint entropy function goes
back at least to Fujishige [17]. There have also been interesting
new developments in the last few years, namely the discovery
of the so-called “non-Shannon inequalities”. Motivated by the
goal of characterizing the possible joint entropy set functions

for the discrete entropy as the underlying joint
distribution is varied arbitrarily, Zhang and Yeung [51] revealed
a fascinating phenomenon: if one thinks of each such (corre-
sponding to any joint distribution on copies of a discrete al-
phabet) as being a vector of dimension , then the set of vectors
one obtains in this manner is a strict subset of the set of vectors
corresponding to polymatroidal functions for any . The
constraints on joint entropy that are not automatic consequences
of a polymatroid property were termed “non-Shannon inequali-
ties” in [51]. For more recent developments on this subject, one
may consult [24], [39], [12].

In the context of these works, it is pertinent to note that all
of the inequalities in this paper are Shannon inequalities, in
the sense that they follow from submodularity of an entropy
function. Indeed, our study was based on the set function

, from consideration of which our main entropy
inequality (Theorem I’) was derived. However, since we now
know from the mentioned literature that entropy satisfies ad-
ditional constraints beyond submodularity, a natural question
arises. If it is true that the set function
is itself submodular, so that Theorem I’ then follows by an
application of Corollary IX to rather than an application of
Theorem I to , then we would have a tighter outer bound
on the space of joint entropy set functions. The following
counterexample shows that this is not the case.

Proposition III: The set function is not submodular.
Proof: We construct a counterexample with random

variables. Consider the sets and . Then
and . If is submodular, then since

contains the first element

which in our case becomes

(25)

By the chain rule

and

so that (25) reduces to

and then simply to . How-
ever, this is in general not true since conditioning reduces en-
tropy, and thus the hypothesis of submodularity is falsified.

Note, however, that such a counterexample is only possible
when is strictly smaller than the index set .

The relationship between the inequalities for discrete and
continuous entropy in this paper is worth noting. Observe that
a slightly more general class of inequalities holds for discrete
entropy as compared to differential entropy (for instance, only
fractional partitions are allowed in the differential entropy
context in Theorem I’); however, this is not surprising and
indeed follows from the equivalences explored by Chan [8].

The structural properties of entropy discussed in this work
are not just of abstract interest. Some applications, to deter-
minant inequalities and counting problems, have already been
mentioned in earlier sections. The inequalities discussed also
have close connections with several classical multiuser informa-
tion theoretic problems, including the Slepian-Wolf data com-
pression problem and the multiple access channel. In particular,
for the Slepian-Wolf problem where data from sources is to
be losslessly compressed in a distributed fashion, it is the set
function rather than that plays the key role.
Consequently, the lower bound in Theorem I’ has a crucial sig-
nificance: it is equivalent to the existence of a rate point whose
sum rate is the same as the rate achievable for nondistributed
compression (namely ), and is one way of showing
that no extra cost is paid in terms of asymptotic rate for the dis-
tributed nature of the task. These connections merit a separate
and more detailed exploration, and are discussed along with sev-
eral other applications of cooperative game theory to multiuser
problems in [36].

Chain rules for entropy and relative entropy have played an
important role in information theory since their recognition by
Shannon. Here we have presented several inequalities for infor-
mation in joint distributions that go beyond the chain rules but
can also be thought of as deeper consequences of them. While
these relate the information in projections of a random vector
onto different subspaces, more general inequalities can be for-
mulated that apply to a rich class of functions beyond projec-
tions (such as the sum), and these are described along with ap-
plications to additive combinatorics and matrix analysis in the
follow-up works [34], [37]. We anticipate further extensions and
applications of these inequalities in the future.

Just before this paper went to press, we became aware of
some early references describing the use of information-theo-
retic arguments for counting. Please see: [N. Pippenger, “An in-
formation-theoretic method in combinatorial theory,” J. Comb.
Theory, Ser. A, vol. 23, pp. 99–104, 1977] and [N. Pippenger,
“Entropy and Enumeration of Boolean Functions,” IEEE Trans.
Inf. Theory, vol. 45, no. 6, pp. 2096–2100, Sep. 1999] and ref-
erences therein.
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